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Abstract

This paper investigates the relationship between forward prices of oil, gas, coal, and
electricity using a nonlinear panel cointegration framework. To this end, we consider
a panel of 35 maturities and control for the economic and financial environment using
equity futures prices. Estimating the cointegrating relationship, we find that oil, gas
and coal forward prices are positively linked, while the negative link between oil and
electricity prices is consistent with a substitution effect between the two energy sources
on the long run. Estimating panel smooth transition regression (PSTR) models, we show
that the forward oil price adjustment process toward its equilibrium value is nonlinear
and asymmetric, putting forward the key role played by self-sustaining dynamics and
speculation phenomena.
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1 Introduction

Investigating the interactions between energy markets if of crucial importance to correctly ap-
prehend and understand their price dynamics. Indeed, energy prices are obviously connected
through the production process, and economic theory suggests that a relationship should exist
between input and output prices. Besides, oil—due to its physical properties and the impor-
tance of its market—is often viewed as an economic “driver” influencing the other energy
prices, such as coal, gas, and electricity.

However, energy markets recently experienced significant developments that are likely to mod-
ify the potential interactions between energy prices. European gas and electricity markets
have freshly known a liberalization process allowing the emergence of new contracts making
prices more likely to be influenced by market participants rather than regulators (Mjelde and
Bessler, 2009). While various studies1 have investigated the links between energy prices on
spot markets, they generally do not consider the long-run financial dimension of energy mar-
kets. Moreover, by relying on spot data, previous literature does not account for potential
heterogeneity in the energy prices relationships across different maturities. This may be viewed
as an important limitation since considering prices at various maturities allows accounting for
arbitrage investors’ behavior over the long run—the contracts being not only traded by agents
who need physical energy delivery, but also by speculators with purely financial motivation.

In this paper, we account for the term structure of energy prices through an analysis of for-
ward prices. More specifically, we consider forward prices of oil, coal, gas and electricity at
35 maturities, and aim at modelling the relationship between these four energy sources for all
maturities in a panel data cointegration setting. This approach allows us to study the links
within and between heterogeneous maturities accounting for long-term arbitrage behaviors,
and to overcome the low power of traditional time series unit root and cointegration tests
against the near stationary alternative.

It is worth mentioning that, given the various factors that may influence energy markets, the
dynamics of energy prices is likely to be characterized by nonlinearities. Such nonlinearities
may come from both fundamental factors or speculative forces. Regarding the first point, the
recent huge increase in the Chinese oil demand coupled with an unexpected halt of non-OPEC
production, as well as the loss of OPEC spare capacity since 2004 (Kaufmann, 2011) are ex-
amples of fundamental shocks that may generate nonlinearities and regime-switching. Turning
to the speculative factors, investors may hold long-run positions to force energy prices rising,
and switch between investment strategies (Ellen and Zwinkels, 2010). These elements play in
favor of nonlinear, regime-switching models. To this end, we rely on panel smooth transition
regression (PSTR) models, allowing us to model the nonlinear behavior of the forward energy
prices adjustment process to the equilibrum value.

To sum up, and given the key role played by oil in energy markets, the aim of this paper is
to investigate the nonlinear adjustment process of the forward oil price toward its equilibrium
value given by the estimated long-term relationship between oil, gas, coal and electricity for-
ward prices. To our best knowledge, our contribution is the first to account for interactions

1See references in Section 2.
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between energy prices at various maturities in a nonlinear panel data framework.

The rest of the paper is organized as follows. Section 2 presents some stylized facts and
reviews the literature on the links between energy prices. Section 3 describes the econometric
methodology. Data and results of panel unit root and cointegartion tests are displayed in
Section 4. Section 5 reports the PSTR estimation results, and Section 6 concludes the article.

2 Relationships between energy prices: stylized facts and liter-
ature review

The natural gas market is often considered to be potentially linked to other primary energy
sources by different ways. Technically, gas is extracted from the soils either alone (“dry gas”),
or associated with the oil exploration (“associated gas”). Consequently, natural gas and oil
have the same extraction/exploration process, and oil producers are often gas producers too,
creating an implicit link between prices. Usually, the natural gas is used for domestic needs
and as an input to the electricity production process. However, it has no captive use and is in
constant competition with other energy sources (with domestic and heavy fuel oil in domestic
needs, and with coal in the power production). These characteristics explain the existence
of (i) an input-output relationship between natural gas and electricity, and (ii) competitive
relation between oil, gas, and coal. Despite the close relationship between energy markets, the
entry of the gas market in the liberalization process is likely to exacerbate short-run decor-
relation between oil and gas prices. Indeed, long-term gas contracts are no longer indexed to
oil contracts, but to spot and futures prices, rending prices more sensitive to the behavior of
market participants.

Turning to coal, due to its apparent abundance,2 it is dominant in two specific sectors: man-
ufacture of cement and steel, and electricity generation (IEA, 2010a and British Petroleum,
2010). It is the main input to the electricity production, making energy prices potentially
connected through an input-output relationship. However, coal being extremely pollutant, it
is in competition with gas and oil in the power production, likely to create substitution effects.
Besides, due to its solid state and its inert nature, coal transportation is very expensive3 be-
cause it requires seaborne trade. Then, coal prices strongly depend on the variability of the
freight rates, which are significantly variable since the 1950s (Lundgren, 1996). Consequently,
oil and coal prices may be indirectly related each other through the fluctuations of the trans-
port fuel derived from oil.

Unlike oil, natural gas and coal, electricity is not a fossil energy. It can be produced either
as primary energy from natural sources (like hydro, wind, solar, ...), or as secondary energy
from the heat of nuclear fission, the geothermal and solar thermal heat, or by the combus-
tion of fossil fuels (coal, natural gas, and oil) (IEA, 2010b). Accordingly, and as previously
mentioned, electricity prices may be related to its products through an input-output relation-
ship. Moreover, power energy is used for most human activities (heating, lighting, computers,
powering machines, transport, ...) and in several sectors (transformation and energy sectors,

2The reserves/production ratio is equal to 145 years (British Petroleum, 2010), and reserves are also well
distributed (no cartel exists).

3This is one of the reasons explaining the fact that the coal market was initially regional.
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transmission and distribution of electricity sectors, and final consumption4). Thus, in addition
to an obvious relation through the production process, electricity, gas, oil and coal prices may
be interrelated by competition and substitution links.

On the whole, various factors may explain the interactions between energy prices. Turning
to the empirical literature, Serletis and Rangel-Ruiz (2004) investigate the strength of shared
dynamics between North American daily spot Henry Hub gas and WTI crude oil prices over
the period after the deregulation, from January 1991 to April 2001. They found that while
the US market deregulation has ‘decoupled’ the prices’ relationship, North American natu-
ral gas prices are largely defined by the US Henry Hub prices trends. Focusing on the UK,
Panagiotidis and Rutledge (2007) examine whether oil and gas prices ‘decoupled’ during the
post market deregulation period (1996-2003). Using cointegration techniques, they show that
a cointegrating relationship is present throughout the sample period, especially between 1999
and 2000. Relying on daily ICE futures prices of gas and Brent for five contracts, Westgaard
et al. (2011) find that a long-term relationship exists between prices depending on the length
of the contracts.

Considering more energy sources, Bachmeier and Griffin (2006) investigate the degree of in-
tegration between crude oil, coal, and natural gas markets. Using data from January 1990
to August 2003, and relying on the estimation of bivariate error correction models, they find
a weak degree of integration between energy markets. Investigating the relationship between
weekly spot prices among US electricity and its major fuel inputs (natural gas, uranium, coal
and crude oil) over the period from June 6, 2001 to April 23, 2008, Mjelde and Bessler (2009)
put forward that electricity prices influence natural gas prices, which in turn affect crude oil
prices. Finally, one can mention the study by Ma and Oxley (2010) concerning energy prices
comovements in China from January 1995 to December 2005, showing that coal and electricity
prices have comoved since 1997.

To sum up, the previous literature globally puts forward some links between energy markets,
depending on the market location and the type of energy considered. However, most of them
deal with spot prices. Consequently, they do not investigate the potential relationships at
various maturities, a fact that is of considerable importance when one wishes to account for
the financial dimension of energy markets. Furthermore, relying on spot models based on
long-term price relationships often require knowledge of the convenience yield for risk-neutral
valuation. However, the later is not observable and difficult to deduce, whereas this is not
the case for forward prices models (Eydeland and Wolyniec, 2003). For these resaons, and to
account for the financial dimension of energy markets, it seems particularly relevant to focus
on forward prices data, which is the aim of the present contribution.

3 Methodology

As previously mentioned, our aim is to investigate the nonlinear behavior of the forward oil
price adjustment process toward its equilibrium value by estimating a panel smooth transition
regression (PSTR) model. To this end, the first step consists in estimating the equilibrium
value of forward oil price, given the values of the other forward energy prices and the economic

4The final consumption sector represents the main sector for electricity consumption.
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and financial environment, the later being proxied by an European equity futures index (see
below, Section 4). More specifically, we estimate the following long-term relationship:

poil
i,t = ai + b1p

elec
i,t + b2p

gas
i,t + b3p

coal
i,t + b4p

Stoxx
i,t + εi,t (1)

where i = 1, ..., 35 denotes the maturity, and t = 1, ..., T the time. poil
i,t , pelec

i,t , pgas
i,t and pcoal

i,t

respectively denote the forward prices of oil, electricity, gas and coal. pStoxx
i,t stands for the

equity futures price index. All price series are expressed in logarithmic terms.

The estimation of Equation (1) using efficient panel cointegration techniques (see below, Sec-
tion 5) gives the forward oil price equilibrium value, denoted as p̂oil

i,t . The difference between
the observed and the equilibrium value of the oil price defines the misalignment for each
maturity i:

zi,t = poil
i,t − p̂oil

i,t (2)

The corresponding error correction model is specified in a nonlinear form to account for the
potential nonlinear adjustment of the forward oil price toward its equilibrium value. To this
end, we rely on the PSTR model introduced by González et al. (2005):

yi,t = µi + β′
1xi,t + β′

2xi,tg (si,t; γ, c) + εi,t (3)

where g (si,t; γ, c) is the transition function, normalized and bounded between 0 and 1. si,t

denotes the transition variable—which may be an exogenous variable or a combination of
the lagged endogenous one—, γ the speed of transition from one regime to the other and c
the threshold parameter. As it is clear from Equation (3), the observations in the panel are
divided into two regimes depending on whether the transition variable is lower or larger than
c. The logistic specification can be used for the transition function to account for a smooth
and gradual change from one regime to the other:

g (si,t; γ, c) =

[
1 + exp

(
−γ

m∏
l=1

(si,t − cl)

)]−1

(4)

with γ > 0 and c1 ≤ c2 ≤ ... ≤ cm. Turning to empirical considerations, it is sufficient to
consider only the cases of m = 1 (logistic PSTR) or m = 2 (logistic quadratic PSTR) to
capture the nonlinearities due to regime switching (see González et al., 2005).

Following the methodology used in the time series context, González et al. (2005) propose
a three-step strategy to apply PSTR models: (i) the identification step aiming at testing for
homogeneity against the PSTR alternative and selecting both the transition variable and the
order m, (ii) the estimation step based on nonlinear least squares, and (iii) the evaluation step
that consists in applying misspecification tests to check the validity of the estimated PSTR
model.

On the whole, the model that will be estimated is given by:

∆poil
i,t = µi + (λ1zi,t−1 + B1Xi,t) + (λ2zi,t−1 + B2Xi,t)g(si,t; γ, c) + εi,t (5)

where Xi,t represents the vector of contemporaneous and lagged first-differenced forward oil
price determinants, namely ∆pelec

i,t , ∆pgas
i,t , ∆pcoal

i,t , and ∆pStoxx
i,t . Depending on the value of the
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transition variable, the link between ∆poil
i,t and its determinants evolves between B1 and λ1 in

Regime 1 (corresponding to g(.) = 0) and B1 + B2 and λ1 + λ2 in Regime 2 (corresponding
to g(.) = 1). Three transition variables will be considered: the oil price misalignment, the
oil price variation, and the economic and financial environment proxied by the equity futures
price returns.

4 Data, unit root and cointegration tests

We consider daily data over the January 3, 2005 to December 31, 2010 period. We rely on
European forward prices of oil, gas, coal, and electricity for 35 maturities.5 Using such a large
sample of maturities allows us to account for possible heterogeneity in the relationship between
energy prices,6 as well as long-run arbitrage behavior of market participants. Energy price
data are extracted from the Platt’s Information Energy Agency. To control for the economic
and financial environment that may impact all energy price series, we rely on a European
equity futures index—which has the advantage of being available at a daily frequency. This
variable also allows considering oil as a financial asset and controls for the recent financial
turmoil. Our retained equity variable is the Dow Jones Euro Stoxx 50, the European leading
stock index for futures contracts, extracted from Datastream. All price series are in logarithms.

Before estimating Equation (1), panel unit root and cointegration tests have to be applied.
To obtain robust results, we rely on various panel unit root tests. We first consider first-
generation tests that are based on the assumption of cross-sectional independence among the
panel members, i.e. among the various maturities.7 Given that cross-sectional independence
may be viewed as a restrictive hypothesis,8 we also apply second-generation panel unit root
tests that relaxe this assumption.

Table 4 in Appendix B reports the results of four first-generation tests. Levin and Lin (1992,
1993)—LL—and Hadri (2000) tests are based on a common unit root process. Given that
this hypothesis is a rather restrictive assumption on the dynamics of the series under the al-
ternative hypothesis, we also consider two other tests. The IPS (Im, Pesaran and Shin, 2003)
and Maddala and Wu (1999)—MW—tests allow for heterogeneity in the value of the autore-
gressive coefficient under the alternative hypothesis. LL, IPS and MW tests are based on the
unit root null hypothesis, while the Hadri’s test considers the null of no unit root. Results in
Table 4 show that all series are I(1) when relaxing the common unit root hypothesis under
the alternative.

These conclusions are supported by the results reported in Table 6 (Appendix B) relating to
second-generation panel unit root tests. The Pesaran (2007) CIPS test is based on Dickey-
Fuller-type regressions augmented with the cross-section averages of lagged levels and first

5As an example, Figure 1 in Appendix A depicts the one-month forward energy prices (in logs).
6See Joëts (2010).
7See Hurlin and Mignon (2006) and Hurlin (2010) for a detailed presentation of panel unit root tests.
8Cross-section dependence can arise for several reasons, such as spatial spillovers, financial contagion,

socioeconomic interactions, and common factors (Pesaran, 2004). In the presence of cross-section correlations
in the panel, first-generation tests suffer from size distortions. Regarding our panel, the application of the CD
test developed by Pesaran (2004)—based on the average of pair-wise correlation coefficients of OLS residuals
from the individual regressions—shows that such correlations exist in our sample (see Table 5 in Appendix B).
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differences of the individual series. Regarding the Moon and Perron (2004) test, it is con-
structed on de-factored observations—deviations from the common components—and the fac-
tor loadings are estimated by principal component analysis. The Choi (2002) test relies on
an error-components panel model and removes the cross-section dependence by eliminating
(i) individual effects using the Elliott, Rothenberg and Stock (1996) methodology (ERS), and
(ii) the time trend effect by centering on the individual mean. As shown in Table 6, all tests
conclude in favor of the unit root hypothesis meaning that all forward energy price series
entering in Equation (1) are I(1).

Turning now to the cointegration case, we first rely on first-generation tests, namely the seven
tests proposed by Pedroni (1999, 2004) as well as the Kao (1999) test which are all based on the
null hypothesis of no cointegration. Among the 7 Pedroni’s tests, 4 are based on the within
dimension (panel cointegration tests) and 3 on the between dimension (group-mean panel
cointegration tests). Group-mean panel cointegration statistics are more general in the sense
that they allow for heterogeneous coefficients under the alternative hypothesis. As reported
in Table 1, all tests conclude that forward oil prices and the four considered fundamentals
are cointegrated. As for the unit root case, we also apply second-generation cointegration
tests accounting for cross-sectional dependence. The four panel error correction-based tests
proposed by Westerlund (2007) rely on structural dynamics and are a panel extension of
the Banerjee et al. (1998) tests developped in the time series context. Among the four
Westerlund’s tests, two consider an homogeneous cointegrating relation under the alternative,
while the two others allow for an heterogeneous long-term relationship. Results reported in
Table 2 show that our energy forward prices are cointegrated. Finally, given that our sample
covers a quite turbulent period, we implement the Westerlund and Edgerton (2007) second-
generation panel cointegration test that is robust to unknown heterogeneous breaks in both the
intercept and slope of the cointegrating regression. Our findings reported in Table 2 confirm
that energy prices are cointegrated.

Table 1: First-generation panel cointegration tests

Pedroni Kao
Within dimension Between dimension

Panel v 12.89 (0) Group rho -11.85 (0) -13.06 (0)
Panel rho -11.59 (0) Group PP -9.85 (0)
Panel PP -9.09 (0) Group ADF -8.85 (0)

Panel ADF -8.40 (0)

Notes: Between parentheses: p-values. For Pedroni’s tests, all statistics are computed with
individual effects and time trends. Kao’s test statistic is computed with individual effects only.

Statistics are standard Normal.
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Table 2: Second-generation panel cointegration tests

Westerlund Westerlund & Edgerton
Group-mean statistics Panel statistics Model τN φN

Gτ Gα Pτ Pα No break -20.85 (0) -43.54 (0)
32.462 1.7e+03 -192.407 1.7e+03 Level break -18.59 (0) -40.82 (0)

(0) (0) (0) (0) Regime break -21.28 (0) -41.60 (0)

Notes: (1) For the Westerlund’s test: (a) between parentheses: p-values with cross-section
dependence based on bootstrapped distribution (100 bootstrap replications). (b) Tests are computed

with individual effects and time trends. (c) The Bartlett kernel is used for the semiparametric
corrections. (d) The leads and lags in the error correction test are chosen using Akaike criterion. (e)

The number of common factors is determined by IC1 criterion (see Bai and Ng, 2004) with a
maximum factor number of 5. (2) For the Westerlund and Edgerton’s test: (a) between parentheses:
p-values. (b) All tests statistics are limiting Normal distributions free of nuisance parameters under
the null hypothesis. (c) The tests are implemented using the Campbell and Perron (1991) automatic

procedure to select the lag length. (d) We use three breaks, which are determined by grid search.

5 Panel smooth transition regressions: estimation results

5.1 Estimation of the cointegrating relationship

Our considered series being I(1) and cointegrated, we first proceed to the estimation of the
cointegrating relationship (1). Given that the distributions of the OLS estimates corresponding
to Equation (1) are biased and dependent on nuisance parameters associated with the serial
correlation properties of the data, it is necessary to use an efficient estimation procedure.
We rely here on the panel Dynamic OLS (DOLS) procedure developed by Kao and Chiang
(2000) and Mark and Sul (2003), which consists in augmenting the cointegrating relationship
with lead and lagged differences of the regressors to control for the endogenous feedback effect.9

The estimated cointegrating relationship is given by:

p̂oil
i,t = âi − 0.126pelec

i,t + 0.149pgas
i,t + 0.610pcoal

i,t + 0.428pStoxx
i,t (6)

This estimated relationship between oil, gas and coal forward prices is positive, while the link
between oil and electricity forward prices is negative. The relationship between gas and oil
prices has the expected sign given that the gas extraction process is very similar to that of
oil. As a consequence, there exists a strong link across the two energies. Turning to coal,
which is mainly used for electricity production, an increase in its price leads to a rise in oil
price on the long run, due to an increasing demand for electricity and heating. Regarding
electricity, two facts have to be highlighted. First, there exists an input-output relationship
between this energy and oil. Second, electricity is used in various activities, mainly for fi-
nal consumption. In Europe, specifically, electricity is intensively used for heating purposes
and is thus in competition with oil. The negative link between oil and electricity forward

9As a robustness check, we also estimate Equation (1) using the Fully-Modified OLS (FM-OLS) method
proposed by Phillips and Hansen (1990). The results were very similar to those obtained with the DOLS
procedure and are available upon request to the authors.
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prices on the long run may be interpreted in terms of a substitution effect, rather than in
terms of an input-output effect. Finally, given that equity prices may be viewed as a proxy
for the economic and financial environment, the positive relationship between oil and equity
prices may be interpreted as follows: a rise in equity futures prices refers to a period of grow-
ing economic activity, leading to an increase in oil consumption and, consequently, in oil price.

5.2 Estimation of the nonlinear oil price dynamics

Following the three-step strategy proposed by González et al. (2005), we start by applying
linearity tests. We test the null hypothesis of linearity in Equation (5) using three transition
variables: equity futures returns, the forward oil price misalignment, and the forward oil price
variation. For all three variables, the null of linearity is strongly rejected in favor of the PSTR
alternative.10 Results corresponding to the estimation of the PSTR models are reported in
Table 3.

Table 3: Estimation of PSTR models

si,t ∆pStoxx
i,t−1 zi,t−1 ∆poil

i,t−1

Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2
zi,t−1 -0.0040 -0.0479 -0.0111 0.0097 -0.0074 0.0174

(-4.80) (-1.64) (-2.37) (1.67) (-6.07) (3.45)
∆poil

i,t−1 0.0060 -2.33 -0.1303 0.1639 0.0288 -0.1232
(1.16) (-8.63) (-3.23) (3.36) (3.75) (-6.26)

∆pelec
i,t−1 0.0163 1.9036 0.0484 -0.0288 0.0526 -0.2360

(5.43) (14.43) (1.57) (-0.78) (9.71) (-8.28)
∆pgas

i,t−1 0.0134 0.1585 0.0569 -0.0561 0.0105 0.0068
(5.27) (1.11) (1.82) (-1.51) (2.57) (0.33)

∆pcoal
i,t−1 0.0506 0.3725 0.5266 -0.5606 0.0174 0.3197

(7.28) (3.44) (6.63) (-5.96) (1.89) (8.90)
∆pStoxx

i,t−1 -0.0855 0.0315 -0.7727 0.8407 -0.1254 0.2058
(-12.40) (0.44) (-9.84) (9.05) (-11.70) (4.94)

γ̂ 106.8853 4.7058 60.1668
ĉ 0.0736 -0.3623 0.0358

Between parentheses: t-statistics.

Let us first consider the model with equity futures returns as the transition variable. In this
case, forward oil price tends to reverts to its equilibrium value whatever the considered regime.
This mean-reverting behavior is slower in the first state corresponding to a stock market which
is decreasing or weakly increasing (until a threshold equal to 7%). Assuming that the stock
market is a proxy for economic activity, this result is logical in the sense that reversion to
the equilibrium is harder and takes a longer time in a depressing period than in an expansion
state. Moreover, the other forward energy price returns positively affect oil price returns in

10Detailed results are available upon request to the authors.
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both regimes, with a stronger impact in Regime 2. This result shows that when financial
markets are booming, forward energy prices tend to augment. This may be explained by two
reasons: (i) the need for more energy in periods of intense economic activity, and (ii) spec-
ulation purposes. Speculation on energy products goes along with speculation on financial
assets. Expecting that the growing trend will continue, traders tend to take long positions on
long-term contracts, selling them at higher prices before the expiry date and re-investing in
new ones; a behavior that produces self-sustaining dynamics (Cifarelli and Paladino, 2010).

When the oil price misalignment acts as the transition variable, the estimated threshold is
equal to -36%, corresponding to a 36% undervaluation of the forward oil price compared to
its equilibrium value given by the cointegrating relationship. When oil price is strongly un-
dervalued, a mean-reversion dynamics takes place (Regime 1). The more the reduction of
the misalignment, the weaker the mean-reverting speed. In other words, corrections of dis-
equilibria appear when oil price tends to strongly decrease, while it is not the case when
oil price strongly augments compared to its fundamentals. This illustrates an asymmetric
phenomenon: the adjustment process is at play only for high undervaluations, not for over-
valuations. Regarding forward energy price returns, they vary in the same way as oil in case
of strong undervaluations, with a decreasing influence when the magnitude of undervaluation
tends to diminish. In the later case, the variable which has the strongest impact is the equity
returns, again putting forward the importance of the speculation phenomenon: when oil price
rises, the links across markets tend to be stronger, encouraging speculation. From a specu-
lative viewpoint, it is reasonable to think that when oil prices are highly undervalued, the
market is dominated by irrational speculators (chartists), who base their expectations on past
prices fluctuations and believe trends to continue in the same direction. These speculators
have a destabilizing effect, making prices deviate from their long-run fundamental equilibrium.
However, when the threshold of -36% is reached, chartists no longer believe on the underval-
uation and rational speculators (fundamentalists)—who base their expectations on economic
fundamentals—become more prevalent. Fundamentalists believe that energy prices will revert
to the intrinsic long-run equilibrium and therefore have a stabilizing effect. Consequently,
chartists change their expectations and become followers of the fundamentalists. When prices
tend to be overvalued, an asymmetric phenomenon occurs, that may be explained by the loss
aversion behavior. Indeed, investors react differently when they are facing potential losses and
profits. According to the prospect theory, agents are more hesitant to sell during overvaluation
than to buy during undervaluation (Kahneman and Tversky, 1979).

Consider now the third case, with the forward oil price variations as the transition variable.
The mean-reverting behavior is observed only in Regime 1, characterized by an oil price growth
rate lower than 3%. This means that there exists a floor price under which oil producers
decide to not produce due to profitability considerations. On the contrary, in periods of oil
price boom, there is no mean-reverting behavior: the growing price tends to go away from
its fundamental value, leading to self-sustaining behaviors. The other forward energy price
returns are positively linked to oil price returns, except in Regime 2 for electricity. Again, this
can be interpreted in terms of a substitution effect between electricity and oil when the later
reaches very high values. Finally, note the positive relationship between oil and stock returns,
a fact that is consistent with speculating dynamics.
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6 Conclusion

This paper investigates the relationship between daily forward prices of oil, gas, coal and
electricity. Relying on a panel of 35 maturities and controling for the economic and financial
environment using equity futures prices, we test whether energy prices evolve toward a com-
mon long-run relationship. Using panel cointegration techniques, we show that all forward
price series are cointegrated. More specifically, while oil, gas and coal forward prices are posi-
tively linked, oil and electricity display a negative relationship, consistent with a substitution
effect between the two energy sources on long horizons. Paying a particular attention to the
financial dimension of energy markets, we account for potential nonlinearities notably induced
by market participants’ behavior. To this end, we estimate panel smooth transition regression
models, and show that the forward oil price adjustment process toward its equilibrium value
is nonlinear and asymmetric. More precisely, our findings put forward the key role played by
speculative factors and self-sustaining dynamics in phases of booming oil prices and growing
economic activity.
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Appendix A

Figure 1: One-month forward energy prices (in logarithms)
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Appendix B: Panel unit root tests

Table 4: First-generation panel unit root tests

Series k LL IPS MW (ADF ) Hadri
poil

i,t 0 -6.01 (0.00) 1.21 (0.11) 61.81 (0.74) 43.19 (0.00)
pcoal

i,t 2 0.56 (0.71) 5.03 (1.00) 12.84 (1.00) 60.53 (0.00)
pelec

i,t 10 -11.23 (0.00) -1.18 (0.11) 54.35 (0.91) 95.06 (0.00)
pgas

i,t 1 -6.17 (0.00) 0.97 (0.83) 39.08 (0.99) 46.96 (0.00)

Notes: Between parentheses: p-values. Tests include individual effects and linear trends; the orders k
for LL, IPS, and MW tests are selected using AIC.

Table 5: Cross-correlation of the errors and CD test

Series poil
i,t pcoal

i,t pelec
i,t pgas

i,t

ρ̂ 0.976 0.960 0.956 0.681
CD 925.32 (0.00) 909.73 (0.00) 906.49 (0.00) 645.51 (0.00)

Notes: Between parentheses: p-values. The CD statistics are standard Normal under the null
hypothesis of cross-section independence.
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Table 6: Second-generation panel unit root tests

CIPS Moon-Perron Choi
t∗α t∗β Pm Z L∗

poil
i,t -2.480 (0.25) -1.805 (0.03) -0.700 (0.24) -3.829 (0.99) 3.393 (0.99) 3.059 (0.99)

pcoal
i,t -2.078 (0.95) 0.047 (0.51) 0.016 (0.50) -3.358 (0.99) 2.299 (0.98) 2.041 (0.97)

pelec
i,t -3.162 (0.01) -1.287 (0.09) -0.783 (0.21) -5.308 (1.00) 7.894 (1.00) 7.557 (1.00)

pgas
i,t -2.707 (0.02) 1.355(0.91) 0.543 (0.70) -2.152 (0.98) 1.090 (0.98) 0.993 (0.83)

Notes: Between parentheses: p-values. (a) For the CIPS test, all statistics are based on univariate
AR(p) specifications with p ≤ 8 including individual effects and time trends; the critical values

tabulated in Pesaran (2007) are -2.769, -2.653, and -2.589, at 1%, 5%, and 10% significance levels
respectively. (b) For the Moon and Perron’s tests, the long-run variance used in the construction of
t∗α and t∗β is computed using the Andrews and Monahan (1992)’s estimator; the maximum number of

common factors selected using AIC is 8 (see Bai and Ng, 2002); all statistics are computed with
individual effects and time trends; the Moon-Perron statistics are standard Normal for large T under

the unit root hypothesis. (c) For the Choi’s test, the optimal lag orders in the individual ERS
statistics (Elliott, Rothenberg and Stock, 1996) for each series are determined with pmax = 12; all

tests are computed with individual effects and time trends specifications; under the unit root
hypothesis the Choi’s statistics are standard Normal when T and N converge jointly to infinity.
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