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We investigate how the heat flux Nu scales with the imposed temperature gradient Ra in7
Homogeneous Rayleigh-Bénard convection using 1, 2 and 3D simulations on logarithmic8
lattices. Logarithmic lattices are a new spectral decimation framework which enables us to9
span an unprecedented range of parameters (Ra, Re, Pr) and test existing theories using little10
computational power. We first show that known diverging solutions can be suppressed with11
a large-scale friction. In the turbulent regime, for Pr ≈ 1, the heat flux becomes independent12
of viscous processes (“asymptotic ultimate regime”, Nu ∼ Ra1/2 with no logarithmic13
correction). We recover scalings coherent with the theory developed by Grossmann & Lohse,14
for all situations where the large-scale frictions keep a constant magnitude with respect to15
viscous and diffusive dissipation. We also identify another turbulent friction dominated16
regime at Pr � 1, where deviations from GL prediction are observed. These two friction17
dominated regimes may be relevant in some geophysical or astrophysical situations, where18
large scale friction arises due to rotation, stratification or magnetic field.19

1. Introduction20

Convection is a dynamical process that governs heat transport and mixing in a variety of21
systems ranging from planetary and astrophysical flows to industrial devices. In that respect,22
a crucial question is how the heat flux in the system is connected with the temperature23
gradient. Near equilibrium, where both quantities are small, Fourier laws apply, and the24
heat flux is simply proportional to the temperature gradient. For larger values, the system25
enters a non-linear then turbulent regime, where thermal energy in converted into mechanical26
energy, and the relation becomes nonlinear. The deviations from linearity are quantified by27
the relation between the Nusselt number, Nu, the ratio between the heat flux and its laminar28
value, and the Rayleigh number Ra, the non-dimensional temperature gradient.29
In fluid mechanics, the paradigmatic system describing convection is a fluid enclosed30

in a volume, in which thermal energy is injected at the bottom via imposed heat flux or31
temperature gradient. Its dynamics is described by the Rayleigh-Bénard (RB) equations.32
Despite decades of theoretical, experimental and numerical developments, the scaling of the33
heat transfer in RB remains a subject of discussion and active research. In bounded domains34
at low Ra, a simple argument by Malkus & Chandrasekhar (1954) based on the criticality35
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Table 1: Scaling predictions for HRB observables in the turbulent regime with and
without friction. The observables are given by Table (2). DNS stands for Direct Numerical
Simulation using regular Fourier modes (Calzavarini et al. 2005) while LL refers to
simulations using Fourier modes on a LogLattices (this paper). 𝑈2

𝑙𝑠
and Θ2

𝑙𝑠
are large

scale kinetic and thermal energy. Exponents are computed by fitting over Ra > 107 (resp.
1 < Pr < 50) for varying Ra (resp. Pr). Errors represent std of fit parameters.

GL Theory 𝑓 = 0 DNS 𝑓 = 0 LL 𝑓 = 1

Nu ∼
√
Ra Pr Pr0.43 Ra0.50 Pr0.51±0.01 Ra0.53±0.03

Re ∼
√︁
Ra/Pr Pr−0.55 Ra0.5 Pr−0.54±0.01 Ra0.54±0.01

𝜖\ ∼ 𝑐1
√︁
Re/Ra + 𝑐2 Re

√︁
Pr/Ra (Re Pr)−0.17 Re𝑥 Pr𝑥−0.5/

√
Ra, 1 / 𝑥 / 1.2

𝜖𝑢 ∼ Re3 (Pr/Ra)3/2 Re2.77 (Pr/Ra)3/2 Re2.88±0.03 (Pr0.95±0.01/Ra)3/2

of the thermal boundary layer gives Nu ∼ Ra1/3, observed in many experiments (see Ahlers36
et al. (2009) for review). As we increase Ra → ∞, viscous processes (and their associated37
boundary layers) are believed to become irrelevant, resulting in an “ultimate regime of38
convection”, where Nu ∼ Ra1/2 (hereafter called “asymptotic ultimate regime”) (Spiegel39
1963; Grossmann & Lohse 2000), with possible logarithmic corrections (Kraichnan 1962;40
Grossmann & Lohse 2011) (hereafter called "ultimate regime"). Experimental or numerical41
observations of the (asymptotic) ultimate regime prove to be very difficult, and no final42
consensus has been reached so far about its existence in a pure RB setting (Chavanne et al.43
1997; Urban et al. 2019; Doering & Constantin 1996; Zhu et al. 2018, 2019a; Roche 2020)44
(see Ahlers et al. (2009) for a less recent but more synthetic review).“ When the gravity45
is artificially increased using centrifugal force, one can indeed observe hints of an ultimate46
regime (Jiang et al. 2022). On the other hand, various modifications of the RB geometry47
aiming at modifying the influence of the boundary layers result in experimental observation48
of a regime where Nu ∼ Ra1/2: using highly elongated cells (Castaing et al. 2017; Pawar49
& Arakeri 2016), using rough (Ciliberto & Laroche 1999; Rusaouën et al. 2018; Zhu et al.50
2019b; Kawano et al. 2021) or porous“ (Zou & Yang 2021; Motoki et al. 2022) boundaries,51
or radiatively heating the flow (Lepot et al. 2018; Bouillaut et al. 2019).52
From a numerical point of view, a simple way to remove boundary layers is to consider53

a triply periodic geometry, and heat the flow via an applied temperature gradient. This54
setting was first explored by Borue & Orszag (1997); Lohse & Toschi (2003); Calzavarini55
et al. (2005, 2007) and called Homogeneous Rayleigh-Bénard (HRB) convection. The56
corresponding scalings and predictions are summarized in Table 1. Although the results57
of those simulations are consistent with the predictions of Grossmann & Lohse (2000)58
(hereafter called "GL theory"), they are undermined by several drawbacks: statistics polluted59
by the growth of uncontrolled exponential instabilities (Calzavarini et al. 2006) of unclear60
physical relevance, a small Ra and Pr range, sparse data points due to difficulties in running61
numerically challenging simulations. Indeed, pushing the Rayleigh number to large values62
increases the numerical burden beyond the capacity of present computers, as the number of63
grid points needed to describe the flow usually scales like Re3 with Re ∼ Ra1/2. In an attempt64
to reduce the number of degrees of freedom, models based on sparse interacting Fourier65
modes have been recently devised (Campolina & Mailybaev 2018, 2021). Those modes are66
evenly spaced points in log space (thus thereafter called “log-lattice”) and are interacting67
via nonlinear equations that are derived from the fluid equations by substituting for the68
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convolution product a new operator, that can be seen as a convolution on the log-lattice,69
and preserves all the main symmetries and conservation laws of the original equations. As70
such, log-lattices are likely to preserve properties of the original equations that are directly71
linked to these symmetries and conservation laws. This was indeed checked for the Burgers72
and Navier-Stokes equation in the Fourier space (energy spectrum, energy transfers), over73
an unprecedented wide range of scales (Campolina & Mailybaev 2021). Another interesting74
feature of log-lattices is that in 1D, they encompass classical shell models of turbulence for75
special values of the log-lattice spacing (Campolina & Mailybaev 2021), such as the Sabra76
shell model of turbulence (Gloaguen et al. 1985; Biferale 2003).77

1D shell models of turbulence were used previously in the context of HRB (Ching &78
Ko 2008) in an effort to increase the Ra and Pr range of results. They successfully display79
the asymptotic ultimate regime of convection, at the price of tuning several parameters of80
the model to get rid of the uncontrolled exponential instabilities. This, combined with the81
1D nature of the model, renders the informative and conclusive nature of the observations82
questionable. The goal of the present letter is therefore to re-explore the HRB equation using83
the log-lattice framework, that allows both the exploration of a wide range of parameters84
on a large array of wavenumbers, and a flexibility of dimensionality from 1D to 3D, at low85
numerical cost, and without additional empirical parameters. Given that they preserve all86
main conservations laws and symmetry of the original HRB equation, many features of the87
original equation are still valid, like the exact conservation laws of Table 1. Whether the88
GL theory still applies, and what are the modifications of the asymptotic ultimate regime89
implied by the log-lattice geometry are interesting open questions that we investigate here. In90
that respect, the present paper offers an exploration of the analogy and differences between91
log-lattices and classical fluid dynamics in a more complex case (HRB) than previous92
examples (Campolina & Mailybaev 2018, 2021).93

2. Numerical simulations94

2.1. Generalities95

The dynamics of a homogeneous fluid, with coefficient of thermal dilation 𝛼, viscosity a96
and diffusivity ^, subject to a temperature gradient Δ𝑇 over a length 𝐻 and vertical gravity 𝑔97
is given by the HRB set of equations (Lohse & Toschi 2003; Calzavarini et al. 2005, 2006,98
2007),100

𝜕𝑡u + u · ∇u + 1
𝜌0

∇𝑝 = a∇2u + 𝛼𝑔\z,

𝜕𝑡\ + u ·∇\ = ^∇2\ + 𝑢𝑧
Δ𝑇

𝐻
,

∇ · u = 0,

(2.1)101

where u is the velocity, \ the temperature fluctuation, 𝜌0 is the (constant) reference density102
and 𝑝 is the pressure. Here, the mean temperature gradient Δ𝑇 acts as a forcing term. This103
gradient is non-dimensionalized into the Rayleigh number Ra = 𝛼𝑔𝐻3Δ𝑇/(a^). The Prandtl104
number Pr = a/^ is the ratio of the fluid viscosity to its thermal diffusivity. The mean total105
heat flux is the 𝑧 direction is 𝐽 = 〈𝑢𝑧\〉−^Δ𝑇 which is adimensionalized intoNu = 𝐽𝐻/^Δ𝑇 .106

Taking global space and time average of the equation (2.1), one can derive (Lohse &107
Toschi 2003; Calzavarini et al. 2005) two exact relation for the volume averaged kinetic and108
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Figure 1: Absolute value of the rate of growth of instability 𝜎 = 𝑑 log 𝑋/𝑑 log 𝑡 where
𝑋 = 〈𝑢\〉 without large-scale friction ( 𝑓 = 0), vs. Rayleigh number. The green dashed line
is the theoretical growth rate for 𝑘 = 𝑘𝑐 = 2𝜋

√
3, corresponding to Eq. (2.4). The interval

𝑘 < 𝑘𝑐 corresponds to negative values of 𝜎.

thermal dissipation, which respectively scale as109

a
〈
(𝜕𝑖𝑢 𝑗)2

〉
𝑉
= a3𝐻−4NuRa Pr−2, (2.2)110

^
〈
(𝜕𝑖\)2

〉
𝑉
= ^𝐻−2(Δ𝑇)2Nu . (2.3)111112

Additionally, to get rid of the pressure term, we take the rotational of the above equation113
(ω = rotu = 𝑖k × u).114

2.2. Quantities of interest115

2.3. Adaptation on log-lattices: HRB with friction116

2.3.1. Exponential instabilities in HRB117

As first shown by Calzavarini et al. (2006), HRB equations are prone to exponential118
instabilities, due to the conservation of the total energy. In the absence of large-scale friction,119
we also observe those instabilities in our log-lattice simulations (Figure 2a). As shown120
in Figure (1), the growth rate of the instability in the log-lattice simulations matches the121
theoretical growth rate given by Calzavarini et al. (2006); Schmidt et al. (2012):122

𝜎
√
Ra Pr =

1
2

[√︃(
(Pr+1)𝑘2

)2 + 4 Pr(Ra−𝑘4) − (Pr+1)𝑘2
]
∼
√
Ra, (2.4)123

for \, 𝑢 ∼ 𝑒𝜎𝑡+𝑖 ®𝑘 · ®𝑥 . This expression yields unstable solutions for Ra > Ra𝑐 = 𝑘4min where124

𝑘min is the modulus of the smallest mode on the grid, which is 2𝜋
√
3 in our case.125

However, the non-linear behavior of the instability in the log-lattice case is quite different126
from the one reported by Calzavarini: instabilities tend to extend significantly further and127
for longer times. Our interpretation is that in our log-lattice model, the modes are not128
coupled enough to develop the nonlinear saturation. The instabilities widely interfere with129
the statistical stability of observables and need to be removed for a meaningful analysis.130
Physically, these exponential ramps originate for a lack of energy sink to absorb the constant131
energy injection in the bulk by the (fixed) temperature gradient. Previous works on 1D132
simulations (Ching & Ko 2008) have shown that without a large-scale sink to counteract133
this source, energy diverges at large scales and scaling laws become incorrect. Therefore,134
to get rid of the exponential instabilities, we include a large-scale friction 𝑓 on both 𝑢 and135
\. By doing so, the instability saturates, and we achieve a statistically stationary state for136

Focus on Fluids articles must not exceed this page length
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Figure 2: Influence of the large-scale friction on the time behavior of the Nusselt number
Nu in 3D HRB. (2a) Without friction: we observe the growth of an exponential instability.

(2b) With friction: the instability saturates and the dynamics become statistically
convergent. Parameters: Ra = 106, Pr = 1, 𝑁 = 13.

Table 2: Physical quantities expressed as a function of the non-dimensional variables of
Eq. (2.5) . 〈·〉 denotes the temporal and spatial average.

.
Nu =

𝐽𝐻

^Δ𝑇
− 1→

√
Ra Pr · 〈𝑢𝑧\〉 − 1

Re =
√︁
〈𝑈𝑖𝑈𝑖〉𝐻

a
→

√︂
Ra
Pr

·
√︁
〈𝑢𝑖𝑢𝑖〉

𝜖\ = ^
〈
(𝜕𝑖Θ)2

〉
→

〈
(𝜕𝑖\)2

〉
√
Ra Pr

𝜖𝑢 = a
〈
(𝜕𝑖𝑈 𝑗 )2

〉
→

√︂
Pr
Ra

·
〈
(𝜕𝑖𝑢 𝑗 )2

〉

the heat transfer, as displayed in figure 2. Note however that the fluctuations of Nu around137
the stationary value are very broad, and extend over one or two orders of magnitudes. The138
same phenomenon was observed in the DNS of HRB (Calzavarini et al. 2005, 2006) and139
mentioned to be a source of difficulty to achieve reliable results (Borue & Orszag 1997). For140
this reason, very long simulations are necessary to get steady averages (Pumir & Shraiman141
1995; Calzavarini et al. 2006). In DNS, this cannot be achieved without cutting down the142
resolution, which may impact the reliability of dissipation estimates (Yeung et al. 2018). In143
the log-lattice framework, we do not have this problem, and we performed high resolution144
very long time averages on the log of Nu, and represent all quantities in log-log variables.145

146

2.3.2. Equations147

To investigate the ultimate regime, it is natural to adimensionalize the equation in terms of148
“inertial quantities”, i.e. using the vertical width 𝐻 as a unit of length, the free fall velocity149
𝑈ff = 𝛼𝑔Δ𝑇𝐻 as a unit of velocity, andΔ𝑇 as a unit of temperature. Table 2 indicates the form150
taken by observables after rescaling as indicated. The equations including the temperature151
gradient and the friction can then be written in terms of velocity as (with the Einstein152
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convention on summed repeated indices):154

𝜕𝑡𝑢𝑖 = P

[
−𝑢 𝑗𝜕 𝑗𝑢𝑖 + \𝛿𝑖=𝑧 +

√︂
Pr
Ra

∇2𝑢𝑖 − 𝑓 𝑢𝑖𝛿𝑘≈𝑘𝑚𝑖𝑛

]
𝑖

,

𝜕𝑡\ = −𝑢𝑖𝜕𝑖\ + 𝑢𝑧 +
∇2\

√
Ra Pr

− 𝑓 \𝛿𝑘≈𝑘𝑚𝑖𝑛
,

(2.5)155

where the Dirac 𝛿𝑘≈𝑘min filters out the small scales, and the projector, given in the Fourier156

space by P(A) = A − 𝑘𝑖

𝑘2
𝑘 𝑗𝐴 𝑗 , accounts for the pressure term under the divergence-free157

condition. We also looked at those equations expressed in terms of the vorticity ω = ∇×u:158

𝜕𝑡𝜔𝑖 = −𝜔 𝑗𝜕 𝑗𝑢𝑖 − 𝑢 𝑗𝜕 𝑗𝜔𝑖 + \ [∇ × z]𝑖 +
√︂
Pr
Ra

∇2𝜔𝑖 − 𝑓 𝜔𝑖𝛿𝑘≈𝑘𝑚𝑖𝑛
,

𝜕𝑡\ = −𝑢𝑖𝜕𝑖\ + 𝑢𝑧 +
∇2\

√
Ra Pr

− 𝑓 \𝛿𝑘≈𝑘𝑚𝑖𝑛
,

(2.6)160

Adding a large-scale friction to damp the inverse cascade is a classical trick-it is e.g.161
routinely used numerical simulations of 2D turbulence to avoid Bose condensation at 𝑘 = 0162
and enable stationarity (Sukoriansky et al. 1999). The present case is 3D, but we interpret163
the formation of exponential ramps as a signature of back-scattering of energy, a feature that164
was already mentioned previously in shell models of Rayleigh-Bénard convection (Ching165
& Ko 2008). The addition of the friction is therefore a convenient way to damp the large-166
scale modes that are generated by the large-scale instability. Such friction is also added in167
many models of climate, as a subgrid model to account for the friction at the boundary168
layer that cannot be resolved in the stratified case. The hand waving argument is that, within169
boundary layers, a shear profile develops, with extraction of energy at the boundaries, which170
is proportional to the square of the shear. Assuming the shear to be constant in the boundary171
layer, we can then estimate it by the difference between the velocity at the top of the layer,172
minus the velocity at the boundary which is zero. In total, the energy pumped by friction is173
proportional to the square of the velocity, which is exactly the law we have implemented.174
Such friction is termed Rayleigh friction in the climate community (Stevens et al. 2002) and175
can actually be seen as a way to take into account the boundary conditions that we have176
removed in the HRB setting.177

2.3.3. Conservations laws for HRB with and without friction178

In the absence of friction, the conservation laws for HRB are given by Eqs. (2.2) and by (2.3).179
The presence of the friction just adds a supplementary termproportional to 𝑓 in each equation.180
The result can be made non-dimensional using𝑈ff , 𝐻 and Δ𝑇 as units of velocity, length and181
temperature, resulting in :182

𝑓
〈
𝑢2𝛿𝑘≈𝑘𝑚𝑖𝑛

〉
+ 𝜖𝑢 =

Nu+1
√
Ra Pr

, (2.7)183

𝑓
〈
\2𝛿𝑘≈𝑘𝑚𝑖𝑛

〉
+ 𝜖\ =

Nu+1
√
Ra Pr

, (2.8)184
185

From now on, we define𝑈2
𝑙𝑠
=

〈
𝑢2𝛿𝑘≈𝑘min

〉
and Θ2

𝑙𝑠
=

〈
\2𝛿𝑘≈𝑘min

〉
.186



7

2.4. Log-lattices187

Log-lattice models fit into the more general framework of REduced Wavenumber set188
Approximation (REWA) (Grossmann et al. 1994)) or fractal decimated models (Frisch et al.189
2012; Lanotte et al. 2015). The spirit of these methods is to use a reduced subset of modes190
obeying a well-defined hierarchy, so as to stick closer to the observed organized nature of191
turbulence. In the original REWA models (Grossmann et al. 1994), non-linear-interactions192
are projectively decreased either in a random manner or such that they are distributed over193
a fractal set (Frisch et al. 2012; Lanotte et al. 2015). In log-lattice models, the modes194
reduction is achieved by keeping modes following a geometric progression, thereby allowing195
to reach very small scales with a very small number of modes. The construction is detailed196
in Campolina & Mailybaev (2021), where it is shown that fluid equations on log-lattices197
respect all symmetries of the Euler equations, and retain classical and basic properties of the198
Navier-Stokes equation, such as constancy of energy flux in the inertial range.199
There are several key differences compared to shell models (Brandenburg 1992; Ching200

& Ko 2008) or the original REWA model. Like in a shell model, simulations are carried201
out in Fourier space on an logarithmically-decimated grid. Unlike shell models, log-lattices202
are truly multidimensional, and unlike the original REWA model, the decimation does not203

have a fixed number of points per shell: k(𝑛1, . . . , 𝑛𝑑) =
∑︁
𝑖

_𝑛𝑖ei, 𝑛𝑖 ∈ Z with 𝑑 the spatial204

dimension and ei = x,y, z, . . .. Log-lattices are endowed with a scalar product:205

( 𝑓 , 𝑔) = <
(∑︁

k

𝑓 (k)𝑔(k)
)
, (2.9)206

and a convolution operator:207

( 𝑓 ∗ 𝑔) (k) =
∑︁
p,q

p+q=k

𝑓 (p)𝑔(q), (2.10)208

that naturally extend the corresponding operators on regular Fourier grids. This ensures209
that the log-lattice operators respect the symmetries of the Navier-Stokes equation, which210
ensures the conservation of energy, helicity (3D) or enstrophy (2D), etc. provided that they211
are conserved in the original equation. The constrain on the interacting triads on log-lattices212
∃𝑝, 𝑞 ∈ _Z : 𝑝 + 𝑞 ∈ _Z restricts the acceptable values of _ to three main families: _ = 2,213
the plastic number _ = 𝜌 ≈ 1.324, and _𝑏 − _𝑎 = 1, (𝑎, 𝑏) ∈ N2, whose biggest solution is214
the golden number _ = 𝜙 ≈ 1.618. From a numerical point of view, _ = 2 is the “fastest”215
option, as it has both a maximal span for a given number of points, and the least interactions216
per point. However, as outlined in the next part, we believe that _ = 2 should be avoided for217
incompressible simulations. We thereafter perform all our simulations with _ = 𝜙, which is218
the second biggest value of _, and has the second least number of interactions per grid point.219

2.5. Numerical details220

2.5.1. Configuration221

The minimum wave vector of the grid is set to 𝑘min = 2𝜋 to match a simulation on a box222
of size �̃� = 1. The grid size 𝑁 is then set so as to reach the dissipative scale both for223
velocity and temperature. We alternate between several initial condition (IC) choices for224
our simulations: large-scale initialization, Kolmogorov spectrum, flat-spectrum. All those225
choices are modulated by a weak multiplicative complex noise. We find no significant226
influence of those initial conditions on the scaling laws. As Ra or Pr increase, the simulations227
become slower and slower. This sets the upper bound on the range of parameters we can228
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Figure 3: Exact conservation laws for 𝜖\ in 3D results. Black points correspond to
varying Ra, gray points correspond to varying Pr. (3a) 𝜖\ + 𝑓Θ2

𝑙𝑠
vs (Nu+1)/

√
Ra Pr.

(3b) Compensated plot (𝜖\ + 𝑓Θ2
𝑙𝑠
)/

(
(Nu+1)/

√
Ra Pr

)
vs (Nu+1)/

√
Ra Pr.

integrate while retaining statistically relevant observables in a reasonable simulation time229
(one CPU days at most). In 3D, this yields Ramax ≈ 1010 for Pr = 1 and Prmax ≈ 5 · 104230
for Ra = 108. The lower bound is set by the value of the Nusselt number, which must obey231
Nu � 1, the value Nu ≈ 1 corresponding to the laminar regime with trivial scaling laws.232
Finally, integrating equations on log-lattices yields interesting and new numerical challenges.233
We built our own ODE integrator to solve them, as detailed in Supplementary Materials.234
Once we have ran a simulation for a long enough time, we compute Nu, 𝜖\ , 𝜖𝑢 by taking235

long time and space averages (with 〈𝑎𝑏〉 = 1
𝑇

∫
𝑡

dt(𝑎, 𝑏)) according to table 2. The accuracy236

of our results is controlled by checking that we recover the exact laws of HRB convection237
Eqs (2.8) and (2.7). This is shown in Fig. 3 and 4, for all 3D data sets used in the present238
paper (see Table 3). Furthermore, the ratio between the friction term and the dissipation is239
shown in Fig. 5.240

2.5.2. Simulation sets241

The results we obtained come from seven types of simulation that are described in the Table 3.242
For comparison, we also included in some graphs the results by (Calzavarini et al. 2005),243
obtained using DNS of the same equations, but at 𝑓 = 0.244
Historically, we performed first vorticity simulations, then velocity simulations, improving245

the integrator scheme in between to be able to better handle various numerical challenges246
raised by simulating wavenumbers as high as 𝑘 ∼ 105 in 3D. For transparency reasons,247
we decided to include all datasets we had at our disposal, but we believe that the velocity248
simulations are the more faithful ones, in the sense that they deal better with the small249
scales at large Rayleigh or Reynolds number. This sensitivity to small scale modeling (and250
resolution) is also a well-known feature of direct numerical simulations, especially when it251
comes to statistics of gradients or energy dissipation (Yeung et al. 2018).252
We have verified that the size of the grid for 3D simulations (𝑁 = 13) does not affect253

the mean value of the observables Nu,Re, . . . , which is already converged for grids of size254
𝑁 > 6. However the tail of the pdfs does depend on 𝑁 . Another 3D simulation set at 𝑁 = 20255
(not shown here, both vs Ra and Pr) displays the same scaling laws as the 𝑁 = 13 case,256
confirming this analysis.257
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Figure 4: Exact conservation laws for 𝜖𝑢 in 3D results. Black points correspond to
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Figure 5: Ratio between friction 𝑓𝑥 = 𝑓 𝑋2
𝑙𝑠
and dissipation 𝜖𝑥 for 𝑥 = 𝑢, \ (5a) versus Ra

at Pr = 1 and (5b) versus Pr at Ra = 108.

2.5.3. A case against _ = 2258

This section explains why the log-lattice parameter _ = 2 is ill-suited to simulating259
divergence-free equations. It is not specific to HRB simulations, however we believe this260
issue has not been reported in a publication before.261
_ = 2 is the biggest grid parameter that can be accommodated on a log-lattice. For a fixed262

grid size 𝑁 in dimension 𝐷, it is therefore very tempting to use _ = 2, since among all the _s263
it spans the greatest range of wavenumbers (the convolution’s complexity rises as O(𝑁𝐷)).264
However, _ = 2 misrepresents the convection term 𝑢 𝑗𝜕 𝑗𝑢𝑖 .265
The heart of the problem is easily understood through a simple 2D example. Consider the266

convection term 𝑢𝑥𝜕𝑥𝜔 + 𝑢𝑦𝜕𝑦𝜔 of a divergence-free flow, with a large-scale initialization267
𝑢(𝑘 > 𝑘0) = 𝜔(𝑘 > 𝑘0) = 0 for some 𝑘0. From a physical point of view, we expect convection268
to populate the 𝑘 > 𝑘0 region as time advances. However, with _ = 2, this does not happen,269
as is demonstrated below.270
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Table 3: Parameters of the data sets used in the present paper. 𝐷 is the dimension. The
"velocity" datasets are obtained by integration of Eq. (2.5), while the "vorticity" datasets
are obtained by integration of Eq. (2.6). 𝐷𝑁𝑆 refers to direct simulations of (Calzavarini
et al. 2005) , using a classical spectral Fourier code (on a regular grid). The ++ label refers
to an integration using an improved integrator, using a reshuffling of variable matrices that
allows faster simulations. The Ra and Pr column provides the Rayleigh and Prandtl number
range of the simulations. 𝑓 is the large scale friction, 𝑁 = 1 + log 𝑘max/log(𝜙), where
𝑘max is the maximal wavenumber of the simulation and 𝜙, the golden mean, is a measure
of the spatial resolution. For log-lattices, its corresponds to the number of modes in each
direction. 𝑁𝑎𝑣 is the length of the simulation, divided by the large eddy turnover time. It
provides the number of decorrelated frames that can be used to estimate statistical averages.
The tolerance refers to the absolute and relative tolerances that are fixed equal in all the
simulations.

Name D Type Ra Pr 𝑓 𝑁 𝑁𝑎𝑣 Tolerance Symbol

(I) 1𝐷 Velocity [105, 1050] 1 1 120 - 10−3

(II) 2D Vorticity [105, 1050] 1 1 20 - 10−3
(III) 3D Velocity [1, 1010] 1 1 13 > 480 10−6
(IV) 3D Vorticity [1, 1010] 1 1 13 > 480 10−6
(V) 3D Velocity 108 [5 · 10−4, 102] 1 13 > 50 10−6
(VI) 3D Vorticity 108 [5 · 10−4, 102] 1 13 > 50 10−6
(VII) 3D ++Velocity {109, 1010, 1011} [5 · 10−4, 102] 1 13 > 80 10−6 -
(VIII) 3D Velocity [106, 1010] 1 1 13 > 50 10−6

Calzavarini 3D DNS [105, 108] [10−1, 10] 0 - > 64 -

In a divergence-free flow, 𝑢𝑥 ∗𝜕𝑥𝜔 = −i
(
𝜔𝑘𝑦

𝑘2
∗ 𝑘𝑥𝜔

)
, 𝑢𝑦 ∗𝜕𝑦𝜔 = i

(
𝜔𝑘𝑥

𝑘2
∗ 𝑘𝑦𝜔

)
where271

∗ denotes a convolution. In a _ = 2 log-lattice, convolutions are defined as† 𝑓 ∗ 𝑔(_𝑛, _𝑚) =272
𝑓 (_𝑛−1, _𝑚−1) · 𝑔(_𝑛−1, _𝑚−1). Due to the initial conditions, this yields:273 (

𝑢𝑥 ∗ 𝜕𝑥𝜔 + 𝑢𝑦 ∗ 𝜕𝑦𝜔
)
(𝑘 ≈ 𝑘0) = 0274

There is no forward convection at all, therefore there can be no forward cascade in such275
case.276
This does not happen for other values of _, for which the convolution is evaluated at277

asymmetric positions. We therefore advise against using _ = 2 in divergence-free fluids, and278
suggest to rather use _ = 𝜙 (the second-biggest grid parameter).279

2.5.4. Zero-divergence problem in 1D280

In the 1D case, we cannot impose the zero-divergence condition, so that quantities like 𝑢𝑥𝜕𝑥\281
and 𝜕𝑥 (𝑢𝑥\) are not equivalent . Here, we have followed the same choice than Ching & Ko282
(2008), and wrote the equation as:284

𝜕𝑡𝑢 = −𝑢𝜕𝑥𝑢 + \ +
√︂
Pr
Ra

∇2𝑢 − 𝑓 𝑢𝛿𝑘≈𝑘𝑚𝑖𝑛
,

𝜕𝑡\ = −𝑢𝜕𝑥\ + 𝑢 + ∇2\
√
Ra Pr

− 𝑓 \𝛿𝑘≈𝑘𝑚𝑖𝑛
.

(2.11)285

† excluding the 𝑘 = 0 mode, which is not used in this paper

Rapids articles must not exceed this page length
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Figure 6: Non-dimensional heat transfer Nu vs Rayleigh number Ra in 1D and 2D.
Correspondence between symbols and datasets are given in Table 3. (6a) Nu vs Ra. The
gray dashed line corresponds to Nu ∼

√
Ra, corresponding to ultimate regime scaling. (6b)

Compensated plot 𝐴Nu/
√
Ra vs Ra., where 𝐴 is adjusted to collapse the 1D and 2D data

in the ultimate regime.

3. Results and Discussion286

3.1. One and two-dimensional cases287

Figure 6 presents the Nu vs Ra scaling in 1D and 2D. The 1D Nu scaling law extends over288
50 orders of magnitude in Ra (Fig. 6a) , and follows closely the law Nu ∼ Ra1/2, as can289
be checked by the compensated plot in Fig. (6b), in agreement with Ching & Ko (2008).290
In 2D, the scaling also extends approximately over 30 orders of magnitudes for Ra > 1023.291
Moreover, the compensated plot highlights small fluctuations around this law, see Fig. (6b),292
due to statistical noise.293

3.2. In 3D294

In 3D, the simulations get significantly more turbulent and results are subject to more295
statistical fluctuations. Another source of fluctuations comes from a physical phenomenon,296
associated with the existence of friction. To showcase this effect, we plot in Fig. 5a and Fig. 5b297
the ratio between the energy dissipated by friction and the energy dissipated by viscosity or298
diffusivity for both the kinetic energy and the thermal energy.299
Fixing Pr = 1 and varying Ra between 103 and 108, we observe in Fig. 5a that both300

𝑓𝑢 = 𝑓𝑈2
𝑙𝑠
/𝜖𝑢 or 𝑓\ = 𝑓Θ2

𝑙𝑠
/𝜖\ behave in the same way as a function of Ra at low Ra, the301

dissipation due to friction is small, and gradually increases towards reaching a plateau around302
Ra ∼ 107, where energy dissipated by frictions reach about 90% of the energy dissipated by303
viscosity or diffusivity. We can thus define a “non-universal” regime where 𝑓 /𝜖 depends on304
Ra, Pr and a “universal” regime where 𝑓 /𝜖 does not depend on Ra, Pr.305
The critical Rayleigh number where the plateau occurs is likely to depend on the Prandtl306

number. To check this; we now fix Ra = 108 and vary Pr from several order of magnitude.307
In Fig. 5b, we then observe an interesting symmetrical behaviour, with respect to Pr = 1:308
decreasing Pr, we observe that the energy dissipated by the velocity friction remains of the309
same order of magnitude than the dissipation by viscosity, while the energy dissipated by310
thermal friction strongly decays and become negligible. As Pr shifts away from 1, we observe311
the symmetrical behavior, with velocity friction becoming negligible, while thermal friction312
remains of the same order of magnitude than the thermal energy dissipation. As we will see,313
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Figure 7: Non-dimensional heat transfer Nu vs Rayleigh number Ra in 3D for Pr = 1.
Correspondence between symbols and datasets are given in Table 3. The gray dashed line
separates the non-universal (left) and the universal (right) friction dominated regimes for
data corresponding to Fig.5. (7a)Nu vsRa. The black dashed line corresponds toNu ∼

√
Ra,

corresponding to asymptotic ultimate regime scaling. (7b) Compensated plot Nu/
√
Ra vs
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10−3 10−1 101 103

Pr

103

105

N
u

(a)

10−2 100 102

Pr

103

104

105

N
u
/P

r0.
5

(b)

Figure 8: Scaling of non-dimensional heat transfer Nu as a function of Prandtl number Pr
in 3D for Ra = 108. Correspondence between symbols and datasets are given in Table 3.
The gray dashed line separates the non-universal (left) and the universal (right) friction
dominated regimes for data corresponding to Fig.5. (8a) Nu vs Pr. The black dashed line
corresponds to Nu ∼

√
Pr, corresponding to asymptotic ultimate regime scaling. (8b)

Compensated plot Nu/
√
Pr vs Pr.

this will have an impact on the thermal transport. Note that at small (resp. large) Pr, all the314
thermal (resp. velocity) modes become concentrated at large scale, where the friction occurs.315
Therefore, in the large Pr regime, the kinetic friction and viscous dissipation compete, while316
at small Pr the same remark holds for the thermal friction and diffusive dissipation. This may317
then explain the vanishing of the friction in those regime.318
We now focus on the regimes where the ratio of friction to dissipation is approximately319

constant. These regimes are friction dominated, but, as we will see, are characterized by320
interesting universal scaling regimes.321
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Figure 9: Scaling of Reynolds number Re as a function of Rayleigh number Ra in 3D
for Pr = 1. Correspondence between symbols and datasets are given in Table 3. The gray
dashed line separates the non-universal (left) and the universal (right) friction dominated
regimes for data corresponding to Fig.5. (9a) Re vs Ra. The black dashed line corresponds
to Re ∼

√
Ra, corresponding to asymptotic ultimate regime scaling. (9b) Compensated plot

Re/
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Ra vs Ra.
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Figure 10:Scaling of Reynolds numberRe as a function of Prandtl numberPr in 3D forRa =
108. Correspondence between symbols and datasets are given in Table 3. The gray dashed
line separates the non-universal (left) and the universal (right) friction dominated regimes
for data corresponding to Fig.5. (10a) Re vs Pr. The black dashed line corresponds to Re ∼
1/
√
Pr, corresponding to ultimate regime scaling. (10b) Compensated plot Re/

(
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√
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)
vs

Pr.

Figures 7 and 8 presents the 3D Nu vs Ra, Pr scalings. Figures 9 and 10 presents the 3D322
Re vs Ra, Pr scalings. Scaling are always displayed both directly and in compensated form.323
At low Ra, we first observe a transition from a laminar regime, where Nu = 1 up to a324

turbulent regime starting around Ra ∼ 107 at Pr = 1. In this transition regime, the Nusselt325
number varies approximately like Nu ∼ Ra2/3, while the Reynolds number remains less than326
104, but follows approximates laws Re ∼ Ra1/2. In this regime, the friction is negligible, as327
we saw, so that it corresponds to a laminar, frictionless regime.328
After this laminar regime, we obtain a turbulent regime around 107 < Ra for Pr = 1 in329
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Figure 11: Scaling of heat transfer Nu as a function of Prandtl number Pr in 3D results at
fixed Ra, dataset VII (Table 3) (11a) Nu/

√
Pr vs Pr for various Ra. (11b) Re/

(
1/
√
Pr

)
vs Pr

for various Ra.

which Nu ∼ Ra1/2 and Re ∼ Ra1/2, like GL theory. The exact value of the exponent is330
provided in Table 1. In this regime, the friction are non-negligible, so that it is a “turbulent331
friction dominated regime” However, as both ratio 𝑓𝑢 = 𝑓𝑈2

𝑙𝑠
/𝜖𝑢 or 𝑓\ = 𝑓Θ2

𝑙𝑠
/𝜖\ remain332

independent of Ra, they do not change the scaling of the total kinetic and thermal energy333
dissipation. Therefore, the argument developed by GL theory should still apply in this334
situation, as is indeed observed, with minor corrections due to the small variations of the335
ratios.336

In that respect, it is not surprising that the the extent of this regime varies with Pr, as is337
shown in Fig. 11 for variousRa. At 𝑅𝑎 = 108, the “universal GL” regime stops forPr <∼ 10−1.338
In this range of parameters, Re is still large, so that the flow is turbulent. However, Nu drops339
quicker with decreasing Pr than in the universal GL regime, as can be seen from the filled data340
points in Fig. 8, in parallel with a similar drop for the thermal friction observed in Fig. 5b.341
This regime seems therefore dependent of the variation on the friction, and is non-universal.342
In this regime, the Reynolds number variation with Pr is milder than in the universal regime,343
as can be seen in Fig. 10.344

As the Rayleigh number increases, we nevertheless observe in Fig. 11 that the extent of345
the universal turbulent regime extends towards smaller and smaller values of Pr, so that346
the universal scaling regime corresponds to an “asymptotic scaling regime” at low value of347
Pr < 1, valid in the limit of infinite Ra.348

Figures 12 and 13 plot the kinetic and thermal dissipation rates 𝜖𝑢 , 𝜖\ against GL349
predictions. In agreement with what has been observed previously, we observe agreement350
withGL theory in the range of parameters where the friction ratios are approximately constant351
with the parameters, i.e. at large value of Re Pr. Overall, it is interesting to note that even352
when the friction is dominant, we can recover the ultimate regime scaling, as long as the353
velocity friction ratio remain relatively constant as a function of the parameters and neither354
there is not too big an asymmetry between the two frictions. In regimes where the asymmetry355
prevails, there are no clear scaling laws that emerge, meaning that the scaling are probably not356
universal in Ra and Pr only, and that friction depending corrections need to be implemented.357



15

101 103 105

RePr

102

104

106
ε θ
√

R
aP

r

(a)

101 103 105

RePr

10−1

100

101

ε θ
√

R
aP

r/
R

eP
r

(b)

Figure 12: Scaling of thermal dissipation rate 𝜖\ compared to the GL predictionRe
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Pr/Ra

in 3D results. Correspondence between symbols and datasets are given in Table 3).
The gray dashed line separates the non-universal (left) and the universal (right) friction
dominated regimes for data corresponding to Fig.5. (12a) 𝜖\
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Figure 13: Scaling of kinetic dissipation rate 𝜖𝑢 compared to the GL prediction
Re3 (Pr/Ra)3/2 in 3D results. Correspondence between symbols and datasets are given
in Table 3). The gray dashed line separates the non-universal (left) and the universal
(right) friction dominated regimes for data corresponding to Fig.5. (13a) 𝜖𝑢

√︁
Ra3 Pr vs

Re3 Pr2. The black dashed line corresponds to the GL prediction 𝜖𝑢 ∼ Re3 (Pr/Ra)3/2.
(13b) Compensated plot 𝜖𝑢

√︁
Ra3 Pr/Re3 Pr2 vs Re3 Pr2.

4. Conclusion358

In this letter, we investigated scaling laws in the Homogeneous Rayleigh Bénard (HRB)359
equations through a new mathematical framework (“log-lattice”). Using a modified DOPRI360
solver, we are able to explore a range of parameters and wave-numbers way beyond what is361
accessible in direct numerical simulations of the equations. By adding a large-scale friction362
to the HRB equations, we are able to solve the issue of exponentially diverging solutions.363
This large scale friction become non-negligible when the fluid become turbulent enough, so364
that total energy balance depart from the energy balance considered in GL theory, where no365
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friction is present. Despite this, we still observe scaling law for Nu and Pr that are very close366
to the universal turbulent predictions of Grossmann-Lohse (GL) theory: Nu ∼ Ra1/2 Pr1/2,367
Re ∼ Ra1/2 Pr−1/2, 𝜖\ ∼ Re(Pr/Ra)1/2, 𝜖𝑢 ∼ Re3(Pr/Ra)3/2 for an important range of368
parameters, corresponding to situations where the thermal friction is non-negligible and the369
kinetic friction does not vary significantly as a function of the parameters. This is obtained370
at large enough Ra and for Pr depending on the value of Ra.371
In addition to this regime, we also observe another turbulent friction dominated regime372

at Pr � 1. This regime has no simple and universal dependence with the parameter, and373
depends on the variations of the kinetic friction with the parameters.374
Our observation show that the inclusion of friction, which is necessary to obtain stationary375

regimes in the HRB framework, complexifies the phase space but nevertheless allows for376
the existence of a universal turbulent regime, where scaling laws are very close to the GL377
friction-less theoretical laws. In some geophysical or astrophysical situations, large scale378
friction arises due to rotation (Ekman friction), stratification (Rayleigh friction) or magnetic379
field (Hartman friction), and the two scaling regimes we find (one universal, and one non-380
universal) may be relevant and could be explored within the log-lattice framework.381
More generally, we believe that log-lattices, with their unique performances in terms of382

numerical complexity, due to a spectrally sparse representation and strong mathematical383
qualities, have a great potential in numerical simulations of geophysical or astrophysical384
flows. However, as they are still in their infancy, many different paths would benefit from385
being explored to better understand their strengths andweaknesses. This in particular includes386
a better understanding of the influence of the numerical scheme which, as discussed in the387
supplementary materials, may misrepresent the viscosity at high wavenumbers. We believe388
that methods such asWhalen et al. (2015) could prove most useful in that regard. Other topics389
of interest include the behavior of observables when _ → 1 and the addition of the 𝑘 = 0390
mode would prove very interesting to study. Likewise, in a similar spirit as was done for391
the REWA model in Grossmann et al. (1996), a detailed comparison of DNS and log-lattice392
results (which is far from trivial, as there is room for interpretation as to the mathematical393
meaning of the fields simulated on a log-lattice) would be highly useful.394
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