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We consider a competitive Ramsey economy where a pollution externality a¤ects both consumption demand and labor supply, and we assume the stock of pollution to be persistent over time. Surprisingly, when pollution jointly increases the consumption demand (compensation e¤ ect ) and lowers the labor supply (leisure e¤ ect ), multiple equilibria arise near the steady state (local indeterminacy) through a Hopf bifurcation (limit cycle). This result challenges the standard view of pollution as a ‡ow to obtain local indeterminacy, and depends on the leisure e¤ ect which renders the pollution accumulation process more volatile.

Résumé

Nous étudions le sentier de croissance concurrentiel d'une économie à la Ramsey où la pollution (externalité négative) a¤ecte à la fois la demande de consommation et l'o¤re de travail des ménages. La pollution y est introduite comme une variable de stock avec une forte persistance au cours du temps. Dans la littérature, des situations d'indétermination locale apparaissent lorsque la pollution prend la forme d'un ‡ux. Dans notre modèle, lorsque la pollution augmente la demande de consommation (e¤et de compensation), tout en réduisant l'o¤re de travail (e¤et loisir), des équilibres multiples apparaissent au voisinage de l'état stationnaire (indétermination locale) au travers d'une bifurcation de Hopf (cycle limite). Ce résultat surprenant s'explique par la présence de l'e¤et loisir qui rend le processus d'accumulation de la pollution plus volatile.

Introduction

Since the early Seventies, growth literature has paid attention to the economic consequences of pollution. The question addressed at that time, after the postwar economic boom in Western countries, was the sustainability of growth under the depletion of natural resources and the emergence of a global pollution.

The seminal and resounding contribution to both academic research and public debate was the Meadow's Report published by the Club of Rome in 1972, better known under the title The limit to growth: Conclusions cast some doubts on the plausibility of a sustained growth jointly with environmental preservation. Growth theorists tackled this issue by raising new questions. Does natural resource depletion lead always to an economic decline? Is it possible to reconcile economic growth and environmental preservation?

These questions were treated separately within Ramsey models. 1 Solow (1974), [START_REF] Dasgupta | The optimal depletion of exhaustible resources[END_REF], and [START_REF] Stiglitz | Growth with exhaustible natural resources: e¢ cient and optimal growth paths[END_REF] considered the optimal solution for a Ramsey economy with a resource depletion while [START_REF] Keeler | The optimal control of pollution[END_REF] and [START_REF] Forster | Optimal capital accumulation in a polluted environment[END_REF] pioneered an alternative stream of theoretical literature with pollution in the utility function and focused on the optimal solution for a Ramsey economy where production activities generate a pollution externality with a negative impact on social welfare.

In the spirit of [START_REF] Keeler | The optimal control of pollution[END_REF] and [START_REF] Forster | Optimal capital accumulation in a polluted environment[END_REF], questions were reformulated. Without exogenous growth engines (namely, population growth and exogenous technical progress), does the optimal trajectory imply a decreasing welfare and lead to a steady state? With exogenous growth, does it entail a welfare increasing over time?

During the Eighties, specialists agreed about a common de…nition: growth is sustainable if the social welfare does not decrease along the growth path.

Loosely speaking, pollution externalities and depollution activities matter when they a¤ect the fundamentals (technology and preferences). Modelling pollution as a ‡ow or a stock has also an impact on equilibrium solutions. As specialists of combinatorial art, theorists revisit during the Eighties the seminal models combining di¤erent building blocks. Since, pollution is considered as an input of production or utility function 2 or a by-product of production or consumption activities, 3 and modelled as a ‡ow or a stock. 4 Environmental maintenance and depollution activities are also taken in account. 5We are interested in the pollution e¤ects on preferences. Theorists of pollution in the utility function consider either the separable or the nonseparable case.

Separability implies that pollution does not a¤ect directly the marginal utility of consumption and, therefore, the consumption demand coincides with that of a Ramsey economy without pollution externalities. Conversely, the planner internalizes the externality maximizing the welfare and taking in account the trade-o¤ between consumption and pollution: pollution lowers and consumption as well.

The cross e¤ect of pollution on consumption is considered by [START_REF] Keeler | The optimal control of pollution[END_REF]. Consumption and pollution are nonseparable goods and the assumption of normality ensures the uniqueness and the saddle-path stability of the steady state. The same holds in Van der Ploeg and Withagen (1991) with negative cross derivatives (decreasing marginal utility of consumption in the pollution level). The interplay between consumption and pollution in a Ramsey model is fully characterized by [START_REF] Heal | The use of common property resources[END_REF]. Heal studies the optimal growth path when the marginal utility of consumption is a¤ected by the stock of pollution without imposing any restrictive assumption on the sign of the cross e¤ect. When the stock of pollution increases the marginal utility of current consumption (adjacent complementarity), a limit cycle arises near the optimal steady state through a Hopf bifurcation.

All these papers question the sustainability as well as the dynamic properties of the optimal solution. During the Nineties, theorists pay more attention to environmental policy implications and the optimal design of market solutions. 6The interest of these works does not rest only on their normative dimension but also on a positive characterization of competitive solutions. [START_REF] Michel | Disutility of pollution and endogenous growth[END_REF] generalize these models in exogenous and endogenous growth (learningby-doing). They study di¤erent pollution e¤ects on households'behavior. On the one hand, pollution may stimulate the consumption demand through a (socalled) compensation e¤ ect: households consume more to compensate the drop in utility due to a higher pollution. On the other hand, if households like to consume in a pleasant environment, a rise in pollution lowers the consumption demand through a (so-called) distaste e¤ ect. The presence of negative and positive externalities (pollution and learning-by-doing) makes endogenous growth dynamics richer but more complicated: the social optimum converges to a zero growth rate in presence of distaste or weak compensation e¤ects, while a longrun positive endogenous growth rate arises under large compensation e¤ects.

Most of the articles focus on the e¤ects of pollution on consumption demand. A recent empirical literature points out the negative impact of pollution on labor supply. For instance, [START_REF] Hanna | The e¤ect of pollution on labor supply: Evidence from a natural experiment in Mexico City[END_REF] consider this e¤ect in a neighborhood of a polluting re…nery in Mexico City and …nd that a one-percent increase in air pollution results in a 0:61 percent decrease in the hours worked. Gra¤ Zivin and Neidell (2010) and [START_REF] Carson | Arsenic mitigation in Bangladesh: A household market approach[END_REF] reach similar conclusions.

Few theoretical papers take in account the impact on labor supply through a leisure e¤ ect of pollution. All these works consider separable preferences in consumption and labor supply. [START_REF] Fernandez | The environmental Kuznets curve and equilibrium indeterminacy[END_REF] study a competitive Ramsey economy in continuous time with endogenous labor supply. The pollution ‡ow comes from the use of capital and reduces the household's utility. They focus on local indeterminacy and …nd that separability between consumption and pollution in the utility function prevents equilibrium multiplicity. Beyond the sustainability issue, they raise also the question of equilibrium convergence under pollution, especially when households'preferences are nonseparable. Similarly, [START_REF] Itaya | Can environmental taxation stimulate growth? The role of indeterminacy in endogenous growth models with environmental externalities[END_REF] shows that pollution e¤ects on the household's utility promote equilibrium indeterminacy in a competitive endogenous growth model à la [START_REF] Romer | Increasing Returns and Long-run Growth[END_REF] with endogenous labor supply. As in [START_REF] Fernandez | The environmental Kuznets curve and equilibrium indeterminacy[END_REF], [START_REF] Itaya | Can environmental taxation stimulate growth? The role of indeterminacy in endogenous growth models with environmental externalities[END_REF] de…nes pollution as a ‡ow.

Local indeterminacy is also a known feature of environmental OLG literature. [START_REF] Seegmuller | A note on indeterminacy in overlapping generations economies with environment and endogenous labor supply[END_REF] show that equilibrium multiplicity arises when …nite-lived households arbitrate between consumption, labor supply and environmental maintenance, but they still consider pollution as a ‡ow. [START_REF] Bosi | Pollution e¤ects on labor supply and growth[END_REF] build a discrete-time Ramsey economy where the stock of pollution does not a¤ect the marginal utility of consumption but the marginal disutility of labor supply. In their model, positive or negative pollution e¤ects on labor supply may arise, what they call, respectively, disenchantment or leisure e¤ ects in the spirit of [START_REF] Michel | Disutility of pollution and endogenous growth[END_REF]. In the case of disenchantment e¤ ect, the larger pollution decreases the utility of leisure and provides an incentive to increase the worked hours. Conversely, in the case of leisure e¤ ect, an increase in pollution deteriorates the working conditions and urges households to work less. In [START_REF] Bosi | Pollution e¤ects on labor supply and growth[END_REF], the competitive steady state is unique and a large leisure e¤ect leads to persistent cycles through a ‡ip bifurcation near the competitive steady state. Even if [START_REF] Bosi | Pollution e¤ects on labor supply and growth[END_REF] …t the evidence, their simpli…ed framework excludes any direct e¤ect of pollution on marginal utility of consumption and, in turn, on consumption demand.

The added value of our paper is threefold. [START_REF] Bosi | Pollution e¤ects on labor supply and growth[END_REF] We develop a uni…ed model to take into account the joint e¤ect of pollution on consumption demand [START_REF] Michel | Disutility of pollution and endogenous growth[END_REF] and labor supply [START_REF] Bosi | Pollution e¤ects on labor supply and growth[END_REF] with special focus on continuous-time bifurcations. (2) Pollution as a ‡ow is less pertinent in macroeconomic and empirical terms. 7 Di¤erently from the other papers on bifurcations and equilibrium indeterminacy, we consider a stock of pollution.

(3) We develop a general methodology to study local bifurcations of threedimensional dynamic systems in continuous time with one forward and two backward-looking variables.

The most severe forms of pollution persist over time and a¤ect future generations. Focusing on the case of a strong pollution inertia is pertinent to capture phenomena with global and macroeconomic implications such as the global warming and the nuclear waste. We show that the interplay between the leisure and the compensation e¤ ect may promote equilibrium multiplicity (indeterminacy) through a Hopf bifurcation near the steady state. This result has a twofold interest: pollution inertia and leisure e¤ ect empirically matter; most of the papers on local indeterminacy consider a ‡ow and don't thereby account for the main forms of lasting pollutions. The leisure e¤ ect plays the key role for local indeterminacy under pollution inertia. Indeed, it neutralizes the inertial e¤ect, promotes pollution volatility and macroeconomic ‡uctuations at the end.

The rest of the paper is organized as follows. In section 2, we present the model (technology, preferences and pollution). Sections 3 to 5 focus on the short and long-run equilibrium conditions. Section 6 provides a general methodology to study bifurcations of three-dimensional dynamic systems with two predetermined variables. In section 6, we apply the methodology to the case of isoelastic fundamentals. Section 7 concludes.

Model

We consider a continuous-time Ramsey economy with pollution and capital accumulation. The representative household supplies labor to a competitive …rm and faces a consumption-leisure arbitrage. Firms produce a single commodity which is consumed by households or invested as capital. Under constant returns to scale, all these …rms are equivalent to a single aggregate …rm. Pollution is a by-product of production activities and, as negative externality, it a¤ects the utility and the consumption-leisure arbitrage.

Technology

At time t, the representative …rm produces a single output Y (t). Technology is represented by a constant returns to scale production function: Y (t) = F (K (t) ; L (t)), where K (t) and L (t) are the demands for capital and labor.

Assumption 1 The production function F : R 2 + ! R + is C 1 , homogeneous of degree one, strictly increasing and concave. Inada conditions hold: f (0) = 0, f 0 (0 + ) = +1, f 0 (+1) = 0, where f (k) F (k; 1) is the average productivity and k K=L denotes the capital intensity.

The …rm is price-taker and chooses the amount of capital and labor to maximize the pro…t: max K;L [F (K; L) rK wL], where r and w are the real interest rate and the real wage. The …rst-order conditions write:

r = f 0 (k) r (k) w = f (k) kf 0 (k) w (k)
Pro…t maximization is well-de…ned under Assumption 1.

Let us introduce the capital share in total income and the elasticity of capital-labor substitution :

(k) kf 0 (k) f (k) and (k) = (k) w (k) kw 0 (k) (1) 
Thereby, the elasticities of factor prices are given by:

kr 0 (k) r (k) = 1 (k) (k) and kw 0 (k) w (k) = (k) (k) (2) 

Preferences

The household earns a capital income rh and a labor income wl where h = h (t) and l = l (t) denote the individual wealth and labor supply at time t. For simplicity, we will omit the time argument in the rest of the paper. Individual wealth accumulation is driven by the budget constraint

_ h (r ) h + wl c (3) 
where is the capital depreciation rate and c is the consumption demand.

For the sake of simplicity, the population of consumers-workers is constant over time:

N = 1. Such normalization implies L = N l = l, K = N h = h and h = K=N = kl.
Assumption 2 Preferences are separable in consumption and labor:

U (c; l; P ) u (c; P ) v (l; P ) (4) 
with u c > 0, u P 0, v l > 0, v P 0 as …rst-order restrictions, u cc < 0, v ll > 0 as second-order restrictions, and lim c!0 + u c = 1, lim l!0 + v l = 0 as a limit conditions.

We don't impose any restriction on the sign of the cross-derivatives u cP and v lP . Even if preferences are separable in consumption and labor supply, pollution a¤ects both their marginal utilities and the consumption-labor arbitrage through a general equilibrium e¤ect.

According to [START_REF] Michel | Disutility of pollution and endogenous growth[END_REF], pollution has a distaste e¤ ect on consumption if U cP < 0: an increase in pollution reduces the marginal utility of consumption. The opposite e¤ect (U cP > 0) is called compensation e¤ ect: an increase in pollution raises the propensity to consume. This terminology has been extended by [START_REF] Bosi | Pollution e¤ects on labor supply and growth[END_REF] to the e¤ects of pollution on labor supply. Pollution is said to have a leisure e¤ ect in the case of a positive e¤ect of pollution on labor disutility (U lP < 0): an increase in pollution decreases labor supply by increasing the leisure demand. Pollution worsens working conditions (for example, the negative impact of global warming rests on a positive correlation between heat and work painfulness) and gives an incentive to substitute leisure to work. The opposite e¤ect (U lP > 0) is called disenchantment e¤ ect. In this case, leisure time decreases with pollution. Households like to enjoy leisure in a healthy and pleasant environment (for instance, pollution may dissuade people from going outdoor and encourage them to work more).

The agent maximizes the intertemporal utility function R 1 0 e t U (c; l; P ) dt under the budget constraint [START_REF] Brock | A polluted Golden Age[END_REF].

> 0 is the rate of time preference. This program is well-de…ned under Assumption 2.

Proposition 1 The …rst-order conditions result in a static consumption-leisure arbitrage

U c = = U l =w (5) 
a dynamic Euler equation _ = ( + r) and the budget constraint (3) now binding _ h = (r ) h + wl c. The optimal path satis…es also the transversality condition: lim t!1 e t (t) h (t) = 0.

Proof. See the Appendix.

Pollution

The aggregate stock of pollution P is a pure negative externality. Technology is dirty and pollution persists. We assume a simple linear accumulation process:

_ P = aP + bY (6) 
where a 0 captures the rate of pollution absorption by nature and b 0 the environmental impact of production. Since, under Assumption 1, Y = Lf (k) = lf (k), the process of pollution accumulation (6) writes:

_ P = aP + blf (k) (7) 
This formulation is adopted by many authors [START_REF] Keeler | The optimal control of pollution[END_REF], [START_REF] Heal | The use of common property resources[END_REF], [START_REF] Michel | Disutility of pollution and endogenous growth[END_REF]) but, to the best of our knowledge, all the papers on local indeterminacy consider only a pollution ‡ow [START_REF] Seegmuller | A note on indeterminacy in overlapping generations economies with environment and endogenous labor supply[END_REF], [START_REF] Itaya | Can environmental taxation stimulate growth? The role of indeterminacy in endogenous growth models with environmental externalities[END_REF], [START_REF] Fernandez | The environmental Kuznets curve and equilibrium indeterminacy[END_REF]). In contrast, we assume pollution as a stock whose natural absorption is captured by a. We will see that local indeterminacy requires strong inertia under a leisure e¤ ect (pollution has a negative e¤ect on labor supply as empirically found by [START_REF] Hanna | The e¤ect of pollution on labor supply: Evidence from a natural experiment in Mexico City[END_REF]).

Equilibrium

At equilibrium, good and labor markets clear. Applying the Implicit Function Theorem to the consumption-labor arbitrage (5), we obtain (c; l) as a function of ( ; k; P ), that is c = c ( ; k; P ) and l = l ( ; k; P ). Let us introduce the following second-order elasticities of the utility function U (c; l; P ):

8 E 2 4
" cc " cl " cP " lc " ll " lP " P c " P l " P P 8 In the case of isoelastic utility functions, the …rst and second-order elasticities are related because the same fundamental parameters appear in both of them.

The di¤erent e¤ects of pollution on preferences can be captured through these elasticities. Pollution has a distaste e¤ ect on consumption if " P c < 0 and a compensation e¤ ect on consumption if " P c > 0. According to Assumption 2, U l < 0 and, thus, pollution has a leisure e¤ ect if " P l > 0 and a disenchantment e¤ ect if " P l < 0.

Proposition 2 In the separable case (4), the elasticities matrix of consumption demand c = c ( ; k; P ) and labor supply l = l ( ; k; P ) is given by

c @c @ k c @c @k P c @c @P l @l @ k l @l @k P l @l @P = 1 "cc 0 " P c "cc 1 " ll 1 " ll " P l " ll (9)
Proof. See the Appendix.

In our model, dynamics are represented by a three-dimensional system with two predetermined variables (k and P ) and one non-predetermined ( ).

Proposition 3

The equilibrium transition is driven by the following dynamic system:

_ = + r (k) _ k k = r (k) + w(k) k c( ;k;P ) kl( ;k;P ) l @l @ [ + r (k)] P l @l @P h b l( ;k;P )f (k) P a i 1 + k l @l @k (10) _ P P = b l ( ; k; P ) f (k) P a
Proof. See the Appendix.

Considering pollution as a stock instead of a ‡ow adds a third dimension to the basic Ramsey model. Dynamics turns out to be more complicated but a stock represents better the main forms of pollution such as the global warming.

Long run

Long-run dynamics are captured by attractors such as a steady state or a limit cycle. Let us focus on the steady state and the impact of the main fundamental parameters on the stationary solution.

At the steady state, _ = _ k = _ P = 0 and system (10) becomes

r (k) = + (11) c ( ; k; P ) = [ k + w (k)] l ( ; k; P ) = a b P kl ( ; k; P ) (12) l ( ; k; P ) f (k) = a b P (13) because f (k) = kr (k) + w (k).
We observe that the capital intensity k = r 1 ( + ) is not a¤ected by pollution and remains that of Modi…ed Golden Rule (MGR). Given k, system (11)-( 13) allows us to compute the other variables ( , P , c and l). Even if the capital intensity is unique and coincides with its MGR value, the multiplicity of steady states depend on the multiplicity of solutions ( ; P ). The following assumption ensures the solution uniqueness of system ( 11)- [START_REF] Keeler | The optimal control of pollution[END_REF].

Assumption 3

1 + " P c "cc 1 + " P l " ll > " ll " cc (14) 
where the elasticities are evaluated at the steady state. Assumption 3 is not very demanding. The inequality holds for instance if " P c < " cc (distaste e¤ ect (" P c < 0) or weak compensation e¤ ect (0 < " P c < " cc )) jointly with " P l > " ll (leisure e¤ ect (" P l > 0) or weak disenchantment e¤ ect ( " ll < " P l < 0)). We will provide an explicit inequality in terms of the exogenous parameters in the case of separable and isoelastic preferences.

Proposition 4 (uniqueness of the steady state) Let Assumptions 1 and 2 hold. The stationary capital intensity k is always unique. In addition, under Assumption 3, the steady state ( ; k; P ) is unique (su¢ cient condition).

Proof. See the Appendix.

Short run

The equilibrium path may converge to an attractor such as a steady state or a limit cycle. Convergence to a long-run attractor takes place in the short run. If the economy is su¢ ciently close to an attractor, the linearization of the dynamic system is a good approximation and informs us about the nature of the underlying nonlinear dynamics.

Let us study the local dynamics, that is linearize the three-dimensional dynamic system [START_REF] Hanna | The e¤ect of pollution on labor supply: Evidence from a natural experiment in Mexico City[END_REF]:

_ = f 1 ( ; k; P ) _ k = f 2 ( ; k; P ) _ P = f 3 ( ; k; P )
around the steady state . We obtain a Jacobian matrix:

J = 2 4
@f1 @ @f1 @k @f1 @P @f2 @ @f2 @k @f2 @P @f3 @ @f3 @k @f3 @P 3 5

(15)

Most of the contributions focusing on the local dynamics of a polluted economy [START_REF] Fernandez | The environmental Kuznets curve and equilibrium indeterminacy[END_REF] and [START_REF] Itaya | Can environmental taxation stimulate growth? The role of indeterminacy in endogenous growth models with environmental externalities[END_REF]) consider pollution as a ‡ow. In this case, dynamics are represented by a more tractable two-dimensional system. We consider instead pollution as a stock. Most of pollutions with sig-ni…cant macroeconomic e¤ects such as the global warming are stock. Evidence supports also the view of aggregate pollution as an accumulation process. However, pollution as a stock is less tractable from a mathematical point of view because the Ramsey model becomes higher-dimensional. Characterizing threedimensional dynamics with two predetermined and one jump variables requires some additional skill.

In this section, we present a general methodology to characterize the occurrence of local bifurcations and local indeterminacy of three-dimensional dynamic systems in continuous time. We will apply this methodology later, in the case of isoelastic functional forms.

Bifurcations

In continuous time, a local bifurcation generically arises when the real part of an eigenvalue (p) of the Jacobian matrix crosses zero in response to a change of parameter p. Denoting by p the critical parameter value of bifurcation, we get generically two cases.

(1) When a real eigenvalue crosses zero: (p ) = 0, the system undergoes a saddle-node bifurcation (either an elementary saddle-node or a transcritical or a pitchfork bifurcation) depending upon the number of steady states.

(2) When the real part of two complex and conjugate eigenvalues (p) = ã (p) i b (p) crosses zero, the system undergoes a Hopf bifurcation. More precisely, in this case, we require ã (p ) = 0 and b (p) 6 = 0 in a neighborhood of p (see Bosi and Ragot (2011, p. 76)).

System [START_REF] Hanna | The e¤ect of pollution on labor supply: Evidence from a natural experiment in Mexico City[END_REF] is three-dimensional with two predetermined variables (k and P ) and one jump variable ( ). Thus, multiple equilibria (local indeterminacy) arise when the three eigenvalues of the Jacobian matrix (15) evaluated at the steady state have negative real parts: either 1 ; 2 ; 3 < 0 or Re 1 ; Re 2 < 0 and 3 < 0.

Consider the Jacobian matrix J and focus on the expressions of determinant, sum of minors of order two and trace in terms of eigenvalues:

D = 1 2 3 S = 1 2 + 1 3 + 2 3 = 3 X i=1 det J ii T = 1 + 2 + 3
where J ii is the submatrix of J obtained canceling out the ith row and column.

A saddle-node bifurcation is associated to a multiplicity of steady states exchanging their stability properties. It occurs when a real eigenvalue crosses zero.

Proposition 5 (saddle-node bifurcation) Under Assumption 3, saddle-node bifurcations are ruled out.

Proof. Under Assumption 3, the steady state is unique. The class of saddlenode bifurcations (elementary saddle node, transcritical and pitchfork) always involves multiple steady states [START_REF] Bosi | Introduction to discrete-time dynamics[END_REF].

A Hopf bifurcation occurs when the real part of two complex and conjugate eigenvalues (p) = ã (p) i b (p) crosses zero. More precisely, we require ã (0) = 0 and b (p) 6 = 0 in a neighborhood of p = 0, where p = 0 is the normalized bifurcation value of parameter. The following proposition characterizes the occurrence of limit cycles through a Hopf bifurcation.

Proposition 6 (Hopf bifurcation) In the case of a three-dimensional system, a Hopf bifurcation generically arises if and only if D = ST and S > 0.

Proof. See the Appendix.

We will provide explicit conditions for the occurrence of a Hopf bifurcation in the case of isoelastic fundamentals (section 6).

Indeterminacy

In our model, dynamics involves two predetermined variables (k and P ) and a jump variable ( ). As seen above, indeterminacy requires the three eigenvalues with negative real parts: either 1 ; 2 ; 3 < 0 or Re 1 ; Re 2 < 0 and 3 < 0.

Proposition 7 (local indeterminacy) In the case of system [START_REF] Hanna | The e¤ect of pollution on labor supply: Evidence from a natural experiment in Mexico City[END_REF], if all the eigenvalues are real, the equilibrium is locally indeterminate if and only if D; T < 0 and S > 0.

Proof. See the Appendix.

Consider the possibility of local indeterminacy through a Hopf bifurcation. Unfortunately, Proposition 7 is of little use because, it is di¢ cult to know whether the eigenvalues are real. In the nonreal case, the necessary condition of Proposition 7 still holds. Indeed, indeterminacy (Re 1 = Re 2 < 0 and

3 < 0) implies D = 1 2 3 = h (Re 1 ) 2 + (Im 1 ) 2 i 3 < 0 S = 1 2 + ( 1 + 2 ) 3 = (Re 1 ) 2 + (Im 1 ) 2 + 2 Re 1 3 > 0 T = 1 + 2 + 3 = 2 Re 1 + 3 < 0
However, the su¢ cient condition fails: even if

D = 1 2 3 = h (Re 1 ) 2 + (Im 1 ) 2 i
3 < 0 still implies 3 < 0, conditions D; T < 0 and S > 0 don't rule out the unpleasant case Re 1 = Re 2 > 0.

We provide instead another su¢ cient condition for local indeterminacy, that is more restrictive. 

Isoelastic case

In order to provide explicit conditions for local bifurcations and indeterminacy in terms of fundamental parameters and relevant economic interpretations, we introduce isoelastic functional forms in the general model presented above.

The separable case (Assumption 2) is suitable for our local analysis because of the lack of direct cross e¤ects between the marginal utility of consumption and labor. However, we need to introduce more structure for the purpose of economic analysis. In the isoelastic case, the elasticities of matrix ( 9) are constant by de…nition and have an easy economic interpretation. Thus, we consider isoelastic separable preferences:

u (c; P ) (cP ) 1 "
1 " and v (l; P ) ! lP

1+' 1 + ' (16) 
where 1=" 0 is the consumption elasticity of intertemporal substitution, 1=' 0 is the Frisch elasticity of intertemporal substitution and ! > 0 is the weight of disutility of labor in total utility. In addition, we require ; 0 (Assumption 2).

Moreover, we focus on a Cobb-Douglas production function giving the following intensive output:

f (k) = Ak (17) 
We observe that, in this case, becomes constant and = 1.

The elasticities on the RHS of matrix (9) appear only in the …rst two columns of the elasticities matrix (8)

Ẽ 2 4 " cc " cl " lc " ll " P c " P l 3 5 = 2 4 " 0 0 ' (" 1) (1 + ') 3 
5
and depends directly on the fundamental parameters. The elasticities in the third column of E (see [START_REF] Gradus | The trade-o¤ between environmental care and long-term growth: pollution in three prototype growth models[END_REF]) are more complicated because they are not directly parametric but involve the endogenous variables:

, k, P . Fortunately, we no longer need them in the following. Hence, matrix (9) simpli…es:

c c kc k c P c P c l l kl k l P l P l = 1 " 0 e c 1 ' ' e l (18) 
where now the more compact expression y x denotes the derivative @y=@x and

e c P c P c = " 1 " and e l P l P l = 1 + ' ' (19) 
represent the pollution impacts on consumption demand and labor supply. We observe that, if > 0, a distaste e¤ ect holds when 0 < " < 1, while a compensation e¤ ect arises when " > 1. Our isoelastic speci…cation rules out any disenchantment e¤ ect if > 0, but captures the leisure e¤ ect empirically found by [START_REF] Hanna | The e¤ect of pollution on labor supply: Evidence from a natural experiment in Mexico City[END_REF].

The dynamic system [START_REF] Hanna | The e¤ect of pollution on labor supply: Evidence from a natural experiment in Mexico City[END_REF] writes:

_ = + r (k) (20) 
_ k k = + w(k) k c( ;k;P ) kl( ;k;P ) 1+' ' + r (k) + h a b l( ;k;P )f (k) P i 1 + ' ( 21 
) _ P P = b l ( ; k; P ) f (k) P a (22) 

Long run

In the isoelastic case, the steady state values depend explicitly on the fundamental parameters and the comparative statics leads to unambiguous results.

Proposition 9 In the isoelastic case, there exists a unique steady state:

= B k + w "'(1 e l ) "(1 ec )+'(1 e l ) (23) 
k = A + 1 1 (24) P = C 1 '(1 e l ) (25) 
where w = ( 1) Ak ,

B C ec e l (w=!) 1 ' and C Ak b a w ! 1 ' 1 1 e l
The elasticities e 1 and e 2 are given by [START_REF] Ryder | Optimal growth with intertemporally dependent preferences[END_REF].

Proof. See the Appendix.

It is interesting to note that we do not need to impose restriction [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF] to ensure the uniqueness of steady state. ( 14) represents a su¢ cient condition for uniqueness (Proposition 4). The only restriction we need in the isoelastic case is " (1 e c ) + ' (1 e l ) 6 = 0. Otherwise, the steady state ( ) fails to exist (see [START_REF] Solow | The economics of resources or the resources of economics[END_REF]). In other terms, the steady state vanishes for a particular value of compensation e¤ ect. In the case of a distaste e¤ect (e c < 0, that is " < 1), the existence of steady state is ensured.

Focus now on the comparative statics.

As seen in the general case, the capital intensity remains that of MGR as in the Ramsey model and technology (A, , ) as well the time preference ( ) have the usual e¤ects on k, while the felicity (", , ', ) as well as the pollution process (a, b) have no impact on k but a¤ect the consumption demand and the labor supply through and P . We are not surprised: the pollution externality is not internalized by a market economy (di¤erently from a planner) and has no marginal e¤ect on the Euler equation _ = = + r (k) evaluated at the steady state.

We recall that the shadow price is the marginal utility of consumption u c : as a …rst approximation, when increases, the consumption demand decreases under Assumption 2.

In the following, we leave aside the e¤ects of technology (A, , ) and the pollution process (a, b) on and P and we consider only the impact of preferences, that is of felicity (", , ', ) and time preference ( ). 9Felicity is composed by two subfelicities: u (c; P ) and v (l; P ).

(i) The key parameters for u are the consumption elasticity of intertemporal substitution (1=") and the consumption sensitivity to pollution ( ).

(ii) The key parameters for v are the Frisch elasticity of intertemporal substitution (1=') and the labor supply sensitivity to pollution ( ).

Consider the point (i). The following proposition focuses on the role of parameters (", ) in the pollution elasticity of consumption demand (e c ).

Proposition 10 (1) The impacts of the consumption elasticity of intertemporal substitution (1=") on and P have the same sign. When = 1, they are negative if and only if the natural absorption is su¢ ciently small (a < b ( + ) = [ + ( 1) ]).

(2) The impacts of the consumption sensitivity to pollution ( ) on and P have the same sign. If " (1 e c ) + ' (1 e l ) > 0, they are positive under dominant income e¤ ects (" > 1) and high pollution (P > 1) or dominant substitution e¤ ects (" < 1) and low pollution (P < 1).

Proof. See the Appendix.

Notice that " (1 e c ) + ' (1 e l ) is a global measure of the pollution e¤ects on preferences. It is positive under the joint assumption of distaste (e c < 0) and leisure e¤ ect (e l < 0).

A a b ! + + + P + +
The e¤ects of are complicated and ambiguous. Computations are available upon request.

Focus for instance on the second case (substitution e¤ects and low pollution). According to [START_REF] Romer | Increasing Returns and Long-run Growth[END_REF], a higher implies a stronger distaste e¤ ect. Then, for a given pollution level, individuals consume less and save more which increases the production level and the pollution stock in turn.

Consider now the point (ii). The following proposition focuses on the role of parameters (', ) in the pollution elasticity of labor supply (e l ). For simplicity, we focus on the case of a logarithmic felicity of consumption (" = 1).

Proposition 11 Let " = 1.
The impacts of the Frisch elasticity of intertemporal substitution (1=') on and P have opposite sign. The impact on is positive (on P is negative) if and only if

! > (1 ) ( + ) + (1 ) (< 1)
The impacts of the labor supply sensitivity to pollution ( ) on and P have opposite sign. The impact on is positive (on P is negative) if and only if

A > a b 1 + ! + (1 ) (1 ) ( + ) 1 1+'
Proof. See the Appendix. Let us interpret this proposition. A higher implies a stronger leisure e¤ect and, thus, a lower labor supply, which reduces the production level and the pollution level in turn. Such a relation is magni…ed under a large environmental e¤ect of production (b).

Following the MGR, such variations of , l and P have no e¤ect on the stationary value of capital intensity (k). In addition, at the steady state, c = kl (see the proof of Lemma 13): the decrease of labor supply (l) induced by a higher entails a lower consumption level (c) and a higher marginal utility of consumption, that is (see [START_REF] Dasgupta | The optimal depletion of exhaustible resources[END_REF]).

We observe that the impact of ' on pollution is positive if the exogenous and constant TFP (A) is low, the natural rate of pollution absorption (a) is high or the environmental impact of production (b) is low.

A higher ' means a lower leisure e¤ ect. Then, for a given pollution level, the representative household works more which enhances the production level and the pollution stock in turn. Under a distaste e¤ ect, a higher pollution level implies that the household reduces his consumption demand. This increases the marginal utility of consumption and, according to (5), as well.

Finally, we consider the e¤ects of time preference ( ) on the main variables ( and P ).

Proposition 12

Let " = 1. The impact of agents' impatience ( ) is positive on the shadow price ( ) if and only if

> 1 1 + ' (1 ) (26) 
while it is always negative on the pollution level (P ).

Thus,

D = as (1 + ) n a ' ' S = a ns a (1 + ) (29) 
T = a + a Proof. See the Appendix. Let H " " 1 H (30) with H s (1 + ) n a ' + (1 + ) + ns a a a s ' + a a (31) 
and S > 0, that is

H > ns + a (1 + ) a (32) 
Proposition 14 (limit cycles) There exists a parameter region such that, when goes through H , the system undergoes a Hopf bifurcation.

Proof. See the Appendix.

It is interesting to see that lim !1 H = "= (" 1). Then, H > 0 if and only if " > 1, that is the occurrence of a Hopf bifurcation requires dominant income e¤ects. Since P c @c @P = " 1 " in this limit case, a Hopf bifurcation occurs only under a compensation e¤ect (@c=@P > 0 or " P c > 0) as in [START_REF] Michel | Disutility of pollution and endogenous growth[END_REF].

Assume a rise of P near the steady state. Since @c=@P > 0 and @l=@P < 0 (matrix [START_REF] Romer | Increasing Returns and Long-run Growth[END_REF]), this entails an increase in c jointly with a decrease in k and in l. These two e¤ects imply a fall in the production level and, in turn, a decrease in pollution. By this channel, deterministic endogenous ‡uctuations occur near the steady state.

Proposition 15 Let " > 1 and > a. With no capital depreciation ( = 0),

@ H @ < 0 i¤ " > 1 + ' (2 + ') 1 (2 ) 
Proof. See the Appendix. Proposition 15 means that, in the case of strong income e¤ects (high ") and weak natural absorption of pollution ( > a), the greater is the sensitivity of labor supply to pollution ( ), the lower is the critical sensitivity of consumption demand to pollution ( H ) for which a limit cycle occurs.

Proposition 16 (local indeterminacy through a Hopf bifurcation)

If (1 + ) n a ' H ' < 0 (33) 
then there exists a parameter region where indeterminacy occurs.

Proof. See the Appendix.

Corollary 17 In the case of compensation e¤ ects (" > 1), local indeterminacy through a Hopf bifurcation arises if

H > " + ' (1 + ) " 1 
Proof. Replace n and H from (30) in (33), and solve the inequality for H . Focus on relation (33):

lim a!0 + (1 + ) n a ' H ' = 1 (34) 
From ( 34), it appears that local indeterminacy is more likely when the rate of pollution absorption (a) is low, that is pollution is more persistent and the negative e¤ects of production as well.

The possibility of self-ful…lling prophecies rests on equilibrium indeterminacy. We provide an intuition for these prophecies in our economy. Let the economy be at the steady state and assume that consumers expect today an increase in the pollution level tomorrow. Since @c=@P > 0 and @l=@P < 0, any consumer wants a higher consumption demand tomorrow jointly with a lower labor supply. She needs to save more today to …nance a larger consumption tomorrow under a lower labor income. Higher savings today are possible only if she works more today (the capital stock being predetermined). The higher production today increases the pollution tomorrow. The expectation of higher pollution tomorrow ends up to be self-ful…lling.

In contrast to the existing literature where pollution is de…ned as a ‡ow, we …nd local indeterminacy with pollution as a stock but under a strong inertia. More intuition about the consequences of a strong inertia will be provided in the next two sections.

Pollution a¤ects only consumption demand

We assume now that pollution a¤ects only the consumption demand: e l = 0, that is, = = 0. Proposition 18 (Hopf bifurcation) If " > 1 (compensation e¤ ect) and a < (pollution inertia), a Hopf bifurcation generically occurs at

= H " " 1 ' a ns + a ( a) s + ' ( a) > 0
provided that S > 0, that is < (' s=a) n= .

Proof. Simply reconsider (30), ( 31) and (32) with = 0. Interestingly, we recover [START_REF] Heal | The use of common property resources[END_REF] and [START_REF] Michel | Disutility of pollution and endogenous growth[END_REF] in the sense that a compensation e¤ ect implies deterministic cycles through a Hopf bifurcation, even if labor supply is endogenous in our case.

Proposition 19 (pollution inertia) If a < , there is no room for local indeterminacy through a Hopf bifurcation. 10 Proof. If = 0, T = a > 0. Therefore, there exists at least one unstable eigenvalue.

This proposition highlights the impossibility of local indeterminacy under pollution inertia (a < ). Conversely, local indeterminacy may occur when pollution a¤ects also the labor supply. Indeed, when pollution a¤ects both consumption and labor through compensation and leisure e¤ ects, if the representative household expects a higher pollution level tomorrow, she saves and works more today. Thus, the production increases and the variation of pollution as well: prophecies become self-ful…lling.

Pollution a¤ects only labor supply

We assume that pollution has no e¤ects on consumption demand, namely = 0 and then = . From (28) and (29):

D = as " + ' (1 + ) '" > 0 (35)
Proposition 20 There is no room for local indeterminacy.

Proof. D > 0 implies that there always exists, at least, one unstable eigenvalue.

Notice that, by continuity, the determinant remains positive, that is the equilibrium is locally unique, also for su¢ ciently small 's.

The main motivation of this paper is to focus on a strong pollution inertia when a is su¢ ciently small. This inertia is magni…ed when a tends to 0.

Proposition 21 There is no room for a Hopf bifurcation under strong pollution inertia.

Proof. Simply consider proposition 6, when = 0:

lim a!0 S = 1 " + 1 ' s < 0
Of course, by continuity, S < 0 also when a and are strictly positive but su¢ ciently small.

In an analogous discrete time context, [START_REF] Bosi | Pollution e¤ects on labor supply and growth[END_REF] have shown that deterministic cycles arise through a ‡ip bifurcation. Since this type of bifurcation occurs only in discrete time, the fact that cycles are impossible in our economy when pollution a¤ects only labor supply, is not surprising.

Synopsis

The following table summarizes our results when pollution exhibits a strong inertia.

Pollution a¤ects

Hopf indeterminacy consumption demand and labor supply YES YES consumption demand YES NO labor supply NO NO

When pollution is characterized by a strong inertia, local indeterminacy through a limit cycle emerges if and only if pollution a¤ects both consumption demand (compensation e¤ ect) and labor supply (leisure e¤ ect). In this sense, the limit cycle arising near the steady state when pollution a¤ects only consumption demand is preserved when pollution a¤ects both consumption demand and labor supply.

The reader may wonder why local indeterminacy arises when pollution a¤ects both consumption demand and labor supply, while there is no room for local indeterminacy when pollution a¤ects only consumption demand or labor supply. This is due to the leisure e¤ ect. Indeed, at the steady state:

lim !1 a P @P @a = lim !1 1 1 + = 0 (36) 
From ( 36), it appears that a strong leisure e¤ ect ( ! 1) neutralizes the e¤ect of the pollution inertia (a) on the pollution of steady state. That is, the leisure e¤ ect renders the pollution stock more volatile and promotes the emergence of local indeterminacy even if pollution is a stock variable with a very strong inertia. This striking result can also be analyzed simply considering equation ( 7) with a = 0 (very strong pollution inertia), namely, _ P = blf (k). Without leisure e¤ ect, a higher pollution level at time t implies a higher pollution level tomorrow (pollution inertia). Under a leisure e¤ ect, a higher pollution level today implies: (1) a higher pollution level tomorrow because of the pollution inertia and (2) a lower pollution tomorrow because of the lower labor supply. That is, the leisure e¤ ect makes the resulting e¤ect of a higher pollution today on pollution tomorrow ambiguous. In this sense, the leisure e¤ ect renders the pollution accumulation process more volatile. This explains the occurrence of local indeterminacy through a local bifurcation.

Conclusion

We have considered a uni…ed model to study the joint e¤ect of pollution on consumption demand and labor supply. We have provided su¢ cient conditions to ensure the uniqueness of the steady state and introduced a general method to address the issue of local bifurcations and indeterminacy in the case of continuous-time three-dimensional dynamic systems with two predetermined variables. Applying the general method to the case of separable isoelastic preferences, we have found that a compensation e¤ ect coupled with a leisure e¤ ect leads to local indeterminacy through a Hopf bifurcation. Equilibrium multiplicity is obtained under the assumption of persistent pollution stock (strong inertia), an empirically convincing case neglected by the literature on local indeterminacy, more focused on pollution ‡ows. This literature has left aside the inertial forms of pollution more relevant to represent severe macroeconomic consequences such as the global warming. The occurrence of equilibrium multiplicity under pollution inertia rests on the role of the leisure e¤ ect. Neutralizing the inertial impact on pollution, the latter promotes pollution ‡uctuations and macroeconomic volatility at the end.

Appendix

Proof of Proposition 1

The Hamiltonian writes H = e t U (c; l; P ) + ~ [(r ) h + wl c] and the …rst-order conditions @ H=@ ~ = (r ) h + wl c = _ h @ H=@h = ~ (r ) = ~ 0 @ H=@c = e t U c ~ = 0 @ H=@l = e t U l + ~ w = 0 jointly with the transversality condition lim 

" cc dc c + " lc dl l = d " P c dP P " cl dc c + " ll dl l = d + dk k " P l dP P that is dc c dl l = M " cc " ll " lc " cl 2 4 d dk k dP P 3 5
where M is given by M " ll " lc " lc " lc " P l " ll " P c " cc " cl " cc " cl " P c " cc " P l Thus, we obtain the matrix of partial elasticities c @c @ k c @c @k P c @c @P l @l @ k l @l @k P l @l @P = M " cc " ll " lc " cl In the separable case (4), the elasticities matrix (8) simpli…es:

E 2 4
" cc 0 " cP 0 " ll " lP " P c " P l " P P 3 5 and we get [START_REF] Zivin | Temperature and the allocation of time: Implications for climate change[END_REF].

Proof of Proposition 3

Let us reconsider the dynamic system:

_ = [ + r (k)] _ h = (r ) h + wl c _ P = aP + blf (k)
We observe that h = kl and, thus, _ h=h = _ k=k + _ l=l. In addition, l = l ( ; k; P ). Thus, _ l l = l @l @ _ + k l @l @k _ k k + P l @l @P _ P P

where the elasticities within the parentheses are given by [START_REF] Zivin | Temperature and the allocation of time: Implications for climate change[END_REF]. We obtain the following three-dimensional dynamic system: Computations give @P=@" P=" = ln + ln P " (1 e c ) + ' (1 e l ) and @ =@" =" = ' (1 e l ) @P=@" P=" (43) @P=@ P= = "e c ln P " (1 e c ) + ' (1 e l ) and @ =@ = = ' (1 e l ) @P=@ P= (44)

_ = + r ( 
" (1 e c ) + ' (1 e l )

with ln ( P ) = ln (cP ) " .

Using (41) and (42) we get more explicitly @P=@" P=" = (1 + ') ( + ) (x + z) + ( 1) (y 'z)

[" (1 e c ) + ' (1 e l )]

2 " (45) 
@P=@ P= = 'x + y + " (x + z)

[" (1 e c ) + ' (1 e l )]

2 "e c

The qualitative impacts of " on and P are the same because of (43). If = 1, (45) becomes @P=@" P=" = " (x + z) (1 + ') (1 + ) with x + z = ln b a + + [START_REF] Bosi | Pollution e¤ects on labor supply and growth[END_REF] and the …rst part of proposition follows.

The qualitative impacts of on and P are the same because of (44). We observe that, under Assumption 4, (@P=@ ) = (P= ) > 0 i¤ (" 1) ln P > 0.

Proof of Proposition 11

We have ln =

x + x ' y + z (' + + ' ) (1 + ') (1 + ) ln P = 'x + y + ln ' + + ' and, thus, @P=@' P=' = ' 1 + ' y + z (1 + ') (1 + ) and @ =@' =' = @P=@' P=' @P=@ P= = 1 +

(1 + ') x + y + z (1 + ') (1 + ) and @ =@ = = @P=@ P= Proof of Proposition 12 Laborious computations give: 

@ =@ = = M ( (

Proposition 8 (

 8 local indeterminacy through a Hopf bifurcation) Let p H the Hopf bifurcation value of a parameter p such that D (p H ) = S (p H ) T (p H ) and S (p H ) > 0. If D (p H ) < 0, the equilibrium is locally indeterminate for some value of p around p H . Proof. See the Appendix.

  t!1 ~ (t) h (t) = 0. Setting e t ~ , we …nd _ = e t ~ 0 and equations in Proposition 1. The discounted Hamiltonian H e t H becomes H = U (c; l; P ) + [(r ) h + wl c]. Proof of Proposition 2 Di¤erentiating the system U c (c; l; P ) = 0 w (k) + U l (c; l; P ) = 0 we get

  k; P ) f (k) P awhere (x; y; z) (ln (Ak b=a) ; ln (w=!) ; ln ( k + w)), that is

  Proof of Proposition 14Focus on Proposition 6 and expressions (29) for D, S and T . We know that a Hopf bifurcation arises if and only if D = ST and S > 0, that is if and only if Let us show that inequalities (47) and (48) are satis…ed for some parametric values. Consider the case a < and 1. Inequalities (47) and (48) become

	or, equivalently,					
			s (1 + ) n a '	+	(1 + ) + ns a	a a
	1 + ') + (1 ) ( + ) ( + (1 s ' + if and only if (26) holds, and [(1 H H > ns + a (1 + ) a (> 0)	) [1 ) ) (1 + ') (1 + )] (1 + ')]) a a	> 0
	@P=@ P= A Hopf bifurcation generically occurs if the following restriction is satis…ed: = [ (1 + ') + (1 ) (2 + ')] [(1 ) ( + ) ( + (1 ) ) (1 + ') (1 + )] < 0 s (1 + ) n a ' + (1 + ) + ns a a a s ' + ns + a (1 + ) > a a a Proof of Lemma 13 (46) The Jacobian matrix (15) becomes: J = 2 4 0 s k 0 @f2 @ @f2 @k @f2 3 If s + a a > 0 (47) ' 5 @P a l l P a + kl k l P k a P l P l 1 (46) becomes equivalent to
	with			a (1 + ) ('n	a ) ns > 0	(48)
		@f 2 @	=	1 k a	l l	+	l l	c c
	@f 2 @k @f 2 @P because, at the steady state, = 1 a = 1 k P a lim !1 s + ' and lim !1 [a (1 + ) ('n	+ P l P kl k l l a a a ) ns] = a (1 + ) + kl k l kc k c + P l P = ( a) > 0 P c P 1 + l c ' "	s ' > 0
	because		c kl	= > 0, lim !1	w k n	= r a 1 ' +	and b 1 " 1 lf (k) P + '	= a
	Using (2) and (18), we …nd	
	J = Proof of Proposition 15 2 4 0 Using (31), we compute the derivative with = 0. 0 s k n k + a +a (1+ ) k P a ' P a P k a (1 + ) @ H @ 1 + ' ' ( a ) (1 ) ( + ') [ " + " (2 = ' (" 1) ( ( ' + 1) ( + ') a (1 + ') [( + ') + ' (1 3 5 ) + ' (2 + ')] )]) 2
	Proof of Proposition 16		
	Notice that					
	as (1 + ) n	a ' D (p H ) = '	= as (1 + ) n a	ns a (1 + ) a '	a + a
	a	ns a (1 + ) > 0

H

'

< 0

and apply Proposition 8.

Since, many works have addressed simultaneously both the questions in growth models with polluting nonrenewable and clean renewable resources.

For models with pollution in the production function, the reader is referred to[START_REF] Brock | A polluted Golden Age[END_REF],[START_REF] Stokey | Are there limits to growth[END_REF], and Tahvonen and Kuuluvainen (1993); for models with pollution in the utility function, to[START_REF] Keeler | The optimal control of pollution[END_REF],[START_REF] Forster | Optimal capital accumulation in a polluted environment[END_REF],[START_REF] Heal | The use of common property resources[END_REF], and[START_REF] Michel | Disutility of pollution and endogenous growth[END_REF].

[START_REF] Keeler | The optimal control of pollution[END_REF],[START_REF] Forster | Optimal capital accumulation in a polluted environment[END_REF],[START_REF] Selden | Neoclassical growth, the J curve for abatement, and the inverted U curve for pollution[END_REF], and Van der Ploeg and Withagen (1991) consider pollution as a by-product of production.[START_REF] Heal | The use of common property resources[END_REF] revisits[START_REF] Ryder | Optimal growth with intertemporally dependent preferences[END_REF] by interpreting the stock of past consumption in terms of pollution instead of habit formation.

Among others,[START_REF] Forster | Optimal capital accumulation in a polluted environment[END_REF],[START_REF] Gradus | The trade-o¤ between environmental care and long-term growth: pollution in three prototype growth models[END_REF],[START_REF] Selden | Neoclassical growth, the J curve for abatement, and the inverted U curve for pollution[END_REF], and Van der Ploeg and Withagen (1991) consider pollution as a ‡ow, while[START_REF] Keeler | The optimal control of pollution[END_REF],[START_REF] Brock | A polluted Golden Age[END_REF],[START_REF] Heal | The use of common property resources[END_REF],[START_REF] Tahvonen | Economic growth, pollution and renewable resources[END_REF], and Van der Ploeg and Withagen (1991) as a stock.

For instance, in[START_REF] Keeler | The optimal control of pollution[END_REF],[START_REF] Forster | Optimal capital accumulation in a polluted environment[END_REF],[START_REF] Selden | Neoclassical growth, the J curve for abatement, and the inverted U curve for pollution[END_REF], and Van der Ploeg and Withagen (1991).

[START_REF] Smith | Dynamics of waste accumulation : disposal versus recycling[END_REF] pioneered this literature. A highly-cited contribution is Tahvonen and Kuuluvainen (1993).

For instance, the global warming depends on the stock of greenhouse gas and represents the main environmental threat.

It is possible to show that, in the case of a logarithmic felicity of consumption (" = 1), the impacts of parameters A, , a, b and ! on and P have the following signs:

0 Assumption a < …ts the evidence. Indeed, the atmosphere contains 800 gigatons of carbon (GtC) while nature (lands and oceans) absorbs between

and

GtC per year[START_REF] Mélières | Climate Change: Past, Present and Futur[END_REF], p. 333). Thereby, according to yearly data, we …nd a 2 (0:25; 0:375) % while the yearly benchmark for time preference is = 1%.

This work was funded by the contract ANR-09-BLAN-0350-02 (Agence Nationale de la Recherche ). We are grateful to participants to the VEAM conference held Hue City on June 2013 for valuable comments. This research has been conducted as part of the project LABEX MME-DII (ANR11-LBX-0023-01).

Proof. See the Appendix.

While, in basic Ramsey models, has always a positive impact on (and, thus, negative on c), interestingly and surprisingly, in our model, the impact of on is ambiguous. If, for instance, = 0 (pollution has no e¤ect on labor supply), we recover the positive impact on as in the basic Ramsey.

Because of the MGR, a higher implies a lower capital stock, production level and pollution stock at the end. Conversely, since a higher induces a lower pollution level, the representative household increases his labor supply (leisure e¤ ect), the marginal disutility of labor supply and, eventually, .

Short run

Let us apply the methodology presented in Section 5 to characterize the occurrence of local bifurcations and indeterminacy. In order to disentangle the compensation and the leisure e¤ ects on the equilibrium dynamics, we will consider three cases where pollution a¤ects : (1) both consumption demand and labor supply, (2) only consumption demand and (3) only labor supply.

Pollution a¤ects both consumption demand and labor supply

The novelty of our paper rests on considering the joint e¤ect of pollution on consumption demand and labor supply when pollution is a persistent stock.

System (20)-( 22) writes:

We linearize (27) around the steady state to obtain the Jacobian matrix. To simplify the notation, we introduce some reduced parameters:

with r = + .

Lemma 13 Let D, S and T be the determinant, the sum of diagonal minors of order two and the trace of the Jacobian matrix evaluated at the steady state.

that is system [START_REF] Hanna | The e¤ect of pollution on labor supply: Evidence from a natural experiment in Mexico City[END_REF].

Proof of Proposition 4

Assumption 1 ensures that a stationary level of capital k exists according to equation [START_REF] Heal | The use of common property resources[END_REF]. The concavity of f ensures also that there is a unique stationary level of capital.

P ( ) is implicitly de…ned by [START_REF] Keeler | The optimal control of pollution[END_REF]. Applying the Implicit Function Theorem to equation [START_REF] Keeler | The optimal control of pollution[END_REF], we obtain the slope of P ( ):

Noticing that, at the steady state, l=P = a= (bf ), we get the multiplier elasticity of pollution:

Replacing k from [START_REF] Heal | The use of common property resources[END_REF] in

we compute and, eventually, the pollution P = P ( ) of steady state. The continuity of & implies that, if there are multiple steady state, the slope & 0 ( ) changes its sign from a steady state to another. Conversely, if & 0 ( ) is always negative at the steady state , then the steady state is unique.

The sign of & 0 ( ) is the same of " & ( ). Under Assumption 2 (separability), the elasticity " & writes

" ll (38) with " cc < 0 and " ll > 0. Thus, " & ( ) < 0 if and only if [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF] holds.

Proof of Proposition 6 Necessity. In a three-dimensional dynamic system, we require at the bifurcation value:

2 with no generic restriction on 3 (see [START_REF] Bosi | Introduction to discrete-time dynamics[END_REF] or Kuznetsov (1998) among others). The characteristic polynomial of J is given by: P

Thus, D = ST and S > 0. Su¢ ciency. In the case of a three-dimensional system, one eigenvalue is always real, the others two are either real or nonreal and conjugated. Let us show that, if D = ST and S > 0, these eigenvalues are nonreal with zero real part and, hence, a Hopf bifurcation generically occurs.

We observe that D = ST implies

or, equivalently,

This equation holds if and only if 1 + 2 = 0 or 2 3 + ( 1 + 2 ) 3 + 1 2 = 0. Solving this second-degree equation for 3 , we …nd 3 = 1 or 2 . Thus, (39) holds if and only if 1 + 2 = 0 or 1 + 3 = 0 or 2 + 3 = 0. Without loss of generality, let 1 + 2 = 0 with, generically, 3 6 = 0 a real eigenvalue. Since S > 0, we have also 1 = 2 6 = 0. We obtain T = 3 6 = 0 and S = D=T = 1 2 = 2 1 > 0. This is possible only if 1 is nonreal. If 1 is nonreal, 2 is conjugated, and, since 1 = 2 , they have a zero real part. Proof of Proposition 7 Necessity. In the real case, we obtain D = 1 2 3 < 0, S = 1 2 + 1 3 + 2 3 > 0 and T = 1 + 2 + 3 < 0.

Su¢ ciency. We want to prove that, if D; T < 0 and S > 0, then 1 ; 2 ; 3 < 0. Notice that D < 0 implies 1 ; 2 ; 3 6 = 0. D < 0 implies that at least one eigenvalue is negative. Let, without loss of generality, 3 < 0. Since 3 < 0 and D = 1 2 3 < 0, we have 1 2 > 0. Thus, there are two subcases:

1 2 < 0 a contradiction. Then, 1 ; 2 < 0.

Proof of Proposition 8

From Proposition 6, we have Re

3 (p H ) < 0. Thus, there exists " > 0 such that, generically, we have Re 1 (p) ; Re 2 (p) ; 3 (p) < 0 (local indeterminacy) for any p 2 (p H "; p H ) or, alternatively, for any p 2 (p H ; p H + ").

Proof of Proposition 9 From (4) and ( 16), (5) writes c = h P (1 ") i 1=" and l = h w P (1+') =! i 1=' (40) [START_REF] Heal | The use of common property resources[END_REF] gives [START_REF] Stiglitz | Growth with exhaustible natural resources: e¢ cient and optimal growth paths[END_REF]. Equation ( 13) yields [START_REF] Stokey | Are there limits to growth[END_REF]. Replacing ( 24) and ( 25) in ( 40) and (40) in (37), we …nd [START_REF] Solow | The economics of resources or the resources of economics[END_REF].