Christian Bidard 
email: christian.bidard@u-paris10.fr
  
The Ricardo-Lemke parametric algorithm on oddity and uniqueness

Keywords: Oddity, parametric Lemke algorithm, Ricardo, uniqueness JEL classi…cation. B12, C61, C63

The parametric Lemke algorithm …nds an odd number of solutions to the linear complementarity problem LCP (q, M ), for a matrix M with zero blocks on the diagonal and vector q within a certain domain. A criterion for monotonicity and uniqueness is given. The algorithm applies to the determination of a long-run equilibrium in the presence of scarce resources, and its …rst description can be traced back to the nineteenth century economist

Introduction

For a given matrix M , the parametric Lemke algorithm aims to solve the linear complementarity problem LCP(q ; M ) by transferring a known solution of LCP(q(0); M ) along a curve joining vector q(0) to vector q . Most of the time, in a neighborhood of a point q(t), the transfer involves a smooth adaptation of the solution obtained at q(t); from time to time, some positive component of a solution vanishes and a more dramatic change is required to avoid it becomes negative. This change is mechanically determined by the algorithm, but it cannot be excluded that it leads to a U-turn on the path (antitone move), and then a second solution is obtained for some q(t). Under which circumstances does the algorithm …nd a solution associated with q ? Assume that the algorithm has the following properties: it works everywhere in a neighborhood of a point on the curve (U-turns being admitted), the solution for q(0) is unique, there are …nitely many solutions (if any) for any vector on the path and, …nally, the algorithm never returns to a previously examined solution (that last property follows from a reversibility property of the algorithm). Then, starting from the unique solution attached to q(0), transfers along the path de…ne a unique sequence of transformed solutions, and the algorithm must eventually reach q : a solution of LCP(q ; M ) is obtained. If the curve is prolongated beyond q and goes to a point q(1) for which the solution is also unique, it may be the case that other solutions are found at q , because U-turns may lead the algorithm to return to that point. However, since the trajectory starts from q(0) and reaches q(1), it goes an odd number of times to q (except if q is itself a point of U-turn); s times in the direct way from q(0) to q(1), s 1 in the opposite way. This suggests that the working of the parametric Lemke is intrinsically linked with an oddity property of the number of solutions. Uniqueness of the solution at any point of the path goes hand in hand with the absence of antitone move, and a global uniqueness result can be expected under some additional hypothesis.

These ideas are applied to a speci…c type of matrix M , with two blocks of zeroes on the diagonal. Section 2 describes the algorithm and Section 3 studies its properties when q belongs to some domain. Section 4 shows that the algorithm …nds an odd number of solutions. Section 5 states a criterion for monotonicity, local and global uniqueness. The problem here examined stems from economic theory and can be traced back to the English economist David Ricardo (1772-1823), who studied how, in the presence of a scarce resource (land), a long-term equilibrium is a¤ected by increasing demand. Ricardo may be considered as a precursor of the parametric Lemke algorithm (Section 6), which we therefore dub 'Ricardo-Lemke algorithm'.

Notations: For a real vector x, notation x >> 0 means that it is positive (all its components are positive), x > 0 that it is semipositive (x nonnegative and nonzero) and x 0 that it is nonnegative. The notation x 0 [y] means x and y are nonnegative and componentwise complementary. For a vector x, x T denotes the transpose of x, and the same for matrices.

The Ricardo-Lemke algorithm

Let matrices A and B be given m n real matrices, while q 1 2 R n and q 2 2 R m are given vectors. For q = q 1 q 2 and M = 0 A T B 0 , the problem LCP(q; M ) consists in …nding nonnegative vectors

z 1 2 R m ; z 2 2 R n such that A T z 2 + q 1 0 [z 1 ] (1) Bz 1 + q 2 0 [z 2 ] (2) 
Let us assume: (H 1 ) A + B 0 Lemma 1 Under assumption (H 1 ), the unique solution to (1)-( 2) for q >> 0 is z 1 = z 2 = 0.

Proof. Consider a solution (z 1 ; z 2 ) of LCP(q; M ) with q >> 0. By summing up the equalities

0 = z T 1 A T z 2 + z T 1 q 1 and 0 = z T 2 Bz 1 + z T 2 q 2 , one obtains 0 = z T 2 (A + B)z 1 + z T 1 q 1 + z T 2 q 2 ,
and assumption (H 1 ) implies z 1 = z 2 = 0: It is convenient to transform inequalities (1)-(2) into a more tractable system. Let vectors

q 2 = q 2 0 2 R m+n + ; z 2 = z 2 ! 2 R m+n +
be obtained by extending the previous vectors q 2 and z 2 with n additional components (! 0). Similarly, let I n be the identity matrix of dimension n and let

A = A I n ; B = B I n
be extended matrices of dimension (m + n) n. Clearly enough, any solution (z 1 ; z 2 ) gives birth to a solution (z 1 ; z 2 ) of the problem 3

A T z 2 + q 1 = 0 (3) Bz 1 + q 2 0 [z 2 ] (4) 
where the last n components of vector z 2 are ! = A T z 2 + q 1 0, and viceversa.

The assumptions on matrices A and B are better expressed on their extensions A and B. Consider a continuous curve (C) q 1 = q 1 (t) in R n (t 2 [0; 1]) with unchanged q 2 . The curve is oriented according to increasing values of t and is assumed to have the following properties (H 2 ) and (H 3 ). For any q 1 on (C) and any solution to (3)-( 4):

(H 2 ) The equality (Bz 1 + q 2 ) i = 0 holds for at most n components; then the corresponding n rows of A are independent, and the same for B.

(H 3 ) The curve (C) cuts the cones positively generated by n 1 rows of A at …nitely many points, and no point of (C) belongs a cone generated by n 2 rows.

Conditions (H 2 ) and (H 3 ) avoid degeneracies in the working of the Ricardo-Lemke algorithm (or parametric Lemke algorithm) we now describe.

At a given step of the algorithm, let the starting point be a value b t 2 [0; 1] which is not one of the intersection points mentioned in (H 3 ), a direction of change of t (say, increasing values), and a known solution (z 1 ( b t); z 2 ( b t)) of (3)-(4) for q 1 ( b t) 2(C) such that z 2 ( b t) has exactly n positive components I f1; :::; m + ng. By the complementarity condition (4) and (H 2 ), equality (Bz 1 + q 2 ) i = 0 holds exactly for these components i 2 I, and the knowledge of the set I su¢ ces to identify the solution (z 1 ( b t); z 2 ( b t)). With q 1 (t) moving on the curve, the problem is to …nd a solution such that z 2 (t) varies continuously. The algorithm describes the unique answer, if any, to that problem. For small variations of t around b t, the second condition in (H 2 ) implies the existence of z 2 (t) 0 such that equality A T z 2 (t) + q 1 (t) = 0 holds, with the same positive components I as for z 2 ( b t). Then conditions (3) and ( 4) are met for an unchanged vector z 1 , therefore the solution is extended by continuity to a neighborhood of b t. The process works in an interval [t 0 ; t 1 ] containing b t until t reaches a value t 1 (t 1 > b t, given the above assumption that t is increasing) such that some positive component j 2 I of z 2 (t 1 ) vanishes and would become negative for a higher value of t. The point q 1 (t 1 ) 2(C) is one of the points referred to in condition (H 3 ), and that condition ensures that the components of z 2 (t 1 ) other than j remain positive. The question is to extend the solution beyond that limit, with a continuous change in z 2 (t). Then the complementarity conditions (4) imply that equalities (Bz 1 + q 2 ) i = 0 hold in a neighborhood of t 1 for the n 1 components i 2 In fjg. According to the third condition in (H 2 ), the general solution z 1 (t) of these n 1 a¢ ne equalities is of the type z 1 (t) = z 1 ( b t)+ z 0 1 where z 1 ( b t) is the previous solution, z 0 1 is a nonzero solution of (Bz 0 1 ) i = 0 for i 2 In fjg and is an arbitrary scalar. z 0 1 is unique up to a factor that we choose in order that (Bz 0 1 ) j > 0. Then inequality (4) for z 1 = z 1 (t) holds as an equality for any i 2 In fjg, and as a strict inequality for component j if and only is positive.

Assume that the following condition (D) holds (otherwise, there is no solution of LCP(q(t); M ) with positive components in In fjg, and a fortiori no continuous extension of the previous solution):

(D) Bz

0 1 0 Condition (D) means that b k z 0 1 < 0 for some row k of B (then k = 2 I).
For any row of that type, the initial inequality (Bz 1 (t) + q 2 ) k 0 is transformed into an equality for z 1 (t) = z 1 (t) + z 0 1 and some positive . Let us pick up the component k corresponding to the minimum positive value of for which that equality occurs (that minimum rule might alternatively be described in geometric terms as the choice of a new facet). For that minimum value, the vector inequality (4) holds with exactly n equalities for the components in the n-set J = fkg [ In fjg. According to (H 2 ), there exists a vector z 2 = z J2 (t), with null components outside J, such that equality (3) holds. At t = t 1 ; z J2 (t 1 ) is a strictly positive combination of the n 1 rows of B belonging to In fjg = Jn fkg. By the second condition in assumption (H 2 ), a unique decomposition (a i is the ith row of A)

q 1 (t) = X i2Jnfkg [z J2 (t)] i a i + [z J2 (t)] k a k (5)
is obtained in a neighborhood of t 1 , with [z J2 (t)] i close to [z J2 (t 1 )] i and therefore positive, while 4) is thus found on that half-interval. A new starting point t 1

[z J2 (t)] k is close to [z J2 (t 1 )] k = 0. According to (H 3 ), [z J2 (t)] k is nonzero for t close but di¤erent from t 1 , therefore [z I2 (t)] k is positive either on an interval ]t 1 ; t 1 + [ (monotone move) or on ]t 1 ; t 1 [ (antitone move). A solution of (3)-(
, a new orientation for t and a new set J of positive components for z 2 (t 1

) are thus de…ned, so that the algorithm works locally.

Properties of the algorithm

The oriented curve (C) from q 1 (0) to q 1 (1) being de…nitely given, consider a pair (I; [t 0 ; t 1 ]), where I is an n-subset of f1; :::; m + ng sustaining a solution of LCP(q(t); M ) with positive components of z 2 (t) in I for t in [t 0 ; t 1 ], and [t 0 ; t 1 ] is an oriented interval (t moves towards t 1 ). The knowledge of I su¢ ces to identify the interval [t 0 ; t 1 ] or [t 1 ; t 0 ], not its orientation, as well as the associated solution of LCP(q(t); M ) for any t in that interval. The set S made of all pairs of that type is …nite. If the algorithm works locally, the knowledge of (I; [t 0 ; t 1 ]) also su¢ ces to identify the pair (J; [t 1 ; t 2 ]) which succeeds it, which is denoted suc(I; [t 0 ; t 1 ]) (however, the function suc : S ! S is not de…ned if t 1 = 0 or 1, as the algorithm stops if either q 1 (0) or q 1 (1) is reached). The algorithm can therefore be represented as a …nite directed graph whose nodes are the elements of S. The algorithm, which starts from a given solution (I 0 ; [0; ]) at q 1 (0), …nds a solution at q 1 (1) if the successor of each node is well de…ned and if it admits no loops. Lemma 2 deals with the …rst condition, while the second condition results from the reversibility property (Lemma 3).

Let D R n be the open and convex set, which contains the strictly positive orthant, de…ned as

D = q 1 ; 9y > 0 q 1 >> B T y R n (6) 
Lemma 2 means that the algorithm transfers a solution from interval

[t 0 ; t 1 ] to the next [t 1 ; t 2 ].
Lemma 2 Let the curve (C) lie in D. Each element (I; [t 0 ; t 1 ]) of S admits a unique successor, except if t 1 = 0 or 1.

Proof. From Section 2, we know that the successor of (I; [t 0 ; t 1 ]) is well de-…ned if condition (D) holds, where z 

T 1 q 1 (t 1 ) = z 0 T 1 A T z 2 (t 1 ) z 0 T 1 B T z 2 (t 1 )
, and the last term is zero because B T z 2 (t 1 ) is a combination of the columns of matrix B belonging to the set In fjg, which are all orthogonal to z 0 1 . According to de…nition (6), there exists y > 0 such that z

0 T 1 B T y < z 0 T 1 q 1 (t 1 ) 0, therefore condition (D) is met.
The reversibility property considers the e¤ects of a reverse move of t:

Lemma 3 For t 1 6 = 0; 1, let suc(I; [t 0 ; t 1 ]) = (J; [t 1 ; t 2 ]). Then suc(J; [t 2 ; t 1 ]) = (I; [t 1 ; t 0 ]).

Proof. (J; [t 1 ; t 2 ]) being constructed as the successor of (I; [t 0 ; t 1 ]), let us now start from (J; [t 2 ; t 1 ]). The limit of the solution sustained by J is reached at value t 1 when the kth component of z J2 (t) vanishes. Let T be the n-set which succeeds J. According to the construction examined in Section 2, the new vector z T 1 di¤ers from z J1 by y 0 1 , where y 0 1 is a solution of the equations (By 0 1 ) i = 0 for i 2 Jn fkg. As Jn fkg = In fjg, these equations are the same as those determining z 0 1 in the passage from (I; [t 0 ; t 1 ]) to (J, [t 1 ; t 2 ]), so that y 0 1 is proportional to z 0 1 . We have already noticed that (Bz ). The scalars and are both de…ned as the minimum value for which equality (Bz J1 + q 2 ) i = 0 , which holds for the n 1 components in Jn fkg, also holds for one more component. Therefore = , T = I, and the successor of (J; [t 2 ; t 1 ]) is (I; [t 1 ; t 0 ]).

Let rev be the function which associates with each pair (I; [t 0 ; t 1 ]) of S its reverse (I; [t 1 ; t 0 ]). Lemma 3 applied to (I; [t 1 ; t 0 ]) states that the function suc rev suc rev is the identity on S: Lemma 4 For t 0 6 = 0, each element (I; [t 0 ; t 1 ]) of S admits a unique predecessor.

Proof. The function pre = rev suc rev de…nes the unique predecessor of an element of S.

Lemma 5 From a given starting point, the algorithm does not reach a node and its reverse.

Proof. It the algorithm reaches (I; [t 0 ; t 1 ]) at step and (I; [t 1 ; t 0 ]) at step , with > , it reaches suc(I; [t 0 ; t 1 ]) at step + 1 and pre(I; [t 1 ; t 0 ]) at step 1. By Lemma 3 these nodes are also reverse from each other but the gap is reduced by two. But cannot be reduced either to zero (this would mean t 0 = t 1 ) or to one (this would mean that (I; [t 1 ; t 0 ]) succeeds (I; [t 0 ; t 1 ]), when two consecutive sets di¤er by one element).

Lemma 6 If the solution of LCP(q(0); M ) is unique, the algorithm never returns either in a neighborhood of t = 0 or on a previously examined solution at q(t):

Proof. Let (I 0 ; [0; ]) be the starting point in S. If the solution at q(0) is unique and the algorithm returns at step in a neighborhood of t = 0, the set I of positive components of z 2 (t) must be the same by the uniqueness of the solution, and the values of t are decreasing, therefore (I ; [t ; t +1 ]) = rev(I 0 ; [0; ]), which is excluded by Lemma 5. The same Lemma also implies that if the algorithm returns at steps and to a previously examined solution (then I = I ), the direction must be the same in both cases, therefore (I ; [t ; t +1 ]) = (I ; [t ; t +1 ]). That identity also holds for their predecessors at steps 1 and 1, and a contradiction is obtained by considering the …rst pair ( , ) for which a return occurs.

Oddity property

The …rst part of Theorem 1 considers an oriented curve from q 1 (0) >> 0 to q 1 (in the literature on the parametric LCP, it is generally the segment joining these points), the second part prolongates that curve, which returns into the positive orthant.

Theorem 1 Let (C) q 1 = q 1 (t) be a curve in D, joining from q 1 (0) >> 0 to q 1 . Under assumptions (H 1 );(H 2 ) and (H 3 ), the Ricardo-Lemke algorithm …nds a solution of the linear complementarity problem (1)-( 2) at (q 1 ; q 2 ). If the curve (C) returns to q 1 (1) >> 0, the algorithm …nds an odd number of solutions (…nitely many points on the curve apart), the solutions corresponding to a monotone move exceeding by one those corresponding to an antitone move.

Proof. The algorithm admits a representation in terms of a …nite directed graph, with the (I ; [t ; t +1 ])'s as nodes. The starting point is unique (Lemma 1), each node has a unique successor (except if t +1 = 1) and a unique predecessor (except if t = 0), and loops are excluded. Therefore, the trajectory starting from q 1 (0) must reach q 1 and de…nes a solution at that point. Assume moreover that the curve (C) continues and goes to q 1 (1) >> 0. The unique solution at q 1 (0) is transferred along the path and transformed into one or more solutions at q 1 , because of possible antitone moves, then is transferred to q 1 (1). Among the solutions thus generated at q 1 , those corresponding to monotone moves exceed by one those corresponding to antitone moves, except if q 1 is a point of U-turn.

Theorem 2 For q 1 in D, the number of solutions of LCP(q ; M ) is generically odd.

Proof. Take an arbitrary solution at q 1 as starting point, with an initial direction towards q 1 (1). If the trajectory (T) generated by the algorithm reaches either q 1 (0) or q 1 (1), it is a sub-trajectory of the unique trajectory joining q 1 (0) to q 1 (1). These solutions are those examined in Theorem 1 and their number is odd. It may also be the case that (T) never reaches q 1 (0) or q 1 (1) because the graph admits a loop. Then, as the successor and the predecessor of a node are unique, that disconnected part of the graph is itself is a loop. The trajectory oscillates around q 1 , with alternate monotone and antitone moves, and a new solution is found everytime it reaches q 1 , until it comes back to the solution one started with. The number of solutions thus generated at q 1 is even, with an equal number of monotone and antitone moves. If the starting point is anyone of these new solutions, the same set of solutions is found. A partition of those additional equilibria is thus obtained, with an even number of solutions in each subset.

Monotonicity and Uniqueness

Let (J; [t 1 ; t 2 ]) succeed (I; [t 0 ; t 1 ]):By assumption (H 2 ), the four n n submatrices A I , A J , B I and B J made of the rows I and J of A and B are regular. The following criterion determines if the move of t is the same for the consecutive nodes (t is either increasing or decreasing in both cases) or if it changes (monotone and antitone moves, therefore the values of t overlap).

Theorem 3 When J succeeds I, the direction of the move of t is unchanged if and only if det A I = det B I and det A J = det B J are the same sign. Otherwise, a U-turn on the curve (C) occurs.

Proof. We have Jn fkg = In fjg. By (2), inequality Bz I1 + q 2 0 holds for the vector z I1 associated with I, and since it holds as an equality for the I-components, assumption (H 2 ) implies that the inequality is strict for component

k: k = b T k z I1 + q 2k > 0. As b T k z J1 + q 2k = 0, we have k = b T k (z I1 z J1 )> 0. Similarly, j = b T j (z J1 z I1 ) > 0. Vector z J1 z I1 is orthogonal to the row-vector k b T j + j b T k . By construction, z J1 z I1 = z 0 1
is also orthogonal to the n 1 rows of B belonging to In fjg = Jn fkg. Thus matrix k B J + j B K transforms z J1 z I1 into the null vector, therefore k det B I + j det B J = 0 and det B I and det B J have opposite signs.

For t in the interval associated with I and close to t 1 , equality A T I z I2 (t) + q 1 (t) = 0 holds with z I2 (t) positive, but the jth component of z I2 (t) vanishes at t = t 1 and would become negative beyond that limit. When row j is replaced by another row k, a second algebraic decomposition of vector q 1 (t) is obtained: Proof. In a neighborhood of the starting point q 1 (0) >> 0 the move is monotone, A I and B I are the identity matrix and the ratio of their determinants is positive. In the next steps, a change of orientation coincides with a change in the sign of det A I = det( B I ).

q 1 (t) = X i2Infjg [z I2 (t)] i a i + [z I2 (t)] j a j = X i2Jnfkg [z J2 (t)] i a i + [z J2 (t)] k a k (7) At t = t 1 both decompositions coincide, therefore [z J2 (t)] i , which is equal to [z I2 (t 1 )] i > 0 at t = t 1 ,
Corollary 2 For q 1 in D, and ‡ukes appart, the number of solutions of LCP(q ; M ) for which det A I = det( B I ) is positive exceeds by one that for which it is negative.

Proof. By Theorem 1 and Corollary 1, the solutions which are reached by the algorithm have the property mentioned in the Corollary. The additional solutions studied in the proof of Theorem 2 have as many monotone as antitone moves.

Corollary 3 For q 1 in D, and ‡ukes apart, if det A I = det( B I ) is positive at any associated equilibrium, that equilibrium is unique.

Proof. This follows from Corollary 2.

If det A I = det( B I ) is everywhere positive in D, the transformation along a path is monotone, and the unique solution in D is reached by the algorithm. algorithm, a variant of Lemke's (1965) initial algorithm. What Ricardo and his followers did not see, however, is that the method k selected on the basis of a pro…tability criterion may not be productive enough, i.e. they did not see the possibility of an antitone move.

For the type of matrix M here considered, an existence result for q 1 in D was established by [START_REF] Dantzig | A complementarity algorithm for an optimal capital path with invariant proportions[END_REF]. Their proof makes reference to another variant of the Lemke algorithm. [START_REF] Salvadori | Land and choice of techniques within the Sra¤a framework[END_REF] applied that result to the existence of a long-term equilibrium. Starting from geometrical considerations, [START_REF] Erreygers | Terre, Rente et Choix de Techniques[END_REF][START_REF] Erreygers | On the uniqueness of cost-minimizing systems[END_REF] stated the local uniqueness condition on the signs of the determinants and assumed that the global uniqueness problem can be reduced to that of local uniqueness. None of these studies refers to the parametric Lemke algorithm. Corollary 2 generalizes Bidard and Erreygers's (1998) result on the oddity of the number of equilibria in the absence of lands (see also [START_REF] Lemke | Equilibrium points of bimatrix games[END_REF] on oddity). Bidard (2012) criticized Ricardo's attempt to get rid of rent in his analysis.

From a formal point of view, the initial formalization (1)-( 2) is symmetric in the indices 1 and 2 but the equivalent formulation (3)-( 4) introduces an asymmetry. A dual treatment of the same problem is therefore possible, with no clear economic interpretation.

Conclusion

The algorithmic Lemke algorithm is usually used to …nd a solution of an LCP by transferring a given solution along a segment. The transfer along a curve which starts from and comes back into a domain in which the uniqueness of the solution is ensured suggests that the working of the algorithm is intrinsically connected with the possibility to assign an orientation to each of these equilibria, with one more solution with a direct orientation. An open problem connected with the possibility to …nd all solutions concerns the distinction between the equilibria which are reached by the parametric method along a curve from those which are not.

0 1 is de…ned by the conditions b T i z 0 1 = 0 for i 2

 02 In fjg and b T j z 0 1 > 0. If z 0 1 has a negative component, then the condition is met by the submatrix I n of B. Assume that z 0 1 is semipositive. It follows from equality (3) and hypothesis (H 1 ) that z 0

0 1 ) k = b k z 0 11

 10 up to a positive factor, and z T 1 = z J1 + ( z 0 1

  remains positive in a neighborhood. [z J2 (t)] k is zero at t = t 1 . The set J which succeeds I makes no U-turn if and only if [z J2 (t)] k is positive whereas [z I2 (t)] j has become negative. Equality[START_REF] Lemke | Bimatrix equilibrium points and mathematical programming[END_REF] shows that the vectors a i for i 2 In fjg = Jn fkg and vector [zI2 (t)] j a j [z J2 (t)] k a k are linearly dependent, therefore det([z I2 (t)] j A I [z I2 (t)] k A J ) = 0. [z I2 (t)] jand [z I2 (t)] k have opposite signs if and only if it is the case for det A I and det A J . This amounts to saying that det A I = det B I and det A J = det B J have the same sign.

Corollary 1 Let I be the set of positive components of z 2 (t). The move is monotone or antitone according as det A I = det( B I ) is positive or negative.

Ricardo as a precursor

David Ricardo (1817) studied the long-run dynamics of a capitalist economy and was especially interested in the evolution of the distribution of national income, which he thought to be unfavourable to capitalists because, when the demand for corn increases, landowners reap higher rents. [START_REF] Sra¤a | Production of Commodities by Means of Commodities[END_REF] proposed a formalization of the notion of long-run equilibrium that post-Sra¢ an authors completed. Let there be n goods and lands, while labor is homogenous. A method of production i is described by a vector e i 2 R n + of material inputs and lands, a quantity of labor input q 2i 2 R + and a vector f i 2 R n + of outputs. The net product of that method is a i = f i e i . When each method i operates at activity level z 2i ;vector A T z 2 represents the net product of goods and the negative of the quantity of lands used in the economy. With vector q 1 representing the negative of an exogenously given …nal demand vector and the available quantities of lands, inequality (1) means that …nal demand and the scarcity constraints on lands are met. The complementary vector z 1 represents the prices of goods and the rents on lands: the price of a good in excess supply or the rent on a partially cultivated land is zero. Let r be a given, nonnegative and uniform rate of pro…t. With b i = (1 + r)e i f i , inequality (2) means that no method yields more than the ruling rate of pro…ts at the price-and-rent vector z 1 when the nominal wage is equal to unity by convention. The complementarity relationships (2) with the vector of activity levels z 2 mean that any operated method yields the normal rate of pro…t. Conditions (1) and (2) de…ne respectively the quantity side and the value side of a long-term equilibrium. Condition (H 1 ) holds. If one introduces free disposal and fallowing as methods of production (these methods dispose at no cost of any surplus of goods and lands), the quantity side of an equilibrium is equivalently written as equality [START_REF] Dantzig | A complementarity algorithm for an optimal capital path with invariant proportions[END_REF]. In Chapter 2 of the Principles (1817), Ricardo studied the e¤ects of an increase of demand, therefore of a change q 1 = q 1 (t) on a given equilibrium. He stressed that, most of the time, only activity levels z 2 (t) need to be adjusted, with no in ‡uence on the price-and-rent vector z 1 . But, spasmodically, the adjustment is no longer possible, for instance because some quality of land becomes fully cultivated. Then the price of corn must rise, and the rents too. Even if Ricardo did not mention in Chapter 2 the e¤ects on the other prices, he was fully aware that the rise in the price of corn triggers changes in those of all commodities whose production requires corn. The process suggested by Ricardo thus corresponds to the choice of a new price-and-rent vector as described in Section 2, the new operated method k being the …rst that yields the normal rate of pro…t r when the price of rice increases (minimum rule for ). On the whole, that process may be identi…ed with what is known today as the parametric Lemke