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Unknown input observer for sampled data system with time-varying sampling

This paper addresses the Unknown Input Observer (UIO) design problem for sampled-data Linear Time Invariant systems with time-varying sampling intervals. A discrete-time modeling approach is used. Based on convex optimization techniques, tractable design conditions are proposed and illustrated by numerical examples.

I. INTRODUCTION

In engineering problems, a large number of physical systems are subject to disturbances that can considered as unknown inputs. A possible solution to take them into account is based on the use of the so-called Unknown Input Observer (UIO) method [START_REF] Basile | On the observability of linear, time-invariant systems with unknown inputs[END_REF], which was proved to be relevant in a wide variety of application [START_REF] Chen | Disturbance-observer-based control and related methods-an overview[END_REF]. In the literature there is a large number of contributions addressing the UIO design problem for LTI systems. For pioneering works we point to [START_REF] Basile | On the observability of linear, time-invariant systems with unknown inputs[END_REF], [START_REF] Hou | Disturbance decoupled observer design: a unified viewpoint[END_REF], [START_REF] Raff | A finite time unknown input observer for linear systems[END_REF]. The results addressing the case of sampled-data systems are sparse. For LTI sampled-data systems with constant sampling intervals, by using the exact system integration over the sampling interval, the discretetime UIO approaches [START_REF] Hamano | Unknown-input present-state observability of discrete-time linear systems[END_REF], [START_REF] Valcher | State observers for discrete-time linear systems with unknown inputs[END_REF] can be used (see also some works in the nonlinear case [START_REF] Chakrabarty | State and unknown input observers for discrete-time nonlinear systems[END_REF], [START_REF] Wang | Zonotopic unknown input observer of discrete-time descriptor systems for state estimation and robust fault detection[END_REF]). Here we consider the UIO synthesis problem for the case of sampled-data systems with time-varying sampling intervals. As soon as digital communication network are used, sampling interval variations are ubiquitous ( [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF], [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]). However, to the best of our knowledge, in the case where the sampling interval is time-varying the UIO design problem has not been addressed yet, not even for the case of LTI systems. This is precisely the case that we consider in this paper.

Although the aforementioned problem statement has not been addressed in the literature, it should be noted that some results exists for problem formulations related to ours. Results for state observers for sampled-data systems with time-varying sampling interval can be found in the literature. A hybrid system modeling approach has been used in [START_REF] Ferrante | State estimation of linear systems in the presence of sporadic measurements[END_REF], [START_REF] Etienne | Impulsive observer design for switched linear systems with time varying sampling and (a) synchronous switching rules[END_REF], [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF], [START_REF] Ferrante | Observer Design for Linear Aperiodic Sampled-Data Systems: A Hybrid Systems Approach[END_REF](see also the results based on continuous-discrete observers in [START_REF] Dinh | Continuousdiscrete time observer design for lipschitz systems with sampled measurements[END_REF], [START_REF] Raff | Observers with impulsive dynamical behavior for linear and nonlinear continuous-time systems[END_REF]). A time delay method has been proposed in [START_REF] Raff | Observer with sample-and-hold updating for lipschitz nonlinear systems with nonuniformly sampled measurements[END_REF]. An approach based on dissipativity and operator models of the sampling interval has been considered in [START_REF] Etienne | Observer analysis and synthesis for perturbed lipschitz systems under noisy time-varying measurements[END_REF]. In this paper a discrete-time modeling approach is used for the UIO design problem for LTI systems with time-varying sampling intervals. We recast the UIO design *Lucien Etienne and Kokou Anani Agbessi Langueh are with the CERI Systèmes Numerique, IMT-Nord-Europe, 59500 Douai, France, (e-mail: {lucien.etienne,kokou.langueh}@imt-nord.europe.fr) **Laurentiu Hetel is with Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL, CNRS UMR 9189), Ecole Centrale de Lille, 59650 Villeneuve d'Ascq, France, (e-mail: laurentiu.hetel@ec-lille.fr) problem to one for Linear Parameter Varying (LPV) systems where the sampling interval appears as a scheduling parameter. First generic stability conditions are established for observers that depend on the sampling sequence. Next, numerically tractable design conditions are given based on convex optimization algorithm. From a technical point of view the methods used in this paper are related to the results for the UIO design problem in the case of LPV systems [START_REF] Mammar | On Unknown Input Observers for LPV Systems[END_REF], [START_REF] Marx | Unknown input observer for lpv systems[END_REF], [START_REF] Meyer | Interval observer for lpv systems with unknown inputs[END_REF], time-delay systems [START_REF] Langueh | Impulsive fixed-time observer for linear time-delay systems[END_REF], [START_REF] Langueh | Topology identification of network systems[END_REF] and switched systems [START_REF] Etienne | Impulsive observer design for switched linear systems with time varying sampling and (a) synchronous switching rules[END_REF].

The rest of the paper is organized as follow: Section II is devoted to the formulation of the problem. In Section III, generic stability conditions are proposed based as a compact set of LMIs and numerically tractable conditions for robustness UIO design are specified in Section IV. The simulation results are presented in Section V.

Notation:

• v ′ denote the transpose of v for either a matrix or a vector. • R ≥0 corresponds to the positive real numbers.

• The euclidean norm of x ∈ R n is denoted by ||x||.

• For a symmetric matrix the symbol ⋆ denotes the elements induced by symmetry: A B B ′ C will be denoted

A B ⋆ C
. • In the sequel, λ min (Q) (resp λ max (Q)) denotes the smallest (resp largest) eigenvalue of a symmetric matrix Q. • For a square symmetric matrix P ≻ 0 (resp. P ≺ 0) means that P is positive definite (resp. negative definite).

II. SYSTEM DEFINITION AND PROBLEM STATEMENT

A. System under consideration

Let us consider a linear time invariant system with unknown input

ẋ(t) = A c x(t) + D c v k , ∀t ∈ [t k , t k+1 ), k ∈ N y(t) = Cx(t k ), (1) 
with x(0) = x 0 ∈ R n . Here x(t) denotes the system state at time t. (v k ) k∈N is a sequence describing the unknown system inputs. y(t) represent the sampled output of the system.

A c ∈ R n×n , D c ∈ R n×m , C ∈ R q×n . (t k )
k∈N denotes the sequence of monotonously increasing sampling instants with t 0 = 0. In what follows we will consider a class of sampling sequences (t k ) k∈N where t k+1 -t k = h k where h k is assumed to be known at time t k+1 .

Note that by assumption we consider that the unknown input v k is constant on [t k , t k+1 ). This correspond the fact that the unknown input variation can be neglected with respect to the sampling interval. In what follows we consider, a finite set of index I ⊂ N. To each index i ∈ I we associate a duration τ i and we assume that the nominal sampling interval h k takes values in the union of such sets that is,

h k ∈ T := i∈I [τ i , τ i ], ∀k ∈ N.
The set of sampling sequence under consideration is defined as follows :

S(T ) := {(h k ) k∈N |h k ∈ T , ∀k ∈ N}.
Remark 1: Note that in the case under consideration there is no known input, this assumption is simply for ease of presentation and known input can very easily be integrated in the present work.

B. System remodeling

In this section, we provide a discrete time model of system (1) at sampling times.

Consider the following notations:

x k = x(t k ), y k = y(t k ), ∀k ∈ N.
For any scalar h, we define the following matrices:

A(h) := e Ach Λ(h) := h 0 e Acs ds D(h) := Λ(h)D c (2) 
In what follows we will recast the original system in continuous time as discrete time LPV system representing the behavior of the system as sampling time.

Lemma 1: Consider notations (2). Then for any scalar h the following relations is satisfied : 

A(h) = A c Λ(h) + I. (3 

Then using notation (2),

A(h) = A c Λ(h) + I, that is relation (3) holds.
Lemma 2: Consider system (1) and notations [START_REF] Bernard | Observer Design for Hybrid Dynamical Systems with Approximately Known Jump Times[END_REF]. At sampling times (t k ) k∈N ∈ S(T ), the following relation is satisfied

x k+1 = A(h k )x k + D(h k )v k y k = Cx k , x 0 ∈ R n , ∀k ∈ N. (4) 
Proof: Integrating (1) between t k and t k+1 and using the notations t k+1 -t k = h k leads to

x(t k+1 ) = e Ach k x(t k ) + t k+1 t k e Ac(t k+1 -τ ) D c v k dτ.
By setting s = t k+1 -τ one has

x(t k+1 ) = e Ach k x(t k ) + h k 0 e Acs dsD c v k . (5) 
Using (3) along with notations (2) in ( 5) one has

x(t k+1 ) = A(h k )x(t k ) + Λ(h k )D c v k ,
Model (5) will be used in order to derive a UIO which is robust with respect time-varying sampling intervals.

C. Observer definition

In this paper we consider a discrete-time UIO of the following form:

z k+1 = L(h k , h k-1 )z k + P (h k , h k-1 )y k xk = z k + K(h k-1 )y k (6) k ∈ N, k > 0.
For technical reason we will assume that z 0 = x0 = 0. Here z k is the classical auxiliary variable and xk is the estimation of the system state at sampling instants. The matrix functions L : T × T → R n × R n , P : T ×T → R n ×R q and K : T → R n ×R q are the observer gains which are scheduled according to the known values of the nominal sampling times. In a first step we consider that the scheduling functions are given; next we will provide conditions to design these matrix functions.

D. Problem statement

Since both the system under consideration and the observation scheme have been defined, we are ready to state the observation problem to be solved.

Definition. (Exponential convergence) A UIO observer (6) for system (5) is said to be exponentially convergent uniformly with respect to the set of sampling sequences S(T ) with decay rate δ and overshoot M if

∀k ∈ N, ||x k+1 -x k+1 || ≤ M δ k ||x 1 -x 1 ||.
The goal of this article is to provide exponential convergence conditions for a given observer of the form (6) as well as to provide numerically tractable design methods.

III. GENERIC CONDITIONS

In this section we present generic conditions for assessing the exponential convergence of the observer [START_REF] Etienne | Observer analysis and synthesis for perturbed lipschitz systems under noisy time-varying measurements[END_REF]. The results are formalized in the theorem bellow:

Theorem 1: Consider system (1), the sampled-data representation (5), UIO [START_REF] Etienne | Observer analysis and synthesis for perturbed lipschitz systems under noisy time-varying measurements[END_REF] and the set of sampling sequences S(T ). Assume that the following set of matrix equality constraints are satisfied

L(θ 1 , θ 2 ) = I n -K(θ 1 )C A(θ 1 ) +L(θ 1 , θ 2 )K(θ 2 )C -P (θ 1 , θ 2 )C, I n -K(θ 1 )C D(θ 1 ) = 0, (7) (8) 
for all θ 1 , θ 2 ∈ T . Given α ∈ (0, 1), if there exist a continuous matrix function P(θ) such that P(θ) ≻ 0, ∀θ ∈ T and P(θ

1 ) P(θ 1 )L(θ 1 , θ 2 ) ⋆ (1 -α)P(θ 2 ) ≻ 0, ∀θ 1 , θ 2 ∈ T , (9) 
then observer (6) for system ( 5) is exponentially convergent uniformly with respect to the set of sampling sequences S(T ). In addition an upper bound of the decay rate is given by √ 1 -α while the overshoot is upper bounded by max θ∈T λ max (P(θ)) min θ∈T λ min (P(θ)) .

Proof: Let ε k = x k -xk denote the estimation error. Then using (6) :

ε k = x k -z k -K(h k-1 )Cx k = (I n -K(h k-1 )C)x k -z k ,
Using ( 5) and ( 6), the dynamics of the observation error is given by

ε k+1 = I n -K(h k )C x k+1 -z k+1 = I n -K(h k )C A(h k )x k + I n -K(h k )C D(h k )v k -L(h k , h k-1 )x k + L(h k , h k-1 )K(h k-1 )Cx k -P (h k , h k-1 )Cx k .
This can be rearranged in the following way

ε k+1 = I n -K(h k )C A(h k ) + L(h k , h k-1 )K(h k-1 )C -P (h k , h k-1 )C x k + I n -K(h k )C D(h k )v k -L(h k , h k-1 )x k .
Using equality constraint (7) one has

ε k+1 = L(h k , h k-1 )ε k + I n -K(h k )C D(h k )v k .
By using [START_REF] Ferrante | State estimation of linear systems in the presence of sporadic measurements[END_REF], the observation error becomes

ε k+1 = L(h k , h k-1 )ε k . ( 10 
)
Considering a (candidate) Lyapunov function

V : R n × N → R, V (ε k , k) = ε k P(h k-1 )ε k , ∀k > 0. At time step k + 1 one has V (ε k+1 , k + 1) = ε ′ k+1 P(h k )ε k+1 . Using (10) the previous relation becomes V (ε k+1 , k + 1) = ε ′ k L(h k , h k-1 ) ′ P(h k )L(h k , h k-1 )ε k . Therefore, V (ε k+1 , k + 1) -(1 -α)V (ε k , k) = ε ′ k Ψ(h k , h k-1 )ε k (11) with Ψ(h k , h k-1 ) = L(h k , h k-1 ) ′ P(h k )L(h k , h k-1 ) -(1 -α)P(h k-1 ).
LMI's (9) (by a Shur complement) imply that

Ψ(θ 1 , θ 2 ) ≺ 0, ∀θ 1 , θ 2 ∈ T ,
and therefore from (11) one has

V (ε k+1 , k + 1) ≤ (1 -α)V (ε k , k), ∀ε k , k > 0. Hence V (ε k+1 , k + 1) ≤ (1 -α) k V (ε 1 , 1), ∀k > 0. Since min θ∈T λ min (P(θ))||ε k || 2 ≤ V (ε k , k) ≤ max θ∈T λ max (P(θ))||ε k || 2 , ∀ k > 0, ε k ∈ R n , then ||ε k+1 || ≤ max θ∈T λ max (P(θ)) min θ∈T λ min (P(θ)) (1 -α) k ||ε 1 ||, ∀k ∈ N.
Remark 2: Theorem 1 provide generic conditions for checking the exponential convergence of a given UIO described in [START_REF] Etienne | Observer analysis and synthesis for perturbed lipschitz systems under noisy time-varying measurements[END_REF]. However the conditions have to be verified for an infinite set of parameter θ ∈ T . In what follows we will show how such a generic conditions can be turned into numerically tractable conditions.

IV. TRACTABLE CONDITIONS FOR A SPECIFIC CLASS OF

SAMPLING

In the following section we will consider a specific class of sampling sequences. More precisely we consider sampling sequences described by a finite number of sampling intervals (i.e. ∀k ∈ N, h k belongs to a finite set T f ). First tractable conditions for stability of the UIO are provided, next conditions for designing a UIO of the form (6) are given.

Consider S(T f ) with

T f = i∈I f {τ i }
where I f ⊂ N a finite set of index. For i, j ∈ I f let us define

A i = A(τ i ), D i = D(τ i ), K i = K(τ i )
, L i,j = L(τ i , τ j ), P i,j = P (τ i , τ j ). In this specific case Theorem 1 becomes :

Corollary 1: Consider system (1), the sampled-data representation (5), UIO [START_REF] Etienne | Observer analysis and synthesis for perturbed lipschitz systems under noisy time-varying measurements[END_REF] and the set of sampling sequences S(T f ). Assume that the following set of matrix equality constraints are satisfied

∀i, j ∈ I f , L i,j = I n -K i C A i + L i,j K j C -P i,j C (12) 
I n -K i C D i = 0. (13) 
Given α ∈ (0, 1), if there exist a set of matrices P i such that P i ≻ 0, ∀i ∈ I f and

P i P i L i,j ⋆ (1 -α)P j ≻ 0, ∀i, j ∈ I f . (14) 
Then observer (6) for system (5) is exponentially convergent uniformly with respect to the set of sampling sequences S(T f ). In addition an upper bound of the decay rate is given by √ 1 -α while the overshoot is upper bounded by max i∈I f λ max (P i ) min i∈I f λ min (P i ) .

Proof: Corollary 1 is a special case of Theorem 1 where L(θ 1 , θ 2 ) = L i,j (resp P (θ 1 , θ 2 ) = P i,j ) when θ 1 = τ i , θ 2 = τ j and P(θ 1 ) = P i (resp K(θ 1 ) = K i ) when θ 1 = τ i Remark 3: Note that conditions ( 12)-( 14) represent a tractable set of LMIs for stability analysis when the gain matrices K i , L i,j and P i,j are given. Here only the matrices P i are LMIs variables.

In the following corollary we provide design conditions for a UIO of the form (6) in the specific case where the sampling interval take value in a finite set.

Corollary 2: Given a scalar α ∈ (0, 1), if there exists positive definite matrices P i as well as matrices S i , Q ij , i, j ∈ I f of appropriate dimension such that

P i P i A i -S i CA i -Q ij C ⋆ (1 -α)P j ≻ 0 (15) 
P i D i -S i CD i = 0, ∀ i, j ∈ I f , (16) 
Then observer [START_REF] Etienne | Observer analysis and synthesis for perturbed lipschitz systems under noisy time-varying measurements[END_REF] with

K(τ i ) = P -1 i S i (17) 
L(τ i , τ j ) = (I n -K(τ i )C)A(τ i ) -P -1 i Q ij C (18) 
P (τ i , τ j ) = P -1 i Q ij -L(τ i , τ j )K(τ j ), ∀i, j ∈ I f (19) 
is exponentially convergent uniformly with respect to the set of sampling sequences S(T f ). In addition an upper bound of the decay rate is given by √ 1 -α while the overshoot is upper bounded by max i∈I f λ max (P i ) min i∈I f λ min (P i ) .

Proof: Recall the notations A i = A(τ i ), D i = D(τ i ), K i = K(τ i ), L i,j = L(τ i , τ j ), P i,j = P (τ i , τ j ). Note that using [START_REF] Langueh | Topology identification of network systems[END_REF], one has

P i L i,j = P i A i -P i K i CA i -Q ij C.
Hence [START_REF] Hu | Model predictive control of inverter air conditioners responding to real-time electricity prices in smart grids[END_REF] imply that (9) holds. Similarly, using ( 17) 13) is satisfied. Using [START_REF] Langueh | Topology identification of network systems[END_REF] and ( 19) one has

P i D i -S i CD i = 0 ↔ P i (D i -K i CD i ) = 0 Since P i is invertible D i -K i CD i = 0 so (
L i,j = I n -K i C A i + L i,j K j C -P i,j C.
Hence [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF] holds.

Remark 4:

The previous corollary provides simple design conditions for a UIO of the form [START_REF] Etienne | Observer analysis and synthesis for perturbed lipschitz systems under noisy time-varying measurements[END_REF]. By formulating the UIO synthesis problem as a specific convex optimization problem (in this case both linear matrices equalities and inequalities) it is possible to directly derive both L(., .) and K(.) as variables to be computed. Note that no particular assumption is needed concerning the structure of K(.).

V. SIMULATION

In this section we present two illustrative numerical examples.

A. Example 1

We consider the linear model of a two room building [START_REF] Wang | Development of rc model for thermal dynamic analysis of buildings through model structure simplification[END_REF]. The equivalent RC model is being used with

A c = -1 C1R12 1 C1R12 1 C2R12 -1 C2R23 -1 C2R12 , D c =   w 1 C 1 w 2 C 2   , C = 1 0 .
In the above matrices C i is the thermal capacitance of room i in kW h/K. R i,j is the thermal resistance K/kW between room i and room j, i, j ∈ {1, 2} and R 23 represente the thermal resistance of room 2 and the outside. Subsequently w j is a weighting factor (e.g., solar aperture) relating the heat input and the heat entering room i. x i represents the temperature of room i, with i ∈ {1, 2}. The unknown input, v, represents the heat induced by the solar irradiance. We consider that the variation of the heat due to solar irradiance is slow with respect to the sampling time (therefore the unknown input is considered constant within a sampling interval). The numerical values used for simulation are based on [START_REF] Hu | Model predictive control of inverter air conditioners responding to real-time electricity prices in smart grids[END_REF]:

C 1 = 8 * 10 6 , C 2 = 10 7 , w 1 = 3, w 2 = 3, R 12 = 4 * 10 -3 , R 23 = 4 * 10 -3 .
The heat due to the solar irradiance, v, has a base a value of 800 Watts and an added oscillation with a magnitude of 100 Watts. The system output is nominally sampled every ten minutes and send to a communication network. However, the communication can be subject to data loss. We consider that we may have up to 11 successive packet dropout. We assume that data packet are time-stamped, therefore h k can be considered as a known parameter. Communication delays are assumed to be neglectable. Hence h k is arbitrarily selected in the set {6 * 10 2 l, l ∈ {1...12}}. We apply Corollary 2 with a decay rate √ 0.1 to derive a sampled-data observer [START_REF] Etienne | Observer analysis and synthesis for perturbed lipschitz systems under noisy time-varying measurements[END_REF]. By solving the proposed conditions one obtain 144 matrices L ij , 144 matrices P ij and 12 matrices K i . The observer gains are switched according to the sampling sequence h k using a lookup table. Figure 1 illustrate the continuous-time evolution of the non measured state x 2 from the initial condition x 0 = (22 22) ′ as well as the discrete-time observer state x2 from the initial condition x0 = (22 17.5) ′ . The norm of the observation error in discrete-time is given in Figure 2 VI. CONCLUSION In this work we have studied the design of unknown input observers for linear time invariant systems with sampled output measurements. Both theoretical and tractable conditions have been presented for the synthesis of an unknown input observer under aperiodic sampling. First generic conditions have been derived to verify the convergence of the observer. Then, for a specific class of sampling sequences, it was possible to formulate the generic results as a tractable convex optimization problem. In this case the resulting sufficient conditions lead to a finite set of linear matrix inequalities which allow to design an observer with prescribed convergence rate. The proposed results are illustrated on a numerical example.
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