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Abstract

In this paper, in an exchange economy with atoms and an atomless
part, we analyze the relationship between the set of the Cournot-Nash
equilibrium allocations of a strategic market game and the set of the
Walras equilibrium allocations of the exchange economy with which
it is associated. In an example, we show that, even when atoms are
countably infinite, Cournot-Nash equilibria yield different allocations
from the Walras equilibrium allocations of the underlying exchange
economy. We partially replicate the exchange economy by increasing
the number of atoms without affecting the atomless part while ensur-
ing that the measure space of agents remains finite. We show that any
sequence of Cournot-Nash equilibrium allocations of the strategic mar-
ket game associated with the partially replicated exchange economies
approximates a Walras equilibrium allocation of the original exchange
economy.
Journal of Economic Literature Classification Numbers: C72, D51.

1 Introduction

Okuno at al. (1980) proposed an approach to modeling oligopoly in general
equilibrium where “[...] either perfectly or imperfectly competitive behav-
ior may emerge endogenously [...], depending on the characteristics of the
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Via Tomadini 30, 33100 Udine, Italy.

†Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Udine,
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agent and his place in the economy” (see p. 22). Okuno et al. (1980) pro-
posed to use a mixed measure space of traders à la Shitovitz (see Shitovitz
(1973)) - that is a measure space consisting of atoms, which represent the
large traders, and an atomless part, which represents the small traders - in
the framework of strategic market games (see Shapley and Shubik (1977),
Dubey and Shubik (1978), Mas-Colell (1982), Sahi and Yao (1989), Amir et
al. (1990), Peck et al. (1992), Dubey and Shapley (1994), among others).
Busetto et al. (2011), in a generalization of Okuno et al. (1980), considered
a model of noncooperative exchange proposed by Lloyd S. Shapley (and
further analyzed by Sahi and Yao (1989)): they proved the existence of a
Cournot-Nash equilibrium for this model. The approach adopted by Okuno
et al. (1980) contrasts to an approach to noncooperative oligopoly in general
equilibrium proposed by Gabszewicz and Vial (1972) (see also Roberts and
Sonnenschein (1977), Roberts (1980), Mas-Colell (1982), Dierker and Gro-
dal (1986), Codognato and Gabszewicz (1993), d’Aspremont et al. (1997),
Gabszewicz and Michel (1997), Shitovitz (1997), among others). In this ap-
proach, it is explicitly assumed that some agents behave competitively while
others behave noncompetitively.

In this paper, using the same framework as Busetto et al. (2011), without
assuming that some agents behave competitively while others behave non-
competitively, we analyze the relationship between the set of the Cournot-
Nash equilibrium allocations of the strategic market game and set of the
Walras equilibrium allocations of the exchange economy with which it is
associated. Since the mixed measure space we are considering in this paper
may contain countably infinite atoms, the question arises whether an equiv-
alence result could hold in this case. We provide an example of an exchange
economy with countably infinite atoms and an atomless part which shows
that any Cournot-Nash equilibrium allocation of the strategic market game
is not a Walras equilibrium allocation of the exchange economy with which
it is associated. Our example contrasts with the counterintuitive possibility
that the core allocations are competitive despite the presence of atoms as in
Shitovitz (1973).

The nonequivalence result provided by the example leads to consider the
question of a possible asymptotic relationship between appropriately defined
sequences of Cournot-Nash equilibrium allocations of the strategic market
game and the Walras equilibrium allocations of the exchange economy with
which it is associated. To this end, we partially replicate the exchange econ-
omy by increasing the number of atoms, while making them asymptotically
negligible, without affecting the atomless part. The replication of atoms
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used in this paper ensures that the mixed measure space remains finite:
without this feature required, the model of oligopoly in general equilibrium
we study would not be well-defined. Then, we show that any sequence
of Cournot-Nash equilibrium allocations of the strategic market game as-
sociated with the partially replicated exchange economies approximates a
Walras equilibrium allocation of the original exchange economy.

Sahi and Yao (1989) showed the convergence of sequences of Cournot-
Nash equilibrium allocations to a Walras equilibrium allocation starting
from a finite exchange economy by replicating traders. Codognato and
Ghosal (2000) showed the equivalence between Cournot-Nash and Walras
equilibrium allocations in exchange economies with an atomless continuum
of traders. While our convergence result synthesizes elements of both these
papers, there are two new elements. First, the replication of atoms we use
is different form the one used by Sahi and Yao (1989) for a finite number of
traders: our replication ensures that the mixed measure space remains finite
and, further, the convergence proof relies in an essential way on it. Second,
we have to solve a new technical issue: in order to ensure that a sequence
of Cournot-Nash equilibrium allocations approximates a Walras equilibrium
allocation, we have to use a version of Fatou’s Lemma in several dimensions
proved by Artstein (1979).

Some limit results have already been proved in the approach adopted by
Gabszewicz and Vial (1972), where competitive or noncompetitive traders’
behavior is explicitly assumed (see Roberts (1980), Mas-Colell (1983), Nov-
shek and Sonnenschein ((1983), (1987)), among others). Here, consistently
with the Okuno et al. (1980)’s approach we have adopted, we prove a
limit result à la Cournot (see Cournot (1838)) without making any further
behavioral assumption and preserving the feature that the mixed measure
space remains finite.

2 The mathematical model

We consider a pure exchange economy, E, with large traders, represented
as atoms, and small traders, represented by an atomless part. The space
of traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) < ∞. This implies that the measure space
(T, T , µ) contains at most countably many atoms. Let T1 denote the set of
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atoms and T0 = T \ T1 the atomless part of T . A null set of traders is a
set of measure 0. Null sets of traders are systematically ignored throughout
the paper. Thus, a statement asserted for “all” traders, or “each” trader,
or “each” trader in a certain set is to be understood to hold for all such
traders except possibly for a null set of traders. The word “integrable” is to
be understood in the sense of Lebesgue.

In the exchange economy, there are l different commodities. A com-
modity bundle is a point in Rl

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → Rl

+. There is a fixed initial
assignment w, satisfying the following assumption.

Assumption 1. w(t) > 0, for each t ∈ T .

An allocation is an assignment x for which
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R

l
+ → R, satisfying the following assumptions.

Assumption 2. ut : R
l
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T .

Let B(Rl
+) denote the Borel σ-algebra of Rl

+. Moreover, let T ⊗B
denote the σ-algebra generated by the sets E × F such that E ∈ T and
F ∈ B.
Assumption 3. u : T × Rl

+ → R, given by u(t, x) = ut(x), for each t ∈ T
and for each x ∈ Rl

+, is T
⊗B-measurable.

We also need the following assumption (see Sahi and Yao (1989)).

Assumption 4. There are at least two traders in T1 for whom w(t) À 0; ut
is continuously differentiable in Rl

++; {x ∈ Rl
+ : ut(x) = ut(w(t))} ⊂ Rl

++.

A price vector is a vector p ∈ Rl
+. A Walras equilibrium of E is a pair

(p∗,x∗), consisting of a price vector p∗ and an allocation x∗, such that, for
each t ∈ T , ut(x

∗(t)) ≥ ut(y), for all y ∈ {x ∈ Rl
+ : p∗x = p∗w(t)}.

We introduce now the strategic market game, Γ, associated with E.
Let b ∈ Rl2

+ be a vector such that b = (b11, b12, . . . , bll−1, bll). A strategy

correspondence is a correspondence B : T → P(Rl2
+) such that, for each

t ∈ T , B(t) = {b ∈ Rl2
+ :

∑l
j=1 bij ≤ wi(t), i = 1, . . . , l}. A strategy

selection is an integrable function b : T → Rl2 , such that, for each t ∈ T ,
b(t) ∈ B(t). For each t ∈ T , bij(t), i, j = 1, . . . , l, represents the amount
of commodity i that trader t offers in exchange for commodity j. Given
a strategy selection b, we define the aggregate matrix B̄ = (

∫
T bij(t) dµ).
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Moreover, we denote by b \ b(t) a strategy selection obtained by replacing
b(t) in b with b ∈ B(t). With a slight abuse of notation, b \ b(t) will also
represent the value of the strategy selection b \ b(t) at t.

Then, we introduce two further definitions (see Sahi and Yao (1989)).

Definition 1. A nonnegative square matrix A is said to be irreducible if,
for every pair (i, j), with i 6= j, there is a positive integer k = k(i, j) such

that a
(k)
ij > 0, where a

(k)
ij denotes the ij-th entry of the k-th power Ak of A.

Definition 2. Given a strategy selection b, a price vector p is market clear-
ing if

p ∈ Rl
++,

l∑

i=1

pib̄ij = pj(
l∑

i=1

b̄ji), j = 1, . . . , l. (1)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Then,
we denote by p : Rl2

+ → Rl
+ a function such that, for each strategy selection

b, p(b) is the unique, up to a scalar multiple, price vector satisfying (1), if
B̄ is irreducible, and p(b) = 0, otherwise.

Given a strategy selection b and a price vector p, consider the assignment
determined as follows:

xj(t,b(t), p) = wj(t)−
l∑

i=1

bji(t) +
l∑

i=1

bij(t)
pi

pj
, if p ∈ Rl

++,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, . . . , l, for each t ∈ T .
According to this rule, given a strategy selection b and the function p(·),

the traders’ final holdings are determined as follows:

x(t) = x(t,b(t), p(b)),

for each t ∈ T . It is straightforward to show that the assignment corre-
sponding to the final holdings is an allocation.

This reformulation of the Shapley’s model allows us to define the follow-
ing concept of Cournot-Nash equilibrium for exchange economies with an
atomless part (see Codognato and Ghosal (2000)).

Definition 3. A strategy selection b̂ such that ¯̂B is irreducible is a Cournot-
Nash equilibrium of Γ if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b̂ \ b(t), p(b̂ \ b(t)))),
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for all b ∈ B(t) and for each t ∈ T .

3 The existence of a δ-positive Cournot-Nash equi-
librium of Γ

We introduce now the notion of a δ-positive strategy correspondence which
was used by Sahi and Yao (1989) to prove their existence and limit theorems
and which we shall use here for the same purposes. Let T̄1 ⊂ T1 be a set
consisting of two traders in T1 for whom Assumption 4 holds. Moreover,
let δ = mint∈T̄1

{1
l min{w1(t), . . . ,wl(t)}}. We say that the correspondence

Bδ : T → Rl2 is a δ-positive strategy correspondence if Bδ(t) = B(t) ∩ {b ∈
Rl2 :

∑
i6∈J

∑
j∈J(bij + bji) ≥ δ, for each J ⊆ {1, . . . , l}}, for each t ∈ T̄1;

Bδ(t) = B(t), for the remaining traders t ∈ T . We say that a strategy
selection b is δ-positive if b(t) ∈ Bδ(t), for each t ∈ T . Moreover, we say
that a Cournot-Nash equilibrium b̂ of Γ is δ-positive if b̂ is a δ-positive
strategy selection. The following theorem, which follows straightforwardly
from the existence theorem in Busetto et al. (2011), shows the existence of
a δ-positive Cournot-Nash equilibrium of Γ.

Theorem 1. Under Assumptions 1, 2, 3, and 4, there exists a δ-positive
Cournot-Nash equilibrium of Γ, b̂

Proof. Busetto et al. (2011) showed that, under Assumptions 1, 2, 3, and
4, there exists a Cournot-Nash equilibrium of Γ, b̂, such that, for each t ∈ T ,
b̂(t) ∈ Bδ(t). This implies that b̂ is a δ-positive Cournot-Nash equilibrium
of Γ.

4 An example

Codognato and Ghosal (2000) analyzed the Sahi and Yao (1989)’s model in
exchange economies with an atomless continuum of traders. In this frame-
work, they showed an equivalence result à la Aumann (see Aumann (1964))
between the set of the Cournot-Nash equilibrium allocations of Γ and the
set of the Walras equilibrium allocations of E. The mixed measure space we
are considering here may contain countably infinite atoms. This raises the
question whether an equivalence result à la Aumann could hold in this case.
The following example considers an exchange economy E with countably
infinite atoms and it shows that any Cournot-Nash equilibrium allocation of
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the strategic market game Γ associated with E is not a Walras equilibrium
allocation of E.

Example. Consider an exchange economy E where l = 2, T1 = T ′
1 ∪ T ′′

1 ,
T ′
1 = {2, 3}, T ′′

1 = {4, 5, . . .}, T0 = [0, 1], w(2) = w(3) À 0, w(t) = (0, 1), for
each t ∈ T ′′

1 ∪ T0, ut(·) satisfies Assumptions 2 and 3, for each t ∈ T , u2(·)
and u3(·) satisfy Assumption 4, u2(x) = u3(x), ut(x) > ut(y), whenever
x ∈ Rl

++ and y ∈ (Rl
+ \ Rl

++), for each t ∈ T ′′
1 ∪ T0, µ is the Lebesgue

measure, when restricted to T0, and µ(t) = (12)
t, for each t ∈ T1. Then, if b̂

is a Cournot-Nash equilibrium of Γ, the pair (p̂, x̂) such that p̂ = p(b̂) and
x̂(t) = x(t, b̂(t), p̂), for each t ∈ T , is not a Walras equilibrium of E.

Proof. Suppose that b̂ is a Cournot-Nash equilibrium of Γ and that the
pair (p̂, x̂) such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂), for each t ∈ T , is
a Walras equilibrium of E. Clearly, b̂21(t) > 0, for each t ∈ T ′′

1 ∪ T0. Let
h =

∫
T ′′
1 ∪T0

b̂21(t) dµ. Since, for each t ∈ T ′
1, at a Cournot-Nash equilibrium,

the marginal price (see Okuno et al. (1980)) must be equal to the marginal
rate of substitution which, in turn, at a Walras equilibrium, must be equal
to the relative price of commodity 1 in terms of commodity 2, we must have

dx2
dx1

= −p̂2
b̂12(t)

b̂21(t) + h
= −p̂,

for each t ∈ T ′
1. But then, we must also have

b̂21(2) + h

b̂12(2)
=

b̂21(2) + b̂21(3) + h

b̂12(2) + b̂12(3)
=

b̂21(3) + h

b̂12(3)
. (2)

The last equality in (2) holds if and only if b̂21(2) = k(b̂21(3) + h) and
b̂12(2) = kb̂12(3), with k > 0. But then, the first and the last members of
(2) cannot be equal because

k(b̂21(3) + h) + h

kb̂12(3)
6= b̂21(3) + h

b̂12(3)
.

This implies that the pair (p̂, x̂) such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p̂),
for each t ∈ T , cannot be a Walras equilibrium of E.

The example shows that the condition that E contains a countably in-
finite number of atoms is not sufficient to guarantee that the set of the
Cournot-Nash equilibrium allocations of Γ coincides with the set of the
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Walras equilibrium allocations of E. This leads us to consider the ques-
tion whether partially replicating E à la Cournot (see Cournot (1838)) -
that is increasing the number of atoms, while making them asymptotically
negligible, without affecting the atomless part - would generate sequences
of Cournot-Nash equilibrium allocations which approximate, in some way,
a Walras equilibrium allocation of E. We shall address this question in the
following sections.

5 The replication à la Cournot of E

We consider the replication à la Cournot of E which, by analogy with the
replication proposed by Cournot (1838) in a partial equilibrium framework,
consists in replicating only the atoms of E, while making them asymptoti-
cally negligible. Let En be an exchange economy characterized as in Section
2 where each atom is replicated n times. For each t ∈ T1, let tr denote r-th
element of the n-fold replication of t. We assume thatw(tr) = w(ts) = w(t),

utr(·) = uts(·) = ut(·), r, s = 1, . . . , n, µ(tr) = µ(t)
n , r = 1, . . . , n, for each

t ∈ T1. Clearly, E coincides with E1.
The strategic market game Γn associated with En can then be charac-

terized, mutatis mutandis, as in Section 2. Clearly, Γ coincides with Γ1.
A strategy selection b of Γn is atom-type-symmetric if bn(tr) = bn(ts),
r, s = 1, . . . , n, for each t ∈ T1. We can now provide the definition of an
atom-type-symmetric Cournot-Nash equilibrium of Γn.

Definition 4. A strategy selection b̂ such that ¯̂B is irreducible is an atom-
type-symmetric Cournot-Nash equilibrium of Γn if b̂ is atom-type-symmetric
and

utr(x(tr, b̂(tr), p(b̂))) ≥ utr(x(tr, b̂ \ b(tr), p(b̂ \ b(tr)))),
for all b ∈ B(tr), r = 1, . . . , n, and for each t ∈ T1;

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b̂ \ b(t), p(b̂ \ b(t)))),
for all b ∈ B(t) and for each t ∈ T0.

6 The existence of a δ-positive atom-type-symme-
tric Cournot-Nash equilibrium of Γn

Let δ be determined as in Section 3 and define the δ-positive strategy cor-
respondence Bδ, mutatis mutandis, as in Section 3. Notice that Bδ(tr) =
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Bδ(ts), r, s = 1, . . . , n, for each t ∈ T1. We say that a strategy selection b is
δ-positive if b(tr) ∈ Bδ(tr), r = 1, . . . , n, for each t ∈ T1, b(t) ∈ Bδ(t), for
each t ∈ T0. Moreover, we say that an atom-type-symmetric Cournot-Nash
equilibrium b̂ of Γn is δ-positive if b̂ is a δ-positive strategy selection. The
following theorem shows the existence of an atom-type-symmetric δ-positive
Cournot-Nash equilibrium of Γn.

Theorem 2. Under Assumptions 1, 2, 3, and 4, there exists a δ-positive
atom-type-symmetric Cournot-Nash equilibrium of Γn, b̂.

Proof. Following Sahi and Yao (1989) and Busetto et al. (2011), we define
the game Γn(ε). Given ε > 0 and a strategy selection b, we define the
aggregate bid matrix B̄ε = (b̄ij + ε). Clearly, the matrix B̄ε is irreducible.
The interpretation is that an outside agency places fixed bids of ε for each
pair of commodities (i, j). Given ε > 0, we denote by pε(b) the function
which associates, with each strategy selection b, the unique, up to a scalar
multiple, price vector which satisfies

l∑

i=1

pi(b̄ij + ε) = pj(

l∑

i=1

(b̄ji + ε), j = 1, . . . , l. (3)

Definition 5. Given ε > 0, a strategy selection b̂ε is an atom-type-symmetric
ε-Cournot-Nash equilibrium of Γn(ε) if b̂ε is atom-type-symmetric and

utr(x(tr, b̂
ε(tr), pε(b̂ε))) ≥ utr(tr, b̂

ε \ b(tr), pε(b̂ε \ b(tr)))),

for all b ∈ B(tr), r = 1, . . . , n, and for each t ∈ T1;

ut(x(t, b̂
ε(t), pε(b̂ε))) ≥ ut(t, b̂

ε \ b(t), pε(b̂ε \ b(t)))),

for all b ∈ B(t) and for each t ∈ T0.

We neglect, as usual, the distinction between integrable functions and
equivalence classes of such functions and denote by L1(µ,R

l2) the set of
integrable functions taking values in Rl2 , by L1(µ,B(·)) the set of strat-
egy selections, and by L1(µ,B

∗(·)) the set of atom-type-symmetric strategy
selections.

Note that the locally convex Hausdorff space we shall be working in
is L1(µ,R

l2), endowed with its weak topology. The first lemma has been
proved by Busetto et al. (2011).
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Lemma 1. The set L1(µ,B(·)) is nonempty, convex and weakly compact.

The next lemma provides us with the properties of L1(µ,B
∗(·)) required

for the application of the Kakutani-Fan-Glicksberg Theorem (see Theorem
17.55 in Aliprantis and Border (2006), p. 583).

Lemma 2. The set L1(µ,B
∗(·)) is nonempty, convex and weakly compact.

Proof. L1(µ,B
∗(·)) is nonempty, convex and it has a weakly compact clo-

sure by the same argument used by Busetto et al. (2011). Now, let {bm} be a
convergent sequence of L1(µ,B

∗(·)). Since L1(µ,R
l2) is complete, {bm} con-

verges in the mean to an integrable function b. But then, there exists a sub-
sequence {bkm} of {bm} such that bkm(tr) converges to b(tr), r = 1, . . . , n,
for each t ∈ T1, and bkm(t) converges to b(t), for each t ∈ T0 (see Theorem
25.5 in Aliprantis and Burkinshaw (1998), p. 203). The compactness of
B(t), for each t ∈ T , and the fact that bkm(tr) = bkm(ts), r, s = 1, . . . , n,
for each t ∈ T1, implies that b ∈ L1(µ,B

∗(·)). Hence L1(µ,B
∗(·)) is norm

closed and, since it is also convex, it is weakly closed (see Corollary 4 in
Diestel (1984), p. 12).

Now, given ε > 0, let αε
tr : L1(µ,B

∗(·)) → B(tr) be a correspondence
such that αε

tr(b) = argmax{utr(x(t,b\b(tr), pε(b\b(tr)))) : b ∈ B(tr)}, r =
1, . . . , n, for each t ∈ T1, and let αε

t : L1(µ,B(·)) → B(t) be a correspondence
such that αε

t(b) = argmax{ut(x(t,b\ b(t), pε(b\ b(t)))) : b ∈ B(t)}, for each
t ∈ T0. Let αε : L1(µ,B

∗(·)) → L1(µ,B(·)) be a correspondence such
that αε(b) = {b ∈ L1(µ,B(·)) : b(tr) ∈ αε

tr(b), r = 1, . . . , n, for each t ∈
T1, and b(t) ∈ αε

t(b), for each t ∈ T0}.
The following lemma can be proved by the same argument used to show

Lemma 2 in Busetto et al. (2011).

Lemma 3. Given ε > 0, the correspondence αε : L1(µ,B
∗(·)) → L1(µ,B(·))

is such that the set αε(b) is nonempty and convex, for all b ∈ L1(µ,B
∗(·)),

and it has a weakly closed graph.

We say that an atom-type-symmetric ε-Cournot-Nash equilibrium b̂ε of
Γn(ε) is δ-positive if b̂ε is a δ-positive strategy selection.

Now, given ε > 0, let αεδ
tr : L1(µ,B

∗(·)) → B(tr) be a correspon-
dence such that αεδ

tr(b) = αε
tr(b) ∩ Bδ(tr), r = 1, . . . , n, for each t ∈ T1,

and let αε
t : L1(µ,B(·)) → B(t) be a correspondence such that αεδ

t (b) =
αε
t(b) ∩ Bδ(t), for each t ∈ T0. Let αεδ : L1(µ,B

∗(·)) → L1(µ,B(·)) be a
correspondence such that αεδ(b) = {b ∈ L1(µ,B(·)) : b(tr) ∈ αεδ

tr(b), r =
1, . . . , n, for each t ∈ T1, and b(t) ∈ αεδ

t (b), for each t ∈ T0}.
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Moreover, given ε > 0, let αεδ∗ : L1(µ,B
∗(·)) → L1(µ,B

∗(·)) be a cor-
respondence such that αεδ∗(b) = αεδ(b) ∩ L1(µ,B

∗(·)). Now, we are ready
to prove the existence of a δ-positive atom-type-symmetric ε-Cournot-Nash
equilibrium of Γn(ε).

Lemma 4. Given ε > 0, there exists a δ-positive atom-type-symmetric
ε-Cournot-Nash equilibrium of Γn(ε), b̂ε.

Proof. Let ε > 0 be given. By Lemma 6 in Sahi and Yao (1989), we know
that, for each b ∈ L1(µ,B

∗(·)), αεδ
tr(b) is nonempty, r = 1, . . . , n, for each

t ∈ T̄1. Moreover, for each b ∈ L1(µ,B
∗(·)) and for each t ∈ T1, there

exists b̄ ∈ B(t) such that b̄ ∈ αεδ
tr(b), r = 1, . . . , n as b is an atom-type-

symmetric strategy profile. But then, by the same argument of Lemma 2 in
Busetto et al. (2011), αεδ∗(b) is nonempty. The convexity of αεδ(b), for each
b ∈ L1(µ,B

∗(·)), is a straightforward consequence of the convexity of αε
tr(b)

and Bδ(t), r = 1, . . . , n, for each t ∈ T1, and of αε
t(b) and Bδ(t), for each

t ∈ T0. But then, α
εδ∗ is convex valued as L1(µ,B

∗(·)) is convex. αεδ
tr is upper

hemicontinuous and compact valued, r = 1, . . . , n, for each t ∈ T1, as it is the
intersection of the correspondence αε

tr, which is upper hemicontinuous and
compact valued by Lemma 2 in Busetto et al. (2011), and the continuous
and compact valued correspondence which assigns to each strategy selection
b ∈ L1(µ,B

∗(·)) the strategy set Bδ(tr) (see Theorem 17.25 in Aliprantis
and Border (2006), p. 567). Moreover, αεδ

t is upper hemicontinuous and
compact valued, for each t ∈ T0, using the same argument. Therefore,
αεδ has a weakly closed graph, by the same argument used in the proof of
Lemma 3. Finally, αεδ∗ has a weakly closed graph as it is the intersection of
the correspondence αεδ and the continuous correspondence which assigns to
each strategy selection b ∈ L1(µ,B

∗(·)) the weakly closed set L1(µ,B
∗(·))

which, by the Closed Graph Theorem (see Theorem 17.11 in Aliprantis and
Border (2006), p. 561), has a weakly closed graph (see Theorem 17.25 in
Aliprantis and Border (2006), p. 567). But then, by the Kakutani-Fan-
Glicksberg Theorem (see Theorem 17.55 in Aliprantis and Border (2006), p.
583), there exists a fixed point b̂ε of the correspondence αεδ∗ and hence a
δ-positive atom-type-symmetric ε-Cournot-Nash equilibrium of Γn(ε).

Let εm = 1
m , m = 1, 2, . . .. By Lemma 4, for each m = 1, 2, . . ., there is

a δ-positive atom-type-symmetric ε-Cournot-Nash equilibrium b̂εm . The

fact that the sequence {B̂εm} belongs to the compact set {bij ∈ Rl2 :
bij ≤ n

∫
T1

wi(t) dµ +
∫
T0

wi(t) dµ, i, j = 1, . . . , l,
∑

i6∈J
∑

j∈J(bij + bji) ≥
n
∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}}, the sequence {b̂εm(tr)} belongs to the
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compact set Bδ(tr), r = 1, . . . , n, for each t ∈ T1, and the sequence {p̂εm},
where p̂εm = p(b̂εm), for each m = 1, 2, . . ., belongs, by Lemma 9 in Sahi and

Yao (1989), to a compact set P, implies that there is a subsequence {B̂εkm}
of the sequence {B̂εm} which converges to an element of the set {bij ∈ Rl2 :
bij ≤ n

∫
T1

wi(t) dµ +
∫
T0

wi(t) dµ, i, j = 1, . . . , l,
∑

i6∈J
∑

j∈J(bij + bji) ≥
n
∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}}, a subsequence {b̂εkm (tr)} of the se-

quence {b̂εm(tr)} which converges to an element of the set Bδ(tr), r =
1, . . . , n, for each t ∈ T1, and a subsequence {p̂εkm} of the sequence {p̂εm}
which converges to an element of the set P . Since the sequence {b̂εkm} sat-
isfies the assumptions of Theorem A in Artstein (1979), there is a function
b̂ such that b̂(tr) is the limit of the sequence {b̂εkm (tr)}, r = 1, . . . , n, for
each t ∈ T1, b̂(t) is a limit point of the sequence {b̂εkm (t)}, for each t ∈ T0,

and such that the sequence {B̂εkm} converges to ¯̂B. Then, b̂(tr) = b̂(ts)
as {b̂εkm (tr)} = {b̂εkm (ts)}, r, s = 1, . . . , n, for each t ∈ T1, and b̂(tr) is
the limit of the sequence {b̂εkm (tr)}, r = 1, . . . , n, for each t ∈ T1. Hence,
it can be proved, by the same argument used by Busetto et al. (2011) to
show their existence theorem, that b̂ is a δ-positive atom-type-symmetric
Cournot-Nash equilibrium of Γn(ε).

7 The limit theorem

The following theorem shows that the sequences of Cournot-Nash equilib-
rium allocations generated by the replication à la Cournot of E approximate
a Walras equilibrium allocation of E. In particular, the next theorem shows
that given a sequence of atom-type-symmetric Cournot-Nash equilibrium al-
locations of Γn, there exists a Walras equilibrium allocation of E such that,
for each trader, his final holding at this Walras equilibrium is a limit point
of the sequence of his final holdings at the sequence of atom-type-symmetric
Cournot-Nash equilibrium allocations of Γn.

We now state and prove the limit theorem.

Theorem 3. Under Assumptions 1, 2, 3, and 4, let {b̂n} be a sequence of
strategy selections of Γ and let {p̂n} be a sequence of prices such that b̂n(t) =
b̂Γn

(tr), r = 1, . . . , n, for each t ∈ T1, b̂
n(t) = b̂Γn

(t), for each t ∈ T0, and
p̂n = p(b̂Γn

), where b̂Γn
is a δ-positive atom-type-symmetric Cournot-Nash

equilibrium of Γn, for n = 1, 2, . . .. Then, (i) there exists a subsequence
{b̂kn} of the sequence {b̂n}, a subsequence {p̂kn} of the sequence {p̂n}, a
strategy selection b̂ of Γ, and a price vector p̂, with p À 0, such that b̂(t)
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is the limit of the sequence {b̂kn(t)}, for each t ∈ T1, b̂(t) is a limit point

of the sequence {b̂kn(t)}, for each t ∈ T0, the sequence {B̂kn} converges

to B̂, and the sequence {p̂kn} converges to p̂; (ii) x̂(t) is the limit of the
sequence {x̂kn(t)}, for each t ∈ T1, and x̂(t) is a limit point of the sequence
{x̂kn(t)}, for each t ∈ T0, where x̂(t) = x(t, b̂(t), p̂) for each t ∈ T , x̂kn(t) =
x(t, b̂kn(t), p̂kn), for each t ∈ T , and for n = 1, 2, . . .; (iii) The pair (p̂, x̂) is
a Walras equilibrium of E.

Proof (i) Let {b̂n} be a sequence of strategy selections of Γ and let {p̂n}
be a sequence of prices such that b̂n(t) = b̂Γn

(tr), r = 1, . . . , n, for each
t ∈ T1, b̂n(t) = b̂Γn

(t), for each t ∈ T0, and p̂n = p(b̂Γn
), where b̂Γn

is a δ-positive atom-type-symmetric Cournot-Nash equilibrium of Γn, for

n = 1, 2, . . .. The fact that the sequence {B̂n} belongs to the compact
set {bij ∈ Rl2 : bij ≤ ∫

T wi(t) dµ, i, j = 1, . . . , l,
∑

i6∈J
∑

j∈J(bij + bji) ≥∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}}, the sequence {b̂n(t)} belongs to the com-

pact set Bδ(t), for each t ∈ T1, and the sequence {p̂n}, belongs, by Lemma
9 in Sahi and Yao, to a compact set P, implies that there is a subse-

quence {B̂kn} of the sequence {B̂n} which converges to an element of the
set {bij ∈ Rl2 : bij ≤ ∫

T wi(t) dµ, i, j = 1, . . . , l,
∑

i6∈J
∑

j∈J(bij + bji) ≥∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}}, a subsequence {b̂kn(t)} of the sequence

{b̂n(t)} which converges to an element of the set Bδ(t), for each t ∈ T1,
and a subsequence {p̂kn} of the sequence {p̂n} which converges to an el-
ement p̂ of the set P . Moreover, by Lemma 9 in Sahi and Yao, p̂ À 0.
Since the sequence {b̂kn} satisfies the assumptions of Theorem A in Art-
stein (1979), there is a function b̂ such that b̂(t) is the limit of the sequence
{b̂kn(t)}, for each t ∈ T1, b̂(t) is a limit point of the sequence {b̂kn(t)},
for each t ∈ T0, and such that the sequence {B̂kn} converges to B̂. (ii)
Let x̂(t) = x(t, b̂(t), p̂) for each t ∈ T , x̂kn(t) = x(t, b̂kn(t), p̂kn), for each
t ∈ T , and for n = 1, 2, . . .. Then, x̂(t) is the limit of the sequence {x̂kn(t)},
for each t ∈ T1, as b̂(t) is the limit of the sequence {b̂kn(t)}, for each
t ∈ T1, and the sequence {p̂kn} converges to p̂, x̂(t) is a limit point of
the sequence {x̂kn(t)}, for each t ∈ T0, as b̂(t) is a limit point of the
sequence {b̂kn(t)}, for each t ∈ T0, and the sequence {p̂kn} converges to

p̂. (iii) B̂Γn = B̂n as b̂Γn

ij =
∑

t∈T1

∑n
r=1 b̂

Γn

ij (tr)µ(tr) +
∫
t∈T0

b̂Γn

ij (t) dµ =
∑

t∈T1
nb̂n

ij(t)
µ(t)
n +

∫
t∈T0

b̂n
ij(t) dµ =

∑
t∈T1

b̂n
ij(t)µ(t)+

∫
t∈T0

b̂n
ij(t) dµ = b̂n

ij ,

i, j = 1, . . . , l, for n = 1, 2, . . .. Then, p̂n = p(b̂n) as p̂n and b̂n satisfy (1), for
n = 1, 2, . . .. But then, by continuity, p̂ and b̂ must satisfy (1). Therefore,
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Lemma 1 in Sahi and Yao implies that
¯̂
B is completely reducible as p̂ À 0.

Moreover, b̂(t) ∈ Bδ(t) since b̂(t) is a limit point of the sequence {b̂kn(t)},
for all t ∈ T . Then, b̂ is δ-positive. But then, by Remark 3 in Sahi and

Yao,
¯̂
B must be irreducible. Consider the pair (p̂, x̂). It is straightforward

to show that the assignment x̂ is an allocation as p̂ and b̂ satisfy (1) and
that x̂(t) ∈ {x ∈ Rl

+ : p̂x = p̂w(t)}, for all t ∈ T . Suppose that (p̂, x̂) is not
a Walras equilibrium of E. Then, there exists a trader τ ∈ T and a com-
modity bundle x̃ ∈ {x ∈ Rl

+ : p̂x = p̂w(τ)} such that uτ (x̃) > uτ (x̂(τ)). By

Lemma 5 in Codognato and Ghosal (2000), there exist λ̃j ≥ 0,
∑l

j=1 λ̃
j = 1,

such that

x̃j = λ̃j

∑l
i=1 p̂

iwi(τ)

p̂j
, j = 1, . . . , l.

Let b̃ij = wi(τ)λ̃j , i, j = 1, . . . , l. Then, it is straightforward to verify that

x̃j = wj(τ)−
l∑

i=1

b̃ji +
l∑

i=1

b̃ij
p̂i

p̂j
,

for each j = 1, . . . , l. Consider the following cases.
Case 1. τ ∈ T1. Let {hn} denote a sequence such that hn = kn, if
k1 > 1, hn = kn+1, otherwise, for n = 1, 2, . . .. Let ρ denote the k1-th

element of the n-fold replication of E and let B̂Γhn \ b̃(τρ) denote the ag-

gregate matrix corresponding to the strategy selection b̂Γhn \ b̃(τρ), where
b̃(τρ) = b̃, for n = 1, 2, . . .. Let ∆B̂Γhn , ∆B̂Γhn \ b̃(τρ), and ∆B̂hn de-

note the matrices of row sums of, respectively, B̂Γhn , B̂Γhn \ b̃(τρ), and

B̂hn , for n = 1, 2, . . .. Moreover, let qΓ
hn
, qΓ

hn

τρ , and qhn denote the vec-

tors of the cofactors of the first column of, respectively, ∆B̂Γhn − B̂Γhn ,

∆B̂Γhn \ b̃(τρ) − B̂Γhn \ b̃(τρ), and ∆B̂hn − B̂hn , for n = 1, 2, . . .. Clearly,

qΓ
hn

= qhn as B̂Γhn = B̂hn , for n = 1, 2, . . .. Let ∆
¯̂
B be the matrix of

row sums of
¯̂
B and q be the cofactors of the first column of ∆

¯̂
B − ¯̂

B. The

sequences {qΓhn} and {qhn} converge to q as the sequence B̂hn converges

to
¯̂
B and qΓ

hn
= qhn , for n = 1, 2, . . .. Let w̄ = max{w1(τ), . . . ,wl(τ)}.

Consider the matrix B̂Γhn − B̂Γhn \ b̃(τρ), for n = 1, 2, . . .. Then, b̂Γhn

ij −
b̂Γhn

ij \ b̃ij(τρ) = ( 1n b̂
Γhn

ij (τρ) − 1
n b̃ij(τρ)), i, j = 1, . . . , l, for n = 1, 2, . . ..

But then, the sequence of Euclidean distances {‖B̂Γhn − B̂Γhn \ b̃(τρ)‖}
converges to 0 as | 1n b̂Γhn

ij (τρ) − 1
n b̃ij(τρ)|= 1

n |b̂Γhn

ij (τρ) − b̃ij(τρ)| ≤ 1
n w̄,

14



i, j = 1, . . . , l, n = 1, 2, . . .. The sequence {B̂Γhn \ b̃(τρ)} converges to
¯̂
B as, by the triangle inequality, ‖B̂Γhn \ b̃(τρ)} − ¯̂

B‖ ≤ ‖B̂Γhn − B̂Γhn \
b̃(τρ)‖+‖B̂Γhn − ¯̂

B‖ = ‖B̂Γhn − B̂Γhn \ b̃(τρ)‖+‖B̂hn − ¯̂
B‖, for n = 1, 2, . . .,

and the sequences {‖B̂Γhn − B̂Γhn \ b̃(τρ)‖} and {‖B̂hn − ¯̂
B‖} converge to 0.

Then, the sequence {qΓhn

τρ } converges to q. uτρ(x(τρ, b̂
Γhn

(τρ), p(b̂Γhn
))) ≥

uτρ(x(τρ, b̂
Γhn \ b̃(τρ), p(b̂Γhn \ b̃(τρ)))) as b̂Γhn

is a δ-positive atom-type-
symmetric Cournot-Nash equilibrium of Γhn , for n = 1, 2, . . .. Let b̂hn \ b̃(τ)
be a strategy selection obtained by replacing b̂hn(τ) in b̂hn with b̃, for

n = 1, 2, . . .. Then, uτ (x(τ, b̂
hn(τ), qΓ

hn
)) ≥ uτ (x(τ, b̂

hn \ b̃(τ), qΓ
hn

τρ )) as

b̂hn(τ) = b̂Γhn
(τρ), p(b̂Γhn

) = αhnq
Γhn

, with αhn > 0, by Lemma 2 in

Sahi and Yao, b̂Γhn \ b̃(τρ) = b̂hn \ b̃(τ), and p(b̂Γhn \ b̃(τρ)) = βhnq
Γhn

τρ ,
with βhn > 0, by Lemma 2 in Sahi and Yao, for n = 1, 2, . . .. But then,
uτ (x̂(τ)) ≥ uτ (x̃), by Assumption 2, as the sequence {b̂hn(τ)} converges to

b̂(τ), the sequence {qΓhn} converges to q, the sequence {qΓhn

τρ } converges to
q, and p̂ = θq, with θ > 0, by Lemma 2 in Sahi and Yao, a contradiction.
Case 2. τ ∈ T0. Let {b̂hkn (τ)} be a subsequence of the sequence {b̂kn(τ)}
which converges to b̂(τ). Moreover, let b̂Γhkn \ b̃(τ) be a strategy se-

lection obtained by replacing b̂hkn (τ) in b̂Γhkn with b̃, for n = 1, 2, . . ..

uτ (x(τ, b̂
Γhkn (τ), p(b̂Γhkn ))) ≥ uτ (x(τ, b̂

Γhkn \b̃(τ), p(b̂Γhkn \b̃(τ)))) as b̂Γhkn

is a δ-positive atom-type-symmetric Cournot-Nash equilibrium of Γhkn , for
n = 1, 2, . . .. Let b̂hkn \ b̃(τ) be a strategy selection obtained by replacing
b̂hkn (τ) in b̂hkn with b̃, for n = 1, 2, . . ... Then, uτ (x(τ, b̂

hkn (τ), p̂hkn )) ≥
uτ (x(τ, b̂

hkn \ b̃(τ), p̂hkn )) as b̂hkn (τ) = b̂Γhkn (τ), p̂hkn = p(b̂Γhkn ), b̂Γhkn \
b̃(τ) = b̂hkn \ b̃(τ), and p̂hkn = p(b̂Γhkn \ b̃(τ)). But then, uτ (x̂(τ)) ≥ uτ (x̃),
by Assumption 2, as the sequence {b̂hkn (τ)} converges to b̂(τ) and the se-
quence {phkn} converges to p̂, a contradiction.

Hence, the pair (p̂, x̂) is a Walras equilibrium of E.
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