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recently revived the debate related to the market portfolio's efficiency, suggesting that it may be mean-variance efficient after all. This paper develops an alternative test of portfolio mean-variance efficiency based on the realistic assumption that all assets are risky. The test is based on the vertical distance of a portfolio from the efficient frontier. Monte Carlo simulations show that our test outperforms the previous mean-variance efficiency tests for large samples since it produces smaller size distortions for comparable power. Our empirical application to the U.S. equity market highlights that the market portfolio is not mean-variance efficient, and so invalidates the zerobeta CAPM.

Introduction

Testing the mean-variance (MV) efficiency of the market portfolio, or equivalently testing the validity of the Capital Asset Pricing Model (CAPM) of [START_REF] Sharpe | Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk[END_REF] and [START_REF] Lintner | Security Prices, Risk, and the Maximal Gains from Diversification[END_REF], is a major task for financial econometricians. The debate on this issue dates back to the breakthrough theoretical contributions of [START_REF] Roll | A Critique of the Asset Pricing Theory's Tests. Part I: On Past and Potential Testability of the Theory[END_REF] and [START_REF] Ross | The Capital Asset Pricing Model (CAPM), Short-Sale Restrictions and Related Issues[END_REF] questioning the efficiency of the market portfolio. In the wake of these contributions, numerous empirical studies [START_REF] Gibbons | Multivariate Tests of Financial Models: A New Approach[END_REF][START_REF] Gibbons | A Test of the Efficiency of a Given Portfolio[END_REF][START_REF] Mackinlay | Using Generalized Method of Moments to Test Mean-Variance Efficiency[END_REF]among others) found that the market portfolio may indeed lie far away from the efficient frontier.

Ironically, this debate was recently fuelled by [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF], who published an article in the Review of Financial Studies entitled "The market portfolio may be mean-variance efficient after all". Based on a new test, we take a fresh look at this issue with the ambition to arbitrate between the contradictory arguments of [START_REF] Roll | A Critique of the Asset Pricing Theory's Tests. Part I: On Past and Potential Testability of the Theory[END_REF] and [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF].

More generally, all portfolio managers are-or should be-faced with the issue of checking whether a given portfolio is optimal within a predefined investment universe. For this purpose, MV efficiency, as defined by [START_REF] Markowitz | Portfolio Selection[END_REF][START_REF] Markowitz | Portfolio Selection: Efficient Diversification of Investments[END_REF], remains the key optimality concept.

Currently, the econometric literature offers a wide variety of tests for MV efficiency. Most are designed for universes that include a riskless asset. 1 This represents a considerable constraint when it comes to practical implementation. By contrast, this paper focuses on MV efficiency tests that allow all assets to be risky. 1 When the investment universe includes a riskless asset, the efficient frontier is a straight line, which makes the derivations far simpler [START_REF] Gourieroux | Econométrie de la Finance : Approches Historiques[END_REF]. Tests falling in this category have been proposed by [START_REF] Gibbons | Multivariate Tests of Financial Models: A New Approach[END_REF], [START_REF] Jobson | Potential Performance and Tests of Portfolio Efficiency[END_REF], and [START_REF] Mackinlay | Using Generalized Method of Moments to Test Mean-Variance Efficiency[END_REF], among others. The test introduced by [START_REF] Gibbons | A Test of the Efficiency of a Given Portfolio[END_REF] has since then become the standard. [START_REF] Michaud | The Markowitz Optimization Enigma: Is 'Optimized' Optimal?[END_REF] and [START_REF] Green | When Will Mean-Variance Efficient Portfolios Be Well Diversified[END_REF] discuss the limitations of this framework. Besides, MV efficiency tests must be distinguished from MV spanning tests, which examine whether the efficient frontier built from a given set of assets intersects the frontier resulting from a larger set (see De [START_REF] De Roon | Testing for Mean-Variance Spanning: A Survey[END_REF] for a survey).

The assumption that all assets are risky is highly relevant given that riskless assets are no longer realistic in modern financial markets. The recent debt crisis has highlighted that even the supposedly safest assets, namely sovereign bonds issued by developed countries, are exposed to default risk. In the same way, the freezing of the money markets and the Lehman Brothers' bankruptcy underlined the counterparty and liquidity risks associated with money market investments (Acharya et al., 2010;[START_REF] Bruche | Deposit Insurance and Money Market Freezes[END_REF][START_REF] Krishnamurthy | The Financial Meltdown: Data and Diagnoses[END_REF].

Investors can thus meet severe restrictions on borrowing [START_REF] Black | Capital Market Equilibrium with Restricted Borrowing[END_REF], and the riskless borrowing rate can largely exceed the Treasury bill rate [START_REF] Brennan | Capital Market Equilibrium with Divergent Borrowing and Lending Rates[END_REF]. For all these reasons, MV efficiency is better tested without assuming the availability of a riskless asset.

Two broad classes of MV efficiency tests for risky-asset universes exist in the literature: likelihood-based tests and geometric tests. The likelihood-based tests are directly inspired by the formulation of the CAPM. While the riskless asset is needed to establish the original CAPM, further refinements by [START_REF] Black | Capital Market Equilibrium with Restricted Borrowing[END_REF] allow the riskless asset to be replaced by the zero-beta portfolio. To address the nonlinearities embedded in the Black CAPM, Gibbons (1982) builds a likelihood-ratio test statistic, for which [START_REF] Kandel | The Likelihood Ratio Test Statistic of Mean-Variance Efficiency without a Riskless Asset[END_REF][START_REF] Kandel | The Geometry of the Likelihood Estimator of the Zero-Beta Return[END_REF] derives the exact asymptotic chi-square distribution. However, because this test uses the Gauss-Newton algorithm, practical implementation turns out to be complex [START_REF] Zhou | Small Sample Tests of Portfolio Efficiency[END_REF]. Moreover, [START_REF] Shanken | Multivariate Tests of the Zero-Beta CAPM[END_REF] shows that Gibbons ' (1982) test tends to over-reject MV efficiency in finite samples. 2 Levy and Roll (2010) (henceforth, LR) offer a novel likelihood-ratio test for MV efficiency. This test is based on implicitly estimating the zero-beta rate by determining the minimal changes to sample parameters that make a market proxy efficient. 3On the other hand, the first geometric test of [START_REF] Basak | A Direct Test for the Mean-Variance Efficiency of a Portfolio[END_REF] (henceforth, BJS) is based on the "horizontal distance" between the portfolio whose MV efficiency is in question and its same-return counterpart on the MV efficient frontier. 4 Unfortunately, some portfolios lack such a counterpart [START_REF] Gerard | International Portfolio Diversification: Currency, Industry and Country Effects Revisited[END_REF], which in turn limits the applicability of the BJS test. By contrast, the "vertical test" proposed in this paper circumvents this limitation. Indeed, the vertical inefficiency measure proposed by [START_REF] Kandel | Portfolio Inefficiency and the Cross-Section of Expected Returns[END_REF], [START_REF] Wang | Efficiency Loss and Constraints on Portfolio Holdings[END_REF][START_REF] Li | Diversification Benefits of Emerging Markets Subject to Portfolio Constraints[END_REF], namely the difference between the portfolio's expected return and the expected return of its same-variance counterpart on the MV efficient frontier, is well defined for any portfolio.

Our contribution is twofold. First, we define the vertical test statistic for MV efficiency, establish its asymptotic distribution, and compare its size and power performances to those of the LR and BJS tests through Monte Carlo simulations. While no clear hierarchy emerges for small samples, the vertical test outperforms its competitors for large samples as it exhibits equivalent power with a smaller size. Secondly, we re-examine the market portfolio MV efficiency using the three tests under review (LR, BJS and the vertical tests). Irrespectively of the number of stocks in the universe, we find that the market portfolio is never MV efficient according to both the BJS and the vertical tests. For the LR test, the conclusion depends on the value given to the coefficient α, which determines the relative weight assigned to sample mean changes against standard deviation changes. In other words, the LR test reaches no clear-cut and definitive conclusion regarding the market portfolio's efficiency. Although still frail, the evidence points to the inefficiency of the market portfolio, supporting the [START_REF] Roll | A Critique of the Asset Pricing Theory's Tests. Part I: On Past and Potential Testability of the Theory[END_REF] critique of the CAPM.

The paper is organized as follows. Section 2 presents the vertical test and its asymptotic properties. Section 3 assesses the size and power of the vertical test and its two competitors.

Section 4 tests the Black CAPM on the U.S. equity market. Section 5 concludes.  are respectively given by:

The Vertical Test of Mean-Variance Efficiency
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where t R and t r are the date-t returns on the N primitive assets and on portfolio P, respectively.

As illustrated by Figure 1, the "horizontal distance" underlying the BJS test measures of portfolio P inefficiency is the difference between the variance of P and the variance of its same-expected-return counterpart on the efficient frontier. Our vertical test is conceived by transposing the BJS (2002) methodology to the vertical inefficiency measure introduced by [START_REF] Kandel | Portfolio Inefficiency and the Cross-Section of Expected Returns[END_REF], [START_REF] Wang | Efficiency Loss and Constraints on Portfolio Holdings[END_REF][START_REF] Li | Diversification Benefits of Emerging Markets Subject to Portfolio Constraints[END_REF]. Hence, the vertical test statistic 5 is the distance between the expected return of portfolio P and the expected return of its same-variance MV efficient counterpart. The estimated distance, denoted by  ˆ, is the solution to the following program:
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5 Another possibility would be to take the minimal Euclidian distance between portfolio P and the efficient frontier. This approach would certainly be more elegant, but would also be much more tedious as it would mix up first and second order parameters.

The following proposition states that, under the null that portfolio P is MV efficient, estimator  ˆ asymptotically follows a normal distribution: Proposition 1  ˆ asymptotically follows a normal distribution:
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, where  represents the asymptotic covariance matrix of the distinct elements of  ˆ,  ˆ,  ˆ, and ˆ, and
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 is given by (A2) in Appendix A.

Proof: See Appendix A.

As for the BJS test, this asymptotic result does not require normality assumptions on the asset returns. Moreover, as demonstrated in Appendix A, this result holds both with and without short-selling restrictions.

Power and Size Performances

In this section, we assess the size and power of the vertical test and compare its performances to those of the BJS and LR tests. To this end, we simulate series of returns drawn from the investment universe imagined by [START_REF] Das | Portfolio Optimization with Mental Accounts[END_REF], including three assets with jointly normal returns having the following parameters: (8) [START_REF] Das | Portfolio Optimization with Mental Accounts[END_REF] interpret the first asset as a bond, the second as a low-risk stock, and the third as a highly speculative stock. For the sake of comparability,6 we focus here on the case where short-selling is allowed.
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We simulated 1,000 series of returns of lengths 60, 120, 180, and 240, respectively. In each case, two groups of portfolios were composed. The portfolios in the first group were generated on the efficient frontier in order to estimate the risk of type I error (false rejection of the true hypothesis that portfolios are mean-variance efficient). The portfolios in the second group were generated below the efficient frontier to estimate the risk of type II error (failure to reject the false hypothesis).

We follow the assessment of statistical tests suggested by [START_REF] Wasserman | All of Statistics: A Concise Course in Statistical Inference[END_REF]. This procedure is based on power maximization (i.e., minimization of the risk of type II error) for a given small size (i.e., risk of type I error). Figure 2 features all tested portfolios on a grid in the MV plane. To each of them, we successively apply the BJS, LR, and vertical tests. 
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Under the null that portfolio P is MV efficient,  ˆ asymptotically follows a normal distribution:
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The [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF] 
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and  is a coefficient determining the relative weight assigned to deviations in means relative to the deviations in standard deviations. 7For simplicity, [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF] 
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Where C ˆ is the sample correlation matrix. In that way, only the variances have to be estimated.

Under the hypothesis that the N original assets follow a jointly normal distribution, the likelihood ratio is given by:
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This test statistic asymptotically follows a chi-square distribution with N 2 degrees of freedom.

The choice of the trade-off parameter  in Equation ( 10) is instrumental to the implementation of the LR test. Indeed, a low (resp. high) value of would create a bias towards standard deviations (resp. means). In extreme cases ( 0   and 1  

), the asymptotic distribution of the LR test statistic degenerates into a chi-square with N degrees of freedom. In our performance assessments, we follow [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF] and set the value of α to 0.75.

False Rejection of Efficient Portfolios

We first assess the type I error. The four simulated efficient portfolios have expected returns of 10%, 15%, 20% and 25%, respectively. The rejection frequencies of the null of portfolio efficiency at the 5% probability level are displayed in Table 1. 8 The results show that the size is uniformly the lowest for the vertical test, followed by the LR test. Nevertheless, the vertical test, and to a lesser extent the LR test, exhibit rejection frequencies that lie below the theoretical threshold of 5%. 8 The results for the 1% and 10% probability levels are given in Table B1 in Appendix B. 

Rejection of Inefficient Portfolios

We now apply the three MV efficiency tests under review to thirteen portfolios simulated as inefficient in order to assess the probability of falsely concluding that the portfolio was efficient. The results are given in Table 2 for 5% probability.9 For sample sizes below 180, the power is the lowest for the vertical test, and the highest for the BJS test. However, for larger samples, the vertical test outperforms both the BJS and the LR tests since its size is the lowest for an equivalent power. On the whole, Tables 1 and2 indicate that the vertical test rejects the null of MV efficiency less frequently than the two other tests.

The differences in power and size between the vertical test and the BJS test might look surprising since both are similar in spirit, namely they are both built from a geometric onedimensional measure of inefficiency in the MV plane. This counterintuitive result stems from the fact that the standard deviation of the vertical measure of inefficiency is higher than the standard deviation of the horizontal measure used in the BJS test. Indeed, the standard deviations of both tests depend on the absolute values of the weighting loads of the testedportfolio efficient counterpart. However, the efficient "vertical counterparts" are mostly located on the top of the efficient frontier while the efficient "horizontal counterparts" are mostly located at the bottom of the efficient frontier. Since absolute weighting loads are typically higher on the top of the efficient frontier (riskier portfolios are less diversified), the vertical distance is subject to higher standard deviations than the horizontal BJS test.

Consequently, the t-statistic generally takes lower values for the vertical test than for the BJS test, and hence the former rejects MV efficiency less frequently than the latter. This feature is particularly relevant when short-selling restrictions are imposed (see [START_REF] Best | On the Sensitivity of Mean-Variance Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results[END_REF][START_REF] Green | When Will Mean-Variance Efficient Portfolios Be Well Diversified[END_REF][START_REF] Britten-Jones | The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights[END_REF].

Robustness Checks on the Slope of the Efficient Frontier

Both the horizontal and vertical measures of portfolio inefficiency are restricted to a single dimension in the MV plane. They are, therefore, sensitive to the slope of the efficient frontier.

For this reason, we check the robustness of our previous findings by substantially modifying the slope of the efficient frontier. This is achieved by running simulations under two alternative scenarios for the expected return on the speculative stock (15% and 35% respectively instead of 25%) while keeping all other parameters in Equation ( 8) unchanged.

As Figure 3 shows, the first case (15%) produces a flatter efficient frontier, whereas the second (35%) leads to a steeper MV efficient frontier. The minimum-variance portfolios of the three efficient frontiers still remain very close to each other. As previously, we apply the three efficiency tests to a grid of efficient and non-efficient simulated portfolios. The results are reported in Tables C1 to C4 in Appendix C. They can be summarized as follows. For the flat efficient frontier, the BJS test produces the highest size distortions, while the vertical test exhibits the lowest. Given that the BJS test outperforms the other two tests in terms of power irrespective of the sample size, a reasonable procedure for practical use is to combine the BJS and the vertical tests when the MV efficient frontier is flat. In the case of a steep efficient frontier, the results are similar to those obtained in the benchmark case. The vertical test exhibits the lowest size distortions, and its power strongly increases in comparison to the benchmark case, especially for small samples. On the whole, our results

show that the vertical test is preferable when the efficient frontier is steep and samples are large.

Is the Market Portfolio Efficient?

In this section, we apply the BJS, the LR, and the vertical tests of MV efficiency to the capitalization-weighted market portfolio made up of the 100 largest U.S. stocks 10 ). 12 In each case, we select the largest stocks of the sample. For the LR test we follow the original paper when assessing MV efficiency and use a value of α equal to 0.75. As a robustness check, we also test the MV efficiency for a value α (0.98), which gives a similar importance to deviations from variance and mean. 13Lastly, we apply the three tests to equally-weighted portfolios as robustness checks.

Figure 4 shows the efficient frontiers (without short-selling restrictions) made of 10, 50 and 100 assets, respectively, and the corresponding market portfolios. Noticeably, the MV characteristics of the market portfolio are stable with respect to the number of assets, but the efficient frontier becomes steeper when N increases. In particular, this feature shows that all configurations explored in Section 3 are realistic.

Table 3 summarizes the outcomes of the three tests. Two findings stand out. Firstly, for all sample sizes, both the BJS and the vertical tests reject the null of market portfolio efficiency.

Regardless of the number of stocks in the universe, the market portfolio is never MV efficient.

Similar results are found for equally-weighted portfolios (see Table 4).

Secondly, for all values of N, the LR test does not reject market portfolio efficiency for α = 0.75, confirming the findings of [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF]. 14 However, for α = 0.98 the LR test rejects market portfolio efficiency. This indicates that the LR test is sensitive to the value taken by parameter α. In fact, for α higher than 0.902 MV efficiency is always rejected by the LR test. 14 Even though our sample period is longer than in [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF]. On the whole, our findings support [START_REF] Roll | A Critique of the Asset Pricing Theory's Tests. Part I: On Past and Potential Testability of the Theory[END_REF] over [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF]. Indeed, while the conclusion of the LR test depends on the trade-off coefficient , the two other tests unequivocally conclude that the market portfolio is never MV efficient. The validity of the zero-beta CAPM, relying on the efficiency of the market portfolio, is thus strongly called into question. In a nutshell, the fundamental contributions of both [START_REF] Roll | A Critique of the Asset Pricing Theory's Tests. Part I: On Past and Potential Testability of the Theory[END_REF] and [START_REF] Ross | The Capital Asset Pricing Model (CAPM), Short-Sale Restrictions and Related Issues[END_REF] remain highly relevant for portfolio management.

Conclusion

This paper develops a new test of portfolio MV efficiency based on the realistic assumption that all assets are risky. The test is based upon the vertical distance of a portfolio from the efficient frontier. While the evidence is mixed for small samples, our test outperforms the previous MV efficiency tests proposed by [START_REF] Basak | A Direct Test for the Mean-Variance Efficiency of a Portfolio[END_REF] and [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF] for large samples since it produces lower size distortions for comparable power. The empirical analysis shows that the LR test is sensitive to the value taken by the nuisance parameter determining the relative weight assigned to sample-mean changes against standard-deviation changes. Furthermore, both the vertical and horizontal tests are based on intuitive measures in the MV plane and are, therefore, easy to visualize, which makes them more appealing than the LR test.

The ideally balanced distance in the MV plane remains, however, the orthogonal distance.

Even though a test based on this distance is feasible in theory, deriving its closed-form asymptotics could prove challenging. We leave this for further work. Meanwhile, the best alternative for practitioners to test portfolio efficiency is probably the dual approach combining the vertical and horizontal tests. In the final decision, the weight to be allocated to each test should then take into account the curvature of the efficient frontier.

The existing MV efficiency tests could be improved in several ways. The LR test could be generalized by relaxing the short-selling restriction. For all tests, implementing the jackknifetype estimator of the covariance matrix developed by [START_REF] Basak | Jackknife Estimator for Tracking Errors Variance of Optimal Portfolios[END_REF] could offer a promising extension since this estimator produces a more accurate covariance matrix than the sample one.

Our empirical application to the U.S. equity market highlights that the market portfolio is not MV efficient, invalidating the zero-beta CAPM. Consequently, regarding the [START_REF] Roll | A Critique of the Asset Pricing Theory's Tests. Part I: On Past and Potential Testability of the Theory[END_REF] versus [START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF] 
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By applying the delta method, when T tends to the infinite, we have: and0  being the covariance matrix of t U , and from BJS (2002BJS ( , p. 1208)):
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The asymptotic distribution of vector V is given by (A1). Let us now move to the vertical distance,  ˆ, which is a derivable function of vector V . Consequently, the delta method establishes that the asymptotic variance 2
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needs to be computed. With this aim, we express that  ˆminimizes the following Lagrangian function:
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By differentiation, we have:
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From the first order condition applied to (A4), we obtain:

) 2 ( ' 0 2 1 1                 v l p And consequently:     1 : 0 : ²) : : ² : 2 : : 2 : 2 : ² ( : 0 0 : 1 : 0 : ' ˆ2 1 2 1 2 1 1 1 2 1         p p p pv V               (A6)
Combining the results in (A1), (A4) and (A6), we obtain the asymptotic variance 2  of the vertical distance  ˆ:

                       V V    2 (A7)
When there are no short-selling restrictions, the efficient frontier is modified because the sole constraint applied to  is that its components add up to one. Let *  denote the vertical distance in this case. The modified Lagrangian function is:

) ' ( ) 1 ' ( ' * 2 2 1                  l (A8)
By differentiating both sides of (A7), we get:

    1 : 0 : ²) : : ² : 2 : : 2 : 2 : ² ( : 0 0 : 1 : 0 : ' * 2 1 2 1 2 1 1 1 2 1         p p p pv V l              (A9) Lastly, substituting V l   * in (A8) by V l   * from (A5)
gives the asymptotic variance * 2  of the vertical distance *  when there are no short-selling restrictions. Its expression stands as: 

                       V V * * * 2    (A10)
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 1 Figure 1. Horizontal and vertical distances between portfolio P and the efficient frontier
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 4 Figure 4. Efficient frontiers and market portfolios for the 10, 50 and 100 largest U.S. stocks, respectively. January 1988 -December 2010

Table 1 . Rejection frequencies (in percent) at the 5% probability level for the efficient portfolios

 1 Note: BJS:[START_REF] Basak | A Direct Test for the Mean-Variance Efficiency of a Portfolio[END_REF] test; Vertical: vertical test; LR: Levy and Roll (2010) test. T is the sample size.

			T	B JS	Ver tic al	LR
			60	7.6	0.6	3.7
		10%	120 180	5.5 5.1	0.4 0.4	1.8 1.4
			240	4.1	0.2	1.3
	Expected return	15% 20%	60 120 180 240 60 120 180	6.1 6.4 5.1 4.6 8.6 5.8 5.4	0.6 0.4 0.0 0.0 0.6 0.4 0.3	2.9 1.9 1.3 1.5 3.1 1.7 1.5
			240	4.6	0.2	1.6
			60	6.4	0.6	2.8
		25%	120 180	6.3 5.6	0.4 0.0	1.7 1.5
			240	4.9	0.0	0.0

Table 2 . Rejection frequencies (in percent) at the 5% probability level for the inefficient portfolios

 2 [START_REF] Basak | A Direct Test for the Mean-Variance Efficiency of a Portfolio[END_REF] test; Vertical: vertical test; LR: Levy and Roll (2010) test. T is the sample size.

											Variance					
					5%			10%			15%			20%			25%
			T	BJS Vertical	LR	BJS Vertical	LR	BJS	Vertical	LR	BJS	Vertical	LR	BJS	Vertical	LR
			60	89.8	49.1	66.6	94.4	62.0	76.4	96.8	69.0	76.7	96.8	70.3	79.9	98.2	72.3	80.6
		10%	120 99.2 180 100.0	85.4 96.7	93.9 99.1	100.0 100.0	93.4 98.9	96.4 99.6	100.0 100.0	94.7 99.5	96.2 99.7	100.0 100.0	96.6 99.3	95.9 99.3	99.7 100.0	96.4 99.9	96.1 99.4
			240 100.0	99.5	99.9	100.0	99.7	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	99.9
	Expected return	15% 20%	60 120 180 240 60 120 180				71.5 92.1 98.8 99.8	24.8 51.7 75.3 88.9	35.1 64.5 86.5 93.8	86.5 98.5 99.6 100.0 35.6 56.3 73.6	38.0 72.6 92.7 97.9 5.2 12.9 25.8	55.4 87.2 97.4 99.5 5.9 12.2 24.8	89.4 99.1 100.0 100.0 64.5 84.2 95.7	49.9 83.1 96.2 99.2 19.2 41.7 67.1	66.7 92.5 98.9 99.9 27.2 53.0 75.6	93.8 99.7 100.0 100.0 75.7 93.8 99.5	55.4 86.8 97.6 99.7 28.5 56.3 81.4	72.3 94.9 99.5 99.9 44.6 71.6 90.5
			240							83.8	38.1	36.6	99.0	82.0	89.9	99.8	93.0	97.0
			60													31.9	3.3	5.6
		25%	120 180													44.6 58.2	9.2 14.7	11.5 19.0
			240													72.0	24.0	28.6
	Note: BJS:													

Table 3 . MV efficiency tests for the capitalization-weighted market portfolio

 3 

		Annualized					
	Nb. of stocks	Expected Return	Volatility (in %)	BJS test	Vertical test	LR test ( = 0.75)	LR test ( = 0.98)
		(in %)					
	10	14.84	15.49	-3.11(0.00)	1.28 (0.10)	6.09 (1.00)	161.27 (0.00)
	20	15.55	16.36	-4.58 (0.00)	2.14 (0.02)	15.54 (1.00)	579.43 (0.00)
	30	14.92	15.63	-4.67 (0.00)	2.32 (0.01)	18.87 (1.00)	773.40 (0.00)
	40	15.21	15.64	-5.25 (0.00)	2.94 (0.00)	28.49 (1.00)	1597.15 (0.00)
	50	15.05	15.48	-5.54 (0.00)	3.25 (0.00)	37.61 (1.00)	2562.73 (0.00)
	60	15.20	15.54	-5.90 (0.00)	3.78 (0.00)	48.73 (1.00)	3357.71 (0.00)
	70	15.27	15.40	-6.56 (0.00)	4.46 (0.00)	65.54 (1.00)	3106.69 (0.00)
	80	15.33	15.31	-6.53 (0.00)	4.58 (0.00)	76.76 (1.00)	3491.16 (0.00)
	90	15.23	15.22	-6.83 (0.00)	4.74 (0.00)	89.71 (1.00)	3542.50 (0.00)
	100	15.25	15.22	-7.17 (0.00)	5.05 (0.00)	102.27 (1.00)	4045.07 (0.00)

Coefficient  denotes the MV trade-off in the LR test statistic. p-values are given in parentheses.

Table 4 . MV efficiency tests for the equally-weighted market portfolio

 4 Coefficient  denotes the MV trade-off in the LR test statistic. p-values are given in parentheses.

		Annualized					
	Nb. of stocks	Expected Returns	Volatility (in %)	BJS test	Vertical test	LR test ( = 0.75)	LR test ( = 0.98)
		(in %)					
	10	14.29	14.95	-3.22 (0.00)	1.33 (0.09)	6.78 (1.00)	197.70 (0.00)
	20	15.34	16.79	-4.56 (0.00)	2.18 (0.01)	15.75 (1.00)	706.71 (0.00)
	30	14.32	15.50	-4.54 (0.00)	2.39 (0.01)	19.37 (1.00)	979.52 (0.00)
	40	15.17	15.72	-4.99 (0.00)	2.90 (0.00)	28.48 (1.00) 1771.03 (0.00)
	50	14.79	15.47	-5.27 (0.00)	3.23 (0.00)	36.90 (1.00) 2681.93 (0.00)
	60	15.22	15.76	-5.65 (0.00)	3.75 (0.00)	47.80 (1.00) 3381.66 (0.00)
	70	15.39	15.46	-6.14 (0.00)	4.36 (0.00)	64.71 (1.00) 3453.09 (0.00)
	80	15.53	15.28	-6.00 (0.00)	4.45 (0.00)	75.95 (1.00) 3938.86 (0.00)
	90	15.21	15.13	-6.29 (0.00)	4.60 (0.00)	89.03 (1.00) 4137.95 (0.00)
	100	15.30	15.17	-6.68 (0.00)	4.92 (0.00)	102.12 (1.00)	4535.09 (0.00)

  controversy, our findings indicate that[START_REF] Roll | A Critique of the Asset Pricing Theory's Tests. Part I: On Past and Potential Testability of the Theory[END_REF] scepticism on the validity of the CAPM seems to survive the recent rehabilitation attempts made by Levy

	and Roll (2010).										
	t	' t	t	t	t	t	2	t	t	t r	t w

Table B2 . Rejection frequencies (in percent) at the 1% probability level for the inefficient portfolios

 B2 [START_REF] Basak | A Direct Test for the Mean-Variance Efficiency of a Portfolio[END_REF] test; Vertical: vertical test; LR:[START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF] test. T denotes the sample size.

											Variance					
					5%			10%			15%			20%			25%
			T	BJS	Vertical	LR	BJS	Vertical	LR	BJS	Vertical	LR	BJS	Vertical	LR	BJS	Vertical	LR
			60	78.5	14.7	55.3	86.8	24.4	65.8	92.0	32.4	70.4	92.7	35.7	73.2	95.3	38.8	75.4
		10%	120 96.8 180 99.7	44.1 75.2	87.6 97.7	99.5 99.9	65.4 89.2	92.6 99.0	99.6 100.0	71.1 93.0	92.8 99.0	99.7 99.9	75.0 93.2	93.2 98.5	99.5 100.0	76.5 95.6	91.4 98.5
			240 99.9	91.1	99.7	100.0	97.9	99.5	100.0	98.5	100.0 100.0	99.0	100.0 100.0	98.7	99.8
	Expected return	15% 20%	60 120 180 240 60 120 180				49.8 76.1 91.1 96.8	3.2 13.7 31.9 47.5	23.8 51.6 75.2 89.0	68.1 92.2 98.0 99.7 17.1 32.6 46.3	9.0 30.7 59.2 79.6 0.7 0.7 3.1	42.4 77.3 95.1 98.5 3.1 5.0 12.1	78.3 96.2 99.6 100.0 41.9 64.6 83.7	18.0 42.9 75.2 90.5 2.5 8.3 19.1	55.8 86.5 97.1 99.3 16.3 39.3 63.6	84.8 98.4 99.8 100.0 56.4 81.5 95.0	17.7 51.2 79.2 96.0 4.9 18.6 40.9	61.2 89.3 98.7 99.9 31.0 56.4 83.4
			240							59.6	6.5	19.4	94.3	38.2	80.0	98.6	60.5	94.9
			60													13.9	0.1	3.6
		25%	120 180													20.4 31.7	0.8 0.9	4.9 9.0
			240													44.0	2.0	14.2
	Note: BJS:													

Table B3 . Rejection frequencies (in percent) at the 10% probability level for the inefficient portfolios

 B3 

			Company		Annualized	Annualized		Market
					mean return	volatility (in %)	capitalization
					(in %)					in billion USD
			5%	10%		Variance 15%			20%	as of December 31, 25%
	Expected return	10% 15% 20%	T 60 120 99.9 BJS 94.7 180 100.0 240 100.0 APACHE EMERSON ELECTRIC Vertical LR 70.6 71.8 96.8 BJS 95.1 95.6 100.0 99.4 99.6 100.0 100.0 Vertical 79.5 98.7 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 LR BJS Vertical LR BJS Vertical LR BJS Vertical LR 79.7 98.8 84.5 80.7 98.6 86.8 83.6 98.9 87.9 2010 83.1 98.1 100.0 98.7 97.9 100.0 99.2 96.9 99.9 98.9 97.6 99.8 100.0 100.0 99.8 100.0 99.7 99.6 100.0 100.0 99.9 21.4 35.3 43.5 10.9 22.1 43.0 60 81.3 45.0 42.9 91.5 60.8 63.0 93.2 69.9 71.3 96.2 76.0 TARGET 17.2 28.1 42.6 76.4 120 96.5 74.8 72.4 99.6 89.8 90.8 99.8 94.0 94.9 99.8 96.2 97.2 180 99.6 90.4 90.1 100.0 97.7 98.2 100.0 99.6 99.4 100.0 99.5 99.6 240 99.9 97.0 96.4 100.0 99.3 99.6 100.0 99.9 99.9 100.0 100.0 100.0 60 50.3 15.7 8.8 75.4 37.7 34.0 83.3 51.8 51.0 120 71.3 35.1 19.4 91.0 66.0 61.8 96.7 77.5 78.8 180 84.3 48.7 33.5 98.1 84.8 82.8 99.9 93.9 93.5 HONEYWELL INTL. 13.1 30.2 41.5 ELI LILLY 9.3 27.1 40.4 MEDTRONIC 17.7 26.0 39.8 UNITEDHEALTH GP. 30.6 35.1 39.7
			240 60 DOW CHEMICAL		92.0 8.6	63.9	46.2	99.8 35.4	95.5	94.0	99.8 43.7 39.6	98.4 14.0	98.4 7.8
		25%	120 180 COLGATE-PALM. 240 TEXAS INSTS.		14.5 19.0			23.2 41.8			59.8 72.3 38.8 82.9 38.2	22.8 34.6 49.2	15.4 25.0 37.1
			ANADARKO PETROLEUM		16.6			34.7			37.7
			BANK OF NEW YORK MELLON	Note: see Table B1. 13.6		30.9			37.5
			HALLIBURTON		15.0			37.5			37.1
			WALGREEN		16.9			26.3			35.9
			DEERE		15.8			29.5			35.1
			LOWE'S COMPANIES		22.7			35.7			34.6
			DEVON ENERGY		25.5			39.3			33.9
			NIKE 'B'		24.8			33.6			33.2
			SOUTHERN		8.8			17.5			32.1
			PNC FINL.SVS.GP.		8.8			29.1			31.9
			DANAHER		23.1			28.5			30.8
			CORNING		19.7			52.0			30.2
			NEWMONT MINING		10.9			38.9			29.9
			BAXTER INTL.		10.3			24.8			29.5
			FEDEX		14.6			31.0			29.3
			CARNIVAL		17.6			34.6			28.0
			CELGENE		37.1			68.4			27.8
			EXELON		8.6			22.9			27.5
			GENERAL DYNAMICS		13.8			26.1			26.8
			AFLAC		20.1			32.1			26.6
			ILLINOIS TOOL WORKS		14.2			24.5			26.5
			JOHNSON CONTROLS		16.4			29.7			25.9
			HESS		13.6			28.9			25.8
			KIMBERLY-CLARK		9.1			20.2			25.7
			TRAVELERS COS.		9.8			25.9			25.6
			FRANKLIN RESOURCES		22.6			34.2			25.4
			DOMINION RES.		5.9			17.3			25.2
			BAKER HUGHES		12.2			35.7			24.7
			CSX		13.0			26.8			24.2
			DUKE ENERGY		6.1			20.4			23.6
			STATE STREET		17.6			32.8			23.3
			NORFOLK SOUTHERN		11.9			26.8			22.8
			AUTOMATIC DATA PROC.		12.2			21.5			22.8
			GENERAL MILLS		10.1			18.3			22.6
			THERMO FISHER		17.3			30.9			22.0
			SCIENTIFIC							
			CUMMINS		20.4			39.0			21.8
			NEXTERA ENERGY		6.9			18.5			21.6
			STRYKER		23.5			32.6			21.3

In reaction to these criticisms, several authors[START_REF] Shanken | Multivariate Tests of the Zero-Beta CAPM[END_REF][START_REF] Shanken | Testing Portfolio Efficiency when the Zero-Beta Rate is Unknown: A Note[END_REF][START_REF] Zhou | Small Sample Tests of Portfolio Efficiency[END_REF][START_REF] Velu | Testing Multi-Beta Asset Pricing Models[END_REF][START_REF] Beaulieu | Finite Sample Identification-Robust Inference for Unobservable Zero-Beta Rates and Portfolio Efficiency with Non-Gaussian Distributions[END_REF] provide lower and upper bounds to the test p-values.

Small variations in expected returns and volatilities may indeed lead to significant changes in the MV efficient frontier[START_REF] Best | On the Sensitivity of Mean-Variance Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results[END_REF][START_REF] Britten-Jones | The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights[END_REF].

The null hypothesis is that the "horizontal distance" is zero. BJS derive the asymptotic distribution of this distance. Interestingly, the BJS test can be implemented with and without restrictions on short-selling. Besides, the BJS test can also be used to compare efficient frontiers[START_REF] Ehling | Geographic versus Industry Diversification: Constraints Matter[END_REF][START_REF] Drut | Sovereign Bonds and Socially Responsible Investment[END_REF].

LR solely apply their test to cases where short-selling is allowed. Actually, the performances of their test when short-selling is restricted have not been investigated so far.

See Equation (2) in[START_REF] Levy | The Market Portfolio May Be Mean/Variance Efficient After All[END_REF].

The results corresponding to the 1% and

10% probability levels are given in TablesB2 and B3in Appendix B, respectively.

We selected the 100 largest stocks of the S&P 500 index.

The data are extracted from the Datastream database. Descriptive statistics are given in Appendix D.

In reality, individual investors rarely hold portfolios containing 100 assets[START_REF] Barber | Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors[END_REF][START_REF] Polkovnichenko | Household Portfolio Diversification: A Case for Rank-Dependent Preferences[END_REF][START_REF] Goetzmann | Equity Portfolio Diversification[END_REF]. The diversification benefits tend to be exhausted once an equity portfolio contains several tens of stocks[START_REF] Evans | Diversification and the Reduction of Dispersion: An Empirical Analysis[END_REF][START_REF] Elton | Risk Reduction and Portfolio Size: An Analytical Solution[END_REF][START_REF] Statman | How Many Stocks Make a Diversified Portfolio?[END_REF].

This value is actually very close to the 0.98-value considered in LR as more realistic than the 0.75 used to test the MV efficiency.

Appendix A: Proof of Proposition 1

We first derive the asymptotic distribution of the vertical distance,  ˆ, defined in Equation (5) in the case where short-selling is forbidden. At the end of this Appendix, we extend the results to the case where short-selling is allowed Let x be a k-dimensional vector, and denote )' ,..., , (

. Consider a symmetric matrix B of order k, and ] : ...

where i B is the th i column of B . Let ) (B vec be the stacked vector of the columns of B:

Next, let V be the vector formed by stacking the sample mean of t R , the elements of ) cov( t R , the sample mean of t r , and the sample variance of t r :

Vector V thus summarizes the first and second moments of the sample returns. Similarly to BJS (2002) Note: see Table B1. Note: see Table B1. Note: see Table B1.