
HAL Id: hal-04141003
https://hal.science/hal-04141003

Preprint submitted on 26 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended version of the paper ”Traceability by design:
design of an interactive system to improve the automatic

generation of Git traces during a learning activity”
Mika Pons, Jean-Michel Bruel, Jean-Baptiste Raclet, Franck Silvestre

To cite this version:
Mika Pons, Jean-Michel Bruel, Jean-Baptiste Raclet, Franck Silvestre. Extended version of the paper
”Traceability by design: design of an interactive system to improve the automatic generation of Git
traces during a learning activity”. 2023. �hal-04141003�

https://hal.science/hal-04141003
https://hal.archives-ouvertes.fr


Traceability by design: design of an interactive
system to improve the automatic generation of

Git traces during a learning activity

Mika Pons 1, Jean-Michel Bruel 2, Jean-Baptiste Raclet 3, and Franck
Silvestre 1

1 IRIT, Université Toulouse Capitole, France
2 IRIT, Université Toulouse 2 Jean Jaurès, France

3 IRIT, Université Toulouse 3 Paul Sabatier, France

Abstract. Learning Analytics (LA) is collecting and analyzing traces
of learners’ activities in order to understand and improve learning. This
paper focuses on traces generated using the version control system Git.
Existing works on the topic have limitations regarding the quality of the
traces they analyze: (1) the quantity and content are not always sufficient
for in-depth analysis of student behavior, (2) their limited reliability can
lead to a loss of exploitable data, and (3) the method of generating these
traces is not generic. We propose a new interactive system based on Git
and the observation of file modifications to generate automatically reli-
able and rich traces. This interactive system will soon be experimented
with in an ecological context and is intended for diversified teaching con-
texts.

Keywords: Learning analytics, Git, Traces, Interactive system.

1 Introduction

The first conference on the field of Learning Analytics defines it as “the measure-
ment, collection, analysis and communication of data about learners and their
contexts, with the aim of understanding and optimizing the learning and the
environments in which it occurs” [1].

If the use of version control tools, like Git, is widespread in the software
industry, it is also used in an educational context, mainly in computer science
training [7, 6]. Integrating such tools in teaching not only supports the profes-
sionalization of students but also facilitates collaborative work within a group
of students. Finally, they constitute a simple means of obtaining traces of the
activity of the students thanks to the actions of commits carried out during the
progress of the activities to version the work. More particularly, Git works using
a decentralized architecture. In fact, it allows to work with local copies and thus
to synchronize with the main copy. This aspect is by nature very facilitating in
the context of the teacher who must collect their students’ work. Also, Git can
store in an optimized way the modifications made by the students, called diff.

https://orcid.org/0000-0002-5844-8727
https://orcid.org/0000-0002-3653-0148
https://orcid.org/0000-0001-7357-912X
https://orcid.org/0000-0002-1134-8200


2 M. Pons et al.

At the crossroads of Learning Analytics and version management software,
we see the emergence of work based on the analysis of traces produced using
version management software in computer learning [12]. Some works exploit
Process Mining techniques for trace analysis by extracting metrics related to
students’ learning behavior [8, 3].

However, these studies have limitations concerning the traces generated by
version control software (VCS) such as Git. Indeed, the content of these traces
is not sufficient for certain analyses requiring more precise temporal information
to be known. For example, we can’t make an analysis on the duration of the
resolution of exercises because there is not enough information available for that.
Between the beginning of a work session and the resolution of an exercise, the
time actually spent working is unknown. Also, these traces may lack reliability
when their generation is based on a declarative and open process by the student.
Finally, these traces are generated with methods that are difficult to apply in
fields that do not fall within the field of computer science.

To overcome these limitations, we wonder how to design an interactive Git
trace generation system for students, and more specifically:

RQ1 : How to increase the quantity and content of Git traces using an interac-
tive system?

RQ2 : How to increase the reliability of Git traces using an interactive system?
RQ3 : How can an interactive system make the process of generating Git traces

usable in disciplines other than computer science?

First, we will provide an overview of works that use Git traces to improve
teaching in section 2, while highlighting their limitations. Secondly, in section 3,
we will present the interactive system LAWG designed to answer the issues raised
by our research questions. Finally, we’ll explain how the features of LAWG ad-
dress this in the section 4.

2 State of the art

Several papers [4, 7] have experimented with integrating VCS into computer
science learning and show the benefits. Rocco et Lloyd [13] and Laadan et al.
[6] show more precisely the interest of decentralized VCS, such as Mercurial and
Git. In general, the integration of VCS into practical sessions gives the teacher
the ability to centralize the distribution of course material for all students and
to easily monitor and collect their work[2]. For the students, it introduces them
to computer science industry standards[5].

In the field of Process Mining (PM), several works [3, 9, 15] focus on analyz-
ing Git traces generated in the context of software development courses. In 2021,
Macak et al. [8] proposed a method to analyze Git traces of student projects us-
ing PM. They are interested in 13 activities corresponding to the characteristics
of a commit. More specifically, is it a commit containing essentially additions
or deletions of lines, a big or a small commit, a commit related to branch man-
agement (new branch, merge, pull request), or a commit to create or modify



Interactive system for automatic generation of Git traces 3

test files. This article shows it is possible to identify student learning behaviors
using PM technique. However, only the information provided by Git in a com-
mit is considered for analysis. Git traces do not contain contextual information
about a student’s progress in a learning activity, such as solving a well-identified
question. There is no temporal information concerning the dates of the start of
resolution activity for a question and therefore does not address (RQ1). Finally,
this method of analysis does not deal with the issues of reliability and genericity
of the generation of traces, as referred to in (RQ2, RQ3).

In 2018, Silvestre et Raclet [16] developed a learning protocol based on code
review and test-guided development. In practice, students follow a worksheet
and must mark the resolution of a question by performing commits on their
associated Git repository. Corrections and code reviews are planned to consider
the group’s progress. To help orchestrate its different phases, a dashboard, G4S
[11], is used. Based on the commits made and the milestones (reviews, correc-
tions) filled in by the teacher, this dashboard provides a number of indicators,
such as the progress of students within their group. The dashboard also makes
it possible to export the traces enhanced by the context of the resolution of the
questions.

We analyzed these traces with PM techniques [10] to extract indicators of
students’ learning behavior. Unfortunately, the results were limited by the lack
of information contained in these traces. Indeed, it was impossible for us to
precisely identify the beginning of an activity because the commit only gave
the activity completion concerning a question, therefore not addressing (RQ1).
In addition, the generation of traces identifies the completed exercise from a
predefined message associated with the commit. This declarative and open pro-
cess (the student can enter the message they want for the commit) has led to
traces that are sometimes unusable due to errors in the message or omissions by
the students, which raises the issue of the reliability of the traces mentioned in
(RQ2). Also, the approach of manual generation of traces by students with Git
is a problem in terms of genericity and applicability of the approach in other
contexts (RQ3).

A 2022 study [14] explores an alternative way to automatically generate and
visualize student activity traces during practical sessions. The data visualiza-
tion platform EnCourse presents raw indicators directly related to the commits
made by the students, such as the time spent on the project, the frequency of
commits, or the number of lines added or removed. It also provides interpreted
indicators such as the detection of cases of "academic dishonesty" or alerts when
students are late. To automate the generation of the traces, Rodriguez-Rivera
et al. have chosen to integrate the commit commands into a Makefile. Thus, each
compilation makes a commit when the Makefile is executed.

We see three limitations regarding the traces generated via this operation.
First, a compilation is not necessarily a very frequent event, and the tracing
grain is, therefore, a bit coarse (RQ1). Secondly, using a Makefile is a constraint
that makes it difficult to generalize to other fields than computer science (RQ3).
Indeed, even in computer science, compilation is an action specific to program-



4 M. Pons et al.

ming. A software engineering course where students aim is, for example, to write
a software design documentation will not require compiling, and embedding a
Makefile will be impossible. Finally, to calculate the time spent in activity, the
platform counts, from the commits, fixed activity windows whose duration is
chosen arbitrarily. However, there is nothing to fix a priori such a duration of
activity for the student.

In conclusion of this state of the art, to our knowledge, there is no work on
an interactive system making it possible to generate traces that lift the limits
of content, reliability, and genericity we have just identified. We sought a com-
promise between G4S and EnCourse. Therefore, we have designed an interactive
system to automatically generate traces that consider the need to have contex-
tual information on students’ progress in real-time while maximizing reliability
and genericity.

3 The interactive LAWG system for the automatic
generation of Git activity logs

In the context of solving worksheets given during practical sessions, each exercise
can consist of several questions. We define the notion of work session as being
a period of activity of a student, during which they manipulate resources (pro-
gramming files, texts, images, . . . ), which constitute their workspace, to solve
questions. A student can work outside supervised practical sessions, so a work
session is not limited to practical sessions only.

A student’s workspace exists locally on their machine and remotely. The re-
mote space allows the teacher to access the student’s work and to synchronize
their local space if they need to work on several machines or with other students.
When a student is done working on a question, they commit their changes, then
move on to the next question. In our case, the workspace is managed with the
VCS Git4. To commit its changes, it performs a commit, which saves locally all
changes made to files since its last commit. The commit is always associated
with a message entered by the student at the time of the commit (for example,
"Exercise 1 solved"). To synchronize the remote workspace, their repository,
with their local workspace, they execute the Git command push, and to syn-
chronize their local space with the remote one, they execute the Git command
pull. Finally, the sequence of commits on the workspace constitutes a branch.
By default, there is a branch on which the student works, but they can choose
to create a new one from this one. Branches evolve separately, so the student
can switch branches to isolate specific types of changes (work on a feature, . . . ).

To answer the research questions posed in this paper, we designed an in-
teractive system written in Python and open-source5. So that all students can

4https://git-scm.com/
5Available on GitHub at this address: https://github.com/git4school/LAWG.

https://git-scm.com/
https://github.com/git4school/LAWG


Interactive system for automatic generation of Git traces 5

1 ssh_path: /home/user/.ssh/id_rsa
2 questions: []
3 groups: []

Listing 1: Structure of the file settings.yml

use it, it is available as an executable file for the three main operating systems:
Windows, MacOS, and Linux.

By acting as an interface between the student and their Git repository, LAWG
generates rich and reliable traces while abstracting Git for students.

3.1 Configuration

Configuration of the system is necessary from the teacher, during the prepa-
ration phase of the worksheet, and from the student, during the phase of working
on the worksheet.

To prepare the worksheet, the teacher sets up a template workspace consisting
of a required set of elements for the students to work on. In this workspace,
they must integrate and configure LAWG (the executable files corresponding to
the operating systems that their students are likely to use). The teacher must
create the configuration file settings.yml, whose required fields are listed in the
listing 1. We want the use of the system to be as simple and reliable as possible.
For this, it is necessary to provide the list of questions the student must answer
(the field questions). It is also at this step that the field groups can be filled in.
Once done, the teacher can publish the worksheet and the template repository.

It’s the student’s turn to create their workspace from the template repository
and complete the configuration. There remains only the field ssh_path in which
they must indicate the path to the SSH key registered in the platform that hosts
the remote Git repository. Student identification is one of the main issues with
designing a dashboard like G4S. To do this, the students were asked to fill in
the README file of their project with their names and group. The README could
contain other information like instructions, so the dashboard had to extract the
identity using a parser. In fact, the success of the identification of the student
was strongly dependent on them, who had to (1) not forget to fill in the README,
(2) fill in the README correctly, and (3) not modify the README later so the pars-
ing can no longer be done correctly. To make this process more reliable, on the
first start, LAWG asks the student to enter their name and group and generates
the IDENTITY.json file (see listing 2 for a example). The dashboard will then
read this file to identify each student.

Our interactive system offers three main functionalities that we explain in
the following sections:

– Supervise work sessions, saving all resources at the end of each session;



6 M. Pons et al.

1 {
2 "first_name": "John",
3 "last_name": "Doe",
4 "group": "TPA12"
5 }

Listing 2: Structure of the file IDENTITY.json

– Observe all changes made to files in the workspace to save them in real-time;
– Provide a command-line interface for students to mark a question as solved.

3.2 Supervision of work sessions

Fig. 1: Example of the use of the interactive system when carrying out practical
exercises

When starting a work session, the student launches the interactive system. To
trace this, the system creates a commit named "Resume" in the current branch
and the auto branch (see figure 1). If the auto branch does not exist at that
time, it is created from the current branch. The purpose of this branch will be
explained in the section 3.3.

At the end of a work session, marked by the use of the exit command, all the
changes in progress are saved under a "Pause" commit and sent to the remote
workspace. Then all files in its local workspace are deleted. In this way, in the



Interactive system for automatic generation of Git traces 7

eyes of the student, their workspace is empty. Only the system executable and
the configuration file remain. The student must launch the interactive system to
restore their workspace. The system can thus automatically trace the start and
the end of a work session.

3.3 Automatic generation of activity traces

As soon as LAWG is launched, changes to workspace files are observed and give
rise to system events. As shown in figure 1, we chose to use another branch,
auto, to isolate the execution of automatic commits. This allows the student to
have a simple current branch with few commits and the teacher to have a branch
that tracks the complete activity of the student. Some commits are present in
both branches. Each event causes a commit to be produced in the auto branch.
The events observed are: modification, creation, deletion, move and renaming of
a file.

For these automatic commits, we have defined a minimalist message form to
facilitate further processing:

– "[moved] <path_file> -> <path_new_folder>"
– "[renamed] <path_file> -> <new_name_file>"
– "[<event>] <path_file>"

Thus, in the example in figure 1, we can see that the student starts their work
session with the creation, then the modification of a README file, and creates a
file Acctivite.java before marking question #1 as solved. They then perform
operations on test files, solve the #2 question, realize that they have made a
mistake on the name of a file, and correct the error. The student then closes
their session, which has the effect of producing the commit "Pause".

3.4 Exercise resolution: the fix command

Our interactive system also offers a command line interface, which notably pro-
vides the command fix. It allows the student to mark a question as solved, save
the associated changes, and send them to the remote workspace. More precisely,
all the changes since the last call to this same command, or since the launch of a
working session, are validated in the form of a commit in the current branch and
in the auto branch (whose message is of the form "Fix <question>") and then
sent to the remote workspace. In the example given in figure 1, the student used
the fix command for the questions #1 and #2, whose commits associated are
visible in both branches, then the command exit, which produced the commit
"Pause".

The system suggests the available commands (cf. figure 2a) according to
the entered characters. Also, the student cannot execute a command that does
not exist or is incorrectly formed. When it recognizes the fix command, the
interactive system displays the list of questions the student must answer (see
figure 2b), previously filled in during configuration.



8 M. Pons et al.

(a) Commands suggestion

(b) Questions suggestion

Fig. 2: Screenshots of LAWG’s suggestions

The use of Github to manage practical work is very common in computer
science. To orchestrate the resolution of questions on a worksheet, issues are
sometimes used. It is then possible to close these issues, marking them as solved,
directly in the commit message, by indicating the character "#" followed by the
issue number to close. We have designed this interactive system so that it is
possible to close these issues via the fix command. To do this, you need to
define the questions to be resolved in the same way as the close issue key, i.e.:
"#1" for the question and issue 1, . . .

3.5 Limitations of the interactive system

This interactive system has limitations that must be taken into account before
any integration.

The student still has to perform several actions manually. Indeed, they must
register their public SSH key on Github when their workspace is hosted there,
clone their repository for the first time, and use Git to do a pull to synchronize
the workspace between two machines used possibly. These actions again imply
a dependency on the student’s mastery of Git. However, we are looking at ways
to reduce the technical requirements.

While the LAWG retrieves recent changes to the remote repository via the pull
command, it still cannot handle conflicts automatically. This can cause problems
when several students are working on the same project.

When the students have to use several branches, the use of LAWG is not
recommended at the moment. It does not handle branch switching correctly. If



Interactive system for automatic generation of Git traces 9

the content of the workspace changes between two branches, the system will save
all files different from the starting branch.

There is always a dependence on a declarative side on the part of the student,
that is, the student must explicitly state the questions they solve bit by bit. There
is no objective and automatic evaluation of the student’s work.

4 What are the benefits of using the interactive system?

This section explains how the functionality of LAWG can address the three re-
search questions set out in section 1.

4.1 RQ1 - Content

The generation of logs for each file modification (cf. section 3.3) makes it possible
to trace a student’s activity during a work session finely. Indeed, this finer grain
of trace allows having the first sign of activity concerning a question n after
the resolution of a question n-1. Thus, we can approach more precisely the real
duration of activity of the student. To test the system, we generated traces of
a student using the system to answer questions on an worksheet from a real
course6. The figure 3 shows an extract of the generated traces. This extract
shows only a subset of the data collected through Git. In this example, all lines
in red are traces generated by the system. We can see that the volume of traces
is significantly increased and covers a more extensive range of time than without
using the system (i.e. only the commits named "Fix ...").

Through the generation of a trace for each file modification, it is possible
to identify information about students’ behavior via the names of these files.
A concrete example of this, in the case of the figure 3, is the identification of
the good following of the Test-Driven-Development (TDD). We can see in lines
62 and 61 that the student integrates the test ArticleTest, then modifies the
associated class Article thanks to the naming convention of the tests. This
is, therefore, representative of TDD. On the other hand, we can see that the
student modifies the classes IndexController on line 67 before the associated
test IndexControllerTest on line 66. Here we see that the TDD is not followed,
and a simple comparison of the file names would make it possible to automate
this identification from these traces.

In addition, the management of work sessions (see section 3.2) makes inte-
grating the beginning and end of these sessions in the logs possible. This can be
observed in the figure 3 at the lines 44 and 74 with the commits "Resume" and
"Pause".

Also, the associated mechanism, which empties and restores the workspace,
allows us to ensure the systematic use of the interactive system for each work
session and, therefore, the completeness of the traces.

6The anonymized dataset is available on OSF at this address: https://osf.io/t3wqr/
?view_only=69907570f39046edba382a5e855ed26a.

https://osf.io/t3wqr/?view_only=69907570f39046edba382a5e855ed26a
https://osf.io/t3wqr/?view_only=69907570f39046edba382a5e855ed26a


10 M. Pons et al.

Fig. 3: Extract of the traces generated with the system



Interactive system for automatic generation of Git traces 11

4.2 RQ2 - Reliability

With the question resolution interface (cf. section 3.4), we went from declarative
and open trace generation to declarative but closed trace generation. Indeed,
the command fix generates a trace whose message is normalized. Validating
the command prevents the student from marking as solved a question that is
not in the list given to the configuration. In this way, errors from the students
are avoided. Thanks to its partial automation (cf. section 3.3), traces generation
becomes semi-automatic and closed. Many of the traces generated by LAWG are
no longer dependent on student declaration, which reduces the possibility of
omissions.

4.3 RQ3 - Genericity

The interactive system makes it easier to integrate into non-computer science
areas. It abstracts the use of Git for trace generation so that it can be used for
an audience unfamiliar with Git. The triggering of the automatic generation of
traces (see section 3.3) when simply modifying a file makes it usable in all areas
that require working on a computer, especially when the expected contributions
are text productions.

5 Conclusion

After identifying the limitations of tools that generate traces through Git reposi-
tories, we presented the interactive system we designed to overcome them, called
LAWG. Our interactive system allows the automatic generation of traces each
time the student modifies a file. It also provides a command allowing the stu-
dent to validate the resolution of a question. We thus contribute to improving
the reliability, content, and genericity of the production of activity traces. With
the enrichment of these traces, we intend to apply process mining methods or
to perform analyses of student behavior in relation to a target behavior in fu-
ture experiments. This year, our interactive system will be tested in computer
learning courses for this purpose. To prepare for these experiments, our main
objective is to deal with the issue of collecting personal data. This is a crucial
point, all the more so in the case of an interactive system that observes the
events of the student’s machine in real-time and which, therefore, could sub-
stantially impact the system’s acceptability. We have established an approach
that separates access to personal data from research work. Only teachers have
access to personal data via the dashboard G4S and make this data available to
researchers once anonymized (through a script we provide). To facilitate this
and ensure compliance with GDPR by construction, we plan to integrate data
anonymization into the export from G4S.

Bibliography

[1] LAK ’11: Proceedings of the 1st International Conference on Learning An-
alytics and Knowledge (2011)



12 M. Pons et al.

[2] Clifton, C., Kaczmarczyk, L.C., Mrozek, M.: Subverting the fundamen-
tals sequence: using version control to enhance course management. ACM
SIGCSE Bulletin (2007)

[3] Eskofier, B.M.: Exploration of process mining opportunities in educational
software engineering-the gitlab analyser. In: Proc. of The 13th International
Conference on Educational Data Mining (EDM 2020) (2020)

[4] Glassy, L.: Using version control to observe student software development
processes. Journal of Computing Sciences in Colleges (2006)

[5] Kelleher, J.: Employing git in the classroom. In: 2014 World Congress on
Computer Applications and Information Systems (WCCAIS), IEEE (2014)

[6] Laadan, O., Nieh, J., Viennot, N.: Teaching operating systems using virtual
appliances and distributed version control. In: Proceedings of the 41st ACM
technical symposium on Computer science education (2010)

[7] Lawrance, J., Jung, S., Wiseman, C.: Git on the cloud in the classroom.
Proceeding of the 44th ACM technical symposium on Computer science
education - SIGCSE ’13 (2013)

[8] Macak, M., Kruzelova, D., Chren, S., Buhnova, B.: Using process mining
for Git log analysis of projects in a software development course. Education
and Information Technologies (2021)

[9] Mittal, M., Sureka, A.: Process mining software repositories from student
projects in an undergraduate software engineering course. In: Companion
proceedings of the 36th international conference on software engineering
(2014)

[10] Pons, M., Bruel, J.M., Raclet, J.B., Silvestre, F.: Finding behavioral in-
dicators from contextualized commits in software engineering courses with
process mining. In: Frontiers In Software Engineering Education, Springer
(2023), to be published

[11] Raclet, J.B., Silvestre, F.: Git4School: A dashboard for supporting teacher
interventions in software engineering courses. In: European Conference on
Technology Enhanced Learning, Springer (2020)

[12] Robles, G., González-Barahona, J.M.: Mining student repositories to gain
learning analytics. an experience report. In: 2013 IEEE Global Engineering
Education Conference (EDUCON) (2013)

[13] Rocco, D., Lloyd, W.: Distributed version control in the classroom. In: Pro-
ceedings of the 42nd ACM technical symposium on Computer science edu-
cation (2011)

[14] Rodriguez-Rivera, G., Turkstra, J., Buckmaster, J., LeClainche, K., Mont-
gomery, S., Reed, W., Sullivan, R., Lee, J.: Tracking large class projects
in real-time using fine-grained source control. In: Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1 (2022)

[15] Shynkarenko, V., Zhevaho, O.: Application of constructive modeling and
process mining approaches to the study of source code development in soft-
ware engineering courses. Journal of Communications Software and Systems
(2021)

[16] Silvestre, F., Raclet, J.B.: Développement dirigé par les tests et revue de
code par les pairs pour l’apprentissage de la programmation. In: Ludovia



Interactive system for automatic generation of Git traces 13

CH: 1ère édition sur le thème" Émanciper l’école et la société avec le
numérique?" (2018)


	Traceability by design: design of an interactive system to improve the automatic generation of Git traces during a learning activity

