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The parametric Lemke algorithm is used to show the existence of an odd number of solutions of a generalized bimatrix game in a certain domain. These solutions are classi…ed into two types according to the relative sign of two determinants. The British economist David Ricardo made an implicit use of that algorithm at the beginning of the nineteenth century.

Introduction

The 1 Lemke algorithm was …rst elaborated to …nd solutions of bimatrix games. One of its variants, the parametric Lemke algorithm, follows the deformations of a solution (w(t); z(t)) of a linear complementarity problem LCP (q; M ) when q = q(t) varies with a parameter t. An important property is that the distribution of the zeroes in w(t) and z(t) remains the same by intervals. A critical point is reached when some positive component of w(t) or z(t) vanishes and, then, a switch in one basic variable is required. As long as a new basic variable can indeed be de…ned at critical points, a solution obtained for q = q(0) allows us to obtain a solution for q = q(1). We return to that algorithm for cross-dual games, a nonlinear extension of bimatrix EconomiX, University Paris Ouest, 200 avenue de la République, F-92001 Nanterre. Tel: +(33) 1 40 97 59 47. E-mail: christian.bidard@u-paris10.fr 1 With acknowledgements to Emmanuel Hyon for comments and suggestions.

games (Sections 2 and 3). We show the connection between its working and the existence of an odd number of solutions in a certain domain, with a clas-si…cation of the solutions into two types according to the relative sign of two determinants (Section 4). That (generic) oddity result holds in particular for bimatrix games. In the historical Section 5, we attribute the idea of the algorithm to the economist David Ricardo who applied it to the land problem two centuries ago and we illustrate the economic problem linked to the presence of antitone moves.

The cross-dual game

By cross-dual game, we mean a complementarity problem of the type

f (x) c [y] (1) g(y) d [x] (2) x 0; y 0 (3) 
where x is an n 1 vector in an open set f R n , with R n + f , f : f ! R l a continuous function, c an l 1 vector, y an l 1 vector in an open set g , with R l + g , g : g ! R n a continuous function, and d 2 R n is an n 1 vector (notation 0 means nonnegativity, > 0 semipositivity, >> 0 positivity). The bimatrix game is obtained when f and g are respectively represented by l n and n l matrices A and B. It is assumed that c is negative c << 0

The following Theorem generalizes a well known existence result for bimatrix games, the extension of assumption A + B T 0 being

8x 0 8y 0 y T f (x) + x T g(y) 0 (5) 
The proof makes use of the (simpli…ed) Gale-Nikaido-Debreu lemma:

Lemma 1 (GND Lemma). Let S be a compact convex set in R m and z : p 2 S ! z(p) 2 R m be a continuous function satisfying the Walras identity p T z(p) = 0. There exists a vector p 0 2 S such that p T z(p 0 ) 0 for any p 2 S.

If S is the unit simplex, the conclusion is that p 0 is a solution of the complementarity problem z(p) 0, p 0, p T z(p) = 0. The following proof (same idea as in [START_REF] Bidard | Complementarity problems and general equilibrium[END_REF]) forces the Walras identity by considering the function z(p; t) = (tz(t 1 p); pz(t 1 p))

Theorem 1 Let f : R n + ! R l and g : R l + ! R n be continuous functions satisfying condition [START_REF] Lemke | Bimatrix equilibrium points and mathematical programming[END_REF]. Let f be homogeneous of degree one, vector c 2 R l be negative and vector d 2 R n be such that

fx > 0; f (x) 0g ) d T x < 0 (6)
Then the cross-dual game ( 1)-( 2)-( 3) admits a solution.

Proof. For " 0, let the simplex

S " in R n + R l + R + be de…ned by S " = ( (x; y; t); x 0; y 0; t "; X i x i + X j y j + t = 1 )
For any " > 0, the continuous function z :

S " ! R n R m R de…ned by z(x; y; t) = (tg(t 1 y) td; f (x) tc; x T d + y T c x T g(t 1 y) y T f (t 1 x)) (7)
satis…es the Walras identity (x; y; t) T z(x; y; t) = 0 on S " . According to the GND lemma, there exists a point (x " ; y " ; t " ) 2 S " such that inequality 8(x; y; t) 2 S " (x; y; t) T z(x " ; y " ; t " ) 0

holds. Taking into account assumption [START_REF] Lemke | Bimatrix equilibrium points and mathematical programming[END_REF], we obtain in particular that

8(0; y; t) 2 S " y T (f (x " ) t " c) + t(x T " d + y T " c) 0 (9) 
Consider a cluster point (x 0 ; y 0 ; t 0 )2 S 0 of (x " ; y " ; t " ) when " tends to zero. By continuity, property (9) also holds for " = 0, therefore f (x 0 ) t 0 c 0 and x T 0 d + cy T 0 0. Suppose t 0 = 0. If x 0 > 0, a contradiction is obtained with assumption (6) and c << 0. If x 0 = 0, then y 0 > 0 and a contradiction is again obtained with assumption c << 0: Therefore t 0 6 = 0 and property (8) can be extended by continuity to " = 0. This shows that g(t

1 0 y 0 ) d 0; f (t 1 0 x 0 ) c 0; x T 0 d + y T 0 c x T 0 g(t 1 0 y 0 ) y T 0 f (t 1 0 x 0 ))
0, and (t 1 0 x 0 ; t 1 0 y 0 ) is a solution of the cross-dual game.

In the remaining of the paper, we shall not use Theorem 1 directly but proceed to a constructive proof. It will be assumed that f is linear and represented by matrix A. After introducing an asymmetric treatment of inequalities (1) and (2), inequality (2) will be replaced by an equality. Vector d can then be interpreted as a parameter in the problem CD(d). Note …rst that, when d is negative, the solution of CD(d) is unique: Lemma 2 Under hypotheses (4) and ( 5), the unique solution of CD(d) for d << 0 is x = 0, y = 0.

Proof. Complementarity implies that y

T c + x T d = y T f (x) + x T g(y)
0, therefore x = 0 and y = 0. Conversely, (x = 0, y = 0) is indeed a solution since inequality (5) implies f (0) 0 and g(0) 0.

Let the functions f : f ! R l R n and g : g R n ! R n be respectively de…ned by

f (x) = f (x) x (10) 
g(y; z) = g(y) z (11)

and c be the (l + n) 1 vector c once completed by n zeroes. By setting y T = (y T ; z T ), we have y T f (x) + x T g(y) = y T f (x) + x T g(y), assumption (5) implies 8x 0 8y 0 y T f (x) + x T g(y) 0

A solution (x; y) of the cross-dual game CD(d) generates a solution (x; y) of the system

f (x) c [y] (13) g(y) = d (14) y 0 ( 15 
)
where y is the (l + n) 1 vector obtained by stacking vectors y and g(y) d.

Conversely, a solution (x; y) of ( 13)-( 14)-(15) generates a solution (x; y) of the initial system, where vector y consists of the …rst n components of y.

An n-set K f1; :::; l + ng is said to sustain a solution of CD(d) if it is the support of a nonnegative vector y (i.e., the set of its nonzero components) in a solution of the equivalent problem (13)-( 14)-(15). Let R l+n K is the set of the (l + n) 1 vectors with support K. Given a subset S f1; :::; l + ng with cardinal s, f S : f ! R s is the projection of f on R S , i.e. it is the function de…ned by its components f i for i 2 S. Function g K is the restriction of function g to vectors with support K. Jf K (respectively [Jg K ]) is the Jacobian matrix of f K , Jf K (respectively Jg K ) its determinant (f and g are now assumed to be of class C 1 ). When f is linear and represented by an l n matrix A, f is represented by (l + n) n matrix A obtained by stacking A and the identity matrix I n , and Jf K = A K is the n n sub-matrix of A made of the rows corresponding to the set K:

The parametric Lemke algorithm

We consider the generic case, with no speci…c algebraic relationship between the data (A; g; c; d). Flukes apart, the complementarity relationship in inequality (13) requires that the number n of components of x is at least equal to the number of positive components of y, while equality (14) requires that the number of positive components of y is at least equal to n. The number of positive components of y is therefore generically equal to n (if g(0) = 0, as in a bimatrix game, the point d = 0 is an exception, since y = 0 works) and the number of strict inequalities in (13) is generically equal to l. If A K and g K are injective, each arbitrary n-set K sustains at most one solution of (14) and of (13), therefore the number of solutions is …nite: …nding a solution amounts basically to identifying the n-set K of the positive components of vector y. For that purpose, we make use of the parametric Lemke algorithm [START_REF] Cottle | The Linear Complementarity Problem[END_REF], where vector d is a parameter. The algorithm follows the deformations of a solution (x(d); y(d)) of the cross-dual game CD(d) when d varies, with a speci…c attention given to the support of y(d). An important property is that the support remains the same by intervals. A critical point is reached when some positive component of y(d) vanishes and, then, a switch in one basic variable is required. As long as a new basic variable can indeed be de…ned, a solution obtained for d 0 = d(0) allows us to obtain a solution for another vector d. The following Lemma reinterprets assumption (6) as a condition for the working of the algorithm.

Lemma 3 Assume (5). Let d belong to the set

D D = d; 9b z 0 d << A T b z (16)
and let y be a solution of CD(d). If det A K 6 = 0 and Jg K (y) 6 = 0, the parametric Lemke algorithm works in a neighborhood of d, except by ‡uke.

Proof. Let (x 0 ; y 0 ) be a solution of ( 13)-( 14)-(15) at d 0 , and assume …rst that y 0 has n positive components (set K). Since g K is a local di¤eomorphism, a slight change in d is met by an adaptation of the positive components of y = y(d), with no change in x 0 . Assume now that some positive component

k of y(d) = g 1 K (d) vanishes at point d 1 2 D for y = y 1 ('critical point').
The component k which vanishes is unique, ‡ukes apart. For L = Kn fkg, let A L be the corresponding rows of A. A L has dimension (n 1) n and the set of solutions to equation A L x c L = 0 is x = x 0 + x 0 where is an arbitrary scalar and x 0 a nonzero vector in the kernel of A L . Choose x 0 such that A k x 0 > 0 (otherwise, replace x 0 by x 0 ), so that the kth inequality in (13) with f = A is met for any nonnegative scalar . Consider the complementary subset K 0 of K, for which the strict inequality A K 0 x 0 >> c K 0 holds except by ‡uke, and assume for a moment that inequality

A K 0 x 0 0 (17) 
also holds. Then, by de…nition of the nonzero vector x 0 ;we have Ax 0 0, hence Ax 0 0 and x 0 0. Since x 0 is nonzero, we obtain from (16) that d T 1 x 0 < b z T Ax 0 0, and from g L (y 1 ) = d 1 that g L (y 1 ) T x 0 < 0. Let x 00 be the semipositive vector x 0 completed by l zeroes. According to property (12) applied to x = x 00 and y = y 1 , we have y T 1 Ax 00 g(y 1 ) T x 00 = g L (y 1 ) T x 0 > 0, therefore y T 1 A L x 0 > 0. A contradiction being obtained with the de…nition of x 0 , inequality (17) does not hold, i.e. there exists at least one row m outside K such that A m x 0 < 0. Consider the smallest positive value of for which one of the strict inequalities A K 0 x 0 >> c K 0 is turned into an equality when x 0 is replaced by x 1 = x 0 + x 0 ( ‡ukes apart, that inequality is uniquely determined). Then (x 1 ; y 1 ) is another solution of CD(d 1 ). When the positive components of y remain close to those of y 1 , but its mth component y m becomes positive (half-neighborhood of y 1 ;with support M = L [ fmg), (x 1 ; y) sustains a solution of CD(d) for d varying in a half-neighborhood of d 1 :

We now examine whether the half-neigborhoods associated with each of the n-sets K and M coincide or are complementary. These n-sets have the (n 1)-set L in common.

Lemma 4

The determinants of the n n matrices A K and A M have opposite signs.

Proof. A K and A M have the submatrix A L in common, which is such that A L x 0 = 0. They only di¤er by one row, respectively A k or A m and, by construction, A k and A m are such that A k x 0 = a > 0 and A m x 0 = b < 0, therefore (bA k aA m )x 0 = 0. There follows that (bA K aA M )x 0 = 0, hence det(bA K aA M ) = 0 and the result. Proof. By continuity, the components of y = g 1 K (d) are close to those of g 1 K (d 1 ), therefore they are close to zero for the kth component and positive for the others. For i 2 K, let b i be the gradient of g i at y 1 . The algebraic equality d d 1 = X i2K (y y 1 ) i b i holds up to a …rst order approximation, from which there follows that the scalar det(b i ; i 2 L; d d 1 ) has the same sign as

(y y 1 ) k det(b i ; i 2 L; b k ) = (g 1 K (d)) k Jg K (y 1 ).
The same scalar has also the sign of (g 1 M (d)) m Jg M (y 1 ). The result follows.

De…nition 1 Let K be an n-set sustaining a solution of the cross-dual game CD(d). That solution is called white if det( A K ) and Jg K (y) have the same sign, black if they have opposite signs.

For instance, the unique solution obtained for c << 0 and d << 0 corresponds to the subset K = fl + 1; :::; l + ng for which A K = I n and g K = I n , therefore that solution is white.

Consider a path d = d(t) in the set D, a solution (x 0 ; y(t)) of CD(d(t)) for t 2 S = [t 1

; t 1 [ for which the support of y(t) is the set K, with y k (d(t)) vanishing at d(t 1 ) = d 1 . By Lemma 3, there exists an n-set M obtained from K by replacing k by an adequately chosen m, such that M is the support of another solution (x 1 ; y 0 ) of CD(d(t)) for t varying in one of the semi-intervals S or T = ]t 1 ; t 1 + ] (the semi-interval for which y ; t 1 + ; [. Assume …rst they have opposite signs. For the …rst solution with support K, y k (t) is positive when t is smaller than t 1 , therefore y 0 m (t) is negative on S and positive on T . This means that M sustains a solution when t continues to move in the same direction after t 1 . By Lemma 5, this case occurs when the Jacobians Jg K (y 1 ) and Jg M (y 1 ) have opposite signs or, taking into account Lemma 4 and De…nition 1, when the successive sets K and M have the same color. On the contrary, if y k (t) and y 0 m (t) have the same sign, M sustains another solution on the same half-interval as K, i.e. when d = d(t) makes a U-turn on the path (antitone move). That change of direction occurs when K and M have opposite colors.

Main result

Consider CD(d) and let d = d(t) move on an oriented curve in D which does not cross itself, starting from d 0 << 0, going to a given point d, and coming back to d 1 << 0. Starting from the unique solution for d 0 , that solution is transferred along the path. Even in the presence of antitone moves, the important property of the algorithm is that the same solution is not found twice (the law of succession of the sets K, M , ..., being uniquely de…ned along the path and reversible, a contradiction would be obtained by considering the …rst set which appears twice in that sequence), therefore the algorithm starting at d 0 goes …rst to d, then reaches d 1 . (The algorithm starting from d 1 follows the reverse path.) Each time the algorithm reaches d, a new solution of CD(d) is obtained. Taking into account the connection between the change of color and the change of direction on the path, we obtain that the solutions thus de…ned, which we call the accessible solutions (i.e., they are reached by following the given path d(t)), satisfy the following existence and oddity result: De…nition 2 Functions f = A and g are called regular if, for any n-set K f1; :::; l + ng, A K and g K are di¤eomorphisms.

Theorem 2 Let A and g be regular and such that condition (5) holds. Let c << 0. For d in the set D de…ned by ( 16), and ‡ukes apart, the number of white solutions of the cross-dual game CD(d) exceeds by one the number of black solutions.

Proof. Let us start from a given solution at d, which is sustained by a set K. By Lemma 3, it can be transferred along the path. If either d 0 or d 1 is reached ultimately, the solution belongs to the unique sequence of accessible solutions, for which the oddity result holds. If not, the sequence starting from K makes a loop and returns to K, hence to d. Considering the corresponding move on the path d(t), that loop sustains as many white as black solutions at d. The non accessible solutions are therefore partitioned into subsets containing as many solutions of each color. Hence the result when n 2. The case (n = 1; d > 0) is treated apart as any curve from d 0 < 0 to d > 0 then to d 1 < 0 makes a to-and-fro movement and crosses itself. Then the inequalities (1) are written a 1 x c; :::; a l x c and the only constraint which matters is the one corresponding to the smallest a i , therefore we may assume l = 1. The system is reduced to the scalar inequalities

ax c [y] g(y) d [x] x 0; y 0 with c < 0, d > 0, ay + g(y)
0 for any y 0 and a < 0 (otherwise, no scalar d > 0 belongs to D). If g(0) < d, the set of solutions is

S = f(x; y); x = c=a; g(y) = d)g; if g(0) > d, it is (x = 0; y = 0) [ S.
Since the color of a solution in S depends on the sign of g 0 (y) when g(y) = d, the result holds in both cases (the limit case g(0) = d corresponds to a degeneracy).

One may wonder if the proof of Lemma 3 and the oddity result can be extended to the case when f is nonlinear (then, one must distinguish between the local behavior of f associated with its Jacobian matrix and its global behavior). The proof.of the Lemma makes use of the following property: consider the curve (C) = x; ; f L (x) = c L which we also parameterize as x = x( ) with x(0) = x 0 , and choose a direction on that curve such that f k (x( )) is locally increasing when becomes positive. Then, for any i, function f i varies monotonously on the oriented curve and, if it is decreasing, its decreases to 1.That property holds when f is linear (then (C) is a straight line) but its extension to the nonlinear case seems rather arti…cial.

It follows from Theorem 2 that global uniqueness is obtained if and only if any solution is white [START_REF] Erreygers | On the uniqueness of cost-minimizing techniques[END_REF]. A reason why the oddity property has not been stated previously for bimatrix games is that it is not apparent, as bimatrix games may have an even number of solutions: some of them are located outside the set D on which the working of the parametric Lemke algorithm and the existence of a solution are both guaranteed.

A pioneer

Ricardo on lands

We would like to draw attention on the connection between the work of the British economist David Ricardo (1772-1823) who, in the Principles (1817), elaborated a theory of long-term prices and rents, and the parametric Lemke algorithm. We follow here a modern formalization of Ricardo's theory mainly due to [START_REF] Sra¤a | Production of Commodities by Means of Commodities. Prelude to Critique of Economic Theory[END_REF]. The data are the set of methods of production, the rate of pro…t r per year (r 0), the vector ( 0) of demand for consumption and the vector of scarcity constraints on lands. Let there be g goods and h qualities of lands. The ith method of production is represented by a vector u i 2 R g + of material inputs, a vector i 2 R h + of land inputs and a quantity c i 2 R ++ of labor (c << 0), and the product obtained one year after investment is represented by a vector v i 2 R g + . Nonnegative combinations of these l methods are allowed. The unknowns are the price vector (the wage being set equal to one) p 2 R g + , the vector 2 R h + of rents per acre of lands and the vector y 2 R m + representing the activity levels of the methods. A long-term equilibrium is a solution of the system

V T p + (1 + r)U T p + T c [y] (18) y [ ] (19) (V U )y [p] (20) 
Condition (18) states that all operated methods yield the ruling rate of pro…t, while non-operated methods do not yield more. Condition (19) expresses the scarcity constraints on lands, and the complementarity relationship means that non fully cultivated lands yield a zero rent (competition between landowners). Condition (20) means that the demand for consumption is met by the net product, the overproduced commodities being zero priced. By introducing vector x obtained by stacking p and ; the problem is transformed into a bimatrix game with A = (1 + r)U T V T ; T and B = [V U; ] for which condition A + B T 0 is met. The parallel was pointed out by [START_REF] Salvadori | Land and choice of techniques within the Sra¤a framework[END_REF], who applied the existence result to the economic problem.

Ricardo was interested in the e¤ect of an increase of demand (especially an increase in the demand for corn) due to the increase in the number of workers. He stressed that, starting from an equilibrium for the present level of demand, it su¢ ces to increase the activity levels on partially cultivated lands, with no e¤ect on prices and rents, as long as no new scarcity constraint on lands is met. He also expressed the idea that, when a scarcity constraint is met, the price of corn rises up to the point where some new agricultural method, which was not operated before because it was too expensive when corn was cheap, becomes pro…table (law of succession of methods). A new equilibrium, with higher prices and rents, is obtained. Ricardo's ideas, even if they remain informal (at that time, economists did not write equations) are clearly the same as those sustaining the parametric Lemke algorithm [START_REF] Bidard | The Ricardian rent theory: an overview, Centro Sra¤a working paper[END_REF].

Ricardo considered two ways, which he considered as basically equivalent, to extend the production of corn. One consists in extending cultivation on a new land (extensive cultivation), the other in changing a method already in use on some land and adopting a more productive one (intensive cultivation). He did not see, however, that in the second case the incoming method designated by the law of succession of methods, which is only based on a pro…tability criterion, may in fact be less productive than the present method it replaces. In other words, Ricardo missed the possibility of an antitone move: from a formal point of view, the 'Ricardian dynamics'are the parametric Lemke algorithm with no antitone move. Contemporary economists have pointed at the possible multiplicity of equilibria but missed the link between the multiplicity phenomenon and the failure of the Ricardian dynamics on the path leading from low to high levels of demand.

Numerical examples

Simple numerical examples illustrate the di¢ culties of the Ricardian dynamics. Let there be a unique quality of land (h = 1) with total area =100 acres, a unique commodity (g = 1), corn, and three available methods to produce corn in one period by means of corn and labor. By setting l i = c i , method i (i = 1; 2; 3) is described as (u i quarters corn, l i days labor, i acres land) ! v i quarters corn with, respectively:

u 1 = 5; l 1 = 5; 1 = 1; v 1 = 15 u 2 = 5; l 2 = 20; 2 = 1; v 2 = 20 u 3 = 5; l 3 = 40; 3 = 1; v 3 = 25
Let the rate of pro…t be r = 1 and labor be chosen as numeraire. We solve system (18)-( 19)-(20) for these data, the level of demand being the parameter. For low levels of demand, land is not fully cultivated and the rent is zero. Method 1 is operated because it is the cheapest (competition among farmers) and then the price of corn is p = 1. Since the net product per acre of method 1 amounts to 10 quarters, that solution sustains a …nal demand for corn up to level = 1; 000 when land is fully cultivated. At this stage, the price p of corn rises and the rent per acre becomes positive. As method 1 will continue to be operated in the next equilibrium, equality 2(5p) + 5 + = 15p will hold, i.e. a rise of the price of corn from its present level to p = 1+ goes with a rise of the rent per acre from 0 to = 5 . These moves improve the pro…tability of the alternative methods and method 2 is the …rst to reach the ruling rate of pro…t r = 1 for = 2: The next equilibrium price is p = 3, with = 10: Method 2 is introduced and progressively substituted for method 1. As it is more productive per acre, that equilibrium sustains any demand in the interval [1; 000; 1; 500]. At level = 1; 500, land is fully cultivated by method 2, the price of corn and the rent rise up to p = 4 and = 20, allowing for the progressive replacement of method 2 by the more productive method 3: the Ricardian dynamics work.

Consider now the economy described by methods 1, 2 and 4, where method 4 is characterized by the data u 4 = 3; l 4 = 7; 4 = 1; v 4 = 12 For low levels of demand, method 1 is operated, with p = 1 and = 0. When the price of corn rises to p = 1 + and the rent to = 5 , method 4 becomes pro…table at level = 1, before method 2. Method 4 should be progressively substituted for 1 but, since it is less productive per acre, its introduction would lead to a fall in the net product: the Ricardian dynamics fail. By contrast, the Lemke algorithm goes on by reducing demand from 1; 000 to 900. In the next step, method 4 is maintained and the algorithm proceeds to the introduction of method 2 which replaces method 1. For the intermediate level = 920; two white solutions (method 1 alone, or joint use of methods 2 and 4) are found, as well as one black solution corresponding to the joint use of methods 1 and 4.

Finally, consider the economy described by methods 1 and 4 alone. At level = 920, there are two solutions, but this is not a counter-example to Theorem 2 since, after the disappearance of method 2, that level is outside the set D de…ned by (16).

For the economy de…ned by methods 1, 4 and 6 u 6 = 1; l 6 = 17:5; 6 = 1; v 6 = 11:5

the set D corresponds to levels of demands lower that 950. For demand starting from low levels and growing up to = 920, the equilibrium de…ned by method 1 is reached, but the black equilibria made of methods 1 and 4 and the white equilibrium made of methods 4 and 6 (with p = 3, = 11) are not accessible.

Conclusion

Oddity results are not so infrequent in mathematics. In this paper we link the property and the distinction of two types of equilibria to the working of the parametric Lemke algorithm. It is likely that, beyond the bimatrix and the cross-dual games, the strategy of proof applies to other types of complementarity problems and similar results can be obtained.

Lemma 5

 5 Let d be close to a critical point d 1 = g(y 1 ). The components of g 1 K (d) (respectively, g 1 M (d)) other than the kth (respectively, the mth) are positive. The components (g 1 K (d)) k and (g 1 M (d)) m have the relative sign as Jg K (y 1 ) and Jg M (y 1 ).

0m

  (d(t)) is positive). Both values y k (t) = y k (d(t))and y 0 m (t) = y 0 m (d(t)) change their sign at t = t 1 when d(t) crosses the hypersurface corresponding to y k = y 0 m = 0, therefore y k (t) and y 0 m (t) have either always opposite signs or always the same sign on ]t 1