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The global minimum variance portfolio computed using the sample covariance matrix is known to be nega-

tively affected by parameter uncertainty. Using a robust control approach, we introduce a portfolio rule for

investors who wish to invest in the global minimum variance portfolio due to its strong historical track record

but seek a rule that is robust to parameter uncertainty. Our robust portfolio theoretically corresponds to the

global minimum variance portfolio in the worst-case scenario, with respect to a set of plausible alternative

estimators of the covariance matrix, in the neighbourhood of the sample covariance matrix. Hence, it pro-

vides protection against errors in the reference sample covariance matrix. Monte Carlo simulations illustrate

the dominance of the robust portfolio over its non-robust counterpart, in terms of portfolio stability, variance

and risk-adjusted returns. Empirically, we compare the out-of-sample performance of the robust portfolio

to various competing minimum variance portfolio rules in the literature. We observe that the robust port-

folio often has lower turnover and variance and higher Sharpe ratios than the competing minimum variance

portfolios.

Key words : Global minimum variance portfolio, Parameter uncertainty, Robust control approach, Robust

portfolio.

1. Introduction

Modern portfolio theory suggests a positive relationship between risk and expected returns and that

the market portfolio with non-diversifiable risk should generate the highest risk-adjusted returns.

However, much empirical work reports underperformance of market capitalisation-weighted port-

folios relative to certain popular minimum-risk investment strategies, such as the global minimum

variance portfolio (Haugen and Baker, 1991; Chan et al., 1999; Jagannathan and Ma, 2003; Clarke

et al., 2006; etc). This outcome can be explained by the historical long-term success of low-risk

stock portfolios compared to high-risk stock portfolios. For instance, Baker et al. (2011) report that

for the US investment universe restricted to the top 1000 stocks by market capitalisation, a dollar

invested in the lowest-volatility portfolio in January 1968 had increased to $10.12 in real terms

by December 2008, while a dollar invested in the highest-volatility portfolio had declined to less

than 10 cents in real terms over the same period. This striking result, which is well documented
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in the literature, is typically referred to as the ”low-volatility anomaly.” This anomaly appears

to hold regardless of whether risk is defined as total volatility (Baker et al., 2011) or as idiosyn-

cratic volatility (Ang et al., 2006, 2009) and is robust across markets and regions (Frazzini and

Pederson, 2010; Blitz and Van Vliet, 2007). Some papers seek to provide rational explanations for

the existence and the persistence of the low-volatility anomaly. The common theoretical approach

has been to allow for the existence, independently of risk, of certain institutional and behavioural

aspects of equity markets (e.g., benchmarking, preference for lotteries and representativeness) with

dominant predictive power over returns, causing markets to be inefficient (see Baker et al., 2011

and reference therein).

Beyond these empirical considerations, the global minimum variance strategy is not feasible

in practice as the optimal allocation depends on the covariance matrix of stock returns, which

is not observable. The traditional plug-in approach consists of replacing the unknown covariance

matrix with its empirical counterpart, i.e., the sample covariance matrix. This estimator is the

most efficient estimator, under the assumption that stock returns are independent and identically

normally distributed. However, the plug-in approach is optimal only under the condition that the

number n of available historical observations exceeds the size k of the stock universe. In relying

on the sample covariance matrix, global minimum variance portfolio managers face parameter

uncertainty when this condition is violated.

Because k is of the same order or even larger than n in real-world portfolio optimisation problems,

efforts have been made in the literature to cope with the effect of parameter uncertainty in the

computation of the global minimum variance portfolio. Common solutions include the use of factor

models, the imposition of short-sale constraints (Jagannathan and Ma, 2003), the use of Bayesian

shrinkage covariance matrices (Ledoit and Wolf, 2003, 2004), and the normed-constrained approach

in DeMiguel et al. (2009b). These solutions have been proven to successfully reduce the amount of

parameter uncertainty, thus improving portfolio stability and out-of-sample risk-adjusted returns.

The goal of this paper is to develop a method of mitigating the impact of parameter uncertainty

on the performance of the global minimum variance portfolio. Formally, we introduce a robust

strategy useful to an investor who (i) wants to invest in the global minimum variance portfolio

due to its strong historical track record but (ii) who seeks a portfolio strategy that is robust to

parameter uncertainty. Hence, our paper is related to the above-cited works, with the difference

that we treat parameter uncertainty using an approach from the robust control literature in the

field of optimisation under uncertainty (Ben-Tal and Nemirovski, 1998, 1999; El Ghaoui and Lebret,

1997; etc.). The idea behind robust control is to provide robust solutions to optimisation problems

given uncertain data, where such solutions are guaranteed to be a good fit for all or most of the

possible realisations of uncertainty in the data.
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To reach our objective, we develop a methodology that can be divided into two steps. In the

first step, we show that the optimal solution of the sample global minimum variance portfolio1 can

be reformulated as a least squares regression with uncertain data (with uncertainty in both the

dependent and explanatory variables). The uncertainty in the least squares data is more significant

as the sample covariance matrix is noisier. Hence, we obtain the robust global minimum variance

portfolio in the second step by solving this least squares regression using the robust control approach

introduced by El Ghaoui and Lebret (1997). This approach solves the least squares regression in

the presence of uncertain data, providing the investor with protection against data uncertainty.

Our method of constructing the robust global minimum variance portfolio has several attractive

features. First, by construction, this portfolio corresponds to the global minimum variance portfolio

in the worst-case scenario with respect to the set of plausible alternative estimators of the covariance

matrix in the neighbourhood of the sample covariance matrix. Hence, it provides protection against

estimation errors in the sample covariance matrix. Second, the robust global minimum variance

portfolio is a compromise between the sample global minimum variance portfolio that ignores

uncertainty and the equally weighted portfolio that is free of parameter uncertainty. More precisely,

the optimal portfolio corresponds to the sample global minimum variance portfolio when the level

of parameter uncertainty is zero, and it converges to the equally weighted portfolio when the

level of parameter uncertainty is high. We provide a data-dependent solution for the choice of

the uncertainty level. Third, using simulated and real stock return data, we show that our robust

portfolio dominates the sample global minimum variance portfolio as well as various competitive

minimum variance portfolio strategies in the literature. This dominance is consistent across different

data sets and evaluation criteria, including out-of-sample portfolio turnover, variance and Sharpe

ratio.

From a theoretical point of view, our article is related to several papers in the literature on

portfolio selection that are robust to parameter uncertainty or that incorporate aversion to param-

eter uncertainty (ambiguity). These papers, which draw on the multi-prior approach of Gilboa and

Schmeidler (1989), include Goldfarb and Iyengar (2003), Tütüncu and Koenig (2004) and Gar-

lappi et al. (2007), to cite a few. They adopt a max-min approach, maximising investors wealth

in the worst case scenario with respect to the unknown parameters. Goldfarb and Iyengar (2003)

and Tütüncu and Koenig (2004) introduce optimisation algorithms to solve max-min saddle-point

problems and apply them to the classical mean-variance problem of Markowitz (1952). Garlappi et

al. (2007) modify the classical mean-variance rule in such a way that the optimal portfolio is chosen

so as to maximise its expected utility under a worst-case scenario, where the worst case is based

1 By ”sample global minimum variance portfolio”, we mean the global minimum variance portfolio computed using
the sample or empirical covariance matrix.
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on uncertainty about the unknown expected returns.2 Our paper differs from these in the sense

that we seek to make robust the global minimum variance portfolio instead of the mean-variance

portfolio. Our main reason for focusing on the global minimum variance portfolio is the existence

and persistence of the low-volatility anomaly, as described above, which explains the historical

performance of this particular portfolio on the efficient frontier. Moreover, as many empirical works

(Jagannathan and Ma, 2003; DeMiguel et al., 2009a, 2009b; etc.) emphasise the outperformance

of the global minimum variance portfolio over the mean-variance portfolio of Markowitz (1952),

robust versions of the former are likely to outperform robust versions of the latter.3

The remainder of the paper is organised as follows. In section 2, we provide an overview of the

global minimum variance portfolio selection problem under parameter uncertainty. In section 3,

we introduce our robust control method to address the issue of parameter uncertainty. Section 4

analyses the properties of the robust strategy via Monte Carlo simulations. Empirical applications

are conducted in sections 5. The final section concludes the paper.

2. Global minimum variance portfolio with parameter uncertainty

Suppose that at each date t, there are k stocks in the investment universe. Let rt be the vector of

length k of excess (over the risk-free rate) returns on the k stocks. We consider a risk-averse investor,

with a one-period investment horizon, who allocates his wealth to the k stocks by minimising the

overall risk of the optimal portfolio, that is

ω∗ = arg min
ω

ω′Σω s.t. ω′ϑ= 1, (1)

where ω is the vector of length k of portfolio weights, ϑ is a vector of length k with all entries equal

to one, and Σ is the k×k covariance matrix of stock returns. The solution to the global minimum

variance portfolio problem in (1) is well known and given by

ω∗ =
Σ−1ϑ

ϑ′Σ−1ϑ
. (2)

2 For further contributions on robust portfolio optimisation, refer to Fabozzi et al. (2007a, 2007b), Fabozzi et al. (2010)
and Kim et al. (2012). These contributions include robust formulations for the markowitz mean-variance model, as
well as works on deriving robust counterparts for value-at-risk and conditional value-at-risk problems.

3 Other papers in finance (Chen and Epstein, 2002; Epstein and Miao, 2003; Uppal and Wang, 2004; Maenhout, 2004;
etc.) solve the (dynamic) portfolio choice problem under uncertainty aversion, using the robust control approach of
Hansen and Sargent (2001), Anderson, Hansen and Sargent (2003). As these papers focus on the mean-variance model
of Markowitz (1952), they also differ from our contribution. Moreover, they treat the problem of allocating wealth
between risky assets and a risk-free asset rather than that of large-scale portfolio optimisation, which is the focus of
our paper. This last remark also holds for another recent class of papers that address parameter uncertainty through
learning (Epstein and Schneider, 2007; Miao, 2009).
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An estimator of the covariance matrix Σ is needed to make the above solution operational. Under

the assumption that stock returns are independent, identically distributed and have a multivariate

normal density with mean µ and covariance matrix Σ, the sample covariance matrix defined as

Σ̂S =
1

n− 1

n∑
t=1

(rt− µ̂) (rt− µ̂)
′
, (3)

is the most efficient estimator, where n is the available sample size and µ̂ is the sample mean.

Hence, in practice, the global minimum variance strategy may be implemented, approximating the

true covariance matrix using its sampling estimator and yielding

ω̂∗ = arg min
ω

ω′Σ̂Sω s.t. ω′ϑ= 1, (4)

with the following allocation:

ω̂∗ =
Σ̂−1

S ϑ

ϑ′Σ̂−1
S ϑ

. (5)

Nevertheless, as nicely summarised by Ledoit and Wolf (2004), no one should use the sample

covariance matrix for the purpose of portfolio optimisation because it contains parameter uncer-

tainty of a kind likely to perturb a mean-variance optimiser. Parameter uncertainty occurs when

the size of the investment universe k is the same as or larger than the number n of observations

available. Indeed, it is well known that when the ratio k/n is not close to zero, the eigenvalues of the

sample covariance matrix will be more dispersed than the true unobservable eigenvalues (Marcenko

and Pastur, 1967), and the eigenvectors will not be consistent (Johnstone and Lu, 2009).

To gain more insight into the impact of dimensionality on the statistical properties of the sample

covariance matrix, let us consider a simple simulation experiment. We simulate a time series of

length n of k monthly stock returns using a 1-factor model:

rt = βft + εt, t= 1, ..., n, (6)

where rt is the vector of length k of excess returns, ft is excess returns on the market factor, β is

the vector of length k of the market factor loadings, and εt is the vector of length k of residuals. To

make our simulation realistic in the context of portfolio selection, we follow MacKinlay and Pastor

(2000), DeMiguel et al. (2009a) and Tu and Zhou (2011) in assuming an annual excess return of

8% and an annual standard deviation of 16% on the market factor. The factor loadings are evenly

spread between 0.5 and 1.5. The residuals εt are drawn from a multivariate normal distribution

with mean zero and a covariance matrix that is assumed to be diagonal, with the diagonal elements

drawn from a uniform distribution with support [0.10,0.30]. With the n× k matrix of simulated

stock returns, we compute the sample covariance matrix Σ̂S and measure parameter uncertainty
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(PU) using the Frobenius norm of the difference between Σ̂S and the true covariance matrix Σ

from the factor model in (6):

PU =
∥∥∥Σ̂S−Σ

∥∥∥
F
, (7)

where the Frobenius norm of a matrix A is defined as ‖A‖F = {tr (AA′)}1/2, with tr(.) the trace

operator.

Table 1 in Appendix B displays the mean of PU across 1,000 simulations, for different values

of k ∈ {10,50,100} and n∈ {30,60,120,360,6000}. The results confirm that the sample covariance

matrix is indeed noisy, with high levels of parameter uncertainty in a large k and small n setting.

This property is known to affect the sample global minimum variance portfolio, leading to unstable

portfolio weights. An illustration is given in Figures 1 and 2 (see Appendix B), which display the

boxplots of the weights of the sample global minimum variance portfolio across simulations. To

save space, we only present the boxplots for k= 25 and n= 30, 6000. We observe that the estimated

portfolio weights are highly unstable for the smallest sample size (n= 30) and appear to be more

stable for the largest sample size (n= 6000). Indeed, while the weights in Figure 1 range from −3.17

to 3.31, the weights in Figure 2 range from −0.38 to 0.73. Note that portfolio weight instability is

generally accompanied by substantial losses in risk-adjusted returns (Jagannathan and Ma, 2003;

Ledoit and Wolf, 2003, 2004; DeMiguel et al., 2009b; etc.).

In the sequel, we introduce a robust global minimum variance portfolio, using the framework

of robust control regression with uncertain data (El Ghaoui and Lebret 1997). The new optimal

portfolio accounts for parameter uncertainty because it is computed in the worst-case scenario

with respect to the set of alternative estimators of the covariance matrix in the neighbourhood of

the reference noisy sample covariance matrix. We will show how to identify this set of alternative

plausible estimators and how the investor can build a global minimum variance portfolio that

is robust to parameter uncertainty in the reference sample covariance matrix as well as in the

alternative plausible covariance matrices.

3. A robust control approach to the global minimum variance portfolio
3.1. Problem formulation and optimal solution

Consider the problem (4) of minimising portfolio variance using the noisy sample covariance matrix,

with solution

ω̂∗ =
Σ̂−1

S ϑ

ϑ′Σ̂−1
S ϑ

. (8)

Let Q be the k× (k− 1) matrix with the following properties:

Q′ϑ= 0 and Q′Q= Ik−1, (9)
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where again ϑ is a vector of length k with all elements equal to one, and Ik−1 the identity matrix

of dimension k− 1. Following Van Trees (2002) and Sélen et al. (2008), the columns of the matrix

Q are easily identified as the eigenvectors corresponding to the k− 1 non-zero eigenvalues of the

matrix Θ, defined as

Θ = Ik−
ϑϑ′

k
. (10)

The following proposition, which is at the core of our methodology, shows that ω̂∗ in (8) can also

be obtained using the classical least squares regression.

Proposition 1. With Q as defined in (9), we have

ω̂∗ =
ϑ

k
−Qη̂∗, (11)

where η̂∗ is the solution of the least squares regression

η̂∗ = arg min
η
‖y−Xη‖2 , (12)

with y and X equal to

X = Σ̂
1/2
S Q∈Rk×(k−1); y= Σ̂

1/2
S

ϑ

k
∈Rk. (13)

See Appendix A for the proof.4 The proposition indicates that the solution ω̂∗ for the sample

global minimum variance portfolio can be computed using (11), where η̂∗ is the solution of the least

squares regression in (12). Note that (11) guarantees that the stock weights sum to one. Indeed,

we have

ω̂∗′ϑ=

(
ϑ

k
−Qη̂∗

)′
ϑ=

ϑ′ϑ

k
− η̂∗′Q′ϑ= 1. (14)

The main point we wish to emphasise here is that both the dependent variable y and the

independent variables X in the least squares regression model (12) depend on the noisy sample

covariance matrix Σ̂S, via the expressions in equation (13). Therefore, parameter uncertainty is

incorporated into the regression variables y and X via the uncertain noisy sample covariance matrix

Σ̂S. Our objective in this paper is to use the literature of robust control least squares regression

with uncertain data (Golub and Van Loan, 1980; El Ghaoui and Lebret, 1997; Chandrasekaran et

al., 1998; Sayed et al., 2002; Calafiore and Dabbene, 2005) to solve the regression equation (12) to

enable the investor to invest in a global minimum variance portfolio that is robust to parameter

uncertainty.

4 Note that the seminal paper of Britten-Jones (1999) shows similar results, but for the tangency portfolio. Our
results differ from those of Britten-Jones (1999), as we focus on the global minimum variance portfolio. However, the
literature offers other reformulations of the global minimum variance portfolio using least squares regressions (Kempf
and Memmel, 2006; Candelon et al., 2012).
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Because the inputs X and y in the least squares regression equation (12) are uncertain, it is

obvious that one way to account for this uncertainty is to assume that this equation is not defined

by a single pair (X,y) but by a family of matrices (X ′, y′) = (X + ∆X,y+ ∆y), with ∆ = [∆X ∆y]

an unknown-but-bounded matrix of perturbations

‖∆‖F = ‖[∆X ∆y]‖F ≤ ρ, (15)

where ρ≥ 0 and ‖.‖F denotes the Frobenius norm of a matrix. In other words, the noisy sample

covariance matrix Σ̂S, which contains some degree of parameter uncertainty, defines the inputs X

and y of the regression equation (12) via the relations in (13), and these inputs are uncertain. We

seek to incorporate this uncertainty, allowing for the existence of other pairs of inputs (X ′, y′) =

(X + ∆X,y+ ∆y) close enough to the original pair (X,y), where ∆X and ∆y are perturbations.

The degree of closeness is measured by the parameter ρ, which represents the level of parameter

uncertainty in the reference sample covariance matrix.

A popular alternative to the least squares method with uncertain inputs is total least squares

(TLS), introduced by Golub and Van Loan (1980). TLS solves the following problem:

∆X∗,∆y∗, η̂∗ = arg min
∆X,∆y,η

‖(y+ ∆y)− (X + ∆X)η‖2 . (16)

Thus, compared to the traditional least squares method in (12), TLS allows for perturbations in

both the dependent and the explanatory variables. Nevertheless, in practical situations, TLS has

some drawbacks that degrade its performance. For instance, it may unnecessarily overemphasise

the effect of uncertainties and it does not take into account the issue of robustness, which is the

main focus of this paper. Hence, we do not rely on the TLS method, but we instead rely on the

robust control least squares regression of El Ghaoui and Lebret (1997), which treats the problem

of robustness by minimising the worst-case residual. For a fixed value of the regression parameter

η, the worst-case residual is defined as

r (X,y, ρ, η) = max
‖∆X,∆y‖F≤ρ

‖(y+ ∆y)− (X + ∆X)η‖2 . (17)

The robust global minimum variance portfolio we introduce in this paper is obtained by min-

imising the worst-case residual r (X,y, ρ, η) with respect to the regression parameter vector η.

Definition 1. Let ω (ρ) be the robust global minimum variance portfolio weights. Thus, we

have

ω (ρ) =
ϑ

k
−Qη (ρ) , (18)

with η (ρ) defined by

η (ρ) = arg min
η

max
‖∆X,∆y‖F≤ρ

‖(y+ ∆y)− (X + ∆X)η‖2 . (19)
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Therefore, our methodology implies robustness in the sense that we solve the regression problem

(12) in proposition 1 for the least favourable outcome with respect to the set of plausible inputs

(X ′, y′) = (X + ∆X,y+ ∆y).

Note that our robust global minimum variance portfolio encompasses the sample global minimum

variance portfolio, which ignores parameter uncertainty. Indeed, when the uncertainty parameter

ρ is set to zero, the worst-case residual in (17) is equal to the usual least squares residual, and the

robust solution degenerates to the usual solution, yielding

ω (0) =
ϑ

k
−Qη (0) =

ϑ

k
−Qη̂∗ = ω̂∗. (20)

In the more general case, where ρ> 0, the worst-case residual r (X,y, ρ, η) can be rewritten (see

El Ghaoui and Lebret 1997) as follows:

r (X,y, ρ, η) = ‖y−Xη‖2 + ρ

∥∥∥∥[ η1
]∥∥∥∥

2

. (21)

Hence, for a given value of the uncertainty parameter ρ> 0, the robust solution

ω (ρ) =
ϑ

k
−Qη (ρ) (22)

is found by solving the program

η (ρ) = min
η
‖y−Xη‖2 + ρ

∥∥∥∥[ η1
]∥∥∥∥

2

. (23)

The limiting behaviour of the robust portfolio is summarised in the following proposition.

Proposition 2. The robust global minimum variance portfolio, with weights ω (ρ), converges to

the equally weighted portfolio at very high levels of uncertainty, i.e.,

lim
ρ→∞

ω (ρ) =
ϑ

k
. (24)

The proof is straightforward. Indeed, when ρ increases indefinitely, η (ρ) in (23) converges to the

null vector and ω (ρ) in (22) converges to the vector of length k, with all elements equal to 1/k. This

is a nice feature of our robust approach, as it suggests that an investor with very high uncertainty

in the reference noisy sample covariance matrix invests in the equally weighted portfolio, which

is free of parameter uncertainty. Moreover, the results in DeMiguel et al. (2009a), obtained both

from simulated and real market data, show that the uncertainty-free, equally weighted portfolio is

a competitive investment strategy, as many other investment rules cannot beat it.

Note that when k is much larger than n, the sample covariance matrix Σ̂S is usually singular.

Hence, our robust methodology is not directly applicable because, in this case, the least squares
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input data X and y, defined in equation (13), cannot be computed. As a solution, one can regularise

the sample covariance matrix using the following formula:

Ω̂S = Σ̂S + ξIk, (25)

where ξ is a relatively small positive scalar (e.g., ξ = 10−4). This has the effect of rendering the

sample covariance matrix non-singular without significantly affecting its statistical properties. The

data, X and y in this case, are defined as

X = Ω̂
1/2
S Q∈Rk×(k−1); y= Ω̂

1/2
S

ϑ

k
∈Rk, (26)

and the robust control least squares methodology can now be employed.

3.2. Choice of the uncertainty parameter ρ

A data-driven estimation of the uncertainty parameter ρ is required to make our robust global

minimum variance portfolio operational. To estimate ρ we employ bootstrapping techniques. Our

method consists in randomly resampling stock returns from the original data set, generating a

sample S of B (for example, B = 1,000) different values of the sample covariance matrix

S =
{

Σ̂S,b, b= 1, ...,B
}
. (27)

With the sample S, alternative values of the uncertain least squares regression inputs X and y

in proposition 1 can be generated, yielding

SX,y =

{
(Xb, yb) :Xb = Σ̂

1/2
S,bQ; yb = Σ̂

1/2
S,b

ϑ

k
, b= 1, ...,B

}
. (28)

It follows that the set Sρ defined as

Sρ = {ρb : ρb = ‖∆Xb ∆yb‖F = ‖X −Xb y− yb‖F , b= 1, ...,B} , (29)

contains reasonable values of ρ. Let qξ (Sρ) be an upper quantile of this set, with, for example,

ξ = 99% . The calibrated value of ρ is thus

ρ̂= qξ (Sρ) . (30)

This method of calibrating the parameter ρ is fully data-adaptive. Indeed, when the original

sample covariance matrix Σ̂S is not affected by parameter uncertainty, the resampled covariance

matrices Σ̂S,b, b= 1, ...,B, should be close to Σ̂S. Therefore, the generated inputs Xb and yb should

also be close to X and y, respectively, with an estimated value of ρ̂ close to zero. In this configu-

ration, our robust global minimum variance portfolio ω (ρ̂) should not diverge too much from the

sample global minimum variance portfolio ω̂∗. The converse case will arise for a very noisy sample

covariance matrix (ρ̂→∞), with our robust global minimum variance portfolio converging to the

equally weighted portfolio.
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3.3. Relation to the 2-norm-constrained portfolio

Our robust control formulation of the global minimum variance portfolio can be interpreted as the

2-norm constrained portfolio, introduced by DeMiguel et al. (2009b). More precisely, the optimal

solution in (23) can be alternatively written as
η (δ) = arg min

η
‖y−Xη‖2

s.t.

∥∥∥∥[ η1
]∥∥∥∥

2

≤ δ
(31)

with δ ∈R+ a constant inversely related to ρ. Because the constraint in (31) is equivalent to√
η′η+ 1≤ δ,

the robust portfolio can be obtained by solving the following optimisation problem
η (δ) = arg min

η
‖y−Xη‖2

s.t.
√
η′η+ 1≤ δ,

(32)

or equivalently 
η (δ) = arg min

η
‖y−Xη‖2

s.t. η′η≤ π,
(33)

where the parameter π is equal to

π= δ2− 1.

The optimisation problem in (33) shows that our robust global minimum variance portfolio is

equivalent to the 2-norm constrained portfolio in DeMiguel et al. (2009b). These authors propose

a general framework for finding minimum variance portfolios that perform well out-of-sample in

the presence of parameter uncertainty. Their framework, as in (33), solves the global minimum-

variance problem, subject to the additional constraint that the 2-norm of the portfolio-weight

vector is smaller than a given threshold. Nevertheless, although our robust control approach leads

to a solution equivalent to the 2-norm constraint portfolio, its advantage over the latter lies in the

calibration of the tuning parameter ρ (or equivalently δ or π). Indeed, whereas DeMiguel et al.

(2009b) suggest using cross-validation to calibrate the level of the tuning parameter, our robust

control formulation, as shown in the above subsection, offers a very simple and intuitive way to

calibrate this parameter endogenously, via bootstrapping techniques. By the term ”endogenously”,

we mean that in our framework the tuning parameter ρ is estimated such that it matches the

level of parameter uncertainty in the sample covariance matrix. Empirical applications conducted

in Section 5 indeed demonstrate that our robust portfolio outperforms the 2-norm constrained

portfolio in DeMiguel et al. (2009b).
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4. Properties of the robust portfolio strategy

In this section, Monte Carlo simulations are conducted to measure to what extent the new robust

global minimum variance strategy mitigates the impact of parameter uncertainty. In the evaluation

of portfolio strategies, Monte Carlo simulations are useful, as they help to draw conclusions which

are not affected by the existence of market anomalies like momentum, mean-reversion, calendar

effects, small-firm effect, etc. Moreover, with Monte Carlo simulations, the vector of the true optimal

portfolio weights is known exactly, and the error that arises from the implementation of a given

portfolio strategy can be easily computed.

4.1. Design of the Monte Carlo simulations

Our Monte Carlo simulations design is similar to that in DeMiguel et al. (2009a) and Tu and

Zhou (2011). We generate a data set of k monthly stock returns rt = (r1t, r2t, ..., rkt)
′
, assuming a

multivariate normal distribution and relying on a three-factor model

rt = βft + εt, (34)

where ft is the 3× 1 vector of excess returns on the three factors, β is the k× 3 matrix of factor

loadings, and εt is the k × 1 vector of residuals. The first two moments (means and covariance

matrix) of the factors are calibrated based on the monthly data from July 1963 to August 2007

for the market factor and for Fama-French’s (1993) size and book-to-market portfolios. The stock

factor loadings are randomly paired and evenly spread between 0.9 and 1.2 for the market β’s,

−0.3 and 1.4 for the size portfolio β’s, and −0.5 and 0.9 for the book-to-market portfolio β’s. The

residual variance-covariance matrix is assumed to be diagonal, with the diagonal elements drawn

from a uniform distribution with support [0.10,0.30], so that the cross-sectional average annual

idiosyncratic volatility is 20%.

Using the three-factor model in (34), we simulate a sample of stock returns of dimension N × k
where N = 12,000 (1,000 years) is the number of months and k is the number of stocks. With the

simulated data, we use a rolling-window procedure to compare the sample global minimum variance

strategy (with weights ω̂∗) with its robust counterpart introduced in this paper (with weights ω (ρ̂)).

More precisely, the simulated returns for the first n months (where n is the estimation sample

length) are used to compute ω̂∗ and ω (ρ̂), which are considered to be competitive portfolios for the

month n+ 1, and the two corresponding out-of-sample portfolio returns. This process is iterated

by repeatedly moving the estimation window forward one month (including the data for a new

month and dropping the data for the earliest month) until the last observation is reached. Note

that at the end of this procedure, for each of the two global minimum variance strategies, we have

computed N −n portfolio weights ω̂∗t and ωt (ρ̂), t= n, ...,N −1, with corresponding out-of-sample

returns Rt = ω̂∗′t rt+1 and Rt (ρ̂) = ω′t (ρ̂) rt+1, where rt+1 is the k× 1 vector of stock returns at time

t+ 1.
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4.2. Evaluation of the bootstrap procedure

Before comparing the two global minimum variance strategies, it is important to examine the above

rolling-window procedure to determine whether the bootstrap method (see subsection 3.2) used to

calibrate the level of ρ in our robust framework is relevant. Indeed, it is worth checking whether

ρ̂, the estimator of the uncertainty coefficient ρ, increases as parameter uncertainty in the sample

covariance matrix increases. To this end, Table 2 in Appendix B displays the mean of ρ̂ across

the N − n optimisations. We consider different configurations of k ∈ {10,50,100}, the number of

stocks, and n ∈ {120,240,360,6000}, the estimation sample length. The results reveal that for a

given n, the calibrated level of parameter uncertainty ρ̂ increases, on average, with the number of

stocks k. For example, with n= 120, the mean of ρ̂ is 0.0323, for k= 10, and 0.1466 and 0.2885, for

k= 50 and k= 100 respectively. Moreover, when the size of the stock universe k is kept fixed, the

mean of ρ̂ decreases, on average, with n and converges to zero for the largest estimation sample size

(n= 6000). These results are as expected because, as stressed above, when the ratio k/n diverges

from zero, parameter uncertainty in the reference sample covariance matrix is high. Hence, our

bootstrap method used to estimate the uncertainty coefficient ρ is indeed fully data-adaptive.

4.3. Mean square errors of the estimated portfolio weights

The comparison of the new robust global minimum variance portfolio with its non-robust sample

counterpart is now conducted from a statistical point of view using the mean square errors (MSE)

of the estimated portfolio weights. For the two strategies, the MSEs are computed as follows:

MSE(ω, ω̂∗) =
1

N −n

N−1∑
t=n

k∑
j=1

(
ω̂
∗(j)
t −ωj

)2

, (35)

MSE(ω,ω (ρ̂)) =
1

N −n

N−1

t=n

k
j=1

(
ω

(j)
t (ρ̂)−ωj

)2

, (36)

where ω is the vector of length k of the true global minimum variance portfolio from the specified

three-factor model in (34). Table 3 in Appendix B displays, for different values of n and k, the MSE

of the sample global minimum variance portfolio weights followed in brackets by the MSE of its

robust analogue based on the robust control least squares approach. The results show that when

the number k of stocks under consideration is not low relative to the number n of historical return

observations available, such that the ratio k/n is not close to zero, the sample estimator ω̂∗ of the

global minimum variance portfolio weights ω is very noisy, leading to large mean square errors.

The results also suggest that in these configurations, the robust global minimum variance portfolio

strategy developed in this paper decreases the MSE of the estimated weights. For instance, with

(n,k) = (120,100), the MSE of the sample estimator ω̂∗ is 2.4865, whereas it is only 0.1839 for the

robust estimator ω (ρ̂). Note that for the largest sample size (n= 6000), the sample estimator ω̂∗

becomes more precise and slightly outperforms its robust competitor. However, this configuration

is not empirically relevant.
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4.4. Portfolio turnover, variance and risk-adjusted returns

Economically, we compare the properties of the two global minimum variance portfolio strategies

using three criteria: the out-of-sample portfolio turnover that provides insight into the temporal

stability of each strategy, the out-of-sample variances and the Sharpe ratios. The out-of-sample

Sharpe ratio ŜRω̂∗ of the sample global minimum variance portfolio ω̂∗ is defined as

ŜRω̂∗ =
µ̂ω̂∗

σ̂ω̂∗
, (37)

where µ̂ω̂∗ and σ̂2
ω̂∗ estimate, respectively, the mean and the variance of Rt

µ̂ω̂∗ =
1

N −n

N−1∑
t=n

Rt, (38)

σ̂2
ω̂∗ =

1

N −n− 1

N−1∑
t=n

(Rt− µ̂ω̂∗)2
, (39)

and the same statistic ŜRω(ρ̂) for the robust global minimum variance portfolio ω (ρ̂) can be com-

puted by replacing Rt by Rt (ρ̂) in equations (38-39). The portfolio turnover is defined as

Turnoverω̂∗ =
1

N −n− 1

N−1∑
t=n

k∑
j=1

(∣∣∣ω̂∗(j)t+1 − ω̂
∗(j)
t+

∣∣∣) , (40)

where ω̂
∗(j)
t is the weight of stock j in the optimal portfolio based on ω̂∗t , ω̂

∗(j)
t+

is the weight of

stock j before rebalancing at t+ 1, and ω̂
∗(j)
t+1 the desired weight of stock j at time t+ 1 (after

rebalancing). The same expression in equation (40) is used to define the turnover of the robust

portfolio, with weights ω (ρ̂).

Table 4 in Appendix B displays the out-of-sample portfolio turnover for different values of n

and k. For each pair (n,k), we first report the turnover of the sample global minimum variance

portfolio, followed by the turnover of our robust global minimum variance portfolio in brackets.

The results convincingly demonstrate that our robust estimation of the optimal global minimum

variance portfolio succeeds in reducing the time instability of the estimated portfolio weights. For

example, with (n,k) = (120,50), the turnover of the sample portfolio is 0.5903, while that of the

robust portfolio is only 0.1442. However, we see that for a given value of k, the turnover of the

sample global minimum variance portfolio decreases as the estimation sample length n increases,

and the relevance of our robust strategy decreases asymptotically.

The out-of-sample variances of the two competitive global minimum variance portfolios are

reported in Table 5. For each (n,k) pair, the out-of-sample variance of the sample global minimum

variance portfolio is first reported, followed in brackets by the out-of-sample variance of the robust

portfolio. The third reported value in parentheses is the p-value used to test for equality between
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the variances. We compute p-values using the robust test of variances comparison in Ledoit and

Wolf (2011). Based on the results, it appears that our robust methodology does not cause the

out-of-sample portfolio variances to increase significantly when the ratio k/n is not close to zero.

In other words, the robust strategy is successful in reducing portfolio variances relative to the

sample non-robust strategy, for medium and large portfolio selection problems (k= 50,100) and for

realistic small sample sizes (n= 120,240,360). Indeed, in these configurations, the reported p-values

are less than 5%. Obviously, if large sample sizes are available (n= 6000), such that the sample

covariance matrix is less noisy, our robust approach is not beneficial, because the portfolio variances

would increase significantly. To illustrate, for (n,k) = (100,6000), the out-of-sample variances for

the sample and robust portfolios are, respectively, 0.00121 and 0.00127, with the difference between

the two values statistically significant at the 5% level.

Table 6 displays the out-of-sample Sharpe ratios of the two global minimum variance portfolios.

The presentation is similar to Table 5, except that the differences in the Sharpe ratios are tested

using the studentised circular block bootstrapping methodology of Ledoit and Wolf (2008). The

overall picture from Table 6 is that our robust approach significantly improves the performance of

the sample global minimum variance portfolio. For example, with (n,k) = (100,120), the monthly

Sharpe ratio of the robust portfolio is 0.1597, while that of the sample portfolio is just 0.0450,

less than a third of the value of the Sharpe ratio of the robust portfolio. Note that the superior

performance of the robust portfolio holds asymptotically (n→∞). This result means that although

the variance of the robust portfolio exceeds that of the sample portfolio for large sample size, this

is not at the cost of risk-adjusted performance (Sharpe ratio) because of the positive effect of our

robust approach on the out-of-sample portfolio returns.

To summarise, the Monte Carlo simulations show that for realistic values of the sample size n

and number of stocks k, the robust global minimum variance portfolio strategy performs well in

(i) stabilising portfolio turnover, (ii) reducing portfolio variances, and (iii) improving portfolio

risk-adjusted returns, when parameter uncertainty is a concern.

5. Out-of-sample evaluation with real data

In this section, we stress the empirical relevance of the robust global minimum variance portfolio

strategy using three different data sets. The first (respectively, second) data set includes monthly

excess returns on the ten (respectively, forty-nine)-Industry portfolios representing the U.S. stock

markets over the period from July 1963 to December 2010. The third data set contains monthly

excess returns on the one hundred Fama and French portfolios of firms sorted by size and book-

to-market. All data sets are extracted from Kenneth French’s website5 and are frequently used in

5 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.



16

empirical applications to compare alternative portfolio strategies (DeMiguel et al., 2009a, 2009b;

Tu and Zhou, 2011; etc).

For each data set, we apply the rolling-window procedure described in the last section to compute

the out-of-sample turnover of the sample global minimum variance portfolio and that of its robust

version introduced in this paper.6 The results are displayed in Panel A of Table 7. To provide

practitioners with sufficient incentive to implement our robust portfolio strategy, in Panel B of

Table 7, we report the out-of-sample turnover of various performing minimum variance portfolio

strategies in the literature: the minimum variance portfolio with shortsale constraints (Jagannathan

and Ma, 2003), the minimum variance portfolios based on shrinkage estimators of the covariance

matrix (Ledoit and Wolf, 2003, 2004), and the 2-norm constrained portfolio in DeMiguel et al.

(2009b). We also display the out-of-sample turnover of the equally weighted portfolio. We consider

this last portfolio because it constitutes a relevant benchmark strategy that outperforms many other

strategies in the presence of parameter uncertainty (DeMiguel et al., 2009a). Moreover, we have

shown that our robust minimum variance portfolio degenerates to the equally weighted portfolio

asymptotically (ρ→∞). Therefore, it is useful to compare our portfolio strategy to this target

portfolio. Beyond the Monte Carlo simulation results in the last section, Table 7 provides additional

proofs that our robust strategy dramatically improves the stability of optimised minimum variance

portfolios. For example, with the 100FF data set, the sample global minimum variance portfolio

has a turnover of 7.97, while the turnover of our robust global minimum variance portfolio using

the same data set is only 0.15. This observation is consistent across the three data sets. Except

for the equally weighted portfolio and the shortsale constrained strategy of Jagannathan and Ma

(2003), the turnover of the robust portfolio is less than for the minimum variance portfolios in the

literature. This result favours our robust methodology because high turnover is accompanied by

high transaction costs, which can alter the overall return of a given portfolio strategy.

Table 8 reports the out-of-sample variances for the different global minimum variance portfolio

strategies and the corresponding p-values indicating whether the portfolio variance for a given

strategy is significantly different from that for the robust strategy. The p-values are computed

using the robust test of variances comparison in Ledoit and Wolf (2011). In panel A of Table 8, we

observe that the out-of sample variances of the robust portfolio are always lower than those of the

sample portfolio, with the differences statistically significant for the 49-Industry and the 100FF data

sets. Comparing the variances of the robust portfolio to those of various global minimum variance

portfolios in the literature, Panel B of Table 8 shows that our robust strategy is a competitive

6 In applying the rolling-window procedure, we set the estimation sample length to n = 120. The results for other
values of n are quite similar and are available from the authors upon request.
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alternative. For instance, with the 100FF data set, the robust portfolio always achieves out-of-

sample variances lower than those of the minimum variance portfolios considered. The differences

are statistically significant in the cases of the shortsale constraint minimum variance portfolio of

Jagannathan and Ma (2003), the shrinkage minimum variance portfolio in Ledoit and Wolf (2004),

and the equally weighted portfolio.

Lastly, we compare the out-of-sample Sharpe ratios of the competitive global minimum variance

portfolios. To measure the impact of transactions costs on out-of-sample performance, we compute

the Sharpe ratio net of transaction costs. For a given portfolio strategy with estimated weights ω̂,

the latter is defined as

ŜR
net

ω̂ =
µ̂netω̂

σ̂netω̂

, (41)

where µ̂netω̂ and σ̂netω̂ measure the mean and the standard error, respectively, of the returns net of

transaction costs (Rnet
t ) over the out-of-sample period:

µ̂netω̂ =
1

N −n

N−1∑
t=n

Rnet
t , (42)

(σ̂netω̂ )
2

=
1

N −n− 1

N−1∑
t=n

(Rnet
t − µ̂netω̂ )

2
. (43)

The returns net of transaction costs are expressed as follows:

Rnet
t = (1 +Rt)

(
1− c×

k∑
j=1

(∣∣∣ω̂(j)
t+1− ω̂

(j)

t+

∣∣∣))− 1, (44)

where Rt is raw out-of-sample portfolio returns, and c is proportional transaction costs, which we

set to 50 basis points per transaction, as in DeMiguel et al. (2009a).

Table 9 in Appendix B displays, for the three data sets, the out-of-sample Sharpe ratios net of

transaction costs and in parentheses the corresponding p-values indicating whether the portfolio

net Sharpe ratio for a given strategy is significantly different from that for the robust strategy.

We obtain the p-values using the studentised circular block bootstrapping methodology in Ledoit

and Wolf (2008), where the number of bootstrap replications and the size of each block are set,

respectively, to B = 1,000 and b = 5. The results in Panel A show, once again, the relevance of

our robust approach. For instance, with the 100FF data set, the sample global minimum variance

portfolio has a negative net Sharpe ratio of −36%, which suggests that, by ignoring parameter

uncertainty, investors lose money on a risk-adjusted basis. By contrast, the robust strategy leads to

a positive net Sharpe ratio of 27%. In addition, Panel B of Table 9 shows that the robust portfolio

often has statistically higher net Sharpe ratios than competing strategies in the literature. This

picture is more pronounced for the two largest data sets, where the computed p-values are in almost

all cases below 5%.
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6. Conclusion

Because of the troublesome but persistent historical track records of low-volatility stocks, global

minimum variance investing has gained repute in both the academic and financial spheres. Nev-

ertheless, applying this investment strategy in practice requires estimating the covariance matrix

of stock returns. The plug-in approach that consists in approximating the covariance matrix by

its sampling counterpart is known to not be economically valuable. Indeed, parameter uncertainty,

which affects the sample covariance matrix, leads to unstable portfolio weights and low risk-adjusted

returns.

For an investor optimising a portfolio using the global minimum variance portfolio strategy, this

paper provides a robust control approach to mitigate the impact of parameter uncertainty. Our

robust portfolio provides protection against parameter uncertainty because it corresponds to the

global minimum variance portfolio in the worst-case scenario with respect to the set of plausible

alternative estimators of the covariance matrix, in the neighbourhood of the sample covariance

matrix. The robust portfolio has the nice property that it is equivalent to the sample global

minimum variance portfolio when the level of parameter uncertainty is zero, and it converges to

the equally weighted portfolio under very high levels of uncertainty. For intermediate values of the

uncertainty coefficient, the optimal portfolio shrinks the sample global minimum variance portfolio

towards that of the equally weighted portfolio. We provide a data-adaptive method to calibrate

the uncertainty coefficient.

Using Monte Carlo simulations, we show that, in the presence of parameter uncertainty, the

robust strategy dominates the plug-in approach in term of portfolio weight stability, portfolio

variance and risk-adjusted returns. We also empirically compare, across three data sets, the out-

of-sample performance of our robust strategy to that of various competing minimum variance

strategies in the literature. We find that the robust portfolio often has lower turnover and variances

and higher Sharpe ratios than the competing minimum variance strategies.
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Appendix A: Proof of proposition 1

With Q as defined in (9), i.e.,

Q′ϑ= 0 and Q′Q= Ik−1, (45)

consider the reparameterization of the weights vector ω, i.e.,

ω=
ϑ

k
−Qη, (46)

with η a vector of length k− 1. This reparameterization does not impose any restrictions on ω other than

ω′ϑ = 1. Given the reparameterization, the program of minimizing the portfolio variance with the sample

covariance matrix Σ̂S

ω̂∗ = arg min
ω

ω′Σ̂Sω s.t. ω′ϑ= 1, (47)

can be equivalently rewritten as {
ω̂∗ = ϑ

k
−Qη̂∗

η̂∗ = arg min
η

(
ϑ
k
−Qη

)′
Σ̂S

(
ϑ
k
−Qη

)
, (48)

which gives after some simple algebraic calculus{
ω̂∗ = ϑ

k
−Qη̂∗

η̂∗ = arg min
η

‖y−Xη‖2 , (49)

with

X = Σ̂1/2
S Q; y= Σ̂1/2

S

ϑ

k
. (50)

Note that η̂∗ in (49) is nothing but the solution of a least squares regression problem. Therefore, we have

η̂∗ = (X ′X)
−1
X ′y (51)

=
(
Q′Σ̂SQ

)−1
Q′Σ̂S

ϑ

k
, (52)

and ω̂∗ in (49) takes the following expression

ω̂∗ =
ϑ

k
−Q

(
Q′Σ̂SQ

)−1
Q′Σ̂S

ϑ

k
, (53)

which can be simplified as follows:

ω̂∗ =

[
Ik−Q

(
Q′Σ̂SQ

)−1
Q′Σ̂S

]
ϑ

k

= Σ̂−1/2S

[
Ik− Σ̂1/2

S Q
(
Q′Σ̂SQ

)−1
Q′Σ̂1/2

S

]
︸ ︷︷ ︸

A

Σ̂1/2
S

ϑ

k
. (54)

Remarks that the matrix A is the orthogonal projection matrix onto the complement of the column space

of Σ̂1/2
S Q. Moreover, with the definition of the matrix Q, we have

Q′ϑ= 0 (55)

Q′Σ̂1/2
S Σ̂−1/2S ϑ= 0 (56)(

Σ̂1/2
S Q

)′ (
Σ̂−1/2S ϑ

)
= 0. (57)
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The last expression implies that Σ̂−1/2S ϑ spans the complement of the column space of Σ̂1/2
S Q, and equation

(54) becomes

ω̂∗ = Σ̂−1/2S

[
Σ̂−1/2S ϑ

(
ϑ′Σ̂−1S ϑ

)−1
ϑ′Σ̂−1/2S

]
︸ ︷︷ ︸

A

Σ̂1/2
S

ϑ

k

= Σ̂−1/2S

Σ̂−1/2S ϑϑ′Σ̂−1/2S

ϑ′Σ̂−1S ϑ
Σ̂1/2

S

ϑ

k

=
Σ̂−1S ϑ

ϑ′Σ̂−1S ϑ
. (58)

The last equation corresponds to the familiar expression of the sample global minimum variance portfolio.
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Appendix B: Tables and Figures

Figure 1 Boxplots of the weights of the sample global minimum variance portfolio: sample size n = 30

Figure 2 Boxplots of the weights of the sample global minimum variance portfolio: sample size n = 6000
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Table 1 Sample covariance matrix and parameter
uncertainty

k= 10 k= 50 k= 100

n= 30 0.0116 0.0570 0.1122

n= 60 0.0084 0.0404 0.0807

n= 120 0.0058 0.0286 0.0572

n= 360 0.0034 0.0166 0.0333

n= 6000 0.0008 0.0040 0.0081

Notes: For different values of k the number of stocks and

n the estimation sample length, this table reports the mean

across 1,000 simulations of the estimated level of parame-
ter uncertainty for the sample covariance matrix. The stock

returns are simulated using a Gaussian one-factor model.

Table 2 Means for the estimated values of the level of
parameter uncertainty ρ̂

k= 10 k= 50 k= 100

n= 120 0.0323 0.1466 0.2885

n= 240 0.0227 0.1024 0.1945

n= 360 0.0185 0.0833 0.1580

n= 6000 0.0045 0.0201 0.0382

Notes: For different values of k the number of stocks and
n the estimation sample length, this table reports the means

of the estimated (via bootstrap) values of the level of param-
eter uncertainty ρ̂. The stock returns are simulated using a

Gaussian three-factor model.
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Table 3 Mean square errors of estimated portfolio weights

k= 10 k= 50 k= 100

n= 120 0.0676 0.3976 2.4865

[0.0378] [0.1169] [0.1839]

n= 240 0.0319 0.1409 0.3469

[0.0227] [0.0930] [0.1547]

n= 360 0.0207 0.0855 0.1844

[0.0165] [0.0801] [0.1376]

n= 6000 0.0010 0.0048 0.0080

[0.0011] [0.0186] [0.0335]

Notes: For different values of k the number of stocks and n
the estimation sample length, this table reports the mean square

errors of estimated portfolio weights for two different global mini-

mum variance portfolios. For each couple (n,k), we first report the
mean square error for the sample global minimum variance port-

folio, followed in bracket by the mean square error for its robust

counterpart obtained via the robust least squares approach. The
stock returns are simulated using a Gaussian three-factor model.

Table 4 Portfolio turnovers with simulated data

k= 10 k= 50 k= 100

n= 120 0.0985 0.5903 3.5900

[0.0677] [0.1442] [0.1744]

n= 240 0.0636 0.2648 0.6270

[0.0518] [0.1116] [0.1441]

n= 360 0.0540 0.1956 0.4057

[0.0468] [0.1006] [0.1329]

n= 6000 0.0417 0.1123 0.2030

[0.0404] [0.0937] [0.1487]

Notes: For different values of k the number of stocks and n the

estimation sample length, this table reports the monthly out-of-

sample turnovers for two different estimators of the global min-
imum variance portfolio. For each couple (n,k), we first report
the turnover of the sample global minimum variance portfolio, fol-
lowed in bracket by the turnover of its robust counterpart obtained
via the robust least squares approach. The stock returns are sim-

ulated using a Gaussian three-factor model.
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Table 5 Portfolio variances with simulated data

k= 10 k= 50 k= 100

n= 120 0.00224 0.00255 0.00741

[0.00219]
(0.00)

[0.00180]
(0.00)

[0.00178]
(0.00)

n= 240 0.00214 0.00187 0.00206

[0.00214]
(0.13)

[0.00171]
(0.00)

[0.00165]
(0.00)

n= 360 0.00211 0.00172 0.00167

[0.00211]
(0.96)

[0.00167]
(0.00)

[0.00158]
(0.00)

n= 6000 0.00207 0.00149 0.00121

[0.00207]
(0.61)

[0.00150]
(0.00)

[0.00127]
(0.00)

Notes: For different values of k the number of stocks and n the esti-
mation sample length, this table reports the monthly out-of-sample

variances for two different estimators of the global minimum vari-

ance portfolio. For each couple (n,k), we first report the variance of
the sample global minimum variance portfolio, followed in bracket by

the variance of its robust counterpart obtained via the robust least

squares approach. The third reported value (in parenthese) is the p-
value of the difference between the two reported values. The difference

is tested using the robust test of variances comparison in Ledoit and

Wolf (2011). The stock returns are simulated using a Gaussian three-
factor model.
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Table 6 Portfolio Sharpe ratios with simulated data

k= 10 k= 50 k= 100

n= 120 0.1163 0.1040 0.0450

[0.1283]
(0.00)

[0.1472]
(0.00)

[0.1597]
(0.00)

n= 240 0.1171 0.1217 0.1146

[0.1269]
(0.00)

[0.1495]
(0.00)

[0.1648]
(0.00)

n= 360 0.1169 0.1235 0.1243

[0.1251]
(0.00)

[0.1476]
(0.00)

[0.1642]
(0.00)

n= 6000 0.1277 0.1377 0.1425

[0.1296]
(0.00)

[0.1480]
(0.00)

[0.1604]
(0.00)

Notes: For different values of k the number of stocks and n the
estimation sample length, this table reports the monthly out-of-

sample Sharpe ratios for two different estimators of the global

minimum variance portfolio. For each couple (n,k), we first report
the Sharpe ratio of the sample global minimum variance portfolio,

followed in bracket by the Sharpe ratio of its robust counterpart

obtained via the robust least squares approach. The third reported
value (in parenthese) is the p-value of the difference between the

two reported values. The difference in Sharpe ratios is tested

using the studentized circular block bootstrapping methodology
in Ledoit and Wolf (2008). The stock returns are simulated using

a Gaussian three-factor model.
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Table 7 Portfolio turnovers with real data

Rules 10-Industry 49-Industry 100FF

Panel A

Sample 0.1619 0.8267 7.9729

Robust 0.0695 0.1427 0.1587

Panel B

Shortsale 0.0521 0.0756 0.1168

LW-CC 0.1025 0.3849 1.4466

LW-SI 0.1427 0.3856 1.2683

2-norm constrained 0.2366 0.4324 1.4925

Equally-weighted 0.0235 0.0326 0.0257

Notes: For each of the data set considered, this table reports the monthly
out-of-sample turnovers for different estimators of the global minimum vari-

ance portfolio. The first panel displays the turnovers of the sample global min-
imum variance portfolio, followed by the turnovers of its robust counterpart

obtained via the robust least squares approach. The second panel displays the

turnovers of various estimators of the global minimum variance portfolio from
the existing literature. The estimation sample length is set to 120. The data set

10-Industry (resp. 49-Industry) includes monthly returns for the ten (resp. forty-

nine)-Industry portfolios representing the U.S. stock markets, over the period
July 1963-December 2010. The data set 100-FF includes monthly returns (over

the same period) for the one hundred Fama and French portfolios of firms sorted

by size and book-to-market.
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Table 8 Portfolio variances with real data

Rules 10-Industry 49-Industry 100FF

Panel A

Sample 0.00134
(0.56)

0.00188
(0.00)

0.00708
(0.00)

Robust 0.00132
(1.00)

0.00140
(1.00)

0.00165
(1.00)

Panel B

Shortsale 0.00137
(0.05)

0.00141
(0.84)

0.00209
(0.00)

LW-CC 0.00132
(0.87)

0.00145
(0.56)

0.00233
(0.00)

LW-SI 0.00132
(0.98)

0.00138
(0.81)

0.00186
(0.21)

2-norm constrained 0.00130
(0.34)

0.00136
(0.29)

0.00171
(0.70)

Equally-weighted 0.00195
(0.00)

0.00255
(0.00)

0.00280
(0.00)

Notes: For each of the data set considered, this table reports the monthly out-of-

sample variances for different estimators of the global minimum variance portfolio.

The first panel displays the variances of the sample global minimum variance
portfolio, followed by the variances of its robust counterpart obtained via the

robust least squares approach. The second panel displays the variances of various

estimators of the global minimum variance portfolio from the existing literature.
For a given estimator of the global minimum variance portfolio, the value in

parenthese is the p-value that the portfolio variance is different from that of the
robust portfolio. The p-values are computed using the robust test of variances

comparison in Ledoit and Wolf (2011). The estimation sample length is set to

120. The data set 10-Industry (resp. 49-Industry) includes monthly returns for
the ten (resp. forty-nine)-Industry portfolios representing the U.S. stock markets,

over the period July 1963-December 2010. The data set 100-FF includes monthly

returns (over the same period) for the one hundred Fama and French portfolios
of firms sorted by size and book-to-market.
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Table 9 Portfolio Sharpe ratios (net of transactions costs) with real data

Rules 10-Industry 49-Industry 100FF

Panel A

Sample 0.2578
(0.49)

0.0673
(0.00)

−0.3636
(0.00)

Robust 0.2686
(1.00)

0.2291
(1.00)

0.2759
(1.00)

Panel B

Shortsale 0.2591
(0.29)

0.2359
(0.75)

0.1939
(0.00)

LW-CC 0.2598
(0.51)

0.1468
(0.00)

0.1114
(0.00)

LW-SI 0.2625
(0.69)

0.1511
(0.00)

0.1165
(0.00)

2-norm constrained 0.2449
(0.01)

0.1753
(0.00)

0.1086
(0.00)

Equally-weighted 0.2276
(0.06)

0.2100
(0.48)

0.1935
(0.00)

Notes: For each of the data set considered, this table reports the monthly out-

of-sample Sharpe ratios (net of transactions costs) for different estimators of the

global minimum variance portfolio. The first panel displays the Sharpe ratios (net
of transactions costs) of the sample global minimum variance portfolio, followed

by the Sharpe ratios (net of transactions costs) of its robust counterpart obtained

via the robust least squares approach. The second panel displays the Sharpe ratios
(net of transactions costs) of various estimators of the global minimum variance

portfolio from the existing literature. For a given estimator of the global minimum

variance portfolio, the value in parenthese is the p-value that the portfolio Sharpe
ratio (net of transactions costs) is different from that of the robust portfolio. The

difference in Sharpe ratios is tested using the studentized circular block bootstrap-
ping methodology in Ledoit and Wolf (2008). The estimation sample length is set
to 120. The data set 10-Industry (resp. 49-Industry) includes monthly returns for

the ten (resp. forty-nine)-Industry portfolios representing the U.S. stock markets,

over the period July 1963-December 2010. The data set 100-FF includes monthly
returns (over the same period) for the one hundred Fama and French portfolios of

firms sorted by size and book-to-market.


