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 and we study the effects of pollution in the short and the long run.

Introduction

The seminal notion of human capital dates back to Smith and Pigou. The current meaning has been specified and popularized by Becker in his influential work Human Capital published in 1964. Today, the term of human capital refers to the level of education and the state of health of a given individual. Expenditures in education and intellectual training on the one hand, and, on the other hand, medical cares and physical training improve the productivity of workers and represent investments in human capital because during the life span the higher productivity results in higher wages.

Human capital accumulation is pointed out as a mechanism of perpetual growth by [START_REF] Lucas | On the mechanics of economic development[END_REF]. During the Nineties, the endogenous growth literature flourishes. Meanwhile, this optimistic view is challenged by other authors concerned by the effects of pollution on economic growth. Two decades after the seminal papers by [START_REF] Keeler | The optimal control of pollution[END_REF] and [START_REF] Forster | Optimal capital accumulation in a polluted environment[END_REF] on sustainable development, pollution is introduced in a model of (exogenous) growth à la Ramsey by [START_REF] Van Der Ploeg | Pollution control and the Ramsey problem[END_REF].

Most of the papers before [START_REF] Van Der Ploeg | Pollution control and the Ramsey problem[END_REF] addressed the issue of sustainable growth in terms of depletion of non-renewable sources (influential references are [START_REF] Dasgupta | The optimal depletion of exhaustible resources[END_REF], [START_REF] Stiglitz | Growth with exhaustible natural resources : efficient and optimal growth paths[END_REF] and [START_REF] Solow | Intergenerational equity and exhaustible resources[END_REF]). Pollution is eventually taken into account in models of endogenous growth when the new growth theories are successful, included theories of human capital accumulation. Pollution affects human capital and hence growth through essentially three effects. First, it lowers the life expectancy and then the number of periods over which the discounting is computed [START_REF] Pautrel | Pollution and life expectancy: How environmental policy can promote growth[END_REF], [START_REF] Mariani | Life expectancy and the environment[END_REF]). Second and third, it reduces the physical and mental performances within a period, respectively [START_REF] Gradus | The trade-off between environmental care and long term growth: Pollution in three prototype growth models[END_REF], [START_REF] Van Ewijk | Can abatement overcome the conflict between environment and economic growth?[END_REF]).

A common assumption in the literature on pollution and human capital accumulation is that pollution (either as a stock or a flow) is an unavoidable by-product of any consumption or production activity. In our paper, we assume that production pollutes and pollution slows human capital accumulation, but, in the spirit of [START_REF] Brock | A polluted golden age[END_REF] and [START_REF] Stockey | Are there limits to growth?[END_REF], the adoption of polluting technologies enhances factor productivity. Thus, pollution is considered as a production factor and becomes a control variable in the planner's program just as the worked hours. Our model preserves the simplicity of [START_REF] Lucas | On the mechanics of economic development[END_REF] and encompasses this model as particular case.

Focusing on the case where pollution matters, we find the behavior of the economy in the short run though a stability analysis and in the long run through the comparative statics. In particular, we highlight a positive relation between worked hours and pollution level.

Polluting technology

We introduce a pollution mechanism à la [START_REF] Stockey | Are there limits to growth?[END_REF] in a model à la [START_REF] Lucas | On the mechanics of economic development[END_REF], an optimal growth model with human capital and no physical capital. On the one hand, a polluting technology enhances labor productivity, on the other hand pollution slacks human capital accumulation. Thus, a trade-off between these opposite effects takes place.

We denote the individual labor supply by l t and normalize the size of population to one. Then, l t is also the aggregate labor supply. Labor services l t enters the production function jointly with another input: a technology index a t . Increasing this index means an improvement of labor productivity but also the adoption of a more polluting technology.

Assumption 1 Technology 1 is represented by a production function y t = f (l t , a t ), with ∂f /∂l t > 0 and ∂f /∂a t > 0.

Pollution depends on the type of technology (more or less polluting), but also on the amount of production: p t = p (a t , y t ), with ∂p/∂a t , ∂p/∂y t > 0. Notice that here the pollution is not a stock, but a flow.

We find 

p t = p (a t , f (a t , l t )) ≡ q (a t , l t ) (1 

Human capital

Leisure time is exogenous. Non-leisure time is normalized to one and spent to work or to accumulate human capital (education and health). The individual labor services are the product of human capital and the working time: l t ≡ h t u t . The remaining non-leisure time, 1 -u t , is devoted to human capital accumulation. Pollution has a negative impact on human capital accumulation.

Assumption 2 The law of human capital accumulation is given by ḣt /h t = g (1 -u t , p t ), where g denotes the growth rate, with ∂g/∂ (1 -u t ) > 0 and ∂g/∂p t < 0.

Preferences

The assumption of constant elasticity of intertemporal substitution in consumption is common in the growth literature and allows us to avoid mathematical obstacles.

Assumption 3 Preferences are rationalized by a smooth strictly increasing and strictly concave felicity function

v t = v (c t ) with a constant elasticity of intertemporal substitution σ = -v ′ (c t ) / [c t v ′′ (c t )] with σ ≤ 1.
The restriction σ ≤ 1 is justified on the empirical ground. 2 The logarithmic case (σ = 1) is included.

Social optimum

The planner maximizes ∞ 0 e -ρt v (y (h t u t , q (a t , h t u t ))) dt, an intertemporal welfare functional, subject to the law of motion ḣt = h t g (1 -u t , q (a t , h t u t )), where q is given by (1). Given h t u t , instead of choosing a t , the planner can directly compute

p t = q (a t , h t u t ). His program reduces to max ∞ 0 e -ρt v (y (h t u t , p t )) dt subject to ḣt = h t g (1 -u t , p t ) with h 0 given
where h t is the state, while u t and p t become controls (indeed, p t replaces a t ). The current-value Hamiltonian writes:

H t ≡ v (y (h t u t , p t )) + λ t h t g (1 -u t , p t )
where λ t is a costate variable.

We derive the first-order conditions:

∂H t /∂λ t = ḣt , ∂H t /∂h t = ρλ t -λt , ∂H t /∂u t = 0, ∂H t /∂p t = 0 (4)
and the transversality condition lim t→∞ e -ρt λ t h t = 0. From (4), we obtain the arbitrage

∂g/∂p t ∂g/∂ (1 -u t ) h t = - ∂y/∂p t ∂y/∂l t (5) 
Arrow-Mangasarian (sufficient) conditions ensure the concavity of the Hamiltonian. In particular, we require ϕ (h t , u t , p t ) ≡ v (y (h t u t , p t )) to be concave with respect to (h t , u t , p t ) and g (u t , p t ) ≡ g (1 -u t , p t ) to be concave with respect to (u t , p t ).

Let us introduce the first and second-order elasticities of the functions g t = g (1 -u t , p t ), y t = y (l t , p t ):

g 1 g 2 y 1 y 2 ≡ 1-ut gt ∂g ∂(1-ut) pt gt ∂g ∂pt lt yt ∂y ∂lt pt yt ∂y ∂pt (6) g 11 g 12 g 21 g 22 ≡ 1-ut ∂g/∂(1-ut) ∂ 2 g ∂(1-ut) 2 pt ∂g/∂(1-ut) ∂ 2 g ∂pt∂(1-ut) 1-ut ∂g/∂pt ∂ 2 g ∂(1-ut)∂pt pt ∂g/∂pt ∂ 2 g ∂p 2 t (7) y 11 y 12 y 21 y 22 ≡ lt ∂y/∂lt ∂ 2 y ∂l 2 t pt ∂y/∂lt ∂ 2 y ∂pt∂lt lt ∂y/∂pt ∂ 2 y ∂lt∂pt pt ∂y/∂pt ∂ 2 y ∂p 2 t (8)
and the following reduced variables:

  A 0 A 1 A 2   ≡   y 21 -y 11 y 21 -y 11 + g 11 -g 21 y 22 -y 12 + g 12 -g 22   and B 1 B 2 ≡ y1 σ -y 11 y2 σ -y 12 (9)
Proposition 1 System (4) reduces to a two-dimensional system:

ut = f u (u t , p t ) ≡ (1 -A 0 ) (1 -u t ) A 0 -A 1 u t g (1 -u t , p t ) u t - A 2 (1 -u t ) A 0 -A 1 u t u t p t f p (u t , p t ) (10) ṗt = f p (u t , p t ) ≡ [1 -B 1 + (A 0 -1) Z (u t )] g (1 -u t , p t ) + ∂g ∂(1-ut) u t -ρ g 12 + B 2 -A 2 Z (u t ) p t (11) 
with

Z (u t ) ≡ B 1 -(g 11 + B 1 ) u t A 0 -A 1 u t (12)
Proof. See the Appendix.

Computing the ratio

ut ṗt = f u (u t , p t ) f p (u t , p t ) ≡ F (u t , p t )
and solving the differential equation

du dp ≡ F (u, p) (13) 
we find a functional solution u t = u (p t ). Replacing it in equation ( 11), we obtain a one-dimensional pollution dynamics ṗt = f p (u (p t ) , p t ) ≡ ψ (p t ). Substituting in ḣt = h t g (1 -u (p t ) , p t ), we obtain the human capital growth path from the initial condition h 0 .

Steady state

At the steady state, the pollution level and the working time are stationary, while the other variables (h t , y t , c t ) grow at constant rates. ṗt = 0 and (11) give ḣt

h t = g = ρ 1 -B 1 + (A 0 -1) Z (u) + g 1 u 1-u (14)
The transversality condition evaluated along the Regular Growth Path (RGP) is satisfied. 3 g is the growth rate for human capital, while the growth rate for production and consumption is different.

Proposition 2 At the steady state, growth is regular: the economy does not experience the same (constant) growth rate for c t and h t :

ċt c t = ẏt y t = y 1 (1 + u 1 ) ḣt h t ( 15 
)
with

u 1 = (1 -A 0 ) (1 -u) A 0 -A 1 u (16) Proof. See the Appendix. More precisely, if u 1 > -1, we have 0 = ut /u t = ṗt /p t < ẏt /y t = ċt /c t = ḣt /h t = g.

Example

Productivity is enhanced by the adoption of a polluting technology: y t = a t Al α t with 0 < α < 1, but production pollutes: p t = a γ t y t , with γ > 0.

(3) becomes [START_REF] Lucas | On the mechanics of economic development[END_REF] represents the case without pollution (y t = Al α t ) and could be recovered as a limit case with γ = +∞.

y t = y (l t , p t ) = A γ 1+γ l α γ 1+γ t p 1 1+γ t (17)
Focus now on a multiplicative human capital accumulation:

g (1 -u t , p t ) ≡ B (1 -u t )
β (p max -p t ) π with p t ≤ p max . This form simplifies to ḣt

h t = C (1 -u t ) β (1 -x t ) π (18) 
with C ≡ Bp π max , where x t ≡ p t /p max is the relative pollution. Specification (18) implies that, ceteris paribus, pollution has always a negative impact on the human capital accumulation rate and this rate never becomes negative. In the limit, when p goes to p max , the human capital accumulation stops. This specification is different from that introduced by [START_REF] Gradus | The trade-off between environmental care and long term growth: Pollution in three prototype growth models[END_REF] where pollution enters additively the accumulation rate and can make it negative.

The second-order conditions for the planner's maximization can be checked under some restriction in the parameter space.

Assumption 4 β, π ∈ (0, 1) and β + π < 1. Assumptions 3 and 4 ensure the Arrow-Mangasarian second-order (sufficient) conditions for Hamiltonian maximization to be verified.

Proposition 3 Under Assumptions 3 and 4, the second-order conditions of the planner's maximization are satisfied.

Proof. See the Appendix.

Restriction β + π < 1 is a fundamental condition of the model. Not only, it ensures the concavity of the program, but also, as we will see, it allows us to prove the existence of the steady state and to solve unambiguously the comparative statics and the stability analysis.

Computing the elasticities ( 6) to (8) gives:

g 1 g 2 y 1 y 2 ≡ β -π pt pmax-pt α γ 1+γ 1 1+γ (19) g 11 g 12 g 21 g 22 ≡ β -1 -π pt pmax-pt β (1 -π) pt pmax-pt (20) 
y 11 y 12 y 21 y 22 ≡ α γ 1+γ -1 1 1+γ α γ 1+γ -γ 1+γ (21) and   A 0 A 1 A 2   =   1 0 -pmax pmax-pt   and B 1 B 2 = 1 + α 1-σ σ γ 1+γ 1-σ σ 1 1+γ
System (10)-( 11) becomes ut =

β ut 1-ut -α 1-σ σ γ 1+γ g (1 -u t , x t p max ) -ρ ∆ (u t , x t ) (1 -u t ) u t (22) ẋt = β ut 1-ut -α 1-σ σ γ 1+γ g (1 -u t , x t p max ) -ρ ∆ (u t , x t ) (1 -x t ) x t ≡ ψ (u t , x t ) (23) 
where

∆ t = ∆ (u t , x t ) ≡ 1 + 1 + αγ 1 + γ 1 -σ σ -β + α 1 -σ σ γ 1 + γ u t -π + 1 -σ σ 1 1 + γ x t > 1 + 1 + αγ 1 + γ 1 -σ σ -β + α 1 -σ σ γ 1 + γ -π + 1 -σ σ 1 1 + γ = 1 -β -π > 0 because u t , x t ∈ (0, 1).
Dividing ( 22) by ( 23) side by side, we obtain

du dx = u x 1 -u 1 -x (24) 
(24) is a first-order differential equation whose solution is given by

u t = u (x t ) = x t x t + (1 -x t ) c > 0 ( 25 
)
where c is an integration constant.

As usual in the endogenous growth literature, we obtain a reduced dynamics. Replacing ( 25) in (23), system ( 22)-( 23) reduces to a single equation ẋt = ψ (u (x t ) , x t ) ≡ ψ (x t ) (26)

Steady state

At the steady state, ẋt = 0. Equation ( 23) gives ḣt

h t = g = ρ β u 1-u -s with s ≡ α γ 1 + γ 1 -σ σ (27) 
The regular growth rates are ranked according to ( 15), ( 16) and ( 19):

0 = ut u t = ṗt p t < ċt c t = ẏt y t = y 1 (1 + u 1 ) g = αγ 1 + γ g < ḣt h t = g
(in the [START_REF] Lucas | On the mechanics of economic development[END_REF] model: γ = +∞ (no pollution) and ċt /c t = αg). Focus now on ( 25) and ( 26). ẋt = ψ (x t ) = 0 gives

η (u) ≡ (1 -u) β β u 1 -u -s αγ αγ + β π u 1-u π = ρ C (28) 
η (u) > 0 requires u ∈ (u, 1) with u ≡ s/ (β + s). u ∈ (u, 1) is equivalent to g > 0: in our example, the growth rate is always positive.

Proposition 4 A steady state u exists.

Proof. See the Appendix.

Solving equation ( 28), we find u. From (5), we obtain also

x = p p max = β π u 1-u αγ + β π u 1-u < 1 (29)
and, finally, through (27), we compute g.

The planner compute c 0 to ensure that the economy stays on the RGP

c 0 = y 0 = A γ 1+γ (h 0 u) α γ 1+γ (xp max ) 1 1+γ
where h 0 is predetermined. More explicitly, the RGP becomes

h t = h 0 e gt , y t = y 0 e α γ 1+γ gt , c t = c 0 e α γ 1+γ gt
Focus now on the comparative statics and on the impact of parameters on the steady state.

Proposition 5 At the steady state, there is a positive relation between the pollution level and the working time: dp/du > 0.

Proof. See the Appendix.

u has a positive direct effect on l and an indirect negative effect on l through g, while p has a direct positive effect on y and a negative effect on l through g: the arbitrage between u and p is captured by equation ( 5), resulting in an unambiguous relation between u and p.

Consider

γ 0 ≡ β πα 1+s β+s -π β 1+s β+s + 1 < β πα ≡ γ 1 ( 30 
)
There are two cases: (1) "pollutions matters": γ 0 < γ < γ 1 , (2) "pollution does not matter": γ > γ 1 . The second case is similar to that without pollution (with γ = +∞ we recover the Lucas (1988) model). In the following, we will focus on the novelty of the paper, that is on the first case.

Assumption 5 Pollutions matters: γ 0 < γ < γ 1 .

We introduce a critical value of pollution:

p + ≡ p max x   a 1 2a 2 2 + a 0 a 2 - a 1 2a 2  
where

a 2 ≡ γ 1 -γ, a 1 ≡ (γ -γ 0 ) 1 + 1 + s β + s and a 0 ≡ 1 + s β + s γ + 1 α s 1 + s > 0 (31)
Lemma 6 Assumptions 4 and 5 imply p < p + .

Proof. See the Appendix.

The following critical value

ω ≡ βu + Q -1 1 -u with Q ≡ πx - s β u
1-u -s plays also a role in the comparative statics and in the stability analysis.

Lemma 7 Under Assumptions 4 and 5, ω < 0.

Proof. See the Appendix.

Differentiating (28), we capture the impact of parameters on the steady state:

    B u ∂u ∂B pmax u ∂u ∂pmax ρ u ∂u ∂ρ σ u ∂u ∂σ     = 1 ω     1 π -1 α γ 1+γ 1 σ g ρ     (32) and     α u ∂u ∂α γ u ∂u ∂γ π u ∂u ∂π β u ∂u ∂β     = 1 ω     Q 1 1+γ Q + γ 1+γ πx πx + π ln [(1 -x) p max ] 1 -Q + β ln (1 -u)     (33) 
The existence of a steady state requires also a lower bound for pollution: p ≡ p max x (u).

Proposition 8 Let p > p. Assumptions 4 and 5 imply

∂u ∂B < 0, ∂u ∂p max < 0, ∂u ∂ρ > 0, ∂u ∂σ < 0 ∂p ∂B < 0, ∂p ∂p max < 0, ∂p ∂ρ > 0, ∂p ∂σ < 0
In addition, if p max > e -x / (1 -x), ∂u ∂π < 0 and ∂p ∂π < 0

Proof. See the Appendix.

As in [START_REF] Lucas | On the mechanics of economic development[END_REF], a model without physical capital and pollution, ρ has a positive effect on u because more impatient agents prefer to work more and consume more today, instead of to accumulate human capital for tomorrow. The higher the working time, the higher the production and pollution. We observe also that B has the same qualitative impact of p max because both of these parameters enter the factor C ≡ Bp π max . When π increases, the environmental quality (p max -p) has a larger impact on capital accumulation. The planner reduces the pollution level and increases the time spent for education and health (1-u). When β increases, the time spent for education and health (1 -u) has a larger impact on capital accumulation. The planner reduces the working time u and the pollution level (because, on the one side, production partially lowers and, on the other side, the environmental quality has a larger effect on capital accumulation).

Assumption 6

σ > 1 1 + β α 1+γ γ u 1-u πx 1+πx ∈ (0, 1)
Assumption 6 is equivalent to Q > 0 and is satisfied in the case of logarithmic preferences (σ = 1).

Proposition 9 Let p > p. Assumptions 4, 5 and 6 imply

∂u ∂α < 0, ∂u ∂γ < 0, ∂p ∂α < 0, ∂p ∂γ < 0
When α is higher, the relative productivity of pollution in the reduced production function (17) lowers and, so, the planner adopts a less polluting technology. The higher environmental quality increases the impact of education and wealth on capital accumulation. The planner decides to reduce the working time to raise the investments in education and wealth. The same arguments work for γ because a higher γ also lowers the relative productivity of pollution in the reduced production function (17).

Finally, focus on human capital accumulation. Consider, for simplicity, the logarithmic case.

Proposition 10 Let σ = 1. Propositions 8 and 9 hold also for the stationary growth rate g but now with reversed signs, that is sign∂g/∂z = -sign∂u/∂z for z = B, p max , α, γ, π. In addition, ∂g/∂β < 0, while ∂g/∂ρ < 0 iff

ρ u ∂u ∂ρ > 1 -u Proof. See the Appendix. Focus on g = ρ β 1 -u u (34)
u has a negative impact on human capital accumulation (the higher the working time, the lower the investments in education and health). This explains why sign∂g/∂z = -sign∂u/∂z. The other parameters β and ρ have also a direct effect (positive and negative, respectively: see expression ( 34)).

The negative direct effect of β on g always dominates the possibly positive indirect effect through ∂u/∂β < 0 (see Proposition 8). Under condition (34), the positive direct effect of ρ on g is dominated by a negative indirect effect through ∂u/∂ρ > 0 (see Proposition 8).

Stability analysis

In the [START_REF] Lucas | On the mechanics of economic development[END_REF] model the growth path is unique. This result also holds in our model.

Proposition 11 Under Assumption 4 and 5, the eigenvalue of reduced dynamics (26) around the steady state ( 29) is positive.

Proof. See the Appendix.

Conclusion

In this paper we have considered the effects of pollution on human capital accumulation through an endogenous growth model à la [START_REF] Lucas | On the mechanics of economic development[END_REF] augmented by a pollution mechanism à la [START_REF] Stockey | Are there limits to growth?[END_REF].

We have found positive relation between pollution level and the working time because pollution slows down the human capital accumulation and makes less efficient the investments in education and health.

Appendix

Proof of Proposition 1 First-order conditions (4) write ḣt h t = g t and λt 

λ t = ρ -g t -u t ∂g ∂ (1 -u t ) (35) λ t = v ′ (c t ) ∂y/∂l t ∂g/∂ (1 -u t ) ( 
λ t = v ′′ (c t ) v ′ (c t ) ċt + ∂ 2 y ∂pt∂lt ṗt + ∂ 2 y ∂l 2 t ḣt u t + ∂u ∂pt ṗt + ∂u ∂ht ḣt h t ∂y/∂l t + ∂ 2 g ∂(1-ut) 2 ∂u ∂pt ṗt + ∂u ∂ht ḣt - ∂ 2 g ∂pt∂(1-ut) ṗt ∂g/∂ (1 -u t ) (37) 
Production is entirely consumed: c t = y (h t u t , p t ). Taking the logarithms and deriving with respect to time we get also: 38) in (37), we find:

ċt c t = ∂y ∂pt ṗt + ∂y ∂lt ḣt u t + h t ∂u ∂pt ṗt + ∂u ∂ht ḣt y t (38) Replacing c t v ′′ (c t ) /v ′ (c t ) = -1/σ, ḣt /h t = g t and (
λt λ t = u t 1 -u t g 11 -B 1 u 2 -B 2 -g 12 ṗt p t + u t 1 -u t g 11 -B 1 u 1 -B 1 g t (39) Substituting in turn λt λ t = ρ -g t 1 + u t 1 -u t g 1 (40) 
in (39) and solving for ṗ/p, we finally obtain a two-dimensional dynamic system: ḣt (1 -u) 1-β-π = +∞ because β + π < 1. Thus a steady state exists because u is a continuous function over (u, 1) and ρ/C > 0.

h t = g t and ṗt p t = 1 -B 1 + ut 1-ut g 1 + ut 1-ut g 11 -B 1 u 1 g t -ρ B 2 + g 12 -ut 1 
Proof of Proposition 5 From ( 25) and ( 29), we have u = βu/ [βu + cπαγ (1 -u)]. Then u ∈ (0, 1) iff c > 0. In this case, we obtain

x (u) = cu cu + 1 -u and x ′ (u) = c (cu + 1 -u) 2 > 0
Finally, notice that dp/du = p max x ′ (u).

Proof of Lemma 6 By definition, p = xp max . Then, p < p + is equivalent to

a 1 2a 2 2 + a 0 a 2 > 1 + a 1 2a 2 (42) 
Under Assumption 5, a 0 , a 1 , a 2 > 0 and (42) becomes equivalent to a 0 > a 1 +a 2 . Replacing ( 30) and ( 31), a 0 > a 1 +a 2 writes β +π < 1. Thus, under Assumption 5, p < p + is equivalent to β + π < 1 (Assumption 4).

Proof of Lemma 7

We observe that ω < 0 iff Q < 1 -βu. Replacing g and p, we find that ω < 0 iff a 2 u 2 + a 1 ua 0 < 0. Under Assumption 5, we have a 2 , a 1 , a 0 > 0. Let

u ± ≡ - a 1 2a 2 ± a 1 2a 2 2 + a 0 a 2
Then, u -< 0 < u + and, so, ω < 0 iff u < u + . Since p + ≡ p max x (u + ) > 0 and x ′ (u) > 0, then ω < 0 iff p < p + .

Proof of Proposition 8 Consider the elasticities (32) and (33) and apply Lemma 7. Notice that dp/du = p max x ′ (u) > 0.

Proof of Proposition 9 Consider the elasticities (33) and apply Lemma 7. Notice that dp/du = p max x ′ (u) > 0.

Proof of Proposition 10 In the logarithmic case, (34) holds and, for any parameter z, excepted β, ρ, we have 43) 

∂g ∂z = - ρ β 1 u 2 ∂u ∂z ( 

  Proof of Proposition 4 A steady state is solution of η (u) = ρ/C.

  In this sense, given the labor supply l t , adopting a technology index a t is equivalent to fixing a pollution level p t . In other terms, p t can be assimilated to an input. From the Implicit Function Theorem, we obtain

												)
	that is a t = a (p t , l t ) with					
		∂a ∂p t	,	∂a ∂l t	=	1 ∂at + ∂p ∂p ∂yt	∂f ∂at	, -	∂p ∂yt ∂at + ∂p ∂f ∂lt ∂p ∂yt	∂at ∂f	(2)
	and, finally,										
						y t = f (l t , a (p t , l t )) ≡ y (l t , p t )	(3)
			∂y ∂l t	=	∂f ∂l t	+	∂f ∂a t	∂a ∂l t	and	∂y ∂p t	=	∂f ∂a t	∂a ∂p t
	and, replacing (2),									
	∂y ∂l t	=	∂p ∂at ∂at + ∂p ∂f ∂lt ∂p ∂yt	∂f ∂at	> 0 and	∂y ∂p t	=	∂f ∂at ∂yt ∂at + ∂p ∂p	∂at ∂f	> 0

  36)jointly with condition (1). Conditions (35) and (36) look like the first-order conditions of the program without pollution. Since y t = y (h t u t , p t ) and g t = g (1 -u t , p t ), the implicit equation (1) allows us to locally define u t = u (h t , p t )

	with elasticities:	(u 1 , u 2 ) ≡	h t u t	∂u ∂h t	,	p t u t	∂u ∂p t
	From (36), we obtain λt /λ t :					
	λt						

  -ut g 11 -B 1 u 2 In order to compute the first-order elasticities of function u, we differentiate , h t , p t ), where g t = g (1 -u t , p t ), y t = y (l t , p t ) = y (h t u t , p t ):
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In[START_REF] Stockey | Are there limits to growth?[END_REF], the technology index at is bounded from above. This bound ensures the existence of a competitive equilibrium. Without upper bound, firms, bearing no pollution costs, would choose an infinite index. We focus on the social optimum and we assume that the exogenous upper bound is larger than the optimal value of at.

The existing literature does not provide a definitive estimate for σ. Although many standard RBC models consider values around unity, recent empirical works suggest values around 0.5 (see[START_REF] Campbell | Asset prices, consumption and the business cycle[END_REF] among the others).

Along the RGP, we have λt/λt = ρg -u∂g/∂ (1 -ut) and the transversality condition writes limt→∞ e -ρt λtht = λ 0 h 0 limt→∞ e g-ρ+ λt/λt t = 0, that is gρ + λt/λt = -u∂g/∂ (1 -ut) < 0.
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and using (41):

The elasticities of u become:

The dynamic system writes:

We observe that u t = u (h t , p t ) and

Then, we obtain the following dynamic system:

Proof of Proposition 2 At the steady state ut = ṗt = 0 and (38) give (15).

Proof of Proposition 3

Under the monotonic transformation k t ≡ ln h t , the planner's program writes equivalently: max ∞ 0 e -ρt v y e kt u t , p t dt subject to kt = g (1 -u t , p t ), where k t is the new state. The Hamiltonian writes: H t ≡ v y u t e kt , p t + µ t g (1 -u t , p t ) where µ t is the new costate variable. In order to apply the Arrow-Mangasarian Sufficiency Theorem, we require ϕ (k t , u t , p t ) ≡ v y u t e kt , p t to be concave with respect to (k t , u t , p t ) and g (u t , p t ) = B (1 -u t ) β (p max -p t ) π to be concave with respect to (u t , p t ). Under Assumption 3, v (c t ) = c 1-1/σ t / (1 -1/σ) < 0 and the principal diagonal minors of the Hessian matrix D 2 ϕ have alternating signs:

Thus, ϕ is strictly concave. Under Assumption 4, the principal diagonal minors of the Hessian matrix D 2 g also have alternating signs:

2 < 0 and

Thus g is strictly concave too. The strict concavity of Hamiltonian implies the uniqueness of solution.

Apply Propositions 8 and 9, and take into account the sign reversal in (43). Focus now on ∂g/∂β. We have

In the last fraction, the numerator is negative while, under Assumption 4, the denominator is positive. Finally, observe that

Proof of Proposition 11 The eigenvalue of reduced dynamics (26) around the steady state ( 29) is given by

Assumption 4 implies ω < 0 (Lemma 7) that is ψ ′ (x) > 0.