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1 Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratory of
Computational and Quantitative Biology UMR 7238, 75005 Paris, France
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Abstract1

Fat cells, called adipocytes, are designed to regulate energy homeostasis by storing2

energy in the form of lipids. Adipocyte size distribution is assumed to play a role in3

the development of obesity-related diseases. This population of cells that do not have4

a characteristic size, indeed a bimodal size distribution is observed in adipose tissue.5

We propose a model based on a partial differential equation to describe adipocyte6

size distribution. The model includes a description of the lipid fluxes and the cell7

size fluctuations and using a formulation of a stationary solution fast computation of8

bimodal distribution is achieved. We investigate the parameter identifiability and es-9

timate parameter values with CMA-ES algorithm. We first validate the procedure on10

synthetic data, then we estimate parameter values with experimental data of 32 rats.11

We discuss the estimated parameter values and their variability within the popula-12

tion, as well as the relation between estimated values and their biological significance.13

Finally, a sensitivity analysis is performed to specify the influence of parameters on14
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cell size distribution and explain the differences between the model and the mea-15

surements. The proposed framework enables the characterization of adipocyte size16

distribution with four parameters and can be easily adapted to measurements of cell17

size distribution in different health conditions.18

keywords: parameter estimation, adipocyte size distribution, parameter identifiability,19

partial differential equation20

1 Introduction21

Pathologies related to obesity are characterized by an important accretion of adipose22

tissue which is mainly composed of adipose cells, called adipocytes. The adipocytes23

are designed to regulate energy homeostasis by storing energy in form of lipids. Dur-24

ing an excess of energy, adipocytes compensate with two mechanisms: hypertrophy25

(increase in size) and hyperplasia (increase in number)[7]. Adipocyte size variations26

are very large with radii ranging from 10µm to more than 100µm, corresponding to27

3 orders of magnitude in volume. In addition, cell size distribution among a tissue is28

not unimodal but presents two peaks: one for small adipocytes (radius below 30µm)29

and one for large adipocytes (above 80µm) [20]. A bimodal distribution of cell sizes30

is striking. Indeed, most cells in the population are small adipocytes, which do not31

contribute significantly to the storing capacity. There is no scientific consensus on the32

functional importance of this bimodality. However, cell size has been associated with33

metabolic properties dysfunction that may be linked to obesity-related pathologies34

[31, 24, 20, 18] or to play a role in the development of those diseases [5].35

Few mathematical models have been proposed for adipocyte size dynamics in var-36

ious health conditions. In [13, 14, 15, 17], the authors consider partial differential37

equation models that describe adipocyte size distribution dynamics. They have as-38

sumed a size-dependent rate described by an imposed function where the associated39

parameters are difficult to relate to physiological processes. The adipocyte modeling40

in [19] is based on three compartments and has been developed to describe small,41

medium and large adipocytes. The cell size evolution depends on lipid fluxes that are42

related to protein concentration controlling lipotoxicity – a cellular dysfunction due43

to lipid accumulation in non-adipose tissue. All these models provide studies of the44

adipose tissue growth dynamic and its bimodality through cell hyperplasia and/or45

hypertrophy, but the mechanisms governing lipid fluxes involved in adipocyte hy-46

pertrophy have not been considered. Furthermore, model parameters lack biological47

meaning.48

A detailed model of cell hypertrophy based on lipid exchanges has been proposed49

in [27]. Adipocyte bimodal distributions have been explained based on mathemati-50
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cal analyses. Individual-based Monte Carlo techniques were performed to solve the51

model. However, this approach is computationnally costly so parameter estimation52

using biological measurements is very difficult. A similar simplified model, accounting53

only for lipolysis (deflation), compares well with distributions obtained from fasting54

rats [28].55

The paper is organized as follows. Based on [27, 28], we formulate the mathe-56

matical model in section 2. It is based on partial differential equations, to describe57

stationary adipocyte size distribution. The contribution of our work is to have a58

diffusion term in the partial differential equation describing the cell size fluctuations59

like in [14]. Through parameter estimation, we aim at comparing the distribution60

obtained with the model to cell size distribution measured in rats before any manip-61

ulation [28, 12]. To perform parameter estimation, we first conduct an identifiability62

analysis in order to select model parameters that can be uniquely estimated with the63

available data. Using these selected parameters, we carry out a study on synthetic64

data (generated with model equations). The model identifiability and the parameter65

estimation on synthetic data are presented in section 3. Once the parameter estima-66

tion problem is verified, in section 4 we perform parameter estimation using adipocyte67

size distributions measured in 32 healthy rats [28, 12]. The estimated parameters are68

presented and then commented through a sensitivity analysis. We conclude this paper69

with some discussions in section 5.70

2 Mathematical model for adipocyte size distribu-71

tions72

2.1 Model construction73

Based on Soula et al. [27] work, we introduce a new model for adipocyte size distri-
bution that we aim at fitting on experimental measurements. We first briefly recall
the main hypotheses of the model in [27]. To represent adipocyte size density, the
variation of the content of lipids ℓ and variation of radius r to adapt to lipid content
are described by, 

dℓ

dt
= T (r, ℓ, L(t)),

dr

dt
= R(r, ℓ),

(1)

(2)

where the term L(t) represents the extracellular amount of lipids at time t. These74

two equations refer to evolution with different characteristic times: the first equation75

is a rapid evolution of fatty acid content whereas the second is a slower variation of76

radius to adapt to cell lipid content.77
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We first assume a quasi steady state for equation (2) to describe a faster adaptation78

to lipid content. The relation between the lipid content ℓ and the radius r of a cell is79

then given by R(r, ℓ) = 0, leading to80

ℓ =
V (r)− Vem

Vℓ

, V (r) =
4

3
πr3, (3)

with Vem the volume of the cell with no lipid, Vℓ the conversion constant: the volume81

taken by 1 nmol of triglyceride, and the cell volume V (r) is assumed to be spherical.82

Second, similarly to [14], we introduce a constant diffusion term D to represent cell83

size fluctuations.84

With the above mentioned assumptions, we can re-write the main equation in85

[27], replacing ℓ by (3) and keeping only the radius variable. We then consider the86

cell size density f expressed as a function of time t ∈ R+ and radius r ∈ [rmin, rmax],87

and we introduce the following system:88 

∂tf(t, r) + ∂r(v(r, L(t))f(t, r))−D∂2
rf(t, r) = 0,

L(t) = λ−
∫ rmax

rmin

(V (r)− Vem)
4πr2

V 2
ℓ

f(t, r)dr,

v(rmin, L(t))f(t, rmin)−D∂rf(t, rmin) = 0,

v(rmax, L(t))f(t, rmax)−D∂rf(t, rmax) = 0,

(4)

(5)

(6)

(7)

where v is defined by89

v(r, L) =
Vℓ

4π

(
α

L

L+ κ

ρ3

ρ3 + r3
− (β + γr2)

r2
V (r)− Vem

V (r)− Vem + Vℓχ

)
. (8)

The total amount of lipids λ is assumed to be constant over time and the second90

term of the right-hand side of (5) describes the intracellular amount of lipids at91

time t contained within all cells. The transport function v describes the exchange92

of lipids within the population of cells [27]. The lipid exchanges are based on two93

biochemical processes: lipogenesis – cell store lipids – and lipolysis – release of lipids in94

the extracellular environment. Lipogenesis depends on a surface-limited rate α, and it95

increases with the extracellular amount of lipids L with a saturation effect depending96

on the value of κ. The parameter ρ is a cell size threshold above which lipogenesis97

rate slows down. This parameter prevents the cell radius from becoming too large,98

as lipogenesis rate slows down and lipolysis rate becomes the main mechanism for99

lipid exchanges. Lipolysis activity includes a basal rate β and a surface-limited rate100

γ. The term V (r)−Vem

V (r)−Vem+Vℓχ
= ℓ

ℓ+χ
is small when cells contain few lipids and becomes101

close to one for larger lipid content through parameter χ.102
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We assume that in the measurements at the time of the biopsy the adipose tissue103

is at equilibrium, thus we neglect the recruitment of new cells. In addition, it has104

been shown that the life time of a human adipocyte is around 10 years [2], so the cell105

death is not taken into account. It gives the boundary conditions (6)-(7). The total106

number of cells is then constant and we assume the density integral is 1 between rmin107

and rmax, which leads to108

∀t ≥ 0,

∫ rmax

rmin

f(t, r)dr = 1. (9)

Table 1 reports the details on model variables and parameters. The parameter109

values of Vem, Vl, β and γ are known from literature [27, 28] and will be fixed. We110

choose the values of rmin and rmax as the boundary values of the measured radii in111

the considered adipose tissue.112

2.2 Stationary solution113

In model (4)-(7), the number of adipocytes is fixed and the total amount of lipids114

is constant, thus we expect the size distribution to reach a steady state [23]. The115

mathematical study of the asymptotic behavior is not the purpose of this work.116

We denote by f∞ and L∞ a stationary density of cell size and the extracellular117

amount of lipids respectively. A stationary solution verifies ∂tf
∞(r) = 0. With the118

boundary conditions (6)-(7) and assuming D ̸= 0, we obtain the following system:119 
∂rf

∞(r) =
1

D
v(r, L∞)f∞(r),

L∞ = λ−
∫ rmax

rmin

(V (r)− Vem)
4πr2

V 2
ℓ

f∞(r)dr.

(10)

(11)

We note that assuming f∞(r) is known for all r ∈ [rmin, rmax], then L∞ is de-120

termined by the equation (11) and only depends on the unknown parameter λ. In121

parameter identifiability analysis and parameter estimation we assume that the cell122

size distribution is observed. So to simplify the dependency on parameters we con-123

sider L to be a parameter instead of λ. We thus replace L∞ by a parameter L, and124

it leads to the following simplified model,125 

(f∞)′(r) =
1

D
v(r)f∞(r),∫ rmax

rmin

f∞(r)dr = 1,

v(r) =
Vℓ

4π

(
α

L

L+ κ

ρ3

ρ3 + r3
− (β + γr2)

r2
V (r)− Vem

V (r)− Vem + Vℓχ

)
,

(12)

(13)

(14)
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Table 1: Description of model variables and parameters. Parameter units and
known values are summed up in the second column and a description of each variable
is given in the third column.

name value (unit) description
t - (h) time
r ∈ [7.5, 150] (µm) adipocyte radius [28, 12]

L(t) - (nmol) extracellular amount of lipids at time t
f(t, r) - cell density at time t with respect to radius r

Vem
4π

3
63 (µm3) volume of an empty adipocyte (zero lipid) [1]

Vℓ 1.091 106 (µm3.nmol−1) volume taken by 1 nmol of triglyceride [27]
α - (nmol.µm−2.h−1) surface-limited rate in lipogenesis
κ - (nmol) constant of the limiting term in lipogenesis
ρ - (µm) cell size threshold of the Hill function in lipogenesis
β 31.25 (nmol.h−1) basal lipolysis rate [28]
γ 0.27 (nmol.µm−2.h−1) surface-limited rate in lipolysis [28]
χ - (nmol) constant of the limiting term in lipolysis
D - (µm2.h−1) diffusion coefficient for size fluctuations
λ - (nmol) total amount of lipids

where the unknown parameters to be estimated are α, L, κ, ρ, χ and D.126

Given those parameters, we can compute a stationnary solution of model (12)-(14)127

and we have for r ∈ [rmin, rmax],128

f(r) =

exp

(∫ r

rmin

1

D
v(s)ds

)
∫ rmax

rmin

exp

(∫ r

rmin

1

D
v(s)ds

)
dr

. (15)

This solution can be computed numerically and when possible, the integrals are com-129

puted explicitly otherwise a trapezoid rule is used. Typically, in the computation, a130

radius step of 0.1 µm is considered and an interpolation is applied to compute f at131

any radius.132

2.3 The model can represent a bimodal distribution of cell133

size134

We first study the impact of the diffusion parameter that is the main change with135

respect to model in [27]. Figure 1 shows solutions computed numerically with the136
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equation (15) for a given set of parameters. The model is able to qualitatively re-137

produce a bimodal distribution of cell size as measured in rats. Upon investigation138

of equations (12)-(14), it is immediate that the number of extremal points of f , and139

their locations, will depend only on the parameters that appear in the velocity v (14).140

We can notice in equation (12) that the introduction of parameter D does not change141

the definition of lipogenesis and lipolysis (v is only multiplied by 1
D
). In addition, the142

diffusion process does not overtake the velocity process in cell size dynamics, other-143

wise flat curves would be obtained. However, variations in the value of the diffusion144

parameter impact the size distribution: increasing the diffusion reduces the difference145

between the height of the two peaks and the density value at the nadir (lowest point146

between the two peaks) increases with diffusion.147

In the model of Soula et al. [27], an individual-based Monte Carlo technique148

(20,000 cells) has been performed leading to a large computational time. It was then149

very hard to perform quantitative comparison with measurements. The proposed150

model enables a fast computation of the cell size distribution by computing directly151

a stationary solution with equation (15). It is now possible to perform quantitative152

comparison with measured size distribution and estimate parameters.153

Prior to this parameter estimation, we study which parameters are likely to be154

estimated with the available data through model parameter identifiability analysis155

and parameter estimation on synthetic data.156

3 Model identifiability and parameter estimation157

3.1 Parameter identifiability analysis158

We perform an identifiability analysis of the unknown parameters of the model: α,
L, κ, ρ, χ and D. We define a parameterized model M(θ) derived from equations
(12)-(14) and study its parameter identifiability which is an intrinsic property: from
[6], the model M is said to be globally identifiable in θ ∈ Θ if

∀θ̃ ∈ Θ,M(θ) = M(θ̃) ⇒ θ = θ̃.

The parametric structure of model (12)-(14) is complex in the sense that it includes159

non-linear functions in which some parameters are combined in a product. This might160

result in redundancies in the model – only a smaller set of unknown parameters can161

be estimated – or in a non-identifiable model [4].162

To study the parametric structure of the model, we first set the observed outputs,

x1 = f∞, x2 = r
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Figure 1: Computed stationary solutions from eq. 15 with three values for
diffusion parameter. The other parameters are fixed to values reported in Table
1 and L = 3nmol, α = 0.29nmol.µm−2.h−1, κ = 0.001nmol, ρ = 200µm, χ =
0.0035nmol.

and we introduce the following quantities to re-parameterize the model:163

θ1 =
αL

β(L+ κ)
, θ2 = ρ3, θ3 = Vℓχ and θ4 =

4πD

Vℓβ
. (16)

We obtain the system parameterized by θ = (θ1, θ2, θ3, θ4) the vector of unknown164

quantities (assumed to be strictly positive),165 
dx1

dr
=

1

θ4

(
θ1

1

1 +
x3
2

θ2

−
1 + γ

β
x2
2

x2
2

4
3
πx3

2 − Vem

4
3
πx3

2 − Vem + θ3

)
x1,

dx2

dr
= 1.

(17)

We recall that the values of Vem, β and γ are known (see Table 1).166

We investigate the identifiability of unknown parameters using the Structural167

identifiability Toolbox of Maple [32]. It is based on the Structural Identifiability168

ANalyser (SIAN) algorithm which combines differential algebra and Taylor series169

approaches [10, 11]. From an input ODE model, a polynomial equations system is170

generated and the associated Gröbner basis is computed to assess the identifiability.171
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This method ranks parameters in three categories: globally identifiable, locally but172

not globally identifiable and non-identifiable. A parameter θk is said to be locally173

identifiable if there is a finite set of possible values for θk given the observation. When174

a parameter is neither locally nor globally identifiable, it is called non-identifiable.175

Applied to the system (17), SIAN algorithm returns that all the quantities θk, k ∈
{1, . . . , 4} are globally identifiable. Going back to the model parameters in equa-
tions (12)-(14), the parameters Vℓ, β are known and the function ρ 7→ ρ3 is bijective
so assuming the cell size distribution is observed, the set of identifiable quantities is{

αL

L+ κ
, ρ, χ,D

}
.

We notice that we need at least the values of (L, κ), (L, α) or (α, κ) to uniquely176

estimate α, κ or L respectively. Only a combination of these values can be uniquely177

retrieved when a size distribution f(r) is given for all r ∈ [rmin, rmax].178

3.2 Parameter estimation procedure179

Thanks to the parameter identifiability analysis, we know which parameters or pa-180

rameter combinations we can expect to estimate from size distribution. We now need181

a procedure to estimate these parameters and we want to verify this procedure on a182

benchmark case: synthetic data.183

Minimization algorithm To define a procedure to estimate model parameters,184

we first introduce a cost function. We want to minimize this function to compare the185

model output and the measurements. Then, we choose an algorithm to minimize this186

function.187

Let θ be the parameter vector to be estimated. We denote by N the number of188

measured radii for the considered observation. Given the vector of measured radii,189

(ri)i=1,...,N , we estimate θ by minimizing the negative log-likelihood, as a cost function,190

defined as follows,191

L(θ) = −
N∑
i=1

log(f(ri, θ)) (18)

where f(ri, θ) is the value of a density f , solution of the model, computed at (mea-192

sured) radius ri with the parameter vector θ. This density provides a likelihood of193

finding a cell of size ri in the adipose tissue.194

To find the optimal parameter values, we use the Covariance Matrix Adaptation195

Estimation Strategy (CMA-ES) algorithm [8]. This optimization method has been196

widely used and has proved its effectiveness for mathematical model parameters esti-197

mation in different fields of application like medicine [9, 26] and ecology [30]. In this198
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algorithm, from initial parameters, new possible solutions are sampled with a mul-199

tivariate normal distribution. The covariance matrix depends on a step-size control200

introduced to enhance the exploration of parameter space. A weighted combination201

of the best candidates is then selected according to the value of the cost function202

(18) and it is updated with the covariance matrix. These steps are repeated until203

termination criteria are reached. At each generation, this method takes into account204

recombination, mutation and selection of the possible candidates as an evolution al-205

gorithm.206

Estimation of (θ1, ρ, θ3, θ4) is performed with CMA-ES using cell size distribution207

as observation (we replace θ2 = ρ3 by ρ). The vector of parameters is also scaled to208

have components of similar order of magnitude (scaling factors are [θ1 10
2, ρ 10−3, θ3 10

−4, θ4 10
2]).209

Finally, to test the impact of the initial guess on the algorithm results, we perform 100210

runs of CMA-ES with different initial parameters, we report the mean and standard211

deviation of these runs.212

In order to run the CMA-ES algorithm, we used cma Python package [33]. The213

fmin2 function of this package is used with default parameters and an initial standard214

deviation of 0.05 (in each coordinate). The files to run parameter estimation are avail-215

able on https://plmlab.math.cnrs.fr/audebert/adipocyte_size_modeling.216

Parameter estimation on synthetic data We first estimate parameters with217

data generated with the model (synthetic data). To generate such data, we compute218

the solution of the model for chosen parameters with equation (15). Then, from219

the obtained density, 10, 000 samples are drawn leading to a first synthetic data set.220

To mimic the true measurements we also consider a second type of synthetic data221

where on the 10, 000 samples only radii greater than 10µm are observed. With this222

procedure, we want to assess the impact of missing data on the parameter estimation.223

To quantify the precision of the parameter estimation we compute a relative error224

defined by E = |p−pe|/p, with pe the parameter estimated value and p the true value225

of the parameter (chosen to generate synthetic data).226

Two different parameter vectors are used to obtain synthetic data sets (synthetic227

data set 1 and synthetic data set 2 ). The second column of Table 2 sums up the228

chosen parameter values (true). The parameter estimation is performed for both229

synthetic data sets without and with missing observations (Table 2 columns 3 to 8).230

Columns 3 and 4 in Table 2 display the average and the standard deviation of the231

estimated parameter values over the 100 runs. We note that the differences between232

the 100 estimations can be neglected, showing that the initial guess has no impact on233

the estimation.234

In both synthetic data cases, when the estimation is performed with the complete235

data set, the estimated parameter values are similar to the true values with relative236
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errors smaller than 5% (Table 2 column 5).237

One can notice a difference between the two data sets when the estimation is238

performed with missing observations in the data. The last three columns of Table 2239

show that, depending on the considered data set, some information on parameters is240

lost when cells with radii larger than a threshold are only observed. In both cases,241

the cost function values only slightly increase compared with the complete data sets.242

This indicates that the model is still able to correctly represent the data sets with243

missing observations. In synthetic data set 1, the impact on the parameter estimation244

is relatively small and relative errors remain below 5%. In synthetic data set 2, we245

are able to correctly estimate the values of θ1, ρ and θ4 but the information about246

parameter θ3 seems lost, and the relative error increases to 65%.247

The number of observed cells is reduced in these data sets and not in the same248

way in each set. On synthetic data we know exactly the percentage of information249

that is missing. In synthetic data set 1 when we remove samples larger than 10µm,250

15% of the observation is missing, whereas in synthetic data set 2 we remove 28%251

of the initial distribution. This difference may explain the poor estimation of θ3 in252

synthetic data set 2 with missing observations.253

In the case of synthetic data sets, variations along θ3 mainly affect the first mode254

of cell size distribution: increasing θ3 strongly reduces the density of small cells and255

slightly increases the density of large adipocytes. Therefore, with a data set of samples256

with radii larger than 10µm, the missing information on the first mode has an impact257

on the estimation of θ3. Moreover, this parameter is related to parameter χ that258

drives the lipolysis mechanism in the model (size reduction). These results show that259

lipolysis is important for driving small cell distribution.260

From estimated parameter values to parameter intervals The identifiability261

analysis ensures that the minimization problem should have only one solution and262

the estimation procedure computes this solution. Here, we want to compute inter-263

vals of parameter values for which the cost function remains close to its minimum.264

Our approach follows the strategy of ABC method where parameters are sampled265

from a prior distribution and are then selected according to a criterion based on the266

evaluation of the model output [29].267

To sample a parameter θi, a new parameter θ̄i is first generated uniformly in268

[0.8θ̂i, 1.2θ̂i] where θ̂i is the estimated parameter value obtained with the CMA-ES269

algorithm. Then, the cost function is computed with parameter θ̄i while the other270

parameters are fixed at their estimated values. The parameter is selected if the cost271

function is below 0.1% of L(θ̂). This threshold was set to investigate the parameter272

space with small changes on cell size distribution. Note that the parameter sampling273

is performed one at a time. This strategy is repeated until 1,000 replicates are selected274
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Table 2: Results of parameter estimation procedure performed on synthetic
data sets without and with missing data. The first three columns display the
parameter names, orders and true values for both synthetic data sets. Columns 3
and 4 present the estimated parameters for complete data sets (10,000 samples), it
shows the average over 100 estimations with different initial guesses and standard
deviations. The fifth column sums up the difference between true parameter and
its estimation with a relative error in percentage. The three last columns present
the same values for the same data sets with missing observations: only radii over
10µm are observed (samples > 10µm). All estimations are performed with CMA-ES
algorithm of fmin2 function from cma Python package. For each case, we present a
normalized cost function defined by : LN(θ) =

1
N
L(θ), with N the total number of

observed radii. We choose the default parameters and an initial standard deviation
of 0.05 (in each coordinate). The parameters are scaled to have similar sensitivity
([θ1 .10

2, ρ .10−3, θ3 .10
−4, θ4 .10

2]).

synthetic data set 1 10, 000 samples - LN(θ) = 4.20 samples > 10µm - LN(θ) = 4.26
parameter order true esti. value std rel. err. esti. value std rel. err.

θ1 10−3 9.60 9.61 1 10−8 0.2% 9.62 2 10−8 0.3%
ρ 102 1.50 1.50 1 10−8 0.2% 1.49 2 10−8 0.8%
θ3 103 2.18 2.17 5 10−8 0.6% 2.09 2 10−7 4.2%
θ4 10−3 7.37 7.20 2 10−7 2.3% 7.35 4 10−7 0.3%

synthetic data set 2 10, 000 samples - LN(θ) = 4.18 samples > 10µm - LN(θ) = 4.54
parameter order true esti. value std rel. err. esti. value std rel. err.

θ1 10−3 9.92 9.92 1 10−8 0.04% 9.91 1 10−7 0.1%
ρ 102 2.00 2.00 1 10−8 0.2% 2.01 5 10−8 0.6%
θ3 102 3.27 3.12 2 10−7 4.8% 5.39 4 10−6 65%
θ4 10−2 1.11 1.12 2 10−8 1.7% 1.12 1 10−7 1.2%
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Table 3: Range of selected values for the parameters. The first three columns
show the parameter names, orders and true values. For each data set, the estimated
parameter value (column ”esti. value”) with CMA-ES method is subject to a maxi-
mum of 20% variation (column “esti. ±20%”). From this variation, a range of values
is selected for each parameter (column “selec. values”) allowing a maximum error
rate of 0.1% on the value of the estimated cost function L. For each parameter 1, 000
samples are generated

synthetic data set 1 10, 000 samples samples > 10µm
parameter order true esti. value esti. ±20% select. values esti. value esti. ±20% select. values

θ1 10−3 9.60 9.61 7.69 - 11.53 9.58 - 9.63 9.62 7.70 - 11.54 9.59 - 9.65
ρ 102 1.50 1.50 1.20 - 1.80 1.47 - 1.53 1.49 1.19 - 1.79 1.46 - 1.52
θ3 103 2.18 2.17 1.74 - 2.60 2.05 - 2.29 2.09 1.67 - 2.51 1.91 - 2.29
θ4 10−3 7.37 7.20 5.76 - 8.64 6.54 - 8.02 7.35 5.88 - 8.82 6.58 - 8.32

synthetic data set 2 10, 000 samples samples > 10µm
parameter order true esti. value esti. ±20% select. values esti. value esti. ±20% select. values

θ1 10−3 9.92 9.92 7.94 - 11.90 9.90 - 9.95 9.91 7.92 - 11.89 9.86 - 9.95
ρ 102 2.00 2.00 1.60 - 2.40 1.97 - 2.03 2.01 1.61 - 2.41 1.99 - 2.05
θ3 103 3.27 3.12 2.49 - 3.74 2.69 - 3.58 5.39 4.31 - 6.47 4.32 - 6.47
θ4 10−2 1.11 1.12 0.90 - 1.34 1.05 - 1.21 1.12 0.90 - 1.34 0.98 - 1.28

per parameter.275

Table 3 shows for each parameter the considered range of values and the selected276

intervals for each synthetic data set. For synthetic data sets without missing obser-277

vations, the range of values selected by the procedure is reduced in comparison with278

the initial one and contains the true parameter. This analysis gives an information279

on the range of accepted values for each parameter. We note that, in synthetic data280

set 1, the model output seems less sensitive to parameter θ4 that has the largest range281

of selected values. In synthetic data set 2 the largest range of selected values is for282

parameter θ3.283

In data sets with missing observations, the selected ranges are not impacted for284

synthetic data set 1 (small difference for θ3). In synthetic data set 2, the loss of285

information about small cells leads to the selection of the total initial interval for286

parameter θ3 (±20% of the estimated value) and an important increase of the se-287

lected range for θ4 (almost twice the length) compared to the case without missing288

observations. As observed in section 2.3, parameter D (hence θ4) controls the rela-289

tive heights of both modes in the cell size distribution. This can explains that data290

sets with missing observations on small sizes lead to higher uncertainty on θ4. These291

results are in agreement with the computed relative errors of the previous paragraph292

(Table 2).293

13



4 Application to adipocyte size distribution mea-294

sured in rats295

4.1 Measurements of adipocyte size distribution296

The measured cell size distributions used to perform parameter estimation come from297

previous experiments [28] and data from [12], but this part of the experiment has298

not been published. Here, only adipocyte size distributions of animals in normal299

physiological conditions are considered. We assume that these distributions represent300

a stable state for adipose tissue, corresponding to a steady state of the mathematical301

system.302

We use two data sets of size distribution in retroperitoneal adipose tissue for303

a total of 32 male Wistar rats (20 rats METAJ, aged between 20 and 24 months,304

Charles River, L’Arbresle, France and, 12 rats EMPA, 12-week-old, Le Genest-Saint-305

Isle, France). Cell size distributions were measured with Beckman Coulter Multisizer306

IV (Beckman Coulter, Villepinte, France), which resulted in bimodal distributions [20,307

16]. Due to limitations in measurement techniques, only cell radii larger than 7.5µm308

for the first experiment and 10µm in the second were measured. The measurement309

of large diameters is not limited by the measurement techniques. Each animal cell310

size distribution is composed of a minimum of 6,000 cell radii.311

4.2 Parameter estimation with measured data312

The estimation procedure validated on synthetic data is now applied to measured313

size distributions. Parameter estimation is performed with CMA-ES algorithm with314

radius distributions measured for 32 rats in the same experimental conditions. Fig-315

ure 2 shows four examples of model-data fitting (the model fitting results of the 32316

rats are available on https://plmlab.math.cnrs.fr/audebert/adipocyte_size_317

modeling). These results show the ability of the model to reproduce different types318

of cell size distribution. The height of each peak is not always correctly captured.319

This could be related to the loss of information due to missing observation for small320

cells in experimental data. In addition, the nadir is always underestimated by the321

model. We hypothesize that we are missing a process in the model to properly cap-322

ture this point. However, the overall size distribution obtained with the model is in323

good agreement with the measured one. This result is underlined by the obtained324

cost function values, which are of the same order of magnitude as those obtained in325

the synthetic data cases (Table 4).326

Table 5 shows the mean, standard deviation and relative standard deviation (RSD)327

of the estimated parameter values obtained in the 32 rats. The RSD are relatively328

small for θ1 and ρ, showing that the size distribution of adipocytes for rats in the329
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same experimental conditions can be characterized with parameters in the same value330

ranges. The variability in the population is larger for parameter θ3 and θ4 (larger331

RSD). However, the previous analysis on synthetic data showed that less confidence332

in the estimation is expected for these parameters, especially θ3.333

(a) Animal A1. (b) Animal B1.

(c) Animal C1. (d) Animal C5.

Figure 2: Comparison model-data. Four examples (over 32) of adipocyte radius
distributions (in µm) as histograms in rat in normal physiological conditions and
model output computed (dash lines) with estimated parameters (see section 4.1).
The parameter estimations are performed with CMA-ES algorithm of cma Python
package by minimizing the function L eq. 18.

For each animal, accepted parameter ranges are also computed following the pro-334

cedure described in section 3.2 (Table 4). Figure 3 displays for each parameter the335

estimated value for each animal with the range of selected values (dots and bars).336

As expected, the parameter ranges are larger for parameters θ3 and θ4 compared to337

parameters θ1 and ρ. Figure 3 also shows the mean (dash red line) and the standard338
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deviation (gray area) over the rat population for each estimated parameter. It en-339

ables to compare the amplitude of the range of accepted values for each parameter340

for each animal with the variability within the population. We can see that for each341

parameter the range of accepted values is always smaller than the standard deviation342

in the population. It shows that the largest standard deviation within the population343

obtained for θ3 and θ4 (Table 5) should not be attributed to less confidence in the344

estimations.345

Figure 3: Group variability and range of selected values. Upper left and right
figures display the results for parameters θ1 and ρ. Lower left and right figures show
the results for parameters θ3 and θ4. For each estimated parameter the average over
the population is shown with dash red line and the gray area is one standard deviation
around the average computed over the population (values are reported in Table 5).
For each parameter, the estimated value for each animal is displayed with dots and
the bar represents the range of selected values. These ranges consist in values of the
parameter (assuming the 3 others are fixed) for which the maximal cost function is
0.1% of the obtained cost function with the estimation (see section 3.2). All numerical
values are reported in Table 4.

The range of selected values of parameter θ3 in rats population is between 1070 and346

4429µm3. From this range of values, we can compute a range of radii for which the347

lipolysis term becomes mainly a surface based mechanism (i.e. (V (r)−Vem)/(V (r)−348
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Vem + θ3) > 0.95). We find radii in the range 17.2− 27.3µm.349

Similarly, for lipogenesis, the parameter θ1 is estimated within the rats population350

between 0.0092 and 0.010µm−2. We remind that this quantity is a combination of351

parameters : θ1 = αL
β(L+κ)

and parameter β is known [28]. We then obtain an esti-352

mation of αL
(L+κ)

between 0.29 and 0.31nmol.µm−2.h−1. In the case of high available353

lipids, L is large and we can assume L
L+κ

∼ 1. Under this assumption, the parameter354

α is estimated between 0.29 and 0.31nmol.µm−2.h−1. An alternative case is for low355

L, then we can assume L
L+κ

∼ L and the estimated values of θ1 provide an estimation356

for αL.357

The cell size threshold ρ of the Hill function in lipogenesis term is estimated in358

the range 115− 204µm. Above this threshold, the term ρ3/(ρ3 + r3) is smaller than359

0.5 and limits the growth of the cell.360

4.3 Sensitivity analysis361

In order to investigate the differences between model output and measured cell size362

distribution, a sensitivity analysis is performed. Sensitivity analysis is a local analysis363

and quantifies how sensitive the model output is to parameter changes. We choose to364

apply the Sobol’ method [25]. The sensitivity indices are based on the decomposition365

of the output variance at each cell size point.366

The first order index measures the singular effect of a parameter on the model367

output. It represents the contribution part of the parameter alone in the variability of368

model output. A high value of this index indicates a high contribution of the param-369

eter, which means that the model output is highly sensitive to this parameter. The370

total order index enables to include the effects depending on parameter interactions371

(higher order indices).372

The model output is the cell size distribution f computed with equation (15) for373

radii from 7.5µm to 140µm. To study the influence of the estimated parameters, each374

parameter θi is uniformly distributed in a range of ±1% of estimated mean over the375

population of rats (Table 5). The change of ±1% in parameters values is chosen such376

that the adipocyte size distributions computed with these parameters are bimodal.377

Then, Saltelli algorithm is performed to explore the parameter space leading to the378

generation of n(2d+2) parameter samples with a Monte-Carlo approach [22, 25]. We379

choose n = 2048 and d = 4 the number of parameters. The sensitivity analysis is380

performed using the SALib Python Library [25, 22, 3, 21].381

Figure 4(a) shows cell size distributions ranges computed with parameters from382

the sampling design. With these small perturbations, a large variability is found383

between the cell size distributions around the two modes. The first mode of the384

adipocyte size density is represented by cells with radii from 7.5 to 10µm. Regarding385
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large adipocytes, the higher densities present a high variability and correspond to386

adipocyte size values from 50 to 120µm. These results illustrate the heterogeneity of387

cell sizes that can be obtained with the model with small changes in parameters.388

Then, Sobol’ indices are computed to determine which parameters are most influ-389

ential on the cell size dynamic. The first-order indices are displayed for several radii390

and each parameter in Figure 4(b). The results indicate that parameter θ1 explains391

the most the variations of cell sizes with a first-order sensitivity index between 0.6392

and 1 for all radii. Interestingly, for the cells with radii around 40µm, the index of393

θ1 decreases and we notice that ρ index increases (index equals 0.36). It shows that394

parameter ρ around this point explains the variability of the model output up to395

36%. The impacts of θ3 and θ4 are almost negligible on cells size distribution. From396

r = 90µm, the results show that the influence of θ1 decreases whereas ρ becomes397

more influential and explains up to 18% of the output variability. The total-order398

sensitivity indices are also computed (not shown) and are similar to first-order indices,399

revealing that parameter interactions have a negligible influence on the adipocyte size400

distributions.401

The sensitivity analysis suggests that the cell size dynamics in rats is mainly driven402

by the parameters depending on lipogenesis, and especially by θ1 which represents403

the combination of the unknown parameters (α, κ, L).404

Parameters θ3 and θ4, associated with lipolysis (through χ) and diffusion (D)405

respectively, have a negligible impact on the cell size dynamic along all cell sizes.406

This result confirms the difficulty to identify these parameters in practice and are407

in agreement with the largest ranges of selected parameter values. In addition, this408

study highlights the fact that the nadir is difficult to capture since we observe an409

opposite change in the parameter sensitivity around this radius. With this study we410

are able to explain the results of parameter estimation on the measured data.411

5 Discussion412

We presented a mathematical model to describe adipocytes cell size distribution,413

based on a partial differential equation and including lipid exchanges. With the414

formulation of a stationary solution, we were able to solve numerically and efficiently415

this model. Prior to the estimation of parameter with measurements, we analyzed416

which parameter can be identifiable and how reliable are the estimations.417

The identifiability of unknown parameters was studied with a re-parameterized418

form of the model. We showed that only four quantities can be uniquely identified419

and that three of our parameters of interest are related. These three parameters420

cannot be identified separately with an observation of the cell size distribution only.421

However, we can identify the threshold radius ρ involved in lipogenesis, the lipolysis422
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(a) Cell size distributions

(b) Estimation of first-order Sobol’ indices

Figure 4: (a) A sample of cell size distributions. The parameter sampling design is
constructed using Saltelli algorithm where each parameter is uniformly distributed in
a range of values corresponding to ±1% of the mean of its estimated value in rats
(Table 5). A number of 20, 480 samples giving bimodal distributions are generated
to estimate the Sobol’ indices. (b) Estimation of first-order Sobol’ indices for θ1, ρ,
θ3 and θ4 using a Monte-Carlo based approach [25, 22, 3, 21].

threshold χ as well as the diffusion coefficient D that describes cell size fluctuations.423

The model calibration on synthetic data sets showed, in practice, an accurate424

estimation of the parameters. When we considered data sets with missing observations425

(similar to the measurements), we found that three over the four quantities can be426

correctly estimated.427

The model parameters were estimated on 32 adipocyte size distributions measured428

in rats. With these estimated parameters, the overall distribution of cell size was429
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captured. However, the nadir part of the distribution as well as the height of the430

modes were not perfectly reproduced. It is possible that the model is missing some431

aspect of the adipocyte size dynamics that would help to better capture the nadir.432

This is supported by the sensitivity analysis, that showed that the nadir part was not433

sensitive specifically to one of the four considered parameters. Therefore, it makes434

this part of the distribution difficult to fit. In addition, in the presented model, the435

diffusion parameter D via θ4 affects linearly both lipogenesis and lipolysis. It would436

be interesting to change this modeling assumption with a more complex diffusion437

process, impacting differently lipogenesis and lipolysis. For instance, considering a438

size dependent diffusion coefficient could improve the agreement between the model439

outputs and the observations.440

We also think that our assumption regarding the normalization of the cell size441

distribution (it integrates to 1 between rmin and rmax) affects the fits (especially442

the height of the 2 modes). However, we have no background knowledge about the443

total number of adipocytes in the distribution. In addition, we know that the data444

collection does not include cells with a radius below a certain threshold. In [13], a445

formulation has been proposed to approximate the total cell number in a fat pad446

but to do this estimation, we need to have the fat pad mass which is not the case447

in our experimental data. An other way to solve this issue would be to introduce448

a parameter that quantifies the total number of cells. However with an additional449

parameter, we will lose parameter identifiability. Then, we might need to fix other450

unknown quantities, so this solution only shifts the problem.451

Nevertheless, we have estimated parameter values for 32 rats. We found a larger452

variability between rats in the estimated values of θ3 and θ4 (Figure 3). However,453

the sensitivity analysis showed that the model is less sensitive to these parameters454

(Figure 4). For θ1 and ρ, the estimated values were more robust within the population455

leading us to believe that θ1, ρ are less individual-specific parameters. However they456

could change if the estimation is performed with another species. This result sug-457

gests lipolysis (driven by χ) is more an individual-dependent process than lipogenesis458

(driven by θ1 and ρ) that is more constant within the population.459

Recruitment of new cells via adipogenesis or cell death were not included in460

our model. Since we were looking at the distribution of size at one specific time,461

these mechanisms can be neglected. However, if one wants to represent longitudinal462

adipocyte size distributions especially in case of diet changes, these processes should463

be considered. This will have an impact on the cell size distribution, especially for464

small cells, as suggested in [28]. Moreover, it is known that past diets affect the465

adipocyte size regulation and may be irreversible [13, 27]. Indeed, past diets could466

lead to a larger number of cells in the tissue. However, in the presented model, the467

number of cells is not explicitly considered. This assumption should be modified to468

take into account longitudinal size distributions and to be able to compare animals469
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with different diets. In past works [13, 14, 15, 17], the authors have considered partial470

differential equation models that take into account a recruitment rate of new cells.471

Our model could be extended with this extra term for adipogenesis modeling.472

We believe that the presented framework can be adapted to estimate model pa-473

rameters with adipocyte size distribution in other species than rats and in different474

health conditions. Our current data set is not rich enough to enable us to study the475

relation between model parameters and animal health conditions. With an adequate476

data set, the presented framework may enable to establish links between the mathe-477

matical model parameters and health conditions based on adipocyte size distribution478

observations. The final purpose is to be able to characterize and potentially classify479

the different obesity-related pathologies.480
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Table 4: Parameter estimation results on measured adipocyte radius dis-
tribution in 32 rats. First column is the animal identification. Estimation is
performed with CMA-ES algorithm of fmin2 function from cma Python package by
minimizing the cost function L(θ) (18). The second to fourth columns show each
parameter estimated value for each rat averaged over 100 runs with different initial
guesses and the standard deviations are in brackets. For each estimated parameter,
considering a maximum change of 20% of its estimated value, 1, 000 samples are se-
lected with a maximal error rate of 0.1% of the cost function value. The range of
selected values of each parameter is given in the next four columns. These ranges
consist in values of the parameter (assuming the other are fixed) for which the max-
imal cost function is 0.1% of the obtained cost function with the estimation. One
can note that animals B3 and B9 have a value of θ3 that is estimated to be zero
(10−12/10−13). Indeed, these animals show particular cell size distributions with a
very large number of small cells which can be due to a measurement artifact. The
last column provides the cost function values normalized by the number of observed
radii N , LN(θ) =

1
N
L(θ), that is associated with each parameter estimation.

estimated values selected ranges normalized cost function values
animal θ1 10

−3 (std 10−11) ρ 102 (std 10−6) θ3 10
3 (std 10−4) θ4 10

−3 (std 10−10) θ1 10
−3 ρ 102 θ3 10

3 θ4 10
−3 LN(θ)

C1 9.52 (3.12) 1.60 (2.94) 1.89 (2.31) 11.8 (7.95) 9.49 - 9.56 1.56 - 1.64 1.59 - 2.21 10.5 - 13.5 4.44
C2 9.19 (1.05) 1.85 (2.16) 3.92 (1.07) 7.31 (3.43) 9.17 - 9.21 1.79 - 1.90 3.70 - 4.16 6.67 - 8.10 4.26
C3 9.23 (1.33) 1.84 (2.54) 3.40 (1.50) 8.10 (4.82) 9.21 - 9.26 1.79 - 1.89 3.17 - 3.65 7.40 - 8.99 4.29
C4 9.63 (2.27) 1.19 (1.63) 1.92 (1.52) 10.8 (5.75) 9.59 - 9.68 1.15 - 1.22 1.70 - 2.16 9.88 - 11.9 4.02
C5 9.43 (1.75) 1.71 (1.99) 3.08 (1.34) 6.43 (3.25) 9.41 - 9.45 1.68 - 1.74 2.90 - 3.27 5.75 - 7.31 4.36
C6 9.34 (1.41) 1.86 (1.92) 4.04 (1.13) 4.39 (2.33) 9.32 - 9.35 1.83 - 1.89 3.89 - 4.19 3.88 - 5.08 4.40
C7 9.26 (1.02) 2.01 (1.89) 4.26 (0.91) 4.26 (2.02) 9.25 - 9.27 1.98 - 2.04 4.12 - 4.42 3.80 - 4.86 4.41
C8 9.53 (2.15) 1.47 (1.86) 3.22 (1.36) 6.09 (3.29) 9.50 - 9.55 1.45 - 1.50 3.04 - 3.41 5.42 - 7.01 4.27
C9 9.42 (1.9) 1.76 (2.25) 2.87 (1.49) 7.24 (3.65) 9.39 - 9.44 1.73 - 1.80 2.68 - 3.08 6.52 - 8.20 4.40
C10 9.37 (1.81) 1.86 (2.19) 3.95 (1.35) 3.97 (2.25) 9.36 - 9.39 1.83 - 1.88 3.81 - 4.10 3.50 - 4.58 4.38
C11 9.34 (1.69) 1.76 (2.46) 2.51 (1.81) 8.90 (5.35) 9.31 - 9.36 1.71 - 1.80 2.30 - 2.73 8.19 - 9.76 4.26
C12 9.27 (0.95) 2.00 (1.80) 4.00 (0.83) 4.37 (1.78) 9.26 - 9.29 1.96 - 2.03 3.87 - 4.14 3.98 - 4.89 4.35
A1 9.73 (1.5) 1.48 (1.04) 2.14 (0.60) 6.06 (1.77) 9.71 - 9.74 1.46 - 1.50 2.05 - 2.23 5.55 - 6.67 4.17
A2 9.93 (2.23) 1.27 (1.12) 1.75 (0.74) 7.65 (2.87) 9.90 - 9.96 1.25 - 1.29 1.65 - 1.85 6.98 - 8.50 4.16
A3 10.1 (2.76) 1.17 (1.01) 2.02 (0.79) 6.01 (2.48) 10.1 - 10.1 1.15 - 1.18 1.92 - 2.13 5.35 - 6.86 4.16
A4 9.94 (2.01) 1.27 (1.03) 1.79 (0.60) 6.74 (2.17) 9.92 - 9.97 1.25 - 1.29 1.70 - 1.88 6.18 - 7.44 4.11
A5 9.93 (1.91) 1.30 (1.05) 1.68 (0.63) 7.62 (2.58) 9.90 - 9.95 1.28 - 1.32 1.59 - 1.79 6.98 - 8.42 4.15
A6 9.68 (1.44) 1.43 (1.15) 1.85 (0.62) 9.11 (2.70) 9.65 - 9.71 1.40 - 1.46 1.73 - 1.98 8.41 - 9.97 4.18
A7 9.70 (1.81) 1.50 (1.38) 1.93 (0.75) 8.72 (3.22) 9.67 - 9.72 1.47 - 1.53 1.81 - 2.07 7.92 - 9.68 4.30
A8 9.55 (0.98) 1.72 (1.07) 2.23 (0.49) 5.53 (1.43) 9.54 - 9.57 1.69 - 1.74 2.16 - 2.30 5.20 - 5.94 4.00
A9 9.55 (1.54) 1.65 (1.66) 1.83 (0.78) 9.70 (3.63) 9.53 - 9.58 1.62 - 1.69 1.71 - 1.97 8.98 - 10.1 4.26
A10 9.70 (1.71) 1.54 (1.35) 1.3 (0.77) 11.5 (4.09) 9.67 - 9.74 1.51 - 1.58 1.17 - 1.44 10.5 - 12.6 4.28
B1 9.83 (2.16) 1.22 (1.36) 1.24 (0.94) 13.8 (6.65) 9.78 - 9.88 1.19 - 1.25 1.09 - 1.40 12.7 - 15.2 4.14
B2 10.0 (2.31) 1.22 (1.06) 1.67 (0.70) 8.42 (2.80) 9.97 - 10.0 1.20 - 1.24 1.56 - 1.79 7.61 - 9.45 4.19
B3 10.3 (1.42) 1.20 (0.74) 9.24 10−16 (1.52 10−8) 10.1 (9.13) 10.3 - 10.3 1.18 - 1.22 0.76 - 1.09 10−15 9.83 - 10.5 2.79
B4 9.44 (1.04) 1.84 (1.43) 1.85 (0.62) 9.14 (2.53) 9.41 - 9.46 1.80 - 1.88 1.74 - 1.97 8.60 - 9.81 4.14
B5 9.61 (1.16) 1.62 (1.06) 1.97 (0.61) 7.54 (2.35) 9.59 - 9.63 1.59 - 1.65 1.87 - 2.07 7.02 - 8.19 4.18
B6 9.26 (2.11) 1.59 (2.15) 1.34 (0.87) 13.7 (6.14) 9.22 - 9.31 1.52 - 1.67 1.21 - 1.49 13.0 - 14.5 3.70
B7 9.44 (0.93) 1.77 (1.2) 2.22 (0.55) 7.76 (2.44) 9.42 - 9.46 1.73 - 1.81 2.11 - 2.33 7.27 - 8.34 4.09
B8 9.73 (1.69) 1.57 (1.22) 1.28 (0.73) 9.07 (3.23) 9.71 - 9.76 1.54 - 1.59 1.19 - 1.37 8.51 - 9.72 4.08
B9 10 (1.17 105) 1.43 (1.25 105) 1.74 10−6 (17.4) 11.5 (8.22 104) 9.97 - 10.0 1.40 - 1.45 1.43 - 2.05 10−6 11.1 - 11.9 2.97
B10 9.38 (1.52) 1.67 (1.98) 2.39 (0.81) 9.17 (3.68) 9.36 - 9.41 1.63 - 1.72 2.25 - 2.53 8.55 - 9.93 4.13
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Table 5: Parameter estimation with adipocyte size distributions measured
in rats. The first column is the parameter names. Over 32 estimations with the
different animal cell size distributions, the mean is presented in the second column,
the standard deviation in the third column and the fourth column is the relative
standard deviation i.e the ratio of standard deviation over mean. The parameters
are estimated with CMA-ES algorithm of fmin2 function from cma Python package
(with 100 initial guesses).

parameters mean std RSD
θ1 9.6 10−3 2.8 10−4 0.03
ρ 1.57 102 0.25 102 0.16
θ3 2.24 103 1.07 103 0.47
θ4 8.21 10−3 2.58 10−3 0.31
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