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Illiquid Life Annuities 1

In this article, we consider illiquid life annuity contracts and show that they may be preferred to Yaari (1965)'s liquid contracts. In an overlapping-generation economy, liquid life annuities are demanded only if the equilibrium is dynamically inefficient. Alternatively, an equilibrium displaying a positive demand for illiquid life annuities is efficient. In this latter case, the welfare at steady-state is larger if illiquid life annuity contracts are available.

Introduction

In this article, we challenge the common thought that the life annuity contract proposed by Yaari in his seminal 1965's paper is optimal. We indeed show, in a standard neo-classical framework, that another contract, which actually resembles much more to the contracts offered by insurance companies, may be preferred by rational individuals.

The economic theory of annuities has been strongly influenced by [START_REF] Yaari | Uncertain lifetime, life insurance, and the theory of the consumer[END_REF]. He studies the optimal demand for annuities in a life-cycle model with or without bequest motives. The financial asset that is named annuity by Yaari has the following characteristics: the returns are positive if the bearer is alive and zero if he is not. Annuities are nevertheless demanded since their returns are larger than the one yielded by risk-free bonds. The difference between the two yields is the annuity premium, which is said to be fair when it equals the inverse of the survival probability. Importantly, as the individual ages, the premium increases. This characterization of an annuity has been quite influential and has lead to numerous studies (See among others [START_REF] Davidoff | Annuities and individual welfare[END_REF][START_REF] Sheshinski | The Economic Theory of Annuities[END_REF].

Many types of annuity contracts exist [START_REF] Cannon | Annuity Markets[END_REF]. Their common features are quite different from Yaari's annuities. First, the premium is age-independent. The individual purchases some annuities during youth and, at a given age -let say the age at retirement-he periodically receives a fixed amount as long as he survives. Second, the contract is irreversible. Once payments have begun, one can not recover the amount invested. An implicit assumption in Yaari is that agents, upon survival, receive the capital and the interests of their annuity. This means that they are in position to renegotiate their contract at each period, and that is why the premium increases as the individual ages.

In this article, we propose a standard framework in which the individual has the choice between two types of life annuity contract. The first one that we named flexible, is the one proposed by [START_REF] Yaari | Uncertain lifetime, life insurance, and the theory of the consumer[END_REF]. The second one, which is named illiquid, is irreversible and proposes age-independent returns. In both case, we suppose that the annuity premium is such that the insurance companies make no profit. Illiquid annuities have been introduced in life-cycle models by [START_REF] Horneff | Life-cycle asset allocation with annuity markets[END_REF] and [START_REF] Peijnenburg | The annuity puzzle remains a puzzle[END_REF] in order to discuss the issue 1 about the low demand for annuities. Our purpose is to study analytically the equilibrium and welfare consequences of the existence of such contracts.

First, we analyze the life-cycle optimal decision under uncertain lifetime.

Importantly, we consider a setting in which the individual ages, which more precisely means that survival probabilities decrease with age. We therefore depart from two-period life-cycle models or from [START_REF] Blanchard | Debt, deficits and finite horizons[END_REF]'s setting in which our distinction between increasing and fixed returns makes no sense. We obtain that illiquid annuity are preferred to flexible one if the expected returns of the first are sufficiently greater than those of the second. This is the consequence of an arbitrage between more flexibility and more returns.

Second, we consider the general equilibrium of our economy, in which returns of both contracts are determined by the markets. We study a simple overlapping generation economy, similar to the one analyzed by [START_REF] Diamond | National debt in a neoclassical growth model[END_REF]. Surprisingly, we show that illiquid annuities are preferred when the equilibrium is dynamically efficient while flexible annuities are preferred when it is inefficient.

We then discuss about the optimality of both annuity contracts. In particular, for dynamically efficient equilibrium, the welfare at steady-state is larger if illiquid life annuity contracts are available.

Finally, to test the robustness of our results, we propose three extensions of our model by considering successively a background risk, a bequest motive and a subjective evaluation of survival probabilities.

Individual behavior 2.1 Demographics

We consider an overlapping generations model in which agents live a finite and uncertain length of time. They live for a maximum of three periods, also called ages, which are denoted i = {0, 1, 2}. The probability of being alive at age i, conditional on survival until age i -1, is denoted p i . Survival probabilities at each age are constant over time, but decrease with age.

Let N i,t be the number of agents of age i at time t. At each time t = 0, 1, 2..., N 0,t identical agents are born. Thus, the number of agents of age 1 born at time t is N 1,t+1 = p 1 N 0,t and the number of agents of age 2 born at time t is N 2,t+2 = p 1 p 2 N 0,t . Finally, we assume that the number of agents of age 0 grows at a constant growth rate, denoted n, with n > -1:

N 0,t = (1 + n) N 0,t-1 .
(1)

Annuity markets

Agents can invest in two types of financial products: bonds and life annuities.

The yield on bonds is risk free: each unit of consumption invested at time t -1 yields R t units of consumption at time t. Concerning annuities, two types of contracts are offered by insurance companies. It is assumed that information on the probability of survival is perfect and that markets for each contract are competitive, which implies that the proposed contracts are fair. It is further assumed that a company cannot cross-subsidize the types of contracts it offers.

All these assumptions imply that the profit of insurance companies is zero for each contract. We will now explain in detail the characteristics of both annuity contracts.

The first annuity contract offered to agents is that found in most articles of the literature since the seminal article of [START_REF] Yaari | Uncertain lifetime, life insurance, and the theory of the consumer[END_REF]. This is an actuarially fair contract that can be renegotiated each time. We denote a 0,t and a 1,t+1 as the demands for flexible annuities at ages 0 and 1 by an agent born at time t. At age 2, the demand for annuities must be zero because the agent has reached, by assumption, the last period of life.

The second annuity contract proposed to agents has the following features: the investment must be made at age 0, the capital cannot be recovered before age 2 and the remuneration received is independent of age. Annuity is said to be illiquid because, at age 1, the agent receives only the interest of his investment.

Equivalently, it can be said that the agent must invest at age 1 the same amount that he invested at age 0. We denote b t as the demand for illiquid annuities by an agent of age 0 at time t. To calculate the annuity yield, the condition of zero profit for insurance companies is applied. The companies collect at time t -1 the agent's savings and invest them at the risk-free rate. At time t, the value of this investment, which is equal to

(N 0,t-1 b t-1 + N 1,t-1 b t-2 ) R t , (2) 
is redistributed among the surviving agents. If we denote R t /π t as the yield at time t for each unit of consumption invested in t -1 or t -2, we conclude that the amount distributed must be equal to

(N 1,t b t-1 + N 2,t b t-2 ) R t π t . (3) 
Consequently, by equalizing ( 2) and ( 3), the inverse of the premium solves:

π t = p 1 (1 + n) b t-1 + p 1 p 2 b t-2 (1 + n) b t-1 + p 1 b t-2 . (4) 
If the demands for illiquid annuities are positive, it is easy to show that π t ∈ [p 2 , p 1 ]. We conclude that the interest paid at age 1 is higher than that of the flexible annuities, while the interest paid at age 2 is lower. Hence, the flexible contract is more profitable the older the agent and illiquid annuities can be interpreted as an intergenerational transfer from agents age 2 to agents age 1.

This explains why the yield R t /π t is a decreasing function of the population growth rate, n. Finally, we note that in the limit case p 1 = p 2 , the yields of the two annuity contracts are equal.

Life-cycle choices

Each agent chooses a portfolio and a savings strategy to achieve an optimal consumption allocation between the different ages. The intertemporal expected utility of an agent of age 0 at time t reads as:

u (c 0,t ) + θp 1 u (c 1,t+1 ) + θ 2 p 1 p 2 u (c 2,t+2 ) , (5) 
where c i,t+i is the consumption at age i, and θ > 0 is a discount factor. The instantaneous utility function u, is increasing and concave, u > 0 and u < 0, and is such that lim x→0 u (x) = +∞ and lim x→+∞ u (x) = 0. Budget constraints are as follows: at time t, the agent of age 0 receives a wage, denoted w t , which he allocates between consumption and savings. It may consist of flexible annuities, a 0,t , and illiquid annuity, b t . The budget constraint at age 0 is:

c 0,t = w t -a 0,t -b t . (6) 
We notice that investment in risk-free bonds is not modelled here because it is never an optimal strategy. Furthermore, short selling constraints are imposed on both investments, which together with positivity constraints on consumption allow us to eliminate degenerate strategies.

a 0,t ≥ 0, b t ≥ 0, c 0,t ≥ 0, c 1,t+1 ≥ 0, c 2,t+2 ≥ 0. ( 7 
)
At time t + 1, the agent receives the capital and interest of his flexible annuity investment and the interest of his illiquid annuity investment. These financial revenues are used by the agent to finance his consumption and savings in the form of flexible annuities, for which the demand is denoted a 1,t+1 . The budget constraint at age 1 is:

c 1,t+1 = a 0,t R t+1 p 1 + b t R t+1 π t+1 -1 -a 1,t+1 . (8) 
At time t + 2, which corresponds to the last period of life of the agent, consumption is equal to the capital and interest of his flexible and illiquid annuity investments. The bounded lifespan hypothesis implies that the capital invested in illiquid life annuity is recovered at age 21 . The budget constraint at age 2 is:

c 2,t+2 = a 1,t+1 R t+2 p 2 + b t R t+2 π t+2 . (9) 
The problem of the agent is to choose {c 0,t , c 1,t+1 , c 2,t+2 , a 0,t , b t , a 1,t+1 } that maximizes (5) subject to ( 6), ( 7), ( 8) and ( 9). Let us denote:

R t+1 := p 1 π t+1 R t+1 -p 1 1 - p 2 π t+2 . ( 10 
)
Our first result is the following.

Proposition 1. The optimal portfolio satisfies:

b t > 0 and a 0,t = 0 if R t+1 > R t+1 b t = 0 and a 0,t > 0 if R t+1 < R t+1 (11) 
A portfolio satisfying b t > 0 and a 0,t > 0 can be optimal only if R t+1 = R t+1 .

Proof. See Appendix.

In this first version of the model, without background risks nor borrowing constraints, illiquidity is not an issue specific to the agent. Portfolio choice is therefore based on a comparison of the respective yields from flexible annuities and illiquid annuities. Relevant yields are expected yields, discounted at the risk-free interest rate and calculated assuming no reinvestment of the interest received at age 1 2 .

Through π t+1 and π t+2 given in (4), we see that Rt+1 is affected by the demands for annuities by past and future generations. In particular, R t+1 increases with b t-1 and decreases with b t+1 . Because the illiquid annuity contract acts as a transfer from the oldest to the youngest, the more it is demanded by the previous generation, the more the comparative advantage increases, but the more it is demanded by the next generation, the more the comparative advantage decreases. We also note that the yields of the two contracts are equal in the limit case p 1 = p 2 .

With Proposition 1, we have seen that the portfolio is generically composed of a single type of contract. The optimal consumption allocation of the agent then depends on the chosen contract. If flexible annuities are chosen at age 0, the result is typical of that found in the literature: consumption dynamics are independent of survival probabilities and increase according to the ratio of the interest factor over the discount factor [START_REF] Yaari | Uncertain lifetime, life insurance, and the theory of the consumer[END_REF]. Conversely, if illiquid annuities are chosen, the optimal consumption dynamics can be characterized by the following proposition.

Proposition 2. Suppose that R t+1 > R t+1 . The optimal consumption allocation satisfies:

u (c 0,t ) u (c 1,t+1 ) > u (c 1,t+1 ) u (c 2,t+2 ) if R t+1 ≥ R t+2 . ( 12 
)
Thus, if the utility function is homogenous, inequality (12) can be rewritten as: 2 The condition R t+1 ≥ Rt+1 can indeed be rewritten as:

p 1 R t+1 R t+1 p 1 + p 1 p 2 R t+1 R t+2 R t+2 p 2 ≥ p 1 R t+1 R t+1 π t+1 + p 1 p 2 R t+1 R t+2 R t+2 π t+2 . c 1,t+1 c 0,t > c 2,t+2 c 1,t+1 if R t+1 ≥ R t+2 . (13) 
Proof. See Appendix.

Provided that the interest rate is not increasing and that the utility function has standard properties, the holding of a portfolio composed of illiquid annuities implies that the consumption growth rate decreases with age. This is explained by the fact that the marginal rate of substitution (MRS) between ages 0 and 1 is given by R t+1 , which is higher than R t+1 (as shown in Proposition 1), turns to be greater than the MRS between ages 1 and 2, which is given by R t+2 .

Between and 1 is affected by the survival probabilities even if the intertemporal utility function is additively separable 4 . For a given and constant demand for annuities, it can be shown that the relationship is positive if the interest rate is higher than the population growth rate.

In this section, we have shown that there exists a set of interest rate values for which illiquid annuities are purchased by agents. In the next section, we analyze the choice of agents when prices are determined by the equilibrium conditions in all markets.

3 General equilibrium analysis

Annuities and the efficiency of the equilibrium

The production side of the model is standard. There exists a unique good that is produced by many firms acting on a perfectly competitive market. The produc-tion function displays constant returns-to-scale and satisfies Inada conditions.

We assume that only agents of age 0 are working and denote by k t the capital stock per worker at time t. Assuming that capital depreciation rate is 100% per period, the optimality conditions of the firms can be written as:

w t = f (k t ) -k t f (k t ) and R t = f (k t ) . ( 14 
)
The equilibrium condition on the capital market is satisfied if the capital stock at time t + 1 is equal to the sum of the savings of agents born at times t and t -1. This condition can be written as:

k t+1 = a 0,t + b t 1 + n + p 1 (a 1,t + b t-1 ) (1 + n) 2 . ( 15 
)
In what follows, we assume there exists a unique steady-state. Depending on the model parameters values, the interest rate at steady-state may be higher or lower than the population growth rate. It is well known5 that a converging trajectory to such steady states is efficient in the first case and inefficient otherwise.

Let a stared variable denote the steady-state equilibrium value of the considered variable. The following proposition, which is the counterpart at equilibrium of Proposition 1, characterizes the portfolio choices of agents based on the efficiency of the steady state.

Proposition 3. At steady-state, the optimal portfolio satisfies:

   b * > 0 and a * 0 = 0 if f (k * ) > 1 + n, b * = 0and a * 0 > 0 if f (k * ) < 1 + n. (16) 
A portfolio satisfying b * > 0 and a * 0 > 0 can be optimal only if f (k * ) = 1 + n. Proof. See Appendix. Proposition 3 states that if the equilibrium is dynamically efficient, the agents hold illiquid annuities in the steady state. It is only when the equilibrium is inefficient that they are not held. The proof is simple and is based on the difference between the yields offered by flexible and illiquid annuities.

Using equations ( 4), ( 10) and ( 14), written in the steady state, we observe that R * can be written as a linear function of the marginal productivity of capital:

R * = 1 + n + p 1 1 + n + p 2 f (k * ) - (p 1 -p 2 ) (1 + n + p 2 ) 1 + n + p 2 (17) 
The yield on illiquid annuities is greater than on flexible life annuity if and only if it is greater than 1 + n, the population growth factor. The figure below shows the spread in yields as a function of the steady state interest factor R * .

Insert Figure 1.

The intuition behind the result stated in Proposition 3 is based on the fact that illiquid annuity represents a transfer from one generation to the next generation. When the population growth rate is relatively low, which is the case when the equilibrium is efficient, this transfer is inexpensive and the investment is profitable. Conversely, when the growth rate is high, illiquid annuity investment is unprofitable. Finally, at the Golden Rule, flexible and illiquid annuities have exactly the same profitability. Somehow, illiquid life annuity is the opposite of a Pay-As-You-Go pension system, which is a transfer to the previous generation and a profitable investment when the equilibrium is inefficient.

Annuities and the welfare at steady-state

The next step concerns the welfare of an agent in the steady state. We have seen that when the equilibrium is efficient, illiquid annuity is preferred to flexible annuity. This has been established for an equilibrium interest rate associated to the level of capital per worker at equilibrium. It does not, however, take into account the fact that the capital per worker may be different in an economy where illiquid annuities are proposed and in an economy where they are not.

So to evaluate the effect of the supply of illiquid annuity contracts on welfare, we proceed as follows: we compare the welfare obtained in an economy where the two types of contracts are offered to welfare obtained in an economy where only flexible annuity is available. The result of this comparison is presented in the following proposition. Proof. See Appendix.

In the proof of Proposition 4, we show that the introduction of illiquid annuity contracts increases the capital per worker in the steady state. The intuition for this result is the following: as it induces a shift to youth, illiquid annuity stimulates savings. This increase is conducive to steady-state welfare when the equilibrium is inefficient, as the utility increases with capital in that case. The proof of Proposition 4 is based on the assumption of the existence of a unique steady state. In the case of multiple equilibria, the same comparison can be made using the stability properties.

In the long run, agents benefit from the existence of an illiquid annuity market provided that the equilibrium is efficient. However, the existence of an illiquid annuity market in the steady state depends on the decisions made by agents along the transitory path. This is demonstrated in the following proposition.

Proposition 5. Illiquid annuity contracts are offered in the steady state only if all previous generations have purchased illiquid annuity.

Proof. See Appendix.

Proposition 5 shows that the Pareto optimality of illiquid annuity contracts at steady-state is not a sufficient condition for the existence of such a market.

While the generation born in t chooses not to invest in illiquid annuity, we see, by using equation ( 4), that the preceding generation benefits at age 2 from a yield equal to R t+1 /p 2 , equal to the one of flexible annuity, and the generation that follows should settle at age 1 for a yield equal to R t+2 /p 1 . As this yield is equal to one of flexible annuity, the generation born at t + 1 has no interest in investing in illiquid annuity, after which the contract is never requested.

We conclude that if it exists, the illiquid annuity contract represents a Pareto improvement for all generations.

Equivalently, we can notice that illiquid annuities will never be demanded if the contract has not been proposed before the initial time of the economy t = 0, that is to say, if agents born at t = -1 do not have illiquid annuities in their portfolio at t = 0. If the contract does not initially exist, it will not appear spontaneously in a market economy. This fact makes it necessary to intervene in order to possibly compensate for earlier generations to increase the welfare of future generations. Although it is not sufficient, this result may also help understanding the low participation in annuity markets (for a recent survey on the annuity puzzle, see [START_REF] Benartzi | Annuitization Puzzles[END_REF].

In this section, we have presented the conditions for the existence of an illiquid annuity market and demonstrated the Pareto improvement that it generates.

In the next section, we discuss the robustness of our results.

Robustness

The results presented above are not changed if we consider alternative assumptions about the agents' preferences and the environment in which they make their decisions. We consider, in particular, a non-borrowing constraint at age 1, possibly with a background risk that may affect consumption at ages 1 and 2, an assumption of bequest motivated by joy-of-giving, and finally, a subjective evaluation of the survival probabilities. We show that in all these cases, Proposition 1 is not, or barely, changed.

The first extension we consider is a non-borrowing constraint at age 1. In our framework, this implies that selling annuities short, or equivalently purshasing life insurance contracts [START_REF] Bernheim | How strong are bequest motives? Evidence based on estimates of the demand for live insurance and annuities[END_REF], is not allowed. We therefore add the following inequality to the optimization problem described above:

a 1,t+1 ≥ 0. (18) 
The Proposition 1 is modified as follows.

Proposition 6. Let the agent maximizes (5) subject to ( 6), ( 7), ( 8), ( 9) and [START_REF] Gourinchas | Consumption over the life cycle[END_REF]. The optimal portfolio satisfies:

   b t > 0 if R t+1 > R t+1 , b t = 0, a 0,t > 0 and a 1,t > 0 if R t+1 < R t+1 . (19) 
A portfolio satisfying b t > 0 and a 0,t > 0 can be optimal only if R t+1 ≥ R t+1 .

In the case R t+1 > R t+1 , a 0,t > 0 can be optimal only if a 1,t+1 = 0.

Proof. See Appendix.

With proposition 6, we see that introducing a non-borrowing constraint at age 1 barely modifies the optimal portfolio. Constraint ( 18) is binding only if the demand for illiquid annuities is positive, as the consumption at age 2 would be otherwise zero. Provided that constraint ( 18) is binding, the MRS between ages 0 and 1 is still greater than R t+1 while remaining lower than R t+1 , whereas between ages 1 and 2 is greater than R t+2 . In a nutshell, it is the dynamics of consumption that is modified by the non-borrowing constraint, not the optimal portfolio.

Let us now introduce a background risk that may reduce consumptions at ages 1 and 2. This risk can be interpreted as health shocks that require costly treatments and against with it is not possible to be insured 6 . Together with the constraint [START_REF] Gourinchas | Consumption over the life cycle[END_REF], this shock makes the annuity contract non flexible [START_REF] Direr | Flexible life annuities[END_REF]). Consumptions at ages 1 and 2 are then written as random variables, denoted c1,t+1 and c2,t+2 , and the expected utility of the agent of age 0 at time t reads as:

u (c 0,t ) + θp 1 Eu (c 1,t+1 ) + θ 2 p 1 p 2 Eu (c 2,t+2 ) . (20) 
The optimal behavior of the agent is given in the following.

Proposition 7. Let the agent maximizes [START_REF] Horneff | Life-cycle asset allocation with annuity markets[END_REF] subject to ( 6), ( 7), ( 8), ( 9) and [START_REF] Gourinchas | Consumption over the life cycle[END_REF]. The optimal portfolio satisfies the same conditions as those described in Proposition 6.

Proof. See Appendix.

As the portfolio choice depends on a comparison of yields, it is not affected by considering random utilities.

The second extension we consider is a bequest motive. The investment in regular bonds can indeed be justified on the grounds of intergenerational altruism and, as shown by [START_REF] Lockwood | Bequest motives and the annuity puzzle[END_REF], this may help explaining the low demand for annuities. Following [START_REF] Yaari | Uncertain lifetime, life insurance, and the theory of the consumer[END_REF], the bonds held in the portfolio at the age of death are bequested, and the utility of the agent increases with the amount that is bequested. As in [START_REF] Davidoff | Annuities and individual welfare[END_REF], we suppose that capitalized value of the bequest enter the expected utility, which reads as:

u (c 0,t ) + θp 1 u (c 1,t+1 ) + θ 2 p 1 p 2 u (c 2,t+2 ) + (1 -p 1 ) v (R t+1 R t+2 h 0,t ) +p 1 (1 -p 2 ) v (R t+2 h 1,t+1 ) + p 1 p 2 v (h 2,t+2 ) , (21) 
where h i,t+i is the demand for bonds made by an agent of age i, i = {0, 1, 2}, as of time t + i. Function v is increasing and concave and we assume that lim x→0 v (x) = +∞, which restrict our analysis to interior solutions. Bonds' yield is the risk-free rate. Thus, the budget constraints ( 6), ( 8), ( 9) are replaced by the following ones:

c 0,t = w t -a 0,t -b t -h 0,t , (22) 
c 1,t+1 = a 0,t R t+1 p 1 + b t R t+1 π t+1 -1 + h 0,t R t+1 -a 1,t+1 -h 1,t+1 , (23) 
c 2,t+2 = a 1,t+1 R t+2 p 2 + b t R t+2 π t+2 + h 1,t+1 R t+2 -h 2,t+2 . (24) 
The optimal behavior of the agent is given in the following.

Proposition 8. Let the agent maximizes [START_REF] Lockwood | Bequest motives and the annuity puzzle[END_REF] subject to ( 7), ( 22), [START_REF] Savage | The Foundations of Statistics[END_REF], and [START_REF] Sheshinski | The Economic Theory of Annuities[END_REF]. The optimal portfolio satisfies conditions [START_REF] Davidoff | Annuities and individual welfare[END_REF]. Moreover, the capitalized bequests are such that:

   R t+1 R t+2 h 0,t = R t+2 h 1,t+1 = h 2,t+2 if b t = 0, R t+1 R t+2 h 0,t < R t+2 h 1,t+1 = h 2,t+2 if a 0,t = 0. (25) 
Proof. See Appendix.

The introduction of a joy-of-giving altruistic motive modifies the optimal porfolio as regular bonds are demanded in order to be bequested. However, the remaining of the optimal portfolio is composed of flexible annuities for R t+1 < R t+1 and of illiquid annuities for R t+1 > R t+1 . With flexible annuities, the optimal tradeoff between consumption and bequest is the same as in The third extension considers a subjective evaluation of the survival probabilities. Many studies have indeed demonstrated the importance of probability distortion in risky choices, and notably when the risk at stake concerns health and longevity [START_REF] Brewer | Meta-analysis of the relationship between risk perception and health behavior: The example of vaccination[END_REF]. We consider an agent endowed with subjective survival probabilities, denoted p1 and p2 , which are such that p1 = p 1 and p2 = p 2 . His preferences are represented by the following subjective expected utility 7 :

u (c 0,t ) + p1 θu (c 1,t+1 ) + p2 θ 2 u (c 2,t+2 ) . ( 26 
)
The rest of the model is the same as in section 2.3, which implies that agent's beliefs differ from the insurers' survival probabilities estimation.To simplify, we therefore do not take into account the possibility for insurers to use this information and modify annuity's yields. The optimal behavior of the agent is given in the following.

Proposition 9. Let the agent maximizes ( 26) subject to ( 6), ( 7), [START_REF] Cannon | Annuity Markets[END_REF], and ( 9).

The optimal portfolio satisfies conditions [START_REF] Davidoff | Annuities and individual welfare[END_REF].

Proof. See Appendix.

Once again, our main results are robust. Introducing a subjective evaluation of longevity risk does not modifies the preference for illiquid annuity as long as their objective yield is sufficiently large.

Conclusion

In this paper, we showed that illiquid annuity is preferred to flexible one provided that the equilibrium is dynamically efficient. Moreover, the availability of illiquid annuity permits a welfare improvement in the long run. Nevertheless, they are offered in the steady-state only if all generations have purchased them in the past. Consequently, policy intervention can be justified even if the equilibrium is efficient.

This study can be extended in several directions. First a multi-period setting can be analyzed in order to investigate the issue of the optimal timing of annuity purchase [START_REF] Brugiavini | Uncertainty resolution and the timing of annuity purchases[END_REF] and discuss the opportunity represented by deferred annuities. Second, heterogeneous agents could be introduced in order to focus on adverse selection (Bommier et al., 2011) and redistribution issues [START_REF] Cremer | Collective annuities and redistribution[END_REF]. Finally, aggregate risk on mortality (Schulze and Post, 2010) as well as other aggregate risk could be introduced in order to discuss the risk sharing properties [START_REF] Gollier | Intergenerational risk-sharing and risk-taking of a pension fund[END_REF] of the illiquid annuities we considered.

where:

       c 1 = [f(k)-kf (k)-c0] p1 f (k)(1+n+p1) 1+n+p2 + (1 + n) -(1+n) 2 k p1 , c 2 = (1+n) 2 p1p2 kf (k) - [f(k)-kf (k)-c0]f (k)(1+n+p1)(1+n) p1p2(1+n+p2) . (42) 
Let us consider now an economy where only flexible annuities are proposed. The steady-state of such an economy solves:

                                     c 0 = f (k) -kf (k) -a 0 , c 1 = a 0 f (k) p1 -a 1 , c 2 = a 1 f (k) p2 , k = a0 1+n + p1a1 (1+n) 2 , 0 = u (c 0 ) -θf (k) u (c 1 ) , 0 = u (c 1 ) -θf (k) u (c 2 ) . (43) 
System (43) reduces to a system in (c 0 , k) that reads as:

   -u (c 0 ) + θf (k) u (c 1 ) = 0, -u (c 1 ) + θf (k) u (c 2 ) = 0, (44) 
where:

     c 1 = [f (k) -kf (k) -c 0 ] f (k)+(1+n) p1 -(1+n) 2 k p1 , c 2 = {(1 + n) k -[f (k) -kf (k) -c 0 ]} (1+n)f (k) p1p2 . ( 45 
)
The objective is thus to compare the steady-state capital that is the solution of (41) with the one that is solution of (44). To do so, we set up, for z ∈ [1, (1 + n + p 1 ) / (1 + n + p 2 )], a more general system that writes:

   -u (f (k) -kf (k) -x) + θ [f (k) z -(1 + n) (z -1)] u (c 1 ) = 0, -u (c 1 ) + θf (k) u (c 2 ) = 0, (46) 
where

             x = f (k) -kf (k) -c 0 , c 1 = x[f (k)z+(1+n)] p1 -(1+n) 2 k p1 , c 2 = [(1 + n) k -xz] (1+n)f (k) p1p2 . (47) 
We notice that for z = 1, system (46) reduces to system (44) while for z =

(1 + n + p 1 ) / (1 + n + p 2 ), system (46) reduces to system (41). To prove our claim, we hence aim at showing that:

dk * dz > 0, ( 48 
)
where k * is the capital stock that is the solution of (46). Let us rewrite the first equation in (46) as F (x, k; z) = 0 and the second as G (x, k; z) = 0. One has:

dk dz = - F z - G z G x F x F k - G k G x F x . ( 49 
)
Consider first the numerator of (49). Let σ (c) := -u (c) /cu (c). Simple computations give that the sign of F z -G z F x /G x is the same as the one of:

f (k) -(1 + n) f (k) z -(1 + n) (z -1) × 1 σ (c 1 ) f (k) z + (1 + n) x [f (k) z + (1 + n)] -(1 + n) 2 k + 1 σ (c 2 ) z (1 + n) k -xz + 1 c 0 σ (c 0 ) 1 σ (c 1 ) xf (k) x [f (k) z + (1 + n)] -(1 + n) 2 k + 1 c 0 σ (c 0 ) 1 σ (c 2 ) x (1 + n) k -xz + 1 σ (c 1 ) 1 σ (c 2 ) x (1 + n) k -xz (1 + n) x [f (k) z + (1 + n)] -(1 + n) 2 k , (50) 
which is positive as we supposed that f (k) > (1 + n). To determine the sign of the denominator, we use the assumption of the existence of a unique equilibrium.

System (46) can be written as a single dimension problem: F (φ (k; z) , k; z) = 0 where φ (.) is the implicit function obtained using G (x, k; z) = 0. The derivative of F (φ (k; z) , k; z) with respect to k is given by F k -G k F x /G x . As F (φ (0; z) , 0; z) > 0, we conclude that the derivative, computed at the equilibrium k * is negative. Using (49), we finally conclude that dk/dz > 0.

Step 2. We now compute the derivative of the intertemporal utility function with respect to capital, such as

u (c 0 ) dc 0 dk + θp 1 u (c 1 ) dc 1 dk + θ 2 p 1 p 2 u (c 2 ) dc 2 dk , (51) 
In steady-state of an economy where both flexible and illiquid annuities are proposed, we use (41) and (42) to obtain that the sign of (51) is the same as the one of: 

[f (k) -(1 + n)] k (1 + n) -[f (k) -2kf (k) -c 0 ] 1 + n + p 1 1 + n + p 2 . (52) 

  ages 1 and 2, all additional savings are indeed invested in flexible annuities. The lower yield of investment opportunities when the agent ages can explain the decrease in the growth of consumption. Introducing illiquid annuities in a life-cycle model allows better reproduction of the stylized facts of the individual's consumption during his life cycle (see, e.g., Gourinchas and Parker, 2002 and Fernández-Villaverde and Krueger, 2007) even though annuities are fairly priced 3 . It should be noted, moreover, that the MRS between periods 0

Proposition 4 .

 4 Let f (k * ) > 1 + n. The welfare at steady-state is larger if illiquid annuity contracts are available.
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 16 Figure 1. Spread in yields at steady state

This condition is the counterpart of a transversality condition that should be introduced in a more realistic model with a large number of periods of life where survival probabilities converge to 0 when age tends to infinity.

Alternatively, a concave consumption can be obtained if annuities are not available[START_REF] Davis | Uncertain lifetime, consumption, and dissaving in retirement[END_REF] or not fairly priced[START_REF] Hansen | Consumption over the life cycle: The role of annuities[END_REF].

[START_REF] Bommier | Uncertain lifetime and intertemporal choice: Risk aversion as a rationale for time discounting[END_REF] obtained the same kind of result with flexible annuities under the condition of non separability of the utility function.

Cass 1972, De La Croix and Michel 2002, page 83

Long-Term care can be though as an example of this even though insurance contracts are offered in some countries. See[START_REF] Brown | Insuring long-term care in the United States[END_REF].

Although different models of representation of preferences under uncertainty have been proposed, in case of two states of nature, the main models reach to one, namely the subjective model[START_REF] Savage | The Foundations of Statistics[END_REF].

for insightful comments. Financial support from the European Research Council (ERC Stg Grant 283953

Appendix

Proof of Proposition 1. We denote µ t as the Kuhn-Tucker multiplier associated with the non-negativity constraint: a 0,t ≥ 0, and λ t as the one associated with: b t ≥ 0. The first order conditions of the optimization problem can be written as:

while the complementary slackness conditions are: µ t a 0,t = 0 and λ t b t = 0. (28)

By rearranging equations in system (27), we obtain:

where R t+1 is defined in [START_REF] Cremer | Collective annuities and redistribution[END_REF].

Let us first notice that having both λ t > 0 and µ t > 0 is not possible as we can see, using the complementary slackness conditions (28) and the budget constraints ( 8) and [START_REF] Cass | On capital accumulation in the aggregate, neoclassical model of economic growth: a complete characterization[END_REF], that this would imply:

which contradicts the fact that optimal consumptions should be positive. As a consequence, we use (29) to state that:

which, using the complementary slackness conditions (28), allow us to conclude the proof.

Proof of Proposition 2. For R t+1 > R t+1 , we have seen in the proof of Proposition 1 that λ t = 0 and µ t > 0. Thus, the last two equations of system (27) can be rewritten as follows:

Thus, we have:

which, using that fact that R t+1 > R t+1 , allow us to write [START_REF] Davis | Uncertain lifetime, consumption, and dissaving in retirement[END_REF]. To obtain [START_REF] De La Croix | A Theory of Economic Growth[END_REF],

we us the fact that if u is homogenous of degree κ + 1, u is homogenous of degree κ, which implies that (33) can be rewritten as follows:

Proof of Proposition 3. An intertemporal equilibrium is a collection:

which satisfies the budget constraints ( 6), ( 8) and ( 9), the optimality conditions ( 14) and ( 27), the complementary slackness conditions (28), the zero-profit condition (4) and the equilibrium condition [START_REF] Direr | Flexible life annuities[END_REF]. At steady state, the equilibrium is the solution of the following system:

as well as ( 4) and [START_REF] Diamond | National debt in a neoclassical growth model[END_REF].

From Proposition 1, we know that the possible portfolio at steady-state are:

(1) a * 0 > 0 and b * > 0, (2) a * 0 = 0 and b * > 0, (3) a * 0 > 0 and b * > 0. Let us consider those three cases successively.

For a * 0 > 0 and b * > 0, the last three equations of (36) can be rewritten as:

which is satisfied for f (k) = 1 + n, i.e. when the capital is at the Golden Rule.

For a * 0 = 0 and b * > 0, the last three equations of (36) can be rewritten as:

which are satisfied only if f (k) ≥ 1+n. Using what has been shown just above, we conclude that if f (k) > 1 + n, one has a * 0 = 0. Finally, for a * 0 > 0 and b * = 0, the last three equations of (36) can be rewritten as:

Proof of Proposition 4. The proof proceeds in two steps. In step 1, we show that the capital stock is higher in an economy where flexible and illiquid annuities are proposed than in an economy where only flexible annuities are proposed. In step 2, we show that the utility increases with the capital stock.

Step 1. Let us consider first an economy where flexible and illiquid annuities are proposed. If f (k) > 1 + n, we can use the proof of Proposition 3 to state that the steady-state solves:

System (40) reduces to a system in (c 0 , k) that reads as:

Using the fact that c 2 , whose expression is given in (42), is positive we conclude that (52) is positive. Hence, an increase in capital increases the welfare of the agent in the steady-state.

Proof of Proposition 5. The objective is to prove that if there exists T such that b T -1 = 0 then b T +i = 0 for all i = 0, 1, 2, ... To prove it, we consider the yield of the investment in illiquid annuities made at time T . Replacing ( 4) and b T -1 = 0 in [START_REF] Cremer | Collective annuities and redistribution[END_REF], we obtain:

For b T +1 > 0, we obtain that R T +1 > R T +1 , which implies, using Proposition 1, that b T = 0.

Proof of Proposition 6. The proof is similar to the one of Proposition 1. We denote (µ t , λ t , γ t ) as the Kuhn-Tucker multipliers associated with the nonnegativity constraints: a 0,t ≥ 0, b t ≥ 0 and a 1,t ≥ 0. The first order conditions of the optimization problem can be written as:

while the complementary slackness conditions are:

By rearranging equations in system (54), we obtain:

where R t+1 is defined in [START_REF] Cremer | Collective annuities and redistribution[END_REF].

Let us consider the various configurations that are possible. As in the proof of Proposition 1, the case λ t > 0 and µ t > 0 is not optimal as it implies that the sign of c 1,t+1 is the opposite of the one of c 2,t+2 . Similarly, the case λ t > 0 and γ t+1 > 0 is neither optimal as it implies c 2,t+2 = 0. We now use equation (56) to establish that:

-for R t+1 > R t+1 , one has λ t < µ t + γ t+1 p 2 /π t+2 , which necessarily implies:

However, b t = 0 is not possible as the positivity of c 1,t+1 would thus imply a 0,t > 0 (and µ t = 0) while the positivity of c 2,t+2 would imply a 1,t+1 > 0 (and γ t+1 = 0). Thus, b t > 0. Moreover, µ t ≥ 0 and γ t+1 ≥ 0, with at least one of the two inequalities being strict.

-for R t+1 = R t+1 , one has λ t = µ t + γ t+1 p 2 /π t+2 , which necessarily implies:

-for R t+1 > R t+1 , one has λ t > µ t + γ t+1 p 2 /π t+2 , which necessarily implies:

λ t > 0 and µ t = γ t+1 = 0. Due to (55) we conclude that b t = 0 while the positivity of c 1,t+1 implies a 0,t > 0 and the positivity of c 2,t+2 implies a 1,t+1 > 0.

Proof of Proposition 7. Following the same derivations as those made in the proof of Proposition 6, we obtain:

which is the counterpart of (56). The reasonning made after (56) also applies here.

Proof of Proposition 8. The first order conditions of the agent's problem are given by ( 27), (28) and:

As a consequence (29) and (31) still hold. Moreover, by replacing the first and the third equations of ( 27) in (58), we obtain:

This allow us to conclude that:

Proof of Proposition 9. As in the proof of Proposition 1, the first order conditions of the optimization problem can be written as:

u (c 0,t ) -θR t+1 p1 p1 u (c 1,t+1 ) = µ t , u (c 0,t ) -θ p1 while the complementary slackness conditions are given by (28). By rearranging equations in system (60), we obtain:

where R t+1 is defined in [START_REF] Cremer | Collective annuities and redistribution[END_REF]. The rest of the proof is similar to the one of Proposition 1.