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Asymptotic Ultimate Regime of Homogeneous Rayleigh-Bénard Convection on Logarithmic Lattices

We investigate how the heat flux Nu scales with the imposed temperature gradient Ra in Homogeneous Rayleigh-Bénard convection using 1, 2 and 3D simulations on logarithmic lattices. Logarithmic lattices are a new spectral decimation framework which enables us to span an unprecedented range of parameters (Ra, Re, Pr) and test existing theories using little computational power. We first show that known diverging solutions can be suppressed with a large-scale friction. In the turbulent regime, for Pr ≈ 1, the heat flux becomes independent of viscous processes ("asymptotic ultimate regime", Nu ∼ Ra 1/2 with no logarithmic correction). We recover scalings coherent with the theory developed by Grossmann & Lohse, for all situations where the large-scale frictions keep a constant magnitude with respect to viscous and diffusive dissipation. We also identify another turbulent friction dominated regime at Pr 1, where deviations from GL prediction are observed. These two friction dominated regimes may be relevant in some geophysical or astrophysical situations, where large scale friction arises due to rotation, stratification or magnetic field.

Introduction

Convection is a dynamical process that governs heat transport and mixing in a variety of systems ranging from planetary and astrophysical flows to industrial devices. In that respect, a crucial question is how the heat flux in the system is connected with the temperature gradient. Near equilibrium, where both quantities are small, Fourier laws apply, and the heat flux is simply proportional to the temperature gradient. For larger values, the system enters a non-linear then turbulent regime, where thermal energy in converted into mechanical energy, and the relation becomes nonlinear. The deviations from linearity are quantified by the relation between the Nusselt number, Nu, the ratio between the heat flux and its laminar value, and the Rayleigh number Ra, the non-dimensional temperature gradient.

In fluid mechanics, the paradigmatic system describing convection is a fluid enclosed in a volume, in which thermal energy is injected at the bottom via imposed heat flux or temperature gradient. Its dynamics is described by the Rayleigh-Bénard (RB) equations.

Despite decades of theoretical, experimental and numerical developments, the scaling of the heat transfer in RB remains a subject of discussion and active research. In bounded domains at low Ra, a simple argument by Malkus & Chandrasekhar (1954) based on the criticality † Email address for correspondence: berengere.dubrulle@cea.fr Abstract must not spill onto p.2 Table 1: Scaling predictions for HRB observables in the turbulent regime with and without friction. The observables are given by Table (2). DNS stands for Direct Numerical Simulation using regular Fourier modes (Calzavarini et al. 2005) while LL refers to simulations using Fourier modes on a LogLattices (this paper). 𝑈 2 𝑙𝑠 and Θ 2 𝑙𝑠 are large scale kinetic and thermal energy. Exponents are computed by fitting over Ra > 10 7 (resp. 1 < Pr < 50) for varying Ra (resp. Pr). Errors represent std of fit parameters.

GL Theory 𝑓 = 0 DNS 𝑓 = 0 LL 𝑓 = 1 Nu ∼ √ Ra Pr Pr 0.43 Ra 0.50 Pr 0.51±0.01 Ra 0.53±0.03 Re ∼ √︁ Ra/Pr Pr -0.55 Ra 0.5 Pr -0.54±0.01 Ra 0.54±0.01 𝜖 𝜃 ∼ 𝑐 1 √︁ Re/Ra + 𝑐 2 Re √︁ Pr/Ra (Re Pr) -0.17 Re 𝑥 Pr 𝑥-0.5 / √ Ra, 1 𝑥 1.2 𝜖 𝑢 ∼ Re 3 (Pr/Ra) 3/2 Re 2.77 (Pr/Ra) 3/2 Re 2.88±0.03 (Pr 0.95±0.01 /Ra) 3/2 of the thermal boundary layer gives Nu ∼ Ra 1/3 , observed in many experiments (see Ahlers et al. (2009) for review). As we increase Ra → ∞, viscous processes (and their associated boundary layers) are believed to become irrelevant, resulting in an "ultimate regime of convection", where Nu ∼ Ra 1/2 (hereafter called "asymptotic ultimate regime") (Spiegel 1963;Grossmann & Lohse 2000), with possible logarithmic corrections (Kraichnan 1962;

Grossmann & Lohse 2011) (hereafter called "ultimate regime"). Experimental or numerical observations of the (asymptotic) ultimate regime prove to be very difficult, and no final consensus has been reached so far about its existence in a pure RB setting (Chavanne et al. 1997;Urban et al. 2019;Doering & Constantin 1996;Zhu et al. 2018Zhu et al. , 2019a; Roche 2020) (see Ahlers et al. (2009) for a less recent but more synthetic review)." When the gravity is artificially increased using centrifugal force, one can indeed observe hints of an ultimate regime (Jiang et al. 2022). On the other hand, various modifications of the RB geometry aiming at modifying the influence of the boundary layers result in experimental observation of a regime where Nu ∼ Ra 1/2 : using highly elongated cells 

Numerical simulations

Generalities

The dynamics of a homogeneous fluid, with coefficient of thermal dilation 𝛼, viscosity 𝜈 and diffusivity 𝜅, subject to a temperature gradient Δ𝑇 over a length 𝐻 and vertical gravity 𝑔 is given by the HRB set of equations (Lohse & Toschi 2003;Calzavarini et al. 2005Calzavarini et al. , 2006Calzavarini et al. , 2007)),

𝜕 𝑡 u + u • ∇u + 1 𝜌 0 ∇𝑝 = 𝜈∇ 2 u + 𝛼𝑔𝜃z, 𝜕 𝑡 𝜃 + u • ∇𝜃 = 𝜅∇ 2 𝜃 + 𝑢 𝑧 Δ𝑇 𝐻 , ∇ • u = 0, (2.1)
where u is the velocity, 𝜃 the temperature fluctuation, 𝜌 0 is the (constant) reference density and 𝑝 is the pressure. Here, the mean temperature gradient Δ𝑇 acts as a forcing term. This gradient is non-dimensionalized into the Rayleigh number Ra = 𝛼𝑔𝐻 3 Δ𝑇/(𝜈𝜅). The Prandtl number Pr = 𝜈/𝜅 is the ratio of the fluid viscosity to its thermal diffusivity. The mean total heat flux is the 𝑧 direction is 𝐽 = 𝑢 𝑧 𝜃 -𝜅Δ𝑇 which is adimensionalized into Nu = 𝐽𝐻/𝜅Δ𝑇. thermal dissipation, which respectively scale as

𝜈 (𝜕 𝑖 𝑢 𝑗 ) 2 𝑉 = 𝜈 3 𝐻 -4 Nu Ra Pr -2 , (2.2) 𝜅 (𝜕 𝑖 𝜃) 2 𝑉 = 𝜅𝐻 -2 (Δ𝑇) 2 Nu . (2.3)
Additionally, to get rid of the pressure term, we take the rotational of the above equation

(ω = rotu = 𝑖k × u).

Quantities of interest

2.3. Adaptation on log-lattices: HRB with friction

Exponential instabilities in HRB

As first shown by Calzavarini et al. (2006), HRB equations are prone to exponential instabilities, due to the conservation of the total energy. In the absence of large-scale friction, we also observe those instabilities in our log-lattice simulations (Figure 2a). 

𝜎 √ Ra Pr = 1 2 √︃ (Pr +1)𝑘 2 2 + 4 Pr(Ra -𝑘 4 ) -(Pr +1)𝑘 2 ∼ √ Ra, (2.4) for 𝜃, 𝑢 ∼ 𝑒 𝜎𝑡+𝑖 ì 𝑘 • ì
𝑥 . This expression yields unstable solutions for Ra > Ra 𝑐 = 𝑘 4 min where 𝑘 min is the modulus of the smallest mode on the grid, which is 2𝜋 √ 3 in our case.

However, the non-linear behavior of the instability in the log-lattice case is quite different from the one reported by Calzavarini: instabilities tend to extend significantly further and for longer times. Our interpretation is that in our log-lattice model, the modes are not coupled enough to develop the nonlinear saturation. The instabilities widely interfere with the statistical stability of observables and need to be removed for a meaningful analysis.

Physically, these exponential ramps originate for a lack of energy sink to absorb the constant 

. Nu = 𝐽𝐻 𝜅Δ𝑇 -1 → √ Ra Pr • 𝑢 𝑧 𝜃 -1 Re = √︁ 𝑈 𝑖 𝑈 𝑖 𝐻 𝜈 → √︂ Ra Pr • √︁ 𝑢 𝑖 𝑢 𝑖 𝜖 𝜃 = 𝜅 (𝜕 𝑖 Θ) 2 → (𝜕 𝑖 𝜃) 2 √ Ra Pr 𝜖 𝑢 = 𝜈 (𝜕 𝑖 𝑈 𝑗 ) 2 → √︂ Pr Ra • (𝜕 𝑖 𝑢 𝑗 ) 2
the heat transfer, as displayed in figure 2. Note however that the fluctuations of Nu around the stationary value are very broad, and extend over one or two orders of magnitudes. The same phenomenon was observed in the DNS of HRB (Calzavarini et al. 2005(Calzavarini et al. , 2006) and mentioned to be a source of difficulty to achieve reliable results (Borue & Orszag 1997). For this reason, very long simulations are necessary to get steady averages (Pumir & Shraiman 1995;Calzavarini et al. 2006). In DNS, this cannot be achieved without cutting down the resolution, which may impact the reliability of dissipation estimates (Yeung et al. 2018). In the log-lattice framework, we do not have this problem, and we performed high resolution very long time averages on the log of Nu, and represent all quantities in log-log variables.

Equations

To investigate the ultimate regime, it is natural to adimensionalize the equation in terms of "inertial quantities", i.e. using the vertical width 𝐻 as a unit of length, the free fall velocity 𝑈 ff = 𝛼𝑔Δ𝑇 𝐻 as a unit of velocity, and Δ𝑇 as a unit of temperature. Table 2 indicates the form taken by observables after rescaling as indicated. The equations including the temperature gradient and the friction can then be written in terms of velocity as (with the Einstein convention on summed repeated indices):

𝜕 𝑡 𝑢 𝑖 = P -𝑢 𝑗 𝜕 𝑗 𝑢 𝑖 + 𝜃𝛿 𝑖=𝑧 + √︂ Pr Ra ∇ 2 𝑢 𝑖 -𝑓 𝑢 𝑖 𝛿 𝑘≈𝑘 𝑚𝑖𝑛 𝑖 , 𝜕 𝑡 𝜃 = -𝑢 𝑖 𝜕 𝑖 𝜃 + 𝑢 𝑧 + ∇ 2 𝜃 √ Ra Pr -𝑓 𝜃𝛿 𝑘≈𝑘 𝑚𝑖𝑛 , (2.5)
where the Dirac 𝛿 𝑘≈𝑘 min filters out the small scales, and the projector, given in the Fourier space by P(A) = A -𝑘 𝑖 𝑘 2 𝑘 𝑗 𝐴 𝑗 , accounts for the pressure term under the divergence-free condition. We also looked at those equations expressed in terms of the vorticity ω = ∇ × u:

𝜕 𝑡 𝜔 𝑖 = -𝜔 𝑗 𝜕 𝑗 𝑢 𝑖 -𝑢 𝑗 𝜕 𝑗 𝜔 𝑖 + 𝜃 [∇ × z] 𝑖 + √︂ Pr Ra ∇ 2 𝜔 𝑖 -𝑓 𝜔 𝑖 𝛿 𝑘≈𝑘 𝑚𝑖𝑛 , 𝜕 𝑡 𝜃 = -𝑢 𝑖 𝜕 𝑖 𝜃 + 𝑢 𝑧 + ∇ 2 𝜃 √ Ra Pr -𝑓 𝜃𝛿 𝑘≈𝑘 𝑚𝑖𝑛 , (2.6)
Adding a large-scale friction to damp the inverse cascade is a classical trick-it is e.g.

routinely used numerical simulations of 2D turbulence to avoid Bose condensation at 𝑘 = 0 and enable stationarity (Sukoriansky et al. 1999). The present case is 3D, but we interpret the formation of exponential ramps as a signature of back-scattering of energy, a feature that was already mentioned previously in shell models of Rayleigh-Bénard convection (Ching & Ko 2008). The addition of the friction is therefore a convenient way to damp the largescale modes that are generated by the large-scale instability. Such friction is also added in many models of climate, as a subgrid model to account for the friction at the boundary layer that cannot be resolved in the stratified case. The hand waving argument is that, within boundary layers, a shear profile develops, with extraction of energy at the boundaries, which is proportional to the square of the shear. Assuming the shear to be constant in the boundary layer, we can then estimate it by the difference between the velocity at the top of the layer, minus the velocity at the boundary which is zero. In total, the energy pumped by friction is proportional to the square of the velocity, which is exactly the law we have implemented.

Such friction is termed Rayleigh friction in the climate community (Stevens et al. 2002) and can actually be seen as a way to take into account the boundary conditions that we have removed in the HRB setting.

Conservations laws for HRB with and without friction

In the absence of friction, the conservation laws for HRB are given by Eqs. (2.2) and by (2.3).

The presence of the friction just adds a supplementary term proportional to 𝑓 in each equation.

The result can be made non-dimensional using 𝑈 ff , 𝐻 and Δ𝑇 as units of velocity, length and temperature, resulting in : 

𝑓 𝑢 2 𝛿 𝑘≈𝑘 𝑚𝑖𝑛 + 𝜖 𝑢 = Nu +1 √ Ra Pr , ( 2 
( 𝑓 , 𝑔) = ∑︁ k 𝑓 (k)𝑔(k) , (2.9) 
and a convolution operator:

( 𝑓 * 𝑔)(k) = ∑︁ p,q p+q=k 𝑓 (p)𝑔(q),
(2.10) that naturally extend the corresponding operators on regular Fourier grids. This ensures that the log-lattice operators respect the symmetries of the Navier-Stokes equation, which ensures the conservation of energy, helicity (3D) or enstrophy (2D), etc. provided that they are conserved in the original equation. The constrain on the interacting triads on log-lattices ∃𝑝, 𝑞 ∈ 𝜆 Z : 𝑝 + 𝑞 ∈ 𝜆 Z restricts the acceptable values of 𝜆 to three main families: 𝜆 = 2, the plastic number 𝜆 = 𝜌 ≈ 1.324, and 𝜆 𝑏 -𝜆 𝑎 = 1, (𝑎, 𝑏) ∈ N 2 , whose biggest solution is the golden number 𝜆 = 𝜙 ≈ 1.618. From a numerical point of view, 𝜆 = 2 is the "fastest" option, as it has both a maximal span for a given number of points, and the least interactions per point. However, as outlined in the next part, we believe that 𝜆 = 2 should be avoided for incompressible simulations. We thereafter perform all our simulations with 𝜆 = 𝜙, which is the second biggest value of 𝜆, and has the second least number of interactions per grid point.

Numerical details

Configuration

The minimum wave vector of the grid is set to 𝑘 min = 2𝜋 to match a simulation on a box of size L = 1. The grid size 𝑁 is then set so as to reach the dissipative scale both for velocity and temperature. We alternate between several initial condition (IC) choices for our simulations: large-scale initialization, Kolmogorov spectrum, flat-spectrum. All those choices are modulated by a weak multiplicative complex noise. We find no significant influence of those initial conditions on the scaling laws. As Ra or Pr increase, the simulations become slower and slower. This sets the upper bound on the range of parameters we can Finally, integrating equations on log-lattices yields interesting and new numerical challenges.

We built our own ODE integrator to solve them, as detailed in Supplementary Materials.

Once we have ran a simulation for a long enough time, we compute Nu, 𝜖 𝜃 , 𝜖 𝑢 by taking long time and space averages (with 𝑎𝑏 = 1 𝑇 ∫ 𝑡 dt(𝑎, 𝑏)) according to table 2. The accuracy of our results is controlled by checking that we recover the exact laws of HRB convection Eqs (2.8) and (2.7). This is shown in Fig. 3 and4, for all 3D data sets used in the present paper (see Table 3). Furthermore, the ratio between the friction term and the dissipation is shown in Fig. 5.

Simulation sets

The results we obtained come from seven types of simulation that are described in the Table 3.

For comparison, we also included in some graphs the results by (Calzavarini et al. 2005), obtained using DNS of the same equations, but at 𝑓 = 0.

Historically, we performed first vorticity simulations, then velocity simulations, improving the integrator scheme in between to be able to better handle various numerical challenges raised by simulating wavenumbers as high as 𝑘 ∼ 10 5 in 3D. For transparency reasons, we decided to include all datasets we had at our disposal, but we believe that the velocity simulations are the more faithful ones, in the sense that they deal better with the small scales at large Rayleigh or Reynolds number. This sensitivity to small scale modeling (and resolution) is also a well-known feature of direct numerical simulations, especially when it comes to statistics of gradients or energy dissipation (Yeung et al. 2018).

We have verified that the size of the grid for 3D simulations (𝑁 = 13) does not affect the mean value of the observables Nu, Re, . . . , which is already converged for grids of size 𝑁 6. However the tail of the pdfs does depend on 𝑁. Another 3D simulation set at 𝑁 = 20

(not shown here, both vs Ra and Pr) displays the same scaling laws as the 𝑁 = 13 case, confirming this analysis. 

A case against 𝜆 = 2

This section explains why the log-lattice parameter 𝜆 = 2 is ill-suited to simulating divergence-free equations. It is not specific to HRB simulations, however we believe this issue has not been reported in a publication before. 𝜆 = 2 is the biggest grid parameter that can be accommodated on a log-lattice. For a fixed grid size 𝑁 in dimension 𝐷, it is therefore very tempting to use 𝜆 = 2, since among all the 𝜆s it spans the greatest range of wavenumbers (the convolution's complexity rises as O (𝑁 𝐷 )).

However, 𝜆 = 2 misrepresents the convection term 𝑢 𝑗 𝜕 𝑗 𝑢 𝑖 .

The heart of the problem is easily understood through a simple 2D example. Consider the convection term 𝑢 𝑥 𝜕 𝑥 𝜔 + 𝑢 𝑦 𝜕 𝑦 𝜔 of a divergence-free flow, with a large-scale initialization 𝑢(𝑘 > 𝑘 0 ) = 𝜔(𝑘 > 𝑘 0 ) = 0 for some 𝑘 0 . From a physical point of view, we expect convection to populate the 𝑘 𝑘 0 region as time advances. However, with 𝜆 = 2, this does not happen, as is demonstrated below.

Table 3: Parameters of the data sets used in the present paper. 𝐷 is the dimension. The "velocity" datasets are obtained by integration of Eq. (2.5), while the "vorticity" datasets are obtained by integration of Eq. (2.6). 𝐷𝑁 𝑆 refers to direct simulations of (Calzavarini et al. 2005) , using a classical spectral Fourier code (on a regular grid). The ++ label refers to an integration using an improved integrator, using a reshuffling of variable matrices that allows faster simulations. The Ra and Pr column provides the Rayleigh and Prandtl number range of the simulations. 𝑓 is the large scale friction, 𝑁 = 1 + log 𝑘 max /log(𝜙), where 𝑘 max is the maximal wavenumber of the simulation and 𝜙, the golden mean, is a measure of the spatial resolution. For log-lattices, its corresponds to the number of modes in each direction. 𝑁 𝑎𝑣 is the length of the simulation, divided by the large eddy turnover time. It provides the number of decorrelated frames that can be used to estimate statistical averages. 𝑓 (𝜆 𝑛-1 , 𝜆 𝑚-1 ) • 𝑔(𝜆 𝑛-1 , 𝜆 𝑚-1 ). Due to the initial conditions, this yields:

𝑢 𝑥 * 𝜕 𝑥 𝜔 + 𝑢 𝑦 * 𝜕 𝑦 𝜔 (𝑘 ≈ 𝑘 0 ) = 0
There is no forward convection at all, therefore there can be no forward cascade in such case.

This does not happen for other values of 𝜆, for which the convolution is evaluated at asymmetric positions. We therefore advise against using 𝜆 = 2 in divergence-free fluids, and suggest to rather use 𝜆 = 𝜙 (the second-biggest grid parameter).

Zero-divergence problem in 1D

In the 1D case, we cannot impose the zero-divergence condition, so that quantities like 𝑢 𝑥 𝜕 𝑥 𝜃 and 𝜕 𝑥 (𝑢 𝑥 𝜃) are not equivalent . Here, we have followed the same choice than Ching & Ko (2008), and wrote the equation as:

𝜕 𝑡 𝑢 = -𝑢𝜕 𝑥 𝑢 + 𝜃 + √︂ Pr Ra ∇ 2 𝑢 -𝑓 𝑢𝛿 𝑘≈𝑘 𝑚𝑖𝑛 , 𝜕 𝑡 𝜃 = -𝑢𝜕 𝑥 𝜃 + 𝑢 + ∇ 2 𝜃 √ Ra Pr -𝑓 𝜃𝛿 𝑘≈𝑘 𝑚𝑖𝑛 .
(2.11) † excluding the 𝑘 = 0 mode, which is not used in this paper Rapids articles must not exceed this page length In 2D, the scaling also extends approximately over 30 orders of magnitudes for Ra > 10 23 . Moreover, the compensated plot highlights small fluctuations around this law, see Fig. (6b), due to statistical noise.

Results and Discussion

One and two-dimensional cases

In 3D

In 3D, the simulations get significantly more turbulent and results are subject to more statistical fluctuations. Another source of fluctuations comes from a physical phenomenon, associated with the existence of friction. To showcase this effect, we plot in Fig. 5a and Fig. 5b the ratio between the energy dissipated by friction and the energy dissipated by viscosity or diffusivity for both the kinetic energy and the thermal energy.

Fixing Pr = 1 and varying Ra between 10 3 and 10 8 , we observe in Fig. 5a that both

𝑓 𝑢 = 𝑓 𝑈 2 𝑙𝑠 /𝜖 𝑢 or 𝑓 𝜃 = 𝑓 Θ 2
𝑙𝑠 /𝜖 𝜃 behave in the same way as a function of Ra at low Ra, the dissipation due to friction is small, and gradually increases towards reaching a plateau around Ra ∼ 10 7 , where energy dissipated by frictions reach about 90% of the energy dissipated by viscosity or diffusivity. We can thus define a "non-universal" regime where 𝑓 /𝜖 depends on Ra, Pr and a "universal" regime where 𝑓 /𝜖 does not depend on Ra, Pr.

The critical Rayleigh number where the plateau occurs is likely to depend on the Prandtl number. To check this; we now fix Ra = 10 8 and vary Pr from several order of magnitude.

In Fig. 5b, we then observe an interesting symmetrical behaviour, with respect to Pr = 1:

decreasing Pr, we observe that the energy dissipated by the velocity friction remains of the same order of magnitude than the dissipation by viscosity, while the energy dissipated by thermal friction strongly decays and become negligible. As Pr shifts away from 1, we observe the symmetrical behavior, with velocity friction becoming negligible, while thermal friction remains of the same order of magnitude than the thermal energy dissipation. As we will see, this will have an impact on the thermal transport. Note that at small (resp. large) Pr, all the thermal (resp. velocity) modes become concentrated at large scale, where the friction occurs.

Therefore, in the large Pr regime, the kinetic friction and viscous dissipation compete, while at small Pr the same remark holds for the thermal friction and diffusive dissipation. This may then explain the vanishing of the friction in those regime.

We now focus on the regimes where the ratio of friction to dissipation is approximately constant. These regimes are friction dominated, but, as we will see, are characterized by interesting universal scaling regimes. At low Ra, we first observe a transition from a laminar regime, where Nu = 1 up to a turbulent regime starting around Ra ∼ 10 7 at Pr = 1. In this transition regime, the Nusselt number varies approximately like Nu ∼ Ra 2/3 , while the Reynolds number remains less than 10 4 , but follows approximates laws Re ∼ Ra 1/2 . In this regime, the friction is negligible, as we saw, so that it corresponds to a laminar, frictionless regime.

After this laminar regime, we obtain a turbulent regime around 10 7 < Ra for Pr = 1 in which Nu ∼ Ra 1/2 and Re ∼ Ra 1/2 , like GL theory. The exact value of the exponent is provided in Table 1. In this regime, the friction are non-negligible, so that it is a "turbulent friction dominated regime" However, as both ratio 𝑓 𝑢 = 𝑓 𝑈 2 𝑙𝑠 /𝜖 𝑢 or 𝑓 𝜃 = 𝑓 Θ 2 𝑙𝑠 /𝜖 𝜃 remain independent of Ra, they do not change the scaling of the total kinetic and thermal energy dissipation. Therefore, the argument developed by GL theory should still apply in this situation, as is indeed observed, with minor corrections due to the small variations of the ratios.

In that respect, it is not surprising that the the extent of this regime varies with Pr, as is shown in Fig. 11 for various Ra. At 𝑅𝑎 = 10 8 , the "universal GL" regime stops for Pr <∼ 10 -1 .

In this range of parameters, Re is still large, so that the flow is turbulent. However, Nu drops quicker with decreasing Pr than in the universal GL regime, as can be seen from the filled data points in Fig. 8, in parallel with a similar drop for the thermal friction observed in Fig. 5b.

This regime seems therefore dependent of the variation on the friction, and is non-universal.

In this regime, the Reynolds number variation with Pr is milder than in the universal regime, as can be seen in Fig. 10.

As the Rayleigh number increases, we nevertheless observe in Fig. 11 that the extent of the universal turbulent regime extends towards smaller and smaller values of Pr, so that the universal scaling regime corresponds to an "asymptotic scaling regime" at low value of Pr < 1, valid in the limit of infinite Ra.

Figures 12 and 13 plot the kinetic and thermal dissipation rates 𝜖 𝑢 , 𝜖 𝜃 against GL predictions. In agreement with what has been observed previously, we observe agreement with GL theory in the range of parameters where the friction ratios are approximately constant with the parameters, i.e. at large value of Re Pr. Overall, it is interesting to note that even when the friction is dominant, we can recover the ultimate regime scaling, as long as the velocity friction ratio remain relatively constant as a function of the parameters and neither there is not too big an asymmetry between the two frictions. In regimes where the asymmetry prevails, there are no clear scaling laws that emerge, meaning that the scaling are probably not universal in Ra and Pr only, and that friction depending corrections need to be implemented. 3). The gray dashed line separates the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to Fig. 5 Figure 13: Scaling of kinetic dissipation rate 𝜖 𝑢 compared to the GL prediction Re 3 (Pr/Ra) 3/2 in 3D results. Correspondence between symbols and datasets are given in Table 3). The gray dashed line separates the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to 

Conclusion

In this letter, we investigated scaling laws in the Homogeneous Rayleigh Bénard (HRB) equations through a new mathematical framework ("log-lattice"). Using a modified DOPRI solver, we are able to explore a range of parameters and wave-numbers way beyond what is accessible in direct numerical simulations of the equations. By adding a large-scale friction to the HRB equations, we are able to solve the issue of exponentially diverging solutions.

This large scale friction become non-negligible when the fluid become turbulent enough, so that total energy balance depart from the energy balance considered in GL theory, where no friction is present. Despite this, we still observe scaling law for Nu and Pr that are very close to the universal turbulent predictions of Grossmann-Lohse (GL) theory: Nu ∼ Ra 1/2 Pr 1/2 , Re ∼ Ra 1/2 Pr -1/2 , 𝜖 𝜃 ∼ Re(Pr/Ra) 1/2 , 𝜖 𝑢 ∼ Re 3 (Pr/Ra) 3/2 for an important range of parameters, corresponding to situations where the thermal friction is non-negligible and the kinetic friction does not vary significantly as a function of the parameters. This is obtained at large enough Ra and for Pr depending on the value of Ra.

In addition to this regime, we also observe another turbulent friction dominated regime at Pr 1. This regime has no simple and universal dependence with the parameter, and depends on the variations of the kinetic friction with the parameters.

Our observation show that the inclusion of friction, which is necessary to obtain stationary regimes in the HRB framework, complexifies the phase space but nevertheless allows for the existence of a universal turbulent regime, where scaling laws are very close to the GL friction-less theoretical laws. In some geophysical or astrophysical situations, large scale friction arises due to rotation (Ekman friction), stratification (Rayleigh friction) or magnetic field (Hartman friction), and the two scaling regimes we find (one universal, and one nonuniversal) may be relevant and could be explored within the log-lattice framework.

More generally, we believe that log-lattices, with their unique performances in terms of numerical complexity, due to a spectrally sparse representation and strong mathematical qualities, have a great potential in numerical simulations of geophysical or astrophysical flows. However, as they are still in their infancy, many different paths would benefit from being explored to better understand their strengths and weaknesses. This in particular includes a better understanding of the influence of the numerical scheme which, as discussed in the supplementary materials, may misrepresent the viscosity at high wavenumbers. We believe that methods such as Whalen et al. (2015) could prove most useful in that regard. Other topics of interest include the behavior of observables when 𝜆 → 1 and the addition of the 𝑘 = 0 mode would prove very interesting to study. Likewise, in a similar spirit as was done for the REWA model in Grossmann et al. (1996), a detailed comparison of DNS and log-lattice results (which is far from trivial, as there is room for interpretation as to the mathematical meaning of the fields simulated on a log-lattice) would be highly useful.

  As shown in Figure (1), the growth rate of the instability in the log-lattice simulations matches the theoretical growth rate given by Calzavarini et al. (2006); Schmidt et al. (2012):

FocusFigure 2 :

 2 Figure 2: Influence of the large-scale friction on the time behavior of the Nusselt number Nu in 3D HRB. (2a) Without friction: we observe the growth of an exponential instability. (2b) With friction: the instability saturates and the dynamics become statistically convergent. Parameters: Ra = 10 6 , Pr = 1, 𝑁 = 13.

Figure 3 :

 3 Figure 3: Exact conservation laws for 𝜖 𝜃 in 3D results. Black points correspond to varying Ra, gray points correspond to varying Pr. (3a) 𝜖 𝜃 + 𝑓 Θ 2 𝑙𝑠 vs (Nu +1)/ √ Ra Pr.

Figure 4 :Figure 5 :

 45 Figure 4: Exact conservation laws for 𝜖 𝑢 in 3D results. Black points correspond to varying Ra, gray points correspond to varying Pr. (4a) 𝜖 𝑢 + 𝑓 𝑈 2 𝑙𝑠 vs (Nu +1)/ √ Ra Pr.

Figure 6

 6 Figure 6 presents the Nu vs Ra scaling in 1D and 2D. The 1D Nu scaling law extends over 50 orders of magnitude in Ra (Fig. 6a) , and follows closely the law Nu ∼ Ra 1/2 , as can be checked by the compensated plot in Fig. (6b), in agreement with Ching & Ko (2008).

Figure 7 :Figure 8 :

 78 Figure 7: Non-dimensional heat transfer Nu vs Rayleigh number Ra in 3D for Pr = 1. Correspondence between symbols and datasets are given in Table 3. The gray dashed line separates the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to Fig.5. (7a) Nu vs Ra. The black dashed line corresponds to Nu ∼ √ Ra, corresponding to asymptotic ultimate regime scaling. (7b) Compensated plot Nu/ √ Ra vs Ra.

Figure 9 :Figure 10 :

 910 Figure 9: Scaling of Reynolds number Re as a function of Rayleigh number Ra in 3D for Pr = 1. Correspondence between symbols and datasets are given in Table 3. The gray dashed line separates the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to Fig.5. (9a) Re vs Ra. The black dashed line corresponds to Re ∼ √ Ra, corresponding to asymptotic ultimate regime scaling. (9b) Compensated plot Re/ √ Ra vs Ra.

Figure 11 :

 11 Figure 11: Scaling of heat transfer Nu as a function of Prandtl number Pr in 3D results at fixed Ra, dataset VII (Table3) (11a) Nu/

Figure 12 :

 12 Figure 12: Scaling of thermal dissipation rate 𝜖 𝜃 compared to the GL prediction Re √︁ Pr/Ra in 3D results. Correspondence between symbols and datasets are given in Table3). The gray dashed line separates the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to Fig.5. (12a) 𝜖 𝜃

  Figure13: Scaling of kinetic dissipation rate 𝜖 𝑢 compared to the GL prediction Re 3 (Pr/Ra) 3/2 in 3D results. Correspondence between symbols and datasets are given in Table3). The gray dashed line separates the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to Fig.5. (13a) 𝜖 𝑢 √︁ Ra 3 Pr vs Re 3 Pr 2 . The black dashed line corresponds to the GL prediction 𝜖 𝑢 ∼ Re 3 (Pr/Ra) 3/2 . (13b) Compensated plot 𝜖 𝑢 √︁ Ra 3 Pr/Re 3 Pr 2 vs Re 3 Pr 2 .

  new operator, that can be seen as a convolution on the log-lattice, and preserves all the main symmetries and conservation laws of the original equations. As such, log-lattices are likely to preserve properties of the original equations that are directly linked to these symmetries and conservation laws. This was indeed checked for the Burgers and Navier-Stokes equation in the Fourier space (energy spectrum, energy transfers), over Ko 2008) in an effort to increase the Ra and Pr range of results. They successfully display the asymptotic ultimate regime of convection, at the price of tuning several parameters of the model to get rid of the uncontrolled exponential instabilities. This, combined with the 1D nature of the model, renders the informative and conclusive nature of the observations

	an unprecedented wide range of scales (Campolina & Mailybaev 2021). Another interesting
	feature of log-lattices is that in 1D, they encompass classical shell models of turbulence for
	special values of the log-lattice spacing (Campolina & Mailybaev 2021), such as the Sabra
	shell model of turbulence (Gloaguen et al. 1985; Biferale 2003).
	1D shell models of turbulence were used previously in the context of HRB (Ching &
	main conservations laws and symmetry of the original HRB equation, many features of the
	original equation are still valid, like the exact conservation laws of Table 1. Whether the
	GL theory still applies, and what are the modifications of the asymptotic ultimate regime
	implied by the log-lattice geometry are interesting open questions that we investigate here. In
	that respect, the present paper offers an exploration of the analogy and differences between
	log-lattices and classical fluid dynamics in a more complex case (HRB) than previous
	examples (Campolina & Mailybaev 2018, 2021).

(Castaing et al. 2017; Pawar & Arakeri 2016)

, using rough

(Ciliberto & Laroche 1999; Rusaouën et al. 2018; Zhu et al. 2019b; Kawano et al. 2021) 

or porous"

(Zou & Yang 2021; Motoki et al. 2022) 

boundaries, or radiatively heating the flow

(Lepot et al. 2018; Bouillaut et al. 2019)

.

From a numerical point of view, a simple way to remove boundary layers is to consider a triply periodic geometry, and heat the flow via an applied temperature gradient. This setting was first explored by

Borue & Orszag (1997)

;

Lohse & Toschi (2003); Calzavarini et al. (2005 Calzavarini et al. ( , 2007) ) 

and called Homogeneous Rayleigh-Bénard (HRB) convection. The corresponding scalings and predictions are summarized in Table

1

. Although the results of those simulations are consistent with the predictions of Grossmann & Lohse

(2000) 

(hereafter called "GL theory"), they are undermined by several drawbacks: statistics polluted by the growth of uncontrolled exponential instabilities

(Calzavarini et al. 2006

) of unclear physical relevance, a small Ra and Pr range, sparse data points due to difficulties in running numerically challenging simulations. Indeed, pushing the Rayleigh number to large values increases the numerical burden beyond the capacity of present computers, as the number of grid points needed to describe the flow usually scales like Re 3 with Re ∼ Ra 1/2 . In an attempt to reduce the number of degrees of freedom, models based on sparse interacting Fourier modes have been recently devised

(Campolina & Mailybaev 2018, 2021)

. Those modes are evenly spaced points in log space (thus thereafter called "log-lattice") and are interacting via nonlinear equations that are derived from the fluid equations by substituting for the convolution product a questionable. The goal of the present letter is therefore to re-explore the HRB equation using the log-lattice framework, that allows both the exploration of a wide range of parameters on a large array of wavenumbers, and a flexibility of dimensionality from 1D to 3D, at low numerical cost, and without additional empirical parameters. Given that they preserve all

  Absolute value of the rate of growth of instability 𝜎 = 𝑑 log 𝑋/𝑑 log 𝑡 where 𝑋 = 𝑢𝜃 without large-scale friction ( 𝑓 = 0), vs. Rayleigh number. The green dashed line is the theoretical growth rate for 𝑘 = 𝑘 𝑐 = 2𝜋
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	Figure 1: √
			3, corresponding to Eq. (2.4). The interval
	𝑘 < 𝑘 𝑐 corresponds to negative values of 𝜎.
	Taking global space and time average of the equation (2.1), one can derive (Lohse &
	Toschi 2003; Calzavarini et al. 2005) two exact relation for the volume averaged kinetic and

Table 2 :

 2 Physical quantities expressed as a function of the non-dimensional variables of Eq. (2.5) . • denotes the temporal and spatial average.

  Log-lattice models fit into the more general framework of REduced Wavenumber set Approximation (REWA)(Grossmann et al. 1994)) or fractal decimated models(Frisch et al. 2012; Lanotte et al. 2015). The spirit of these methods is to use a reduced subset of modes obeying a well-defined hierarchy, so as to stick closer to the observed organized nature of turbulence. In the original REWA models(Grossmann et al. 1994), non-linear-interactions are projectively decreased either in a random manner or such that they are distributed over a fractal set(Frisch et al. 2012; Lanotte et al. 2015). In log-lattice models, the modes reduction is achieved by keeping modes following a geometric progression, thereby allowing to reach very small scales with a very small number of modes. The construction is detailed inCampolina & Mailybaev (2021), where it is shown that fluid equations on log-lattices respect all symmetries of the Euler equations, and retain classical and basic properties of the Navier-Stokes equation, such as constancy of energy flux in the inertial range.There are several key differences compared to shell models(Brandenburg 1992; Ching & Ko 2008) or the original REWA model. Like in a shell model, simulations are carried out in Fourier space on an logarithmically-decimated grid. Unlike shell models, log-lattices are truly multidimensional, and unlike the original REWA model, the decimation does not have a fixed number of points per shell: k(𝑛 1 , . . . , 𝑛 𝑑 ) = ∑︁

	Nu +1 √	,	(2.8)
	Ra Pr		

.7) 𝑓 𝜃 2 𝛿 𝑘≈𝑘 𝑚𝑖𝑛 + 𝜖 𝜃 = From now on, we define 𝑈 2 𝑙𝑠 = 𝑢 2 𝛿 𝑘≈𝑘 min and Θ 2 𝑙𝑠 = 𝜃 2 𝛿 𝑘≈𝑘 min . 2.4. Log-lattices 𝑖 𝜆 𝑛 𝑖 e i , 𝑛 𝑖 ∈ Z with 𝑑 the spatial dimension and e i = x, y, z, . . .. Log-lattices are endowed with a scalar product:

  The tolerance refers to the absolute and relative tolerances that are fixed equal in all the simulations.

	Name	D	Type	Ra	Pr	𝑓 𝑁 𝑁 𝑎𝑣 Tolerance Symbol
	(I)	1𝐷 Velocity	[10 5 , 10 50 ]	1	1 120	-	10 -3
	(II)	2D Vorticity	[10 5 , 10 50 ]	1	1 20	-	10 -3
	(III)	3D Velocity	[1, 10 10 ]	1	1 13 > 480	10 -6
	(IV)	3D Vorticity	[1, 10 10 ]	1	1 13 > 480	10 -6
	(V)	3D Velocity	10 8	[5 • 10 -4 , 10 2 ] 1 13 > 50	10 -6
	(VI)	3D Vorticity	10 8	[5 • 10 -4 , 10 2 ] 1 13 > 50	10 -6
	(VII)	3D ++Velocity {10 9 , 10 10 , 10 11 } [5 • 10 -4 , 10 2 ] 1 13 > 80	10 -6	-
	(VIII)	3D Velocity	[10 6 , 10 10 ]	1	1 13 > 50	10 -6
	Calzavarini 3D	DNS	[10 5 , 10 8 ]	[10 -1 , 10]	0 -	> 64	-

In a divergence-free flow, 𝑢 𝑥 * 𝜕 𝑥 𝜔 = -i

𝜔𝑘 𝑦 𝑘 2 * 𝑘 𝑥 𝜔 , 𝑢 𝑦 * 𝜕 𝑦 𝜔 = i 𝜔𝑘 𝑥 𝑘 2 * 𝑘 𝑦 𝜔

where * denotes a convolution. In a 𝜆 = 2 log-lattice, convolutions are defined as † 𝑓 * 𝑔(𝜆 𝑛 , 𝜆 𝑚 ) =

  Non-dimensional heat transfer Nu vs Rayleigh number Ra in 1D and 2D. Correspondence between symbols and datasets are given in Table3. (6a) Nu vs Ra. The gray dashed line corresponds to Nu ∼ Ra vs Ra., where 𝐴 is adjusted to collapse the 1D and 2D data in the ultimate regime.
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		Figure 6: √					
					√	Ra, corresponding to ultimate regime scaling. (6b)
		Compensated plot 𝐴 Nu/						
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 3 

		√	√
	) (11a) Nu/	Pr vs Pr for various Ra. (11b) Re/ 1/	Pr vs Pr
	for various Ra.		

  . (12a) 𝜖 𝜃 √ Ra Pr vs Re Pr. The black dashed line corresponds to the GL prediction 𝜖 𝜃 ∼ Re(Pr/Ra) 1/2 . (12b) Compensated plot 𝜖 𝜃

	√	√	√
	Ra Pr/	Re Pr vs	Re Pr.
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