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Abstract

The kriging-based estimation of the different types of atmospheric particulate matter (PM) pollu-
tions defined in the air quality regulation raises some operational problems because the (co)kriging
equations are obtained by minimizing a linear combination of the estimation variances subject to
unbiasedness constraints. As a consequence, the estimation process can result in total PM10 con-
centrations that are less than the PM2.5 concentrations which would be physically impossible. In a
previous publication, it was shown that a convenient external drift modelling can reduce the number
of spatial locations where the inequality constraint is not satisfied, without completely solving the
problem. In this work, the formulation of the cokriging system is modified, inspired by previous
works focusing on positive kriging. The introduction of additional constraints on the cokriging
weights are presented, leading to a unique and optimal solution to the problem of cokriging under
inequality constraints between two variables. Some computational and algorithmic details are intro-
duced. An evaluation of the penalized cokriging is provided by using the European PM monitoring
sites dataset: some maps and performance scores are given to assess the relevance of our iterative
optimization scheme.

1. Introduction
In air quality, the geostatistical estimation is commonly used
[9, 19, 20, 22, 30] to produce maps of ambiant air regula-
tory pollutants [15], including PM10 and PM2.5, the parti-
cles whose diameter are respectively smaller than 10µg.m−3
and 2.5 µg.m−3. If the PM10 mapping is a topic already
well documented [4, 8], the interest for PM2.5 is growing
[11, 34, 39] for public health reasons.

Measurements of PM2.5 having started later than PM10mea-
surements, theirmonitoring network is less developed, which
can affect the final mapping. In the French PREV’AIR sys-
tem, see e.g. [33], the analyzed maps of ozone and PM10
are built by kriging the observations [26], including sim-
ulations of the CTM CHIMERE model [25] as external
drift. Applying such a technique to PM2.5 does not take
into account the inequality between the concentrations of
PM2.5 and PM10, and can therefore lead to PM2.5 estima-
tions greater than PM10. Ad-hoc corrections were already
considered, see e.g. [33] to estimate PM2.5 as the corre-
sponding PM10 times the ratio PM2.5/PM10 simulated by
CHIMERE. However, this method is not satisfactory given
the uncertainties in the model-based simulations, in partic-
ular during air pollution episode. For the joint estimation
of both pollutants, cokriging is the most common solution
used with a linear coregionalization model [38]. Differ-
ent solutions were already implemented: [35] proposed a
Bayesian version of the linear model of coregionalization
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applied to air quality data (CO, NO, NO2). Multivariate
non-stationarity processes were also addressed byBayesian
formulations, see e.g. [7], with spatial variations of the co-
efficients in the covariance model [18].

Beauchamp et al. [3] also developed a cokriging model for
mapping PM10 and PM2.5, in order to improve the preci-
sion of PM mapping. In this work, the local means of both
variables are related by an additive model, but the latter
does not ensure to satisfy the physical relationship exist-
ing between the two after their joint estimation. Indeed,
the PM2.5 concentration is by definition less than PM10.
At most, the additive model of Beauchamp et al. [3] en-
sures the drift, a local regression of the observations on
the Chemistry Transport Model (CTM) outputs [24], to be
physically consistent thanks to the appropriate unbiased-
ness conditions. Thus, when the correlation between the
model and the two observational datasets is good enough,
the final estimation is very likely physically consistent. This
is no longer the case if the drift poorly approaches the data.
Anyway, this cokriging model with additive external drift
has demonstrated its ability to better reproduce the PM con-
centration levels for mapping. It significantly reduces the
number of cases in which PM2.5 estimations are greater
than PM10 (from 5 to 0.5%). However, even if the opera-
tional solution to deal with the inequality constraint is satis-
factory, themathematical problem associated is not entirely
solved.

The way of dealing with inequalities in kriging has already
been addressed, butmostlywhen the only information avail-
able is greater or less than a given value [16, 23]. For the
estimation itself, Michalak [27] proposed a Gibbs sampler-
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based approach for inequality-constrained geostatistical in-
terpolation, supported by a review on the existing works
about this topic: non-negativity of the weights [14], La-
grange multipliers based approaches [28] or Monte-Carlo
methodologies [1], etc. Additional equality and inequal-
ity constraints may also be used to solve kriging problems,
such as negative weights in ordinary and simple kriging
[37] or multiple indicator kriging [36].

In this work, a new algorithmic approach is presented to
ensure PM2.5 estimation be less than PM10, by introducing
additional inequality constraints on the cokriging weights,
writing the related optimization problem and solving it. The
approach relies onKarush-Kuhn-Tucker conditions, inspired
by the work of [2] on positive kriging. Additional con-
straints are formulated on the cokriging weights. When
not met, the constraints result in rewriting the cokriging
system. It yields an iterative procedure which is used un-
til all the constraints are satisfied to ensure the consistency
between both PM2.5 and PM10 estimation.

2. Methods
In Beauchamp et al. [3], the PMdescription ismade through
the simple additive model (1):

Z(x) = Y (x) +W (x) (1)

with Y (x) ≤ Z(x) ∀x.

Here, the joint estimation betweenZ(x), the PM10 concen-
tration and Y (x), the PM2.5 concentration, is investigated.
Such a geostatistical estimation is known as cokriging [10].

The two components of the sum are supposed to be non-
stationary, but can be explained by the use of deterministic
covariates f i(x) and gj(x), see Eq. (2):

Y (x) = mY (x) + R(x)

= a0 +
l
∑

i
aif

i(x) + R(x)

W (x) = mW (x) + T (x)

= b0 +
p
∑

j
ajg

j(x) + T (x) (2)

f i, i = 1,⋯ , l and gj , j = 1,⋯ , p are the covariates
respectively used in the computation of the local means
mY (x) and mW (x). l and p are the number of covariates
for the regression of Y on the f i and ofW on the gj . Last,
R and T are residuals assumed to be second-order station-
ary random functions with zero mean. This framework can
be used for any similar modelling, and even simplified if
not using any covariates.

Let denote Y CK(x0) and ZCK(x0) the cokriging-based es-
timation of PM2.5 and PM10 at location x0. For sake of
simplicity, Y and Z respectively refer to variables with in-
dex 1 and 2 throughout the paper. We aim at producing
a joint estimation such that Y CK(x0) is less than ZCK(x0).
The additive relationship betweenZ and Y implies that di-
rect and cross covariances are linked through the following
set of equations:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

CZ (h) = CR(h)
CZ,Y (h) = CR(h) + CR,T (h)
CY ,Z (h) = CR(h) + CT ,R(h)
CY (h) = CR(h) + CR,T (h)

+CR,T (−h) + CT (h)

The same conditions can also be written using variograms:

⎧

⎪

⎪

⎨

⎪

⎪

⎩


Z (x, x + h) = CR(0) − CR(h)

Y ,Z (x, x + h) = 
R(h) + 
R,T (h)

Y (x, x + h) = 
R(h) + 
T (h)

+2
R,T (h)

C(.) denotes a covariance and 
(.) a variogram, see e.g.
Cressie and Wikl [13]. In Beauchamp et al. [3], it is de-
scribed why the use of variograms instead of covariances
is preferable and well suited to the data and their related
hypothesis.

ZCK(x0) is obtained by solving the cokriging system (CK),
see Eq. (3) and Sect. 2.5 in [3]:

ZCK(x0) =
M
∑

�=1
�′�Z(x�) +

N
∑

�=1
�′�Y (x�) (3)

where � = 1,⋯ , N and � = 1,⋯ ,M are the indices for
the observations Y (x�) and Z(x�). �′� = �′(x�) and �′� =
�′(x�) are the cokriging weights of the observationsZ(x�)
and Y (x�). Modifying a bit the cokriging system notations
of Beauchamp et al. [3] to ease the link with this work, see
Eq. (4), the cokriging system of ZCK(x0) becomes:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K22 K21 1 gj2 0 f i2
K12 K11 0 0 1 f i1
1 0 0 0 0 0
gj2 0 0 0 0 0
0 1 0 0 0 0
f i2 f i1 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�′
�′
�0
�j
�0
�i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K20
K120
1
gj0
0
f i0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4)

where:
K11 = {CY (x� − x�′ )}.
K22 = {CZ (x� − x�′ )}.
K12 = {CY ,Z (x� − x�)}.
K20 = {CZ (x� − x0)}.
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K120 = {CY ,Z (x� − x0)} .
�′ = (�′�) and �

′ = (�′�) are the cokrigingweights of the ob-
servationsZ(x�) and Y (x�). g

j
2 denotes the vector of the j

tℎ

covariate gj at locations x� {gj(x�)}. f i2 denotes the vector
of the itℎ covariate f i at locations x� {f i(x�)}. f i1 denotes
the vector of the itℎ covariate f i at locations x� {f i(x�)}.
gj0 and f

i
0 respectively denote the jtℎ and itℎ covariates gj

and f i at the target location x0. Last, �0, �j , �0, �i are the
Lagrange multipliers for the unbiasedness conditions, see
Eq.(11a) to Eq.(11d) in Beauchamp et al. [3].

For sake of generality, this system is givenwith covariances
but can be easily written with variograms, as this tool was
used in Beauchamp et al. [3] and again in this study. As de-
noted by Isaaks and Srivastava [21], this type of cokriging
estimation may lead to negative values and the effect of the
secondary variable on the estimation is weak depending on
the spatial sampling of the two variables, but it is not rele-
vant here because there is generally more PM10 data avail-
able than PM2.5 and the deterministic covariate almost en-
sures the positivity of the estimation, see again Beauchamp
et al. [3].

In a more convenient synthetic notations:

KP + AM = K0
A′P = F0 (5)

where :

K =
[

K11 K12
K21 K22

]

, A =
[

1 gj2 0 f i2
0 0 1 f i1

]

,

P =
[

�′�
�′�

]

, M =

⎡

⎢

⎢

⎢

⎣

�0
�j
�0
�i

⎤

⎥

⎥

⎥

⎦

K0 =
[

K20
K120

]

, F0 =

⎡

⎢

⎢

⎢

⎣

1
gj0
0
f i0

⎤

⎥

⎥

⎥

⎦

Let suppose now thatZCK(x0) fromEq. (5) is already com-
puted. The estimation Y CK(x0) writes:

Y CK(x0) =
N
∑

�=1
��Y (x�) +

M
∑

�=1
��Z(x�)

where the weights �� of Y (x�) and the weights �� ofZ(x�)
are found by solving a cokriging system similar to (4), wherein
the order of the variables is simply modified accordingly in

matrixK and vectors P,M andK0. The unbiasedness con-
ditions also modify the contents of matrix A:

A =
[

1 0 0 f i1
0 gj2 1 f i2

]

, F0 =

⎡

⎢

⎢

⎢

⎣

1
0
0
f i0

⎤

⎥

⎥

⎥

⎦

2.1. Additional constraints on the weights
Y CK(x0) has to be less than the prior estimation ZCK(x0)
of the first variable, i.e.:

Y CK(x0) ≤ ZCK(x0)

≤
M
∑

�=1
�′�Z(x�) +

N
∑

�=1
�′�Y (x�) (6)

Let precise that cutting the estimation of Y CK as the min-
imum between (Y CK, ZCK) is not a good solution because
even if it can lead to satisfying results, both in terms of
mapping and obviously being consistent with the physical
constraints, it does not enable to compute the correspond-
ing cokriging standard deviation.

Replacing the cokriging of Z by its mathematical expres-
sion given in Eq.3 leads to:

N
∑

�=1
��Y (x�) ≤

N
∑

�=1
�′�Y (x�) +

M
∑

�=1
(�′� − ��)Z(x�)

Revisiting this inequality, we make the choice of evenly

decomposing
M
∑

�=1
(�′� − ��)Z(x�) =

N
∑

�=1
�̃′� as the sum ofN

terms where:

�̃′� =

[ M
∑

�=1
(�′� − ��)Z(x�)

]

l(x�)
Y (x�)

, � = 1,⋯ , N

with
N
∑

�=1
l(x�) = 1 and Y (x�) > 0 ∀� . In this work, we

consider a uniform repartition scheme, then l(x�) = 1∕N
∀x� , but any other scheme could be experimented. The ad-
ditional weights �̃′� are then distributed over theN weights
�′�:

N
∑

�=1
��Y (x�) ≤

N
∑

�=1

[

�′� + �̃′�
]

Y (x�)

Thus, at �� fixed, the condition (7):

�� ≤ �′� + �̃′� ∀� (7)

is sufficient to ensure the estimation Y CK(x0) to be less than
ZCK(x0).
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Because of both unbiasedness cokriging conditions
N
∑

�=1
�� = 1 and

N
∑

�=1
�′� = 0, we have:

N
∑

�=1
�̃′� ≥ 1 + �0 with �0 ≥ 0. (8)

From the expression of �̃′� and inequality (8), we can use
a similar framework to split and distribute a given quantity
over the weights �′� , we have:

M
∑

�=1
��Z(x�) ≤

M
∑

�=1

[

�′� − �̃
′
�

]

Z(x�) (9)

with:

�̃′� =
k(x�)(1 + �0)

Z(x�)
∑N
�=1 l(x�)∕Y (x�)

,

and
M
∑

�=1
k(x�) = 1. Again, if a uniform scheme distribution

is used over the weights �′� , then k(x�) = 1∕M ∀x� .

A sufficient condition to satisfy inequality (9) is:

�� ≤ �′� − �̃
′
� ∀x� (10)

And because of condition (10) and both unbiasedness con-
ditions
M
∑

�=1
�� = 0 and

M
∑

�=1
�′� = 1:

M
∑

�=1
�̃′� ≤ 1 − �0 with �0 ≥ 0 (11)

Thus, for a given pair (�0, �0) satisfying conditions (8) and
(11), the set of weights �� and �� compliant with inequality
(6) have the following property:

1 + �0
∑

� l(x�)∕Y (x�)
≤

1 − �0
∑

� k(x�)∕Z(x�)
(12)

Because the variables Y (x) and Z(x) are always positive,
it is in most cases possible to find a subset of the observa-
tional data {Y (x�), Z(x�)} satisfying condition (12).

Regarding the other unbiasedness condition, Eqs. (13a,13b,13c,13d)

appearing in the two cokriging estimations, i.e.:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∑

�
��f

i(x�) +
∑

�
��f

i(x�) = f i(x0)

∑

�
�′�f

i(x�) +
∑

�
�′�f

i(x�) = f i(x0)

∑

�
��g

j(x�) = 0

∑

�
�′�g

j(x�) = gj(x0)

(13a)

(13b)

(13c)

(13d)

In what follows, the notations �� , Eq. (14a), and �� , Eq.
(14b), denote the penalized conditions (7) and (10):

�� = �′� + �̃′�
�� = �′� − �̃′�

(14a)
(14b)

2.2. The optimization problem
Here, we present the optimization problem () derived from
the formulation of cokriging with inequality constraints:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ω = (�, �)
= argmin Var

[

Y CK(x0) − Y (x0)
]

|ℎi(Ω) = 0, gj(Ω) ≤ 0

where ℎi(Ω) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑

�
�� − 1 = 0

∑

�
�� = 0

∑

�
��f

i(x�) +
∑

�
��f

i(x�) = f i0
∑

�
��g

j(x�) = 0

and gj(Ω) =

{

�� − �� ≤ 0, � = 1,⋯ , N
�� − �� ≤ 0, � = 1,⋯ ,M

The Lagrangian of problem () writes:

L(Ω, �, �) = Var
[

Y CK(x0) − Y (x0)
]

+
l+p+2
∑

i=1
�iℎi(Ω)

+
2
∑

j=1
�jgj(Ω)

= Var
[

Y CK(x0) − Y (x0)
]

+ 2�0

(

∑

�
�� − 1

)

+ 2�0
∑

�

(

��
)

+ 2�j

(

∑

�
��g

j(x�)
)

+ 2�i

(

∑

�
��f

i(x�) +
∑

�
��f

i(x�) − f i0

)

+
∑

�
��(�� − ��) +

∑

�
!�(�� − ��)
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If there is a local minimum Ω∗ of Var
[

Y (x0) − Y CK(x0)], it exists � = (�, �), � ∈ ℝl+1, � ∈ ℝp+1, and � = (� ,!),
� ∈ ℝN , and ! ∈ ℝM so that:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇ΩL(Ω∗, �, �) =

⎡

⎢

⎢

⎢

⎣

)L
)��
)L
)��

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

∑

�′
��′C

1
��′ − C

1
�x +

∑

�
��C

12
�� + �0 + �if

i(x�) + ��
∑

�′
��′C

2
��′ − C

12
�x +

∑

�
��C

12
�� + �0 + �jg

j(x�) + �if i(x�) + !�

⎤

⎥

⎥

⎥

⎦

= 0

ℎi(Ω∗) = 0, i.e.

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑

�
�� − 1 = 0

∑

�
�� = 0

∑

�
��f

i(x�) +
∑

�
��f

i(x�) = f i0
∑

�
��g

j(x�) = 0

�jgj(Ω∗) = 0, i.e.
⎧

⎪

⎨

⎪

⎩

∀�, ��(�� − ��) = 0, i.e.
∑

�
��(�� − ��) = 0

∀�, !�(�� − ��) = 0, i.e.
∑

�
!�(�� − ��) = 0

�� ≥ 0, � = 1,⋯ , N and !� ≥ 0, � = 1,⋯ ,M

For sake of simplicity and generality, index 1 and 2 re-
spectively denotes variable Y andZ, and the notation C1��′
stands for C1(||x� − x�′ ||) in what follows. The same ap-
plies for the other covariances.

These are the so-called Karush-Kuhn-Tucker (KKT) con-
ditions, see e.g. Rothenberg [32], that can be written in a
more readable matrix form as follows:

[

K A I 0
A′ 0 0 I

]

⎡

⎢

⎢

⎢

⎣

P
M
��
!�

⎤

⎥

⎥

⎥

⎦

=

[

K0
F0

]

(15a)

where notations K, A, P, M, K0 and F0 are taken from
Eq.(5) and with side constraints :

∑

�
��(�� − ��) = 0

∑

�
!�(�� − ��) = 0

(15b)

�� − �� ≤ 0
�� − �� ≤ 0

and
�� ≥0, � = 1,⋯ , N
!� ≥0, � = 1,⋯ ,M

(15c)

This estimation of Y (x0) obtained by solving this KKT-
based penalization, Eqs. (15b) and (15c), of the cokriging
system (15a) is now denoted Y PCK(x0).

2.3. The complementary slackness conditions
Since the conditions (15c) requires all of the �� and !� be
zero or positive while all the terms (�� − ��) and (�� − ��)
be zero or negative, the condition (15b) requires :

�� = 0 or �� = ��
and !� = 0 or �� = ��

This is a particular case of complementary slackness condi-
tion, see e.g. Boyd and Vandenberghe [6], where the vari-
ables �� and !� are respectively the complementary pairs,
also called Lagrangian multipliers or dual variables, corre-
sponding to the constraints �� ≤ �� and �� ≤ �� . Specif-
ically,

∑

�
��(�� − ��) = 0 indicates that, at the optimal

solution �� and without loss of generality, either �� is zero
or �� = �� , i.e. the inequality constraint is binding. The
second constraint

∑

�
!�(�� −��) = 0 can be interpreted in

a similar way.

In what follows, the positive kriging approach of Barnes
and Johnson [2] is adapted to address our problem: for
a given solution (not necessarily optimal), the cokriging
weights satisfying condition (15c) are denoted as the basic
weights �� and �� :

� = {�, �� < �� , �� = 0}
� = {�, �� < �� , !� = 0} (16)
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while theweights equal to their authorized upper-boundaries
are identified as the non-basic weights:

� = {�, �� = �� , �� ≥ 0}
� = {�, �� = �� , !� ≥ 0} (17)

Along this line, the set of �� and !� respectively comple-
mentary with the "basic" �� and �� will be called the "ba-
sic" �� and !� . The same idea applies for the definition of
the non-basic �� and !� .

The penalized cokriging system for the estimation Y PCK(x0)
can be rearranged and partitioned by ordering rows and
columns according to the basic and non-basic components
of the solution:

� =
[

�b
�n

]

, � =
[

�b
�n

]

, � =
[

�b
�n

]

, ! =
[

!b
!n

]

where �b denotes the set of basic weights �� , � ∈ � and
�n, � ∈ � the set of non-basic weights �� . The same type
of notations are used for �� , �� and !� .

Reordering rows and columns with the basic and non-basic
nomenclature, Eqs. (16) and (17), gives:

⎡

⎢

⎢

⎢

⎢

⎣

Kbb
11 Kbn

11 Kbb
12 Kbn

12
Knb
11 Knn

11 Knb
12 Knn

12
Kbb
21 Kbn

21 Kbb
22 Kbn

22
Knb
21 Knn

21 Knb
22 Knn

22

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�b
�n
�b
�n

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 fi1b
1 0 0 fi1n
0 gj2b 1 fi2b
0 gj2n 1 fi2n

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�0
�j
�0
�i

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

1bb11 0bn11 0bb12 0bn12
0nb11 1nn11 0nb12 0nn12
0bb21 0bn21 1bb22 0bn22
0nb21 0nn21 0nb22 1nn22

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�b
�n
!b
!n

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

Kb
10

Kn
10

Kb
120

Kn
120

⎤

⎥

⎥

⎥

⎥

⎦

(18a)

⎡

⎢

⎢

⎢

⎣

1 1 0 0
0 0 gj2b gj2n
0 0 1 1

fi1b fi1n fi2b fi2n

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�b
�n
�b
�n

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1
0
0
f i0

⎤

⎥

⎥

⎥

⎦

(18b)

[

�b �n !b !n
]

⎡

⎢

⎢

⎢

⎢

⎣

�b − �b
�n − �n
�b − �b
�n − �n

⎤

⎥

⎥

⎥

⎥

⎦

= 0 (18c)

�� − �� ≤ 0
�� − �� ≤ 0

and
�∗� ≥0, � = 1,⋯ , N
!∗� ≥0, � = 1,⋯ ,M

(18d)

Kbb
ij = {Cij(x� − x′�)}, � ∈ � , �′ ∈ � .

Kbn
ij = {Cij(x� − x′�)}, � ∈ � , �′ ∈ � .

Knb
ij = {Cij(x� − x′�)}, � ∈ � , �′ ∈ � .

Knn
ij = {Cij(x� − x′�)}, � ∈ � , �′∈ � .

Kb
10 = {C1(x� − x0)}, � ∈ � .

Kn
10 = {C1(x� − x0)}, � ∈ � .

Kb
120 = {C12(x� − x0)}, � ∈ � .

Kn
120 = {C12(x� − x0)}, � ∈ � .

gj2b = {g
j(x�)}, � ∈ � , gj2n = {g

j(x�)}, � ∈ � .
fi1b = {f

i(x�)}, � ∈ � , fi1n = {f
i(x�)}, � ∈ � .

fi2b = {f
i(x�)}, � ∈ � , fi2n = {f

i(x�)}, � ∈ � .
f i0 = f

i(x0) is the ith covariate f i at the target location x0.

Because the covariance function is assumed to be symmet-
ric, see again Beauchamp et al. [3], Kbb

21,K
bn
21, K

nb
21 and K

nn
21

are respectively the transposes of the matrices Kbb
12, K

bn
12,

Knb
12 and K

nn
12.

1bb11 and 0bb11 are the identity and zero matrices with same
size thanKbb

11. The same applies for all the 16 possible com-
binations of covariance matrices between basic and non-
basic weights of Y and Z.
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Expanding the system (18a,18b,18c,18d) and because, by definition, the non-basic �� and �� respectively equals �� and
�� and the basic �� and !� equals 0:

Kbb
11�b +Kbb

12�b + �0 + �if
i
1b

=Kb
10 −Kbn

11�b −Kbn
12�b

Knb
11�b +Knb

12�b + �0 + �if
i
1n + 1nn11�n

=Kn
10 −Knn

11�b −Knn
12�b

Kbb
21�b +Kbb

22�b + �0 + �jg
j
2b + �if

i
2b

=Kb
20 −Kbn

21�b −Kbn
22�b

Knb
21�b +Knb

22�b + �0 + �jg
j
2n + �if

i
2n + 1nn22!n

=Kn
20 −Knn

21�b −Knn
22�b

1b�b =1 − 1n�n
gj2b�b = − gj2n�n
1b�b = − 1n�n
fi1b�b + fj2b�b =f i0 − fi1n�n − fj2n�n
�� − �� ≤ 0
�� − �� ≤ 0

and
�∗� ≥0, � = 1,⋯ , N
!∗� ≥0, � = 1,⋯ ,M

(19a)

(19b)

(19c)

(19d)

(19e)

(19f)

(19g)

(19h)

(19i)

The condition (18c) is implicitly satisfied at optimality by the definitions of the basic and non-basic �, �, � and !.

Rewriting conditions (19a), (19c), (19e), (19f), (19g), (19h)
in a convenient matrix form (non-basic conditions (19b)
and (19d) are not embedded in the linear system) leads to:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Kbb
11 Kbb

12 1 0 0 fi1b
Kbb
21 Kbb

22 0 gj2b 1 fi2b
1 0 0 0 0 0
0 gj2b 0 0 0 0
0 1 0 0 0 0

fi1b fi2b 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�b
�b
�0
�j
�0
�i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Kb
10 −Kbn

11�b −Kbn
12�b

Kn
20 −Kbn

21�b −Kbn
22�b

1 − 1n�n
−gj2n�n
−1n�n

f i0 − fi1n�n − fi2n�n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The final estimation of Y (x0) will be:

Y PCK(x0) =
∑

�∈�

��Y (x�) +
∑

�∈�

��Y (x�)

+
∑

�∈�

��Z(x�) +
∑

�∈�

��Z(x�) (20)

with � and � the set of index for the basic weights of
Y (x�) andZ(x�), and� and� their complementary, see
Eq.(16) and (17).

The related cokriging variance of Y PCK(x0), Eq. (20), is
(see the detailed calculations in AppendixA):

Var
[

Y (x0) − Y PCK(x0)
]

= �2PCK(x0)

= C1(0) −
∑

�∈�

��C
1
�0 −

∑

�∈�

��
[

C1�0 − ��
]

−
∑

�∈�

��C
12
�0 −

∑

�∈�

��
[

C12�0 − !�
]

− �0 −
∑

i
�if

i(x0)

where {��} and {!�} are directly given by Eq.(19b) and
(19d).

2.4. Strategy
The basic and non-basic �� satisfy the condition (7), which
requires to know the basic and non-basic �� first, satisfying
the condition (10). The first step thus consists in solving
the cokriging system looking at each step of the algorithm
which �� is the most non-basic, see section 2.6 and follow-
ing Eq. (21), until there is no non-basic �� anymore.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Kbb
11 Kbb

12 1 0 0 fi1b
Kbb
21 Kbb

22 0 gj2b 1 fi2b
1 0 0 0 0 0
0 gj2b 0 0 0 0
0 1 0 0 0 0

fi1b fi2b 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�b
�b
�0
�j
�0
�i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Kb
10 −Kbn

12�b
Kn
20 −Kbn

22�b
1

−gj2n�n
−1n�n

f i0 − fi2n�n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

Then, the �� are considered as known and fixed. The cok-
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ZCK(x0), �

isBasic(�)

findMnb(�)

updateCKDE

estimPM2.5(�,�) isBasic(�)

Y PCK(x0) findMnb(�)

updateKDE

no

�b, �n

[

K A
A′ 0

]

,
[

W
M

]

,
[

K0
F0

]

yes
�

no

�b, �n [

K A
A′ 0

]

,
[

W
M

]

,
[

K0
F0

]

yes

subprocedures
isBasic : test if all the weights are basic
findMnb : find the most non-basic weight
updateCKDE: update the cokriging linear matrix system
updateKDE : update the kriging linear matrix system
estimPM2.5 : compute the PM2.5 penalized cokriging

variables
�, � : weights of Y (x�) and Z(x�) in Y PCK(x0)
� : new constraints on �
� : new constraints on �
�b, �n : basic and non-basic �
�b, �n : basic and non-basic �
K A
W M
K0 F0

: matrices and vectors to update

Y PCK(x0): PM2.5 estimation made by the algorithm (PCK)
ZCK(x0) : PM10 estimation made by the algorithm (CK)

Figure 1: algorigram of the penalized cokriging (PCK) algorithm

riging system is after that modified to satisfy the condition
(7). The terms related to the second variable Z are moved
to the right-hand side of the linear system, so that the un-
biasedness conditions and optimality are still satisfied:

⎡

⎢

⎢

⎣

Kbb
11 1 fi1b
1 0 0

fi1b 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�b
�0
�i

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

Kb
10 −Kbn

11�n −Kbn
12�n −Kbb

12�b
1 − 1n�n

f i0 − fi1n�n − fi2n�n − fi2b�b

⎤

⎥

⎥

⎥

⎦

(22)

The algorithm may still reduce the set of basic weights too
far and the estimation will just be a heuristic produced by
the additional constraints made on the cokriging system.
Because two unbiasedness conditions are still appearing in
the system (22), two basic weights are at least required.

2.5. Computational details
Given that A is symmetric, A−1 exists and the inverse of
the matrix A extended by an additional row and column is:

[

A a
a′ �

]−1
=
[

C c
c′ −�

]

Thus,A−1 can be efficiently computed: A−1 = C+(1∕�)cc′.

When classifying a weight �� or �� as non-basic, the row
and the column to remove are generally not the last ones.
The tool to compute the inverse of amatrixA after a permu-
tation of the row and column j to the far right and bottom
of matrix A is also given in [2]:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a11 … a1j … a1n
⋮ ⋮
aj1 … ajj … ajn
⋮ ⋮
an1 … anj … ann

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

c11 … c1j … c1n
⋮ ⋮
cj1 … cjj … cjn
⋮ ⋮
cn1 … cnj … cnn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⇒

⎡

⎢

⎢

⎢

⎣

a11 … a1n a1j
⋮ ⋮ ⋮
an1 ann anj
aj1 ajn ajj

⎤

⎥

⎥

⎥

⎦

−1

=

⎡

⎢

⎢

⎢

⎣

c11 … c1n c1j
⋮ ⋮ ⋮
cn1 cnn cnj
cj1 cjn cjj

⎤

⎥

⎥

⎥

⎦

(23)

Instead of solving the new linear system at each iteration
of the algorithm, it is possible with the previously defined
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tools to quickly update the inverse of the matrix and simply
multiply it with the update of the second member. An even
faster solution is to use some simple properties of linear al-
gebra. Let us note

[

y z
]′ the solution of the linear system

at step K of the algorithm. Thus,
[

A a
a′ �

]−1 [K
k

]

=
[

C c
c′ −�

] [

K
k

]

=
[

y
z

]

At step K + 1, a new observation is defined as non-basic.
The new basic weights are obtained by multiplying the ma-
trix A−1 with the column vector K − az, where z is the
non-basic weights vector related to z, i.e.:

A−1(K − az) = C + (1
�
)cc′(K − az)

= CK + 1
�
cc′K − Caz − 1

�
cc′az

= y + z
�
c − Caz − 1

�
cc′az

By noticing that:
[

C c
c′ −�

] [

A a
a′ �

]−1
= I

implies that:
[

C c
] [

a
�

]

=0, i.e. Caz = −�cz
[

c′ −�
] [

a
�

]

=1, i.e. d′az = (1 + ��)z

Finally,

A−1(K − az) = (C + (1
�
)cc′)(K − az)

= y + c
(

z − z(1 + �(� + 1))
�

)

The computational cost is thus considerably reduced. In-
stead ofmultiplying a squaredmatrix of rankN() = #{�∪
�}, i.e. the number of basic weights, with a column vector
of size N(), that is N()2 multiplications and [N() −
1]2 additions, the numbers of operations required to up-
date the basic weights is now only N()+3 additions and
N()+3 multiplications.

2.6. Remarks
A) The computational time of the method presented here
may remain quite restricting when using a unique neigh-
borhood because cokriging matrices have a size much big-
ger than kriging matrices. Thus, despite the previous tools
introduced in Sect. 2.5 to avoid the solving of the linear
system at each step of the algorithm, the update of the sec-
ondmember, thematrix cokriging and the weights may still
be too costly for an operational algorithm. A solution to

speed up the estimation can be to consider a moving neigh-
borhood and is fully detailed in Appendix B.

B) At each step of the algorithm, if there are still some
weights that do not satisfy the constraints (7), the "most"
non-basic weights �� have to be removed from the set of
basic weights. The most non-basic index � can be defined
by :
Eq. (24), as the weight that satisfies the least the constraints
(i.e that maximizes their differences):

argmax
�

{�� − �� > 0} (24)

or as Eq. (25), as the weight non satisfying the constraints
(7) and maximizing the distance with the target location x0
where an estimation has to be made:

argmax
�

{||x� − x0||, �� − �� > 0} (25)

This second option allows the weights related to the obser-
vations in a close neighborhood of x0 to be truly estimated
and not set to their non-basic related values when the al-
gorithm successively reduces the set of basic weights. The
same applies to find the most non-basic weights �� .

3. Results
In this Section, we proposed an application based on the
dataset used in Beauchamp et al. [3]. The specific addi-
tive modelling introduced in the above-mentioned work is
used to compare both mappings and performance of the pe-
nalized cokriging (PCK) algorithm with the usual way of
solving the cokriging system (CK). The background PM10
and background PM2.5 observational dataset is then iden-
tical to Beauchamp et al. [3], but extended from France to
Europe, see Table 1, because the discontinuities discussed
in Appendix B are more frequently seen when the domain
is larger.

Rural Suburban Urban
PM10 190 183 445
PM2.5 63 51 188

Table 1: Number of background monitoring sites (PM10
and PM2.5)

The CHIMERE PM10 and PM2.5 simulations are used as
covariates for mZ (x) and mY (x). The model covers the
AWM European domain of simulation ([−15◦W , 35◦W ;
35◦N, 70◦N]), with a coarse resolution of 0.5◦. The maps
are interpolated by cokriging on a regular grid with the
same resolution used by CHIMERE for solving the chem-
ical and physical processes.

The time period covers the first quarter of 2015 in which
the PM concentrations were particularly high with a long
episode of pollution occuring in March 2015.
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Regarding the practical implementation, an original C++
program has been developed to run the penalized cokriging
version. The armadillo C++ library [12] is involved for the
numerical analysis related to kriging. An interface with R
software [29] is used inside the C++ program towards the
R library RCppArmadillo [17] so that all the descriptive
geostatistical part, e.g. the variogram computation and fit-
ting, are done by RGeostats through this interface. The full
code is available via Zenodo (10.5281/zenodo.7756425). It
is ready-to-use after installation of the appropriate libraries
and specifications of the input data. The appropriate shape
for the inputs is given as comment lines along the program.

3.1. Mapping
On the 10tℎ of March, Fig. 2 (a) to Fig. 2 (j) respec-
tively show the daily observations, the corresponding scat-
terplot between the collocated PM2.5 and PM10 sites, the
CHIMERE simulations for the two pollutants and the krig-
ing maps with their related standard deviations for PM10
and PM2.5 with the classic algorithm (CK) and its penalized
version (PCK). A zoomed-in window is given on Hungary,
Serbia, Ukraine and Slovakia to focus on this area where
Y CK(x0) > ZCK(x0). The estimations Y PCK(x0) are suc-
cessfully less thanZCK(x0). Looking at the daily-averaged
observations in this area, that are only two in Hungary, the
algorithm (PCK) seems to extend the representativeness ar-
eas of these twomonitoring sites over the whole area where
the inconsistency appears. PM10 observations are in the
range 30-40 µg.m−3 while PM2.5 cokriging estimates val-
ues are greater than 40 µg.m−3 over the area. Adding the
penalization enables to decrease PM2.5 estimations down
to 30-40 µg.m−3 which is not unrealistic when regarding
how the values are spatially distributed. Though, an ad-
ditional assessment of the true representativeness areas of
these sites would be necessary to conclude. The same type
of results is shown on the 16tℎ of March in Fig. 3 (a) to
Fig. 3 (j), that is a typical example of far-off extrapola-
tions in Northern Europe where physical inconsistencies
can also occur. Once again, the algorithm (PCK) is suc-
cessful and enables to decrease the prior values produced
by the algorithm (CK) from 30 µg.m−3 to less than 10
µg.m−3 in its (PCK) version. It is to note that standard
deviation of (PCK) errors were expected to be greater than
those produced without the penalization but in most cases,
as supported by the two examples given, they are in the
same range of values for both algorithms.

More generally, the differences are often not significant from
amapping perspective. It was expected since the usual cok-
riging algorithm does not generate so many PM2.5 estima-
tions that are greather than their corresponding PM10 esti-
mations. On some days however, the differences between
the cokriging and its penalized version are significant, es-
pecially because the algorithm (PCK) has the direct con-
sequence to fix the (non-basic) weights of a some obser-
vations in the estimation process. As a consequence, even

if all the available observations are first used as input data,
the progressive decrease of the set of basic weights leads to
a map that seems to be built with a moving neighborhood.
This one has very specific features strongly depending on
the strategy used to define the most non-basic weight, see
Sect. 2.6:

1) if it is defined as the farthest non-basic weight from the
target point x0, see Eq.(25), then all the observations with
basic weights are included in some distance-based neigh-
borhood. If this distance is large enough, which is generally
the case, the approach proposed in Appendix B makes van-
ish the discontinuities because the farthest observations, al-
though with fixed (non-basic) weights, are noisy when es-
timating the PM10 concentration Z(x0).
2) if it is defined as the most non-basic weight, i.e. the
weight with the largest positive deviation to its related non-
basic version, see Eq.(24), then the set of basic weights
fail to comply with some distance-based neighborhood. As
a consequence, the estimation process still may generate
strong discontinuities. It would clearly be the best option
to keep the largest set of basic weights, but for mapping
concerns, the way of dealing with these discontinuities ap-
pears problematic and Appendix B will not really help.

3.2. Cross-validation
Figure 5 shows the results of a (leave-one-out) cross-validation
procedure carried out every day of the first quarter of 2015.
Figure 5a presents the scatterplot of the PM2.5 observa-
tions (X-axis) and the PM2.5 estimations (Y-axis) obtained
by the cokriging algorithm (CK) of Beauchamp et al. [3]
and its penalized version (PCK) detailed in Sect. 2. In
the latter, the definition (25) of what should be the most
non-basic weight is used. Over the period, only the ob-
servations Y (x�) with inconsistent cross-validation values
Y CK(x�) > ZCK(x�) are displayed and used to compute
the correlation and RMSE. Let precise that observations
sites with inconsistent cross-validation values have a sig-
nificant number of occurences, see Figure 4 focusing on the
French domain and same evaluation period, with related
inconsistencies on classic cokriging mapping (without ad-
ditive model) also noticeable, see the background mapping
on the above-mentioned Figure.

Beauchamp et al.: Preprint submitted to Elsevier Page 10 of 18

10.5281/zenodo.7756425


An iterative optimization scheme to accommodate inequality constraints in air quality geostatistical estimation of multivar.
PM

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ● ●●

●

●
●

●

● ●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●
●

●●●

●

●

●

●

●

●

●●

●●

●

●
●

● ● ●●●

●

●

●
●●

● ●

●

●

30

40

50

60

70

−20 −10 0 10 20 30 40

long

la
t

● PM10

PM25

0
10
20
30
40
50
60
70
80

PM (µg.m−3)

(a) Observations PM2.5 observations (µg.m−3)

P
M

10
 o

bs
er

va
tio

ns
 (

µg
.m

−3
)

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

(b) Scatterplot PM2.5 and PM10
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Figure 2: From top to bottom, PM10 and PM2.5 available observations and corresponding scatterplots, PM10 and PM2.5
CHIMERE outputs, PM10 cokriging and standard deviation as implemented in [3], the same for PM2.5 and last, the
proposed PM2.5 penalized cokriging and standard deviation as proposed in this paper (2015, March 10). A focus is
provided on a small box region over Hungary, Serbia, Ukraine and Slovakia with inconsistent cokriging estimations
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Figure 3: From top to bottom, PM10 and PM2.5 available observations and corresponding scatterplots, PM10 and PM2.5
CHIMERE outputs, PM10 cokriging and standard deviation as implemented in [3], the same for PM2.5 and last, the
proposed PM2.5 penalized cokriging and standard deviation as proposed in this paper (2015, March 16). A focus is

provided on a small box region o the western coastal area of Norway with inconsistent cokriging estimations
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Figure 5: Cross-validation procedure over the first quarter of 2015
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Figure 4: Frequencies of PM2.5/PM10 ratio greater than 1
for both observation sites (cross-validation) and cokriging

estimation maps

In the case of consistent cokriging-based estimations, the
scores of the two methods are similar.
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Cov

[

(Z(x�), ZCK(x�)
]
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√
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Z(x�) −ZCK(x�)
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The preliminary findings from Sect. 3.1 are now confirmed
by the validation procedure, which clearly shows that:

Y PCK(x�) ≤ ZCK(x�) ≤ Y CK(x�),

meaning that the iterative algorithm is successfull. Regard-
ing the scores, if the correlation is a bit less with the new
algorithm, its RMSE is better. As a consequence, not only
the estimations satisfy the inequality constraint but they are
also consistent with the observations.

From the cross-validation procedure described previously,
we respectively store the values of #{�} and #{�}, the
number of basic weights for the main and secondary vari-
able. A high number of basic weights indicates that only
a few number of weights are fixed in the iterative process
so that the PM2.5 estimations satisfy the physical inequal-
ity. On the contrary, extremely low values for the quanti-
ties means that most of the observations available are used
with their non-basic weighting in the estimation, leading to
a simple heuristic. Figure 5b displays the bivariate distri-
bution of the basic weights. As we can see, only a few sam-
ples display low values for both #{�} and #{�}. Even
when it is the case, and because we use definition (25) for
the most non-basic weights identification, the nearest ob-
servations are always used to compute the PM2.5 optimal
interpolation, which explains why the estimations remain
consistent. In terms of computation cost, let precise that
because the number of modified weights are small, the pe-
nalized version cost is very close to the original cokriging
algorithm. When the inequality constraint is not satisfied
and the iterative penalized scheme is involved, less than
10 iterations were generally involved in our datasets (i.e.
less than 10 observational weights are non-basic) and no
estimation location ended with a simple heuristic interpo-
lation (when the number of iteration reaches the number of
observations, thus excluding most of the available informa-
tion). This specific cases happened when PM2.5 and PM10
observations are both close in terms of values and spatial
locations.

4. Conclusions
The problem of consistency in cokriging arises when deal-
ing with quantities that involve inequality constraints. In
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a study by Beauchamp et al. [3], cokriging was employed
to enhance the estimation of PM2.5 by incorporating PM10
observations using a specific additive modeling approach.
The local means were derived by exploiting the physical
relationship between the two variables. Although this cok-
riging approach led to improved estimations, it failed to en-
sure that the resulting estimations adhered to the inequality
constraint. From a mathematical standpoint, it is possible
to verify this by conducting conditional simulations at a
target location x0. Such simulations reveal that the inter-
section of the PM2.5 simulated distribution with the PM10
simulated distribution is never empty. Thus, even when the
average PM2.5 simulation is higher than the average PM10
simulation, the consistency of the estimation is preserved.

To address the issue of inconsistencies in PM2.5 concen-
trations, a new algorithm is proposed, in which additional
constraints are introduced on the cokriging weights. They
allow for successive iterations to solve the cokriging sys-
tem in terms of basic component that satisfies these new
constraints. The algorithm also includes several computa-
tional details that ensure a reasonable computational cost,
making it practical for operational contexts.

Although the new estimator is performingwell inmost cases,
there are still some limitations that need to be considered.
One such limitation is the algorithm sensitivity to obser-
vation noise, as inaccuracies in the observed data can lead
to significant errors in the final mapping. This can be es-
pecially problematic in areas with a high degree of spatial
variability, where the data may be sparse or irregularly dis-
tributed. In such cases, the successive iterations in the pe-
nalization procedure may reduce the set of basic weights
too far and thus build a simple heuristic that poorly esti-
mates the true PM2.5 concentration. This can result in a
less accurate final mapping and may require additional ad-
justments to improve the algorithm’s performance. Other
limitations of the proposed algorithm include its reliance
on assumptions about the underlying spatial structure of
the data, as well as its potential limitations in handling non-
Gaussian and non-stationary data, which could be crucial
for communication and decision-making.

Finally, the use of our algorithmmay apply to similar prob-
lems: it would remain identical and valid. First example
would be the estimation of PM non-volatile fraction, see
e.g. [5]. Only the penalization � and � introduced on the
cokriging weights shall be adapted.
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Appendices

A. Variance of the penalized cokrig-
ing estimator

The related cokriging variance of Y PCK(x0) is:
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By regrouping all the terms from Eq. (19a) to (19d), this
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kriging variance is:
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]
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i
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+
∑

j
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finally leading to:

�2PCK(x0) = C
1(0) −

∑
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��C
1
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∑

�∈�

��
[
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∑

i
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B. Continuous cokriging for moving
neighborhood

In the usual cokriging framework, a moving neighborhood
ismore costly than a unique neighborhood because the krig-
ing matrix has to be inverted for each target location x0. In
our penalized algorithm, because the system is updated at
each step of the algorithm, the smaller this linear system
is, the faster is the update. In addition, a moving neigh-
borhood allows to refine at best the coefficients of the drift
according to the local behavior of the covariates to the ob-
servations. Still, one issue of using amoving neighborhood
is than it can create artificial discontinuities in the estima-
tion when mapping the field on a (regular) grid.

In Rivoirard and Romary [31], the discontinuities caused
by the moving neighbourhood are managed by considering
the observations Z(x�) spoiled by a noise "Z (x�).
As a consequence, the kriging matrix is modified: to each
term Cov

[

Z(x�), Z(x�′ )
]

is added Cov
[

"Z (x�), "Z (x�′ )
]

.
The same applies for Cov

[

Y (x�), Y (x�′ )
]

and the kriging
fashion is easily transposed for multivariate datasets. In
particular, the cokriging becomes:

Y CK(x0) =
∑

�
��{Y (x�) + "Y (x�)}

+
∑

�
��{Z(x�) + "Z (x�)}

When the initial covariance structure is non-continuous (with
a nugget effect), "Z (x�) and "Z (x�′ ) are considered inde-
pendent when � ≠ �′ and Cov

[

"Z (x�), "Z (x�′ )
]

= 0. The
same applies for "Y . The variancesVar

[

"Z (x�)
]

andVar
[

"Y (x�)
]

of the noises "Z and "Y are chosen by the user: they in-
creases according to the distance to x0 and are neglected or
even set to 0 for the nearest data points:

Var
[

"Z (x�)
]

= CZ (0)
( h�0 − r
R − h�0

)2

Var
[

"Y (x�)
]

= CY (0)
( h�0 − r
R − h�0

)2

with h�0 = ||x� − x0||, h�0 = ||x� − x0||, R the radius of
the moving neighborhood and r = p.R, with p < 1.

The lagrangian L is now defined as:

L(x0) = Var
[

Y (x0) − Y CK(x0)
]

+ 2�0

(

∑

�
�� − 1

)

+ 2�0
∑

�
�� + 2�j

(

∑

�
��g

j(x�) − g
j
0

)

+ 2�i

(

∑

�
��f

i(x�) − f i0

)

+
∑

�
�2�n� +

∑

�
�2�n�

where the weights �� and �� are respectively penalized by
the quantities n� = Var

[

"Y (x�)
]

and n� = Var
[

"Z (x�)
]

.

Equating the partial derivatives )L
)�(x�)

and )L
)�(x�)

to zero

leads to:

��n� +
∑

�′
��′C

Y
��′ − C

Y
�0 +

∑

�
��C

12
��

+ �0 + �if i(x�) + �jgj(x�) =0

and

��n� +
∑

�′
��′C

2
��′ − C

12
�0 +

∑

�
��C

12
��

+ �0 + �if i(x�) =0

and the cokriging matrix system is:

(K + N)W + AM =K0
A′W =F0

where N = In′ and n =
[

n�
n�

]

N+M
.

Finally, the conditions (19a) to (19d) related to the estima-
tor Y PCK(x0) can thus be rewritten as follows, if the esti-
mation is made with a moving neighbourhood in which the
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discontinuities vanishes thanks to the noises n� and n� :

(Kbb
11 + n1b)�b +Kbb

12�b + �0 + �jg
j
b

= Kb
10 − (K

bn
11 + n1n)�n −Kbn

12�n
(Knb

11 + n1n)�b +Knb
12�b + �0 + �jg

j
n + 1nn11�n

= Kn
10 − (K

nn
11�n + n1n) −Knn

12�1n
Kbb
21�b + (K

bb
22�b + n2b) + �0 + �if

j
b

= Kb
20 −Kbn

21�n − (K
bn
22 + n2n)�n

Knb
21�b + (K

nb
22 + n2n)�b + �0 + �ifjn + 1nn22!n

= Kn
20 −Knn

21�n − (K
nn
22 + n2n)�n

n1b is the vector of noises {n(x�)}, � ∈ � .
n1n is the vector of noises {n(x�)}, � ∈ � .
n2b is the vector of noises {n(x�)}, � ∈ � .
n2n is the vector of noises {n(x�)}, � ∈ � .

Let us note that in air quality kriging-based maps, the dis-
continuities mainly arises on very large domain of estima-
tions, over Europe for instance, where the monitoring net-
work is not homogeneously distributed: a lot of data are
available in Western and Central Europe while the network
is sparse elsewhere. Thus, to enable a local fitting of the
drift, a number-based neighborhood ��0 = {�, ||x�−x0|| <
||xN − x0||}, where xN denotes the Ntℎ nearest neigh-
bour of x0, is prefered to a distance-based neighborhood
��0 = {�, ||x� − x0|| ≤ D} ; the latter including too many
stations where the network is dense, and too few in the
badly informed areas. In Rivoirard and Romary [31], the
continuous kriging is distance-based driven. To overcome
this problem, and because the estimations are done on reg-
ular grids, the distance R(x0) between the target location
x0 and the Ntℎ nearest neighbor of x0 is computed for each
gridcell. This distance spatially varies but in a continuous
way since the grid is regular (see Fig. B.6). As a conse-
quence, the distance-based neighborhood approach is kept
but the radius used is no longer spatially constant: R(x0) is
substituted to R in Eq.(26).
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Figure B.6: Distance between the gricells x0 and the 20tℎ
nearest neighbour
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