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ABSTRACT

We present a method to construct signatures of periodic-like data. Based on topological
considerations, our construction encodes information about the order and values of local
extrema. Its main strength is robustness to reparametrisation of the observed signal, so
that it depends only on the form of the periodic function. The signature converges as the
observation contains increasingly many periods. We show that it can be estimated from the
observation of a single time series using bootstrap techniques.
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1 Introduction

We consider the problem of constructing a descriptor of a periodic function ϕ : R → R, based on an
observation of a reparameterized and noisy signal. Specifically, we assume that ϕ is 1-periodic and we let
γ : [0, T ] → [0, R] be an increasing bijection, W : [0, 1] → R a noise process. We consider an observation S

of the form
S : [0, T ] → R, t 7→ (ϕ ◦ γ)(t) +W (t). (1)

Our aim is to construct a signature F : S 7→ F (S) which contains information about ϕ while remaining
robust to W and to changes in γ.

Time series or functional observations of the form (1) appear in many applications, where ϕ is somehow
characteristic of a population: child growth dynamics [Ramsay and Silverman, 2002], physiological sig-
nals [Goldberger et al., 2000], bird migration curves [Su et al., 2014]. The reparametrisation γ is the main
source of variability in the pointwise evaluations of the signals, as in the ‘phase variation’ model in Func-
tional data analysis (FDA), see [Marron et al., 2015] for a review. The problems typically considered in
FDA consist in aligning a population of curves or computing a representative curve, for which methods with
guarantees have been proposed [Gasser and Wang, 1997, Khorram et al., 2019, Tang and Muller, 2008]. Un-
derlying most of the models is the assumption that the start and end points (γ(0) and γ(T ) here) are common
for all curves.

In applications like magnetic odometry [Bonis et al., 2022] or gait analysis [Bois et al., 2022], a single ob-
servation is composed of several periods of ϕ and the number of periods varies across observations. For
example, in the former, S is the magnetic signal recorded in a moving car and the problem consists in infer-
ring its displacement. The periodic function ϕ models the magnetic signature of the angular position, γ, of
that cars’ wheel. The problem consists in estimating γ from S. There is little reason for two observations
to have the same number of periods, unless the initial angular position of the wheel and the trajectory are
exactly the same across those two observations. Therefore, in contrast with FDA, the assumption of common
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Topological signatures of periodic-like signals

endpoints is not satisfied and the problem changes from describing the whole signal, to that of describing its
constituent parts, that is, the periods of ϕ.

Techniques from topological data analysis (TDA) are said to describe the ‘shape of data’ and have been in-
creasingly used to extract geometric or topological information from observations [Chazal and Michel, 2021].
The arguably most popular TDA technique for analyzing a time series consists in computing the homology
of the time-delay embedding (TDE) of the time series, in order to verify whether the underlying phenomenon
is periodic or not [Perea, 2019]. In applications, it has also been used to understand dynamical systems be-
hind climate change [Ghil and Sciamarella, 2023], to identify market crashes [Gidea and Katz, 2018] or to
propose biomarkers to detect seizures [Fernández and Mateos, 2022]. The TDE of a time series (Sn)

N
n=1 is a

point cloud in Rd, where each point is of the form (Sn, Sn+τ , . . . , Sn+(d−1)τ ) for parameters d, τ ∈ N. If S
is periodic, a simplicial complex constructed on the TDE at the right scale will have a non-trivial homology
group in dimension one, as illustrated in the top row in Figure 1. In signals with phase variation however, the
length of the periodic structure changes and so does the geometry of the TDE, as shown in the bottom row
in Figure 1. This is corroborated by the fact that the geometry of the delay embedding contains information
about the frequencies supporting the signal [Perea, 2019, section 5].

Techniques other than the TDE have been proposed to extract topological information from time series.
In [Corcoran and Jones, 2017], the swarm behavior over time has been described with the zig-zag persistent
homology of sublevel sets of a density estimator. In [Khasawneh and Munch, 2016], the authors count rev-
olutions of a machine in an industrial process by counting the number of ‘significant’ changes in a binary
signal, where the significance of a change is defined in terms of persistence of homology generators.

Building on the invariance of homology to reparametrisation of the domain, we propose to use the persistent
homology of sublevel sets of the signal to describe this last. This descriptor summarizes the height, order
and number of local extrema. The idea of quantifying the shape of the curve is not new: for example, the
landmark method extracts visual features like local extrema or inflection points [Perng et al., 2000].

In many statistical applications, it is convenient to map a persistence diagram to a vector
or a function, via a functional representation [Chazal and Michel, 2021]. Numerous function-
als [Carrière et al., 2020, Adams et al., 2017] are ‘linear in the diagram’ and their properties have been well-
studied [Divol and Polonik, 2019]. In our case, it seems natural to renormalize the functionals by the total
persistence of the diagram, a proxy for the number of periods. Building on [Divol and Polonik, 2019] and
a recent characterization of the stability of total persistence for Hölder regular processes [Perez, 2022], we
study the robustness of the signatures we propose.

Guarantees on the estimation of functionals of persistence diagrams, in both asymptotic and non-asymptotic
cases, have been provided in [Chazal et al., 2014, Berry et al., 2018], under the assumption that the per-
sistence diagrams (or functionals thereof) in the collection are all independent. In a setting motivated
by magnetic odometry problem [Bonis et al., 2022], we have a single time series of which we would
like to estimate the signature. The natural procedure is to construct a sample by taking contiguous vec-
tors from that observation, what leads to a collection of shorter and dependent observations. We study
two reparametrization models inspired by [Marron et al., 2015] and, building on the theory of strong mix-
ing [Doukhan, 1995, Dedecker, 2007], we show that the dependence between observations decreases. When
the β-mixing coefficients decrease sufficiently fast, the estimators of the functionals also converge in the
dependent setting [Radulović, 1996, Bühlmann, 1995, Kosorok, 2008], not unlike in the independent set-
ting [Chazal et al., 2014]. So far, estimation of topological signatures from dependent data has been less
explored: [Krebs, 2021] gives a concentration inequality for persistent Betti numbers from dependent data.
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Figure 1: On the top row, from left to right, a periodic function, a projection of the sliding window embed-
ding on the first two principal components, and the persistence diagram in dimension 1 of the Vietoris-Rips
complex of the embedding. We can see that the embedding looks circular, what is reflected in the persistence
diagram: there is one, persistent H1 generator. The bottom row shows the analogue, for a reparametrisation
of the signal in the top row. Due to the homeomorphism, the (projection of the) embedding looks different
and this is also reflected in the diagram, which is not that of a closed curve.

Contributions and outline

In this article, we present a topology-inspired signature of reparametrized periodic functions of the form (1),
which is robust to reparametrisation and noise, and which can be estimated from data. In Section 2, we
concisely introduce the signature and show its key invariance properties. In Section 3, we introduce models
for reparametrisations and we discuss the guarantees of estimation of the signatures defined for time-series.
Section 4 contains background on the persistent homology and states stability properties essential for the
previous sections. Our main contributions are the the following:

1. We demonstrate that the signature converges as the number of observed periods grows, in case there
is no additive noise (Theorem 2.3). In the process, we provide a characterization of the persistence
diagram of sublevel sets of several periods of a function.

2. We show that the signature is invariant under changes of the distribution of γ for fixed endpoints
γ(0) and γ(T ) (Theorem 2.5). Recent results on regularity of total persistence allow us to obtain
quantitative stability bounds.

3. We provide a technique to estimate the signature from a single time–series observation (Theo-
rem 3.2). We show that two reparametrisation models that we consider exhibit exponentially-
decaying mixing properties.

Finally, Section 5 provides a simple numerical illustration of the signature and its invariance properties.

2 Signatures of reparametrized periodic functions and their properties

The signatures we propose are functions constructed using the local minima and maxima of the signal. We
define those signatures with persistent homology of the sublevel sets of the signal and its functional repre-
sentations. In Section 2.1, we state the properties of persistence diagrams and the corresponding functionals,
with the aim of justifying the quantities of interest. For the sake of readability, we defer the details of the
construction of the persistence diagrams, the functionals, their properties and proofs of some propositions to
Sections 4 and 4.3 respectively and we include an illustration of these concepts in Figure 2.
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Figure 2: An example of a noisy observation of a reparametrised periodic function (left), its persistence
diagram (center) and a functional summary (right): the persistence silhouette.

2.1 Normalized functionals of truncated persistence

The persistence diagram D(S) of S ∈ C([0, T ],R) is a multiset of points in R2, where the coordinates
are the values of local extrema of S. Each point can be interpreted as a local minimum paired with a local
maximum. That pairing is constructed by tracking the evolution of connected components in sublevel sets
S−1(]−∞, t]) as t changes. It is done in a consistent manner, so that if S is reparametrised, the persistence
diagram remains unchanged, see Lemma 2.1. In addition, if S is periodic, the multiplicity of any point in the
diagram reflects the number of periods in S, except for some extra points due to incomplete periods close to
the lower- and upper- endpoints of the domain [0, T ], see Lemma 2.2. Therefore, for a periodic function ϕ,
the only component of the parametrisation that the persistence diagram depends on is the starting point, γ(0),
and the number of observed periods, γ(T )− γ(0).

Lemma 2.1 (Invariance to reparametrisation). Consider a continuous function f : R → R (not necessarily
periodic) and let γ1, γ2 : [0, T ] → R be two increasing and continuous functions, such that γ1(0) = γ2(0)

and γ1(T ) = γ2(T ). Then,
D(f ◦ γ1) = D(f ◦ γ2).

Proof. For any t ∈ R, the homeomorphism g := (γ−1
1 ◦γ2) : [0, T ] → [0, T ] maps the t-sublevel set of f ◦γ2

to f ◦ γ1. Indeed,

(f ◦ γ1)−1(]−∞, t]) = {y ∈ [0, T ] | (f ◦ γ1)(y) ≤ t}
= {y = g(x) | (f ◦ γ1)(g(x)) = (f ◦ γ2)(y) ≤ t}
= g({y ∈ [0, T ] | (f ◦ γ2)(y) ≤ t}).

Therefore, g induces an isomorphism between the two corresponding persistence modules. So the corre-
sponding persistence diagrams are the same (as well as any invariants there–of).

Consider ϕ : R → R a 1-periodic and continuous function. We denote by ϕ|A the restriction of ϕ to A ⊂ R
and by D ⊔D′ the union of two multisets.

Lemma 2.2 (Additivity of diagrams). For any R > 1, there exist persistence diagrams D1 and D′, such that

D(ϕ|[0,R]) =

⌊R−1⌋⊔
k=1

D1

 ⊔D′, (2)

with persp(D
′) ≤ 2persp(D1), where persp(D) =

(∑
(y1,y2)∈D(y2 − y1)

p
)1/p

. In addition, there exists

c ∈ [0, 1] such that D1 = D(ϕ|[c,c+1]).

In the proof, we first choose c ∈ [0, 1] to be a global maximum of ϕ and define “the period” to be ϕ|[c,c+1].
This allows us to decompose the diagram as a sum of diagrams of individual periods. Thanks to the periodicity
of ϕ, these diagrams are the same and we obtain (2). The proof requires notions introduced in 2.2 and the
theory of rectangular measures introduced in [Chazal et al., 2016].
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Proof. Let M := maxϕ, c := inf{x ∈ [0, 1] | ϕ(x) = M} and N = max{n ∈ N | c + n ≤ R}. Consider
the persistence modules defined by (17) for ϕ|[0,c], ϕ|[c,c+N ] and ϕ|[c+N,R]. For t < M , ϕ|[0,c]

−1
(]−∞, t])∩

ϕ|[c,c+N ]
−1

(]−∞, t]) ⊂ {c} and ϕ(c) = M , so that intersection is empty and the same holds for ϕ|[c+N,R]

and ϕ|[c,c+N ]. Therefore,

H0(ϕ|[0,R]
−1

(]−∞, t])) ≃H0(ϕ|[0,c]
−1

(]−∞, t]))⊕H0(ϕ|[c,c+N ]
−1

(]−∞, t]))

⊕H0(ϕ|[c+N,R]
−1

(]−∞, t])).
(3)

Since the isomorphism is induced by inclusions, it is an isomorphism between the persistence modules re-
stricted to t ∈]−∞,M [. By definition (17), the persistence modules are all 0 for t ≥ M , so both sides of (3)
are trivially isomorphic for t ≥ M . Therefore, the persistence modules (on t ∈ R) are isomorphic.

By repeating the same argument as above, we can show that the persistence module of ϕ|[c,c+N ] is the direct
sum of the persistence modules of (ϕ|[c+n,c+n+1])

N−1
n=0 . Then, for any n = 0, . . . , N−1, gn : x 7→ x+n is an

isomorphism between the sub level set of ϕ|[c,c+1] and ϕ|[c+n,c+n+1], so the persistence module of ϕ|[c,c+N ]

is isomorphic to the direct sum of N copies of ϕ|[c,c+1]. Thus, (3) becomes

H0(ϕ|[0,R]
−1

(]−∞, t])) ≃
(

N−1⊕
n=0

H0(ϕ|[c,c+1]
−1

(]−∞, t]))

)
⊕H0(ϕ|[0,c]

−1
(]−∞, t]))

⊕H0(ϕ|[c+N,R]
−1

(]−∞, t])).

The second crucial observation is that the diagram of a direct sum of two persistence modules is the union
of diagrams. The case of interval decomposable modules is treated in [Chazal et al., 2016, Proposition 2.16].
The persistence modules that we consider are q-tame [Chazal et al., 2016, Theorem 3.33], so they do not
necessarily admit an interval decomposition. Recall that the persistence diagram is computed via rectangle
measures [Chazal et al., 2016, Section 3], defined with ranks of inclusion morphisms. For two persistence
modules V = (Vt)t∈R, W = (Wt)t∈R and any s, t ∈ R, we have that rank((V ⊕W )s → (V ⊕W )t) =

rank(Vs → Vt) + rank(Ws → Wt). This shows that the two rectangle measures (µV + µW ) and µV⊕W are
equal and so are their persistence diagrams. If we denote by D1 := D(ϕ|[c+n,c+n+1]) and by D′ the diagram
of the sum of the rectangle measures of the ϕ|[0,c] and ϕ|[c+N,R], then (2) follows.

We now need to bound the p-persistence of the remainder. Denote by U and V the persistence modules
associated to ϕ|[0,c] and ϕ|[0,c] respectively. For any t ∈ R, ϕ|[0,c]

−1
(] − ∞, t]) ⊂ ϕ|[c−1,c]

−1
(] − ∞, t])

induces a map Ut → Vt. We claim that it is injective and that it is in fact a morphism between persistence
modules. Hence, rank(Us → Ut) ≤ rank(Vs → Vt) for any s < t ∈ R and both are finite. Hence,
to every point (b, d) ∈ D(ϕ|[0,c]) with b < d, we can assign a point (b′, d′) ∈ D(ϕ|[−1+c,c]) in such a
way that this assignment is injective (considered with multiplicity) and such that b′ ≤ b < d ≤ d′. So,
perspp,ϵ(D(ϕ|[0,c])) ≤ perspp,ϵ(D(ϕ|[−1+c,c])). A similar argument shows that perspp,ϵ(D(ϕ|[c+N,R])) ≤
perspp,ϵ(D(ϕ|[c+N,c+N+1])).

As presented above, a persistence diagram is a multi-set of points in R2. To gain algebraic and statistical
properties, it is often convenient to map the diagram to a functional representation. In such a representation,
we typically associate to each point (y1, y2) from the persistence diagram a function, ky1,y2

: T → R,
for some metric space T. A functional representation is then a weighted sum of such functions, where
the weights are commensurate with a measure of importance of each point, for example, the ϵ-truncated
persistence wϵ(y1, y2) = max(y2 − y1 − ϵ, 0) for some ϵ > 0. In this work, we will typically consider
normalized functionals of ϵ-truncated p-persistence, for some p > 1 and for any t ∈ T,

ρk,ϵ,p(S)(t) =

∑
(y1,y2)∈D(S) wϵ(y1, y2)

pky1,y2
(t)∑

(y1,y2)∈D(S) wϵ(y1, y2)p
, (4)

if the denominator is positive and ρk,ϵ,p(S)(t) = 0 otherwise. We omit the dependence of ρ on k, ϵ, p, writing
ρ = ρk,ϵ,p. Example functionals are shown in Figure 4, for the kernels introduced in Examples 4.9 and 4.10.
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We will see in Sections 2.2 and 2.3 that the normalization of the functional makes it invariant to the number
of periods of ϕ in S to a certain extent. The details of the construction of the persistence diagram, examples

of ρ and a study of the properties of the truncated persistence persp,ϵ(D) :=
(∑

(y1,y2)∈D wϵ(y1, y2)
p
)1/p

are included in Section 4.

We can now define what we will call the topological signature. When γ ∼ µ and W ∼ ν are independent
random variables, S is also random. For each path and t ∈ T, we can calculate ρ(S)(t) ∈ R. We define the
signature of S point-wise as

F (S)(t) := E[ρ(S)(t)], (5)

where the expectation is taken with respect to the law of the process, induced by the product measure of µ
and ν. It is clear that ρ(S)(t) is a real-valued random variable, but we will show in Proposition A.1 that we
can also consider ρ(S) ∈ C(T,R) as a random variable.

2.2 Properties of functionals of a periodic function

We examine the consistency of the signature (5) and its invariance with respect to reparametrisations for
noiseless obseravtions. That is, we consider the case W = 0, so that (1) becomes S(t) = ϕ(γ(t)). Recall
that γ : [0, T ] → R is a continuous and increasing function, whose distribution we denote by µ.

For consistency, normalizing the functional by the total truncated p-persistence is akin to normalizing by
the number of periods. As γ(T ) − γ(0) increases, the contribution of the boundary effects becomes less
significant and we gain invariance to the number of observed periods. Theorem 2.3 is in fact a corollary of
Lemma 2.2. It also justifies calling the limit the “signature of a periodic function”.

Theorem 2.3 (Consistency). Assume that k satisfies (21) and (22). Then, as R → ∞,

ρ(D(ϕ|[0,R]))
∥·∥∞−−−→ ρ(D(ϕ|[c,c+1])).

Proof. Let D1 = D(ϕ|[c,c+1]), D
′ be given by Lemma 2.2 and let DR = D(ϕ|[0,R]). In addition, we will

write ρ(D) = ρk,ϵ,p(D) =
∑

x∈D wϵ(x)
pkx(t) for the linear (non-normalized) version of the functional ρ

from (18). Then, for any t ∈ T,∣∣∣ρ((R−1)D1)+ρ(D′)
perspp,ϵ(DR)

− ρ(D1)
perspp,ϵ(D1)

∣∣∣ ≤ ∣∣∣ ρ(D′)
perspp,ϵ(DR)

∣∣∣+ ∣∣∣ρ((R−1)D1)
perspp,ϵ(DR)

− ρ(D1)
perspp,ϵ(D1)

∣∣∣
≤
∣∣∣ ρ(D′)
perspp,ϵ(DR)

∣∣∣+ ∣∣∣perspp,ϵ(D1)ρ((R−1)D1)−(perspp,ϵ((R−1)D1)+perspp,ϵ(D
′))ρ(D1)

perspp,ϵ(DR)perspp,ϵ(D1)

∣∣∣
≤ |ρ(D′)|

perspp,ϵ(DR)
+

|perspp,ϵ(D
′)ρ(D1)|

perspp,ϵ(DR)perspp,ϵ(D1)
,

where we have used that for any N ∈ N,

perspp,ϵ(ND1)ρ(D1) = Nperspp,ϵ(D1)ρ(D1) = perspp,ϵ(D1)ρ(ND1).

Now, we observe that perspp,ϵ(DR) = perspp,ϵ((R − 1)D1) + perspp,ϵ(D
′) ≥ (R − 1)perspp,ϵ(D1) and

perspp,ϵ(D
′) ≤ 2perspp,ϵ(D1) to obtain that

∥ρ(D(ϕ|[0,R]))− ρ(D(ϕ|[c,c+1]))∥∞ ≤ |ρ(D′)|
perspp,ϵ(DR)

+
|perspp,ϵ(D

′)ρ(D1)|
perspp,ϵ(DR)perspp,ϵ(D1)

≤ |ρ(D′)|+2|ρ(D1)|
(R−1)perspp,ϵ(D1)

(6)

Using the Minkowski inequality,

|ρt(D′)| = |
∑
x∈D′

wϵ(x)
pkx(t)| ≤

∑
x∈D′

|wϵ(x)
p|max

x∈D′
|kx(t)| ≤ perspp,ϵ(D

′) max
x∈D′

∥kx∥∞.

Because k is Lk-Lipschitz by (21), for any x ∈ D′, we have ∥kx∥ ≤ Lk∥x − π(x)∥ + ∥kπ(x)∥, where
π(b, d) = ( b+d

2 , b+d
2 ). Using (22) on one hand, and the fact that the distance of any point in the diagram to

6
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∆ is bounded by Aϕ, we obtain ∥kx∥ ≤ LkAϕ

2 + C. A similar bound holds for ρt(D1). Going back to (6),
we have that

∥ρ(D(ϕ|[0,R]))− ρ(D(ϕ|[c,c+1]))∥∞ ≤ (2|perspp,ϵ(D1)|+ |perspp,ϵ(D1)|)maxx∈D′ ∥kx∥∞
(R− 1)perspp,ϵ(D1)

≤ 4(C + LkAϕ)

R− 1
,

what converges uniformly to 0 as R → ∞.

Without noise, Lemma 2.1 implies that the functional depends only on the number of periods. As a conse-
quence, the signature F is also robust to the distribution of reparametrisations, but only to a certain extent.
Consider γ1 ∼ µ1 and γ2 ∼ µ2 such that the distributions of endpoints (γ1(0), γ1(T )) and (γ2(0), γ2(T ))

are the same. When µ1 and µ2 are such that we can condition on the endpoints, then

F (ϕ ◦ γ1) = F (ϕ ◦ γ2). (7)

In light of Lemma 2.1, (7) is not surprising, but requires a strong disintegration condition. That condition
holds when µ1, µ2 are measures on a closed subspace of (C([0, T ]), ∥ · ∥∞). In particular, for any vmin > 0,
an example is given by

Γvmin = {γ ∈ C([0, T ],R) | γ(s)− γ(t) ≥ vmin(s− t), for all s ≥ t}. (8)

We give more details in Appendix B, notably, we restate (7) in more precise terms in Proposition B.1.

We stress that relaxing the assumption on the equality of distributions is not straightforward. In short, the
main problem lies in obtaining a fine control on the persistence diagram when ‘cutting’ a domain, [0, T2], into
[0, T1] and [T1, T2], for any 0 < T1, T2. Specifically, we need to consider the difference between D(ϕ|[0,T2]

)

and D(ϕ|[0,T1]
) ∪ D(ϕ|[T1,T2]

). When T1 is a global maximum of ϕ, we can reason as in the proof of
Lemma 2.2. However, this is far from the general situation, in which case the cut at T1 might induce some
spurious points in the diagram.

2.3 Properties of functionals of noisy periodic functions

Consider now the noisy observations as in (1), we loose the invariance with respect to γ as given in Lem-
mata 2.1 and 2.2. We explore two strategies. For fixed endpoints, we control the differences produced by the
noise (Theorem 2.5). Otherwise, more generally, we can compare the functionals of noisy observations with
the signature of the periodic function (Proposition 2.7). Let us detail the assumptions on W and γ.

We impose three conditions on the noise W , whose distribution we will denote by ν. First, we assume that
∥W∥∞ is almost–surely bounded by a constant smaller than the amplitude of the signal: there is q > 0 such
that ∥W∥∞ ≤ (Aϕ − ϵ − q)/2, where Aϕ = maxϕ−minϕ. Second, we assume a path-wise regularity
condition, which states that for some 0 < r1 < r2,

there exists K = Kr2,r1 , such that E[|Wt −Ws|r2 ] ≤ Kr2,r1 |t− s|1+r1 , for all s, t ∈ [0, T ]. (9)

Proposition 1.11 in [Azäis and Wschebor, 2009] (which we restate in J.1) shows that (9) implies that W has a
version with α-Hölder continuous sample paths, for any 0 < α < r1/r2. It is therefore a reasonable condition
and Kp,r can be explicitly calculated for homogeneous processes with exponentially-decreasing covariance
functions. Finally, we assume that W is independent of γ. It implies that the law of S is the image measure
of the product of µ and ν by the map (x, y) 7→ ϕ(x) + y.

Remark 2.4. Difficulties in treating W come both from controlling its amplitude and the regularity. The
tools that we use are sensitive to many, small fluctuations. Condition (9) allows us to control the regularity,
without imposing a uniform Hölder character on all paths.
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For Theorem 2.5, we assume that γ has a lower-bounded modulus of variation and fixed endpoints. Specifi-
cally, let 0 < T,R and consider

ΓT,R,vmin
:= {γ ∈ C([0, T ], [0, R]) | γ(0) = 0, γ(T ) = R, 0 ≤ vmin(t− s) ≤ γ(t)− γ(s),∀s ≤ t}.

The set ΓT,R,vmin is convex. It is also included in C([0, T ],R), so it can be naturally endowed with
the sup-norm, for which it is a closed, complete and separable space. In particular, it is a Radon
space, so that all measures on (ΓT,R,vmin

,B(ΓT,R,vmin
)) are inner–regular and locally-finite. Hence, we

can equip the space of probability measures on (ΓT,R,vmin
,B(ΓT,R,vmin

)) with the Wasserstein distance
W1,∥·∥∞ [Panaretos and Zemel, 2020]. Another reason for working with ΓT,R,vmin

is that γ−1 all have the
same domain, what allows us to take full advantage of the invariance properties of homology. Finally, the
lower–bound on the modulus provides a relation between ∥γ−1

1 − γ−1
2 ∥∞ and ∥γ1 − γ2∥∞.

Theorem 2.5 (Stability). Let µ1, µ2 be two probability measures on ΓT,R,vmin and let γk ∼ µk, for k = 1, 2.
If p ≥ 1 + max(r2, r2/(r1 − 1)), ρ = ρϵ,p,k,

∥F (ϕ ◦ γ1 +W )− F (ϕ ◦ γ2 +W )∥∞ ≤ C̃(Kr2,r1)

vαmin

W1,∥·∥∞(µ1, µ2)
α,

where C̃(x) = O(x1/r2(1 + x1/(r1−1))) depends on ϕ, ϵ, p, q and k.

The proof of Theorem 2.5 is differed to Appendix C.

Two cases show that the control in Theorem 2.5 is satisfying. First, suppose that µk = δγk
for k = 1, 2,

for some fixed γ1, γ2 ∈ ΓT,R,vmin
. Then, we obtain that the silhouette is Hölder, with respect to the distance

∥γ1−γ2∥∞. It is expected that we do not have complete invariance: for a fixed path W , the reparametrisation
γ can influence how the points in the persistence diagram are displaced. Consider now the case of vanishing
noise. If Kr2,r1 decreases to zero, then so does the Hölder constant ΛW and we have indeed that the right-
hand side becomes zero.

Note that controlling ∥W∥∞ is not sufficient for the stability. When AW < ϵ, the constant factor in C̃(x)

is CΛW
= Lk(1 +

8p2Aϕ(Aϕ−ϵ)persp−2
p−2,ϵ(ϕ)

(R−2)qp ). We can take the truncation parameter ϵ small, in which case
q ≈ (Aϕ−ϵ) and so, for a function with a single maximum and minimum, we have CΛW

≈ Lk(1+8p2) > 0,
which is not zero. Even though the amplitude of the noise is smaller than the cut-off ϵ, it still has an influence
on the signature. Therefore, it is important that as the amplitude decreases, the noise does not become
increasingly irregular: it is the case of aW , with a → 0+. We require the almost-sure bound on ∥W∥∞ for a
different reason: it gives us the lower–bound on perspp,ϵ(ϕ ◦ γ +W ), which appears in the denominator of ρ.

For processes of decreasing amplitude but increasingly irregular, it is more advantageous to bound ∥Wγ−1
1

−
Wγ−1

2
∥∞ ≤ 2∥W∥∞ in the proof. In such a scenario however, we ignore the reparametrisations so the

distance ∥γ−1
1 − γ−1

2 ∥∞ disappears from the bound.

Remark 2.6. When both endpoints are fixed and common to all reparametrisations, there is no reason to
normalize by the total persistence. The stability comes from the continuity of the functional, not the renor-
malisation. Proposition 4.12 states that linear functionals of the form

∑
x∈D wϵ(x)

pkx are also continuous
for Hölder functions, so a statement analogue to Theorem 2.5 also holds for such functionals.

We now discuss relaxing some assumptions in Theorem 2.5. First, note that the lower–bound on the modulus
of continuity (vmin > 0) allows us to upper–bound ∥γ−1

1 − γ−1
2 ∥∞ by 1

vmin
∥γ1 − γ2∥∞. But, if we remove

this assumption (vmin = 0), it is not clear whether ΓT,R,0 is a complete space for ∥γ−1
1 − γ−1

2 ∥∞.

Second, we could also allow R to vary. A simple example is to let γk = Rγ̃k, where R is a random variable
on a compact set of ]0,∞[ and γ̃k ∼ µ̃k is a random element of ΓT,1,vmin

, with γ̃ independent of R. In that
case, we do obtain the distance W1(µ̃1, µ̃2) in the bound, but it is not clear that it lower–bounds W1(µ1, µ2).
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The final extension is robustness in the case where the distributions of γk(T ) − γk(0) are not the same for
k = 1, 2. However, we are short of understanding it already in the noiseless case, as stated in Section 2.2 and
Appendix B.

Below, we include Proposition 2.7, a much weaker and deterministic statement valid under milder hypotheses.

Proposition 2.7. Let (γk : [0, T ] → [0, Rk])k=1,2 be two fixed reparametrisations, for Rk > 2. Consider
perturbations W1,W2 ∈ Cα

Λ([0, T ],R), with ∥Wk∥∞ < Aϕ/2. Then,

∥ρ(ϕ ◦ γ1 +W1)− ρ(ϕ ◦ γ2 +W2)∥ ≤ Lk

(
4Aϕ

min(R1,R2)−2 + P (max(∥W1∥∞, ∥W2∥∞))
)
,

where the expression of P (x) = O(x) is given explicitly in Lemma D.1.

Note that the right–hand side is strictly positive, even in the noiseless case W = 0 and µ1 = µ2. It is not
surprising, because the bounds we use are very crude: we remove the noise and we compare the respective
signatures to the limit object ρ(ϕ). The Hölder regularity assumption on the noise is a consequence of the
fact that the statement is deterministic and pathwise: a similar proof could be carried out for signatures (in
expectation), using regularity assumption (9).

3 Statistical inference of signatures from time–series

We have defined the signature and studied its properties for continuous observations. In practical applications,
we do not have access to S, but to observations in the form of a time–series (Sn)

N
n=1. In our case, this time

series is composed of samples from a continuous process. In some situations, it is reasonable to assume that
we have access to a collection of independent time–series from the same model, what allows to conveniently
estimate F . We consider the case in which we observe a single time series. The purpose of this section is to
show asymptotic statistical guarantees for signatures of windows of a discretized signal.

3.1 Time series model

Similarly to the continuous model (1), the observations are a reparametrisation of a 1-periodic function ϕ

Sn = ϕ(γn) +Wn ∈ R, n = 1, . . . , N, (10)

where (γn)
N
n=1 is a strictly increasing time series and (Wn)n∈N is a stationary noise time series satisfying

E[Wn] = 0. It is also convenient and straightforward to consider the limit of a time series of infinite length,
(Sn)n∈N.

We will present a class of reparametrisation processes, defined as discrete integrals of another, positive time
series Vn. Specifically, let

γn+1 = γn + hVn = γ0 + h

n∑
k=0

Vk, (11)

where (Vn)
N
n=0 is a sequence of random variables in I := [vmin, vmax], independent of γ0 and 0 < h is a

time step. This model is inspired by dynamics, where the sequence (γn)n∈N could model the displacement
of a body over time and Vn should be thought of as the instantaneous speed, in which case h = T

N . We will
consider two models for (Vn)n∈N. In the first one, consecutive velocities are independent. Since we do not
expect a moving body to change speed abruptly, we also consider Vn as a Markov process on I .

Model 1: (Vn)n∈N i.i.d We assume that Vn are independent and follow the same, unknown distribution on
R∗

+, which satisfies the following property: there exists 0 < a, b, c such that, for all A ∈ B(]a, b[) measurable,
P (Vk ∈ A) ≥ cµ(A), where µ is the Lebesgue measure.
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Figure 3: On the left, the truncated Gaussian Kernel centered at different point in I , with η = 2. In the
center, several reparametrisation paths, integrated from the Markov chain realisations on the right. Those
were generated with η = 1.1.

Model 2: (Vn)n∈N a Markov Chain Let (Vn)n be a Markov Chain with transition kernel P . Specifically,

1. v 7→ P (v,A) is B(I)-measurable, for all A ∈ B(I),
2. A 7→ P (v,A) is a probability measure on (I,B(I)).

We assume that P (x, ·) is a probability measure that has a density fx with respect to µ and that

1. the density is lower–bounded in a small neighborhood: there exists η, µ0 > 0, such that

fv|[v−η,v+η]∩I ≥ µ0, (12)

2. v 7→ fv(x) is continuous for any x ∈ I .

Note that if fx = f, for all x ∈ I , we are in a particular case of the i.i.d setting, where P has density f,
a = vmin, b = vmax and c = µ0.

Example 3.1. Set V0 ∼ U(I) and let 0 < η < vmax−vmin

4 . An example of a kernel satisfying the above
assumption is a truncated Gaussian kernel. The truncation is such that the support is I and σ = η. In
Figure 3, we show the kernel and several sample trajectories from this model.

3.2 Estimation of signatures

Consider the situation where we observe a single time–series (Sn)
N
n=1, Sn ∈ R. To define the functionals

in this setting, we can see (Sn)
N
n=1 as a piece–wise linear function. This allows us to calculate ρ from

the resulting persistence diagram in the same way, ρt((Sn)n) = ρ(D((Sn)
N
n=1)) =

∑
x∈D wϵ(x)

pkx(t)∑
x∈D wϵ(x)p

. We
provide more details in Section 4.1.

With a single observation, we cannot expect to reliably estimate ρ(S). Persistent homology is a global de-
scriptor, which can link two events, even if they happen far in time. Even though the descriptor ρ effectively
represents the average homological feature, it is not immediately clear that it benefits from the same prop-
erties as the empirical mean. Understanding this poses the same challenges as those explained at the end of
Section 2.2 and Appendix B.

Instead, we will fix a window length M ∈ N and we will use as a signature FM (S) := F (X) = E[ρ(X)],
where X = (S1, . . . SM ). It is a quantity which we can estimate with an empirical mean, whose distribution
we can also characterize by bootstrap techniques. This choice is justified by our considerations on the contin-
uous model, where in the noiseless case, Theorem 2.3 shows that FM (S) converges to F (S), as M → ∞. In
the discrete (time–series) setting, the invariance to reparametrisation (Lemma 2.1) no longer holds: the dis-
cretisation means that the extrema of ϕ are not necessarily attained by the time series and attenuation occurs
at high sampling frequencies.

From (Sn)
N
n=1, we generate a sample X1, . . . , XN−M+1,

Xn = (Sn, . . . , Sn+M−1). (13)
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The empirical counter-part of FM (S) is the empirical mean F̂M (S) = 1
N−M+1

∑N−M+1
n=1 ρ(Xn), whose

distribution we will estimate by Moving Block Bootstrap (MBB) [Bühlmann, 2002]. To be specific, let
L = L(N −M +1) ∈ N be the block length. The MBB consists of sampling B blocks, each composed of L
consecutive vectors X: that is, (Xn, . . . , Xn+L−1), for n ∈ {1, . . . N −M + 1}. The MBB sample is then

X∗
1 , . . . , X

∗
N−M+1 = Xn1

, . . . , Xn1+L, Xn2
, . . . , Xn2+L, . . . , XnB

, . . . XnB+L,

where n1, . . . nB ∼ U(1, . . . , N − M + 1) are independent. We denote by
F ∗
M (S) = 1

N−M+1

∑N−M+1
n=1 ρ(X∗

n).

Note that the bootstrap sample contains overlapping samples, at two different levels. Not only are the win-
dows X1, . . . , XN overlapping, but also the different blocks can overlap.

The purpose of this section is to prove that the empirical mean F̂M (S) converges to FM (S) and that we
can approximate the distribution of F̂M by that of F ∗

M , as N → ∞. The core idea is to control how the
dependence between X1 and X1+k changes as k increases. For this, we recall the definition of β-mixing
coefficients [Dedecker, 2007, Section 1.2].

For a stationary sequence (Xn)n∈N, denote by σa,b the σ-algebra generated by Xa, . . . Xb. The k-th β-mixing
coefficient is

βX(k) = 1
2 sup
A⊂σ−∞,0,
B⊂σk,∞

∑
A∈A,B∈B

|P (A ∩B)− P (A)P (B)|,

where A, B are countable partitions of the sample space. We say that (Xn)n∈N is absolutely regular (or
β-mixing) if βX(k) → 0 as k → ∞. A process for which β(k) ≤ ak, for some 0 < a < 1 is called
exponentially β-mixing.

Theorem 3.2. Consider (γn)Nn=1 as in (11) with (Vn)
N
n=1 as in Model 1 or 2. Assume that W is exponentially

β-mixing. Then, √
N −M + 1(F̂M (t)− FM (t)) → Gd (14)

where Gd is a zero–mean Gaussian process with covariance

(s, t) 7→ lim
k→∞

∞∑
n=1

cov(ρ(Xk)(s), ρ(Xn)(t)). (15)

Then, if L(N) → ∞ and L(N) = O(N1/2−ϵ) for some ϵ > 0 as N → ∞, then
√
N −M + 1(F̂ ∗ − F̂ ) →∗ Gd(t) in probability, (16)

This result is a functional central limit theorem, similar to many in the literature of topological data analysis,
see for example ([Chazal et al., 2014], [Berry et al., 2018, Proposition 2 and 3]), except that the samples are
not independent. For i.i.d data, it is sufficient to control the complexity of the functional family. Since this
aspect has been covered extensively, we only recall Proposition 4.14 for completeness. The novel aspect of
Theorem 3.2 is the consideration of dependence and it is what we treat with more care. The rest of this section
is devoted to a proof of Theorem 3.2, with details being differed to appendices.

Sketch of proof of Theorem 3.2. Consider (γn)n∈N as in (11) with Model 1 or 2. Notice that this series is not
stationary, because P (γn < γn+1) = 1. However, the crucial observation is that composition (ϕ(γn))n∈N is
stationary. In fact, it can be written as ϕ(x) = ϕ(frac(x)), through frac(x) = x− ⌊x⌋ the fractional part of a
real number. In Appendix E, we show that (frac(γn))n∈N is exponentially β-mixing (Proposition E.1). While
this is not a surprising result, it is the most technical part of the proof. We show a Doeblin-type condition:
we find a non-trivial measure which lower-bounds the n-step transition measure of (frac(γn), Vn), uniformly
in the initial conditions (frac(γ0), v0). With the assumptions on the kernel in our model, we show that, for
n sufficiently large, this lower–bound can be taken to be a uniform measure on [0, 1] × I with small but
non–zero mass. The fact that the process is β-mixing then follows from general results in dependence theory.
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Next, we analyze how the dependence of (ϕ(γn))n∈N and (Wn)n∈N shapes the dependence of (Sn)n∈N and
that between the windows X1, . . . , XN−M+1. Specifically, Appendix F contains a proof of the following
inequality

βX(k) ≤ βS(k − (M + 1)) ≤ βfrac(γ)(k − (M + 1)) + βW (k − (M + 1)), for k ≥ M + 1.

Since (Wn)n∈N is exponentially mixing by assumption, (Xn)n∈N is exponentially-mixing.

The Gaussian approximation (14) is a consequence of Theorem G.1. By the arguments above, the mixing
condition (45) is verified for X for any r > 2. It remains to verify that the bracketing entropy of the functional
family {ρt}t∈T is controlled. This is done in Proposition 4.14.

The approximation of the distribution of the empirical mean by the bootstrap distribution (16) is a conse-
quence of Theorem G.2, for which we only need the aforementioned results.

Remark 3.3. The literature of functional central limit theorems for dependent data is rich in results for
various functional classes and dependence assumptions. We believe it might be possible to use more recent
and stronger results than Theorem G.2. This would allow us to relax the decay of βW from an exponential to
a polynomial one. For instance, [Radulović, 1996, Theorem 1] is written for VC-classes functionals, but the
proof seems to rely on the bracketing entropy bound that the functionals considered in the present work also
satisfy.

3.3 Discussion

Theorem 3.2 motivates the use of ρ as a descriptor of a phase–modulated, periodic signal. A possible applica-
tion of the asymptotic guarantees is the construction of valid confidence intervals. While it is tempting to use
the proposed framework to test for ϕ1 = ϕ2 based on observations Sk = ϕk(γk) +Wk, we do not provide
theoretical guidance on how to calibrate such a test.

We do not present a theory for the choice of the window length M . Increasing M reduces the probability
of not capturing a whole period in a window of length M . In addition, it also reduces the variance of the
signature due to a non–integer number of periods in X (Lemma 2.3 provides a bound in the noiseless case
W = 0), but it reduces the total number of observations.

Modeling ((γn, Vn))n∈N as a Markov Chain of order 1 is restrictive. For applications where γn represents
a position in time, we should rather specify γn as generated by the acceleration (an)n∈N, itself a Markov
chain, possibly with hidden states. We believe that under similar ergodicity assumptions, similar kinds of
arguments should be sufficient to show that such models lead to exponentially-mixing reparametrisation
sequences (frac(γn))n.

4 Persistent homology and its functional representations

We provide basic background information on homology of sublevel sets and total p-persistence in subsec-
tion 4.1. We also introduce the truncated p-persistence and show some continuity properties. Then, we detail
the definition of ρ and ρ.

4.1 Persistent homology for uni-dimensional signals

We briefly describe the construction of the persistence diagram of sub level–sets of a continuous function
h : X → R. For t ∈ R, we consider the t-sublevel set of h, Xt = h−1(]−∞, t]) and we define the module

Vt =

{
H0(Xt), if t < maxh

0, otherwise,
(17)
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where H0 is the 0-dimensional singular homology. For any s ≤ t < maxh, the inclusion Xs → Xt induces
a morphism between the singular homology groups ιts : Vs → Vt. For t ≥ maxh, ιts is the zero morphism.
We call V = ((Vt)t∈R, (ι

t
s)s<t∈R) the persistence module associated to h.

When X is compact and h continuous, the persistence module is q-tame [Chazal et al., 2016, Theorem 3.33]
and we define the persistence diagram D(h) to be the multi–set associated to the rectangular measure µV
by [Chazal et al., 2016, Theorem 3.19]. In our case, X = [0, T ], so the persistence diagram is well-defined
and encodes the values of local minima and maxima, with the following properties

• each point from ∆ := {(r, r) | r ∈ R} is in D(h) with infinite multiplicity,

• for any s < t ∈ R, |{(b, d) | b ≤ s < t ≤ d}| = rank(Vs → Vt) < ∞.

For more details, see [Chazal et al., 2016].

The above describes the persistence diagram of a continuous function h : [0, T ] → R. When the input data is
a time series of length M , we can define a function by discretizing [0, T ], prescribing the values at the nodes
and linearly interpolating in between. Carrying out the construction described above, we obtain a persistence
diagram that has at most M

2 points. In that case, dim(H0(Xr)) ≤ M < ∞ for all r ∈ R, so the persistence
module has an interval decomposition: it is isomorphic to (⊕(b,d)∈LI[b,d[(r)), where I[b,d[ is an interval
module. Representing each interval by its endpoints, its diagram Dh is the multiset {(b, d) | (b, d) ∈ L}.

One distance which is often used to compare diagrams is the bottleneck distance

db(D1, D2) = inf
Γ

sup
x∈D1∪∆

∥x− Γ(x)∥∞,

where Γ : D1 ∪ ∆ → D2 ∪ ∆ is a bijection between the two diagrams, which allows some points to be
matched to the diagonal ∆. With respect to the supremum norm between functions, the persistence diagram
is stable in that distance.

Theorem 4.1 ([Cohen-Steiner et al., 2007, Chazal et al., 2016]). For two functions f, g : X → R with per-
sistence diagrams Df and Dg respectively,

db(Df , Dg) ≤ ∥f − g∥∞.

Remark 4.2. The persistence module that we define in (17) is slightly different to those usually considered
in the literature. For X = [0, T ] and t ≥ maxh, H0(Xt) = H0([0, T ]), which is not trivial. Using the usual
definition (H0(Xt))t∈R, we would obtain exactly one essential point in the persistence diagram. By modifying
the module and setting Vt ≡ 0 for t ≥ maxh, we make sure that there are no essential components. While it
changes the decorated persistence diagrams, for the usual (undecorated) diagram, it amounts to setting the
death value for the essential component to maxh. The module is still locally–finite, stable in the bottleneck
distance. The choice of (17) is motivated by the proof Lemma 2.2.

4.2 Total truncated p-persistence

The total persistence of a persistence diagram quantifies the oscillations of the filtering function. It is similar
to total variation for functions on the interval [Plonka and Zheng, 2016]. The persistence of (b, d) ∈ R2 is
w(b, d) := d − b. For p ∈ N+, the total p-persistence of a persistence diagram D is the sum of p-powers of

the lifetimes of points, persp(D) =
(∑

(x,y)∈D(d− b)p
)1/p

.

In the case of sublevel set persistence, points with small persistence might be attributed to noise and quantify
the regularity of the function, while the more persistent ones capture the biggest oscillations of ϕ. The
functionals we propose in Section 4.3 use persistence and total persistence to give different weights to certain
features, reflecting the intuition given above. In order to study the stability of the signatures with respect to
the generating process, we need some lower– and upper-bounds, as well as stability of total persistence with
respect to the input function.
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Continuous functions on compact domains are bounded and attain their extremal values, but, similarly to
total variation, it is not enough to bound their total persistence because of possible small oscillations. In
fact, the total p-persistence of α-Hölder functions is finite for p > 1/α, but it is not continuous for functions
with regularity strictly less than Lipschitz [Perez, 2022]. As a remedy, [Perez, 2022] suggest to truncate the
persistence of D ∩∆ϵ, for some ϵ > 0, where ∆ϵ := {(b, d) ∈ D | d− b ≥ ϵ}. This leads to a bounded total
persistence, but continuity with respect to the sup norm is lost, even on very regular functions.

To guarantee both boundedness and continuity, we introduce the truncated persistence. Let wϵ(b, d) :=

(d− b− ϵ)+, where (a)+ = max(a, 0) denotes the positive part. The ϵ-truncated total p-persistence is

persp,ϵ(D) =

 ∑
(x,y)∈D

wϵ(b, d)
p

1/p

and supp(wϵ) ⊂ ∆ϵ := {(b, d) ∈ R2 | d− b ≥ ϵ}.

We can think of ϵ-truncated persistence as shifting the diagonal by ϵ in the normal direction, 1√
2
(−1, 1),

perspp,ϵ(D) = perspp({(b− ϵ/2, d− ϵ/2) | (b, d) ∈ D}), as illustrated in Figure 4. Proposition 4.3 shows that
truncated persistence is continuous in the bottleneck distance between diagrams. Note that the modulus of
continuity in the proof is not uniform, since it depends on the number of points and the maximal persistence
of a point in the diagram.

Proposition 4.3. The ϵ-truncated p−persistence is continuous with respect to the bottleneck distance.

Proof. Consider a persistence diagram D1. By the second property from the persistence diagrams, we have
M := |D1 ∩∆ϵ/4| < ∞ and d − b ≤ U < ∞, for some U ∈ R. Let D2 be such that dB(D1, D2) < ϵ/4.
Then, |D2 ∩∆ϵ| ≤ |D1 ∩∆ϵ/2| ≤ M and the persistence of a point in D2 is bounded by U + ϵ/2. Trivially,
the truncated persistence of a point is 2-Lipschitz,

|wϵ(b, d)− wϵ(b
′, d′)| ≤ (d− b− ϵ)+ − (b′ − d′ − ϵ)+ ≤ |d− b− (d′ − b′)| ≤ 2∥(b, d)− (b′, d′)∥∞.

Then, we use the technique from the proof of the [Cohen-Steiner et al., 2010, Total Persistence Stability
Theorem]: writing |xp

2 − xp
1| = |p

∫ x2

x1
tp−1dt| ≤ p|x2 − x1|max(xp−1

1 , xp−1
2 ), we get∣∣∣∣∣ ∑

x∈D1

wϵ(x)
p − wϵ(Γ(x))

p

∣∣∣∣∣ ≤p
∑
D1

|wϵ(x)− wϵ(Γ(x))|(wϵ(x)
p−1 + wϵ(Γ(x))

p−1)

≤4pM(U + ϵ/2)p−1dB(D1, D2).

Let us now go back to functions: by abuse of notation, we will define persp,ϵ(h) := persp,ϵ(Dh). In the
special case of Hölder functions, their ϵ-total truncated p-persistence is bounded.

Proposition 4.4. Let h ∈ Cα
Λ([0, T ],R). For p ≥ 0 such that (p− 1)α > 1,

perspp,ϵ(h) ≤ (Ah − ϵ)p
(
1 + pT

(
2Λ
ϵ

)1/α)
=: Cp,Λ,α,T ,

where Ah := maxh−minh is the amplitude of h.

By compacity of [0, T ], Ah is finite so the upper-bound is not trivial. Using Proposition 4.3, we could
immediately show that total p-persistence is also continuous with respect to the input function. However,
we can show that it is Lipschitz, following the proof of [Perez, 2022, Lemma 3.20]. The argument is based
on a Hölders’ inequality and the uniform upper-bound on persistence from Proposition 4.4. The proof of
Propositions 4.4 and 4.5 are presented in Appendix H.
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Figure 4: On the left, a persistence diagram and ∆ϵ, the diagonal shifted by ϵ = 1. The truncated persistence
wϵ is twice the distance to ∆ϵ. The points in the shaded region have zero truncated persistence. On the right,
two functionals evaluated at the ρ with ks at the top and ρ with kpi,t (σ = 1, r = 1.1), both weighted by the
truncated persistence wϵ with p = 2.

Proposition 4.5 (Continuity of truncated p–persistence). The total truncated persistence
perspp,ϵ : C([0, T ],R) → R is continuous. In addition, perspp,ϵ is Lipschitz over Hölder functions: for
any f, g ∈ Cα

Λ([0, T ]) such that p− 1 > 1
α ,

|perspp,ϵ(f)− perspp,ϵ(g)| ≤ p∥f − g∥∞
(
persp−1

p−1,ϵ(f) + persp−1
p−1,ϵ(g)

)
≤ Cp−1,Λ,α,T ∥f − g∥∞.

Finally, we give a lower–bound for the truncated persistence. Such a result will be necessary to show the
continuity of the class of normalized functionals ρ, which we define in Section 4.3.

Proposition 4.6 (Lower-bound on p−persistence). For continuous functions f,W : [0, T ] → R,

perspp,ϵ(f +W ) ≥ perspp,ϵ+AW
(f).

Proof. Since pers is translation-invariant (persp,ϵ(f + c) = persp,ϵ(f), for any constant c > 0), we can
assume that AW = 2∥W∥∞. Let Γ : D(f) → D(f +W ) be a matching between the diagrams and denote
by c(Γ) the associated cost. Thanks to the bottleneck stability theorem, infΓ c(Γ) ≤ ∥W∥∞. Then, for any
(b, d) ∈ D(f) and (b′, d′) = Γ((b, d)) ∈ D(f +W ), we have d′ − b′ ≥ d − b − 2c(Γ) and, for any δ > 0,
D(f) ∩∆2c(Γ)+δ ⊂ Γ−1(D(f +W ) ∩∆δ). Then,

perspp,ϵ(f +W ) =
∑

(b′,d′)∈D(f+W )

wϵ(b
′, d′)p

≥
∑

(b′,d′)∈D(f+W )∩∆δ

wϵ(b
′, d′)p

≥
∑

(b,d)∈Γ−1(D(f+W )∩∆δ)

wϵ((b, d)− c(Γ)(−1, 1))p

≥
∑

(b,d)∈D(f)∩∆2c(Γ)+δ

wϵ+2c(Γ)(b, d)
p.

15



Topological signatures of periodic-like signals

For δ = ϵ, the last quantity is equal to perspp,ϵ+2c(Γ)(f). By taking the infimum over all matchings Γ, we
obtain perspp,ϵ(f +W ) ≥ perspp,ϵ+2∥W∥∞

(f).

The result is very weak, but it is tight. If we take f such that max f −min f = 2∥f∥∞ and W = −αf , then
f +W = (1− α)f and ∥W∥∞ = α∥f∥∞. Then, perspp,ϵ((1− α)f) = perspp,ϵ+2α(f).

4.3 Linear and normalized functionals

The space of persistence diagrams is not a vector space and is ill-suited for statistical purposes. It is com-
mon to map diagrams to a functional Banach space [Chazal and Michel, 2021]. Many such mapping have
been proposed [Carrière et al., 2020, Bubenik, 2015, Adams et al., 2017, Chung and Lawson, 2022] and their
properties are studied extensively. We will distinguish between linear and normalized functionals. As it is
usually the case with functionals of persistence, we present a general set of assumptions and we show exam-
ples of functionals from the literature (or of their adaptation) which fit within the prescribed framework.

Consider (T, d) a Euclidean space and let H ⊂ {T → R} be a functional Banach space. Finally, let k : R2 →
H be a map, which to a point (b, d) in the plane associates a function k(b, d). For a persistence diagram D

with persp,ϵ(D) > 0, the linear and the normalized functionals are of the form

ρ(D) =
∑
x∈D

wϵ(x)
pk(x), ρ(D) =

ρ(D)∑
x∈D wϵ(x)p

. (18)

Otherwise, ρ(D) = 0 = ρ(D). In this work, we are interested exclusively in diagrams of sublevel sets
of functions defined on a compact interval. Therefore, we will abuse notation and write ρ(f) := ρ(D(f)).
Compared to how the functionals are usually introduced, we use the ϵ-truncated p-persistence instead of p-
persistence. As shown below in Proposition 4.12, this guarantees their continuity but leads to some problems,
notably because truncation can make non–empty diagrams empty.

Proposition 4.7. For any continuous function f : [0, T ] → R with max f − min f > ϵ, the linear and
normalized functionals are well-defined.

Proof. Since f is continuous on a compact domain, it is also uniformly continuous and bounded. Let δ > 0 be
such that |f(t)−f(s)| < ϵ, whenever |s−t| < δ. By the reasoning of the proof of [Cohen-Steiner et al., 2010,
Persistence Cycle Lemma], |ω−1(]ϵ,∞[) ∩D(f)| ≤ T

δ + 1. Let Mf = max(f), mf = min(f). Then,

∥ρ(D(f))∥∞ ≤
∑

(b,d)∈D(f)

wϵ(d− b)p∥k(b, d)∥∞ ≤ (Tδ + 1) · w(Mf −mf ) max
(b,d)∈D(f)∩∆+

ϵ

∥k(b, d)∥∞.

As stated above, the number of points is bounded from above, and so is the total persistence. For the normal-
ized functional,

∥ρ(D)∥ ≤ (Tδ + 1) max
(b,d)∈D(f)∩∆+

ϵ

∥k(b, d)∥∞

≤1︷ ︸︸ ︷
wϵ(Mf−mf )

p∑
x∈D wϵ(x)p

.

We only consider functionals ρ with k which satisfies the following assumptions:

1. k(x) has a uniformly bounded support, for all x ∈ R2

∃K ⊂ T compact, k(x)|T\K ≡ 0, ∀x. (19)

2. k(x) is Lipschitz, uniformly over x ∈ R2

∃L > 0, |k(x)(t)− k(x)(s)| ≤ Ld(s, t), ∀x ∈ R2, ∀s, t ∈ T. (20)
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(L,U)

x
L U

Figure 5: Illustration of the projection in (23). Points from a diagram and their projections are illustrated with
circular and square markers.

3. x 7→ k(x) is Lipschitz

∃Lk > 0, ∥k(x)− k(x′)∥H ≤ Lk∥x− x′∥∞, ∀ x, x′ ∈ R2. (21)

4. k(x) is uniformly-bounded on the diagonal

∃C ≤ 0, ∥k|∆∥∞ ≤ C. (22)

As we will see later, hypotheses (21,22) ensure continuity of the functional, while (19,20) control the com-
plexity of the family of functionals, in a way adapted to statistical results.

Many functionals proposed in the literature do not satisfy (19) as is. To adapt them this assumption, we
precompose the usual kernels with a projection, which we illustrate in Figure 5. Specifically, let L < U ∈ R
and consider πL,U : ∆≥0 → ∆≥0 the operator which maps points above the diagonal, onto the upper triangle
with corner at (L,U)

πL,U : ∆≥0 → ∆≥0

(b, d) 7→ (b, d) + (1,−1)min(max(d− U,L− b, 0), d−b
2 ).

(23)

Remark 4.8. It is common in the topological data analysis literature that the proposed function-
als do not satisfy (19). Instead, it is assumed that all realisations off functionals have a com-
pact support ([Berry et al., 2018]) or that all diagrams have uniformly bounded birth and death val-
ues [Chazal et al., 2014]. While in some cases, such assumptions are compatible with the model for the
data, we do not make such assumptions in Section 3.

Two examples of such functionals are given below and sample realisations are shown in Figure 4. The
calculations of the Lipschitz constants are carried out in Appendix I.

Example 4.9 (Persistence Silhouette). The persistence silhouette [Chazal et al., 2014] is a weighted sum of
landscape functions Λ(b,d)(t) =

(
d−b
2 − |t− b+d

2 |
)
+

, for T = R. It is clear that supp(Λs(b, d)) = [b, d]. We
set ks(b, d)(t) = Λ(πL,U (b,d))(t)., so that supp(ks(b, d)) ⊂ [L,U ]. Since t 7→ ks(b, d) is piece–wise linear
with slopes 0, 1 and −1, L = 2 = Lk. The kernel is zero on the diagonal, so C = 0 is enough to satisfy (22).

Example 4.10 (Persistence Image). The kernel that would correspond to the persistence im-
age [Adams et al., 2017] is kpi(b, d)(x, y) = 1

2πσ2 exp
(
− (b−x)2+(d−y)2

2σ2

)
, for some σ > 0. We propose

to modify this functional to have bounded support. Unfortunately, a simple truncation is not enough, because
the kernel would not be continuous at the truncation interface. In order to preserve the Lipschitz character,
we propose to multiply by the distance to a square of size 2σ to (b, d), namely, for some r > 1, set

kpi,r(b, d)(x, y) =
(
2− ∥πL,U (b,d)−(x,y)∥∞

σ

)r
+
kpi(πL,U (b, d))(x, y)
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Topological signatures of periodic-like signals

Thus, the original persistence image kernel corresponds to r = 0 and L = ∞, U = ∞. The function

(x, y) 7→ exp(−(x2+ y2)) is (4/e)-Lipschitz and (x, y) 7→
(
2− ∥(b,d)−(x,y)∥∞

σ

)r
+

is (r2r/σ)-Lipschitz, for

the Minkowski distance. Hence, Lkpi,r = 2r−1

πσ3 (r + 2) and L = 2r+1

πeσ3 .

Remark 4.11. We note a few differences with PersistenceCurves introduced in [Chung and Lawson, 2022].
In that article, the aggregation operator can be different from the sum used here. However, the vectorizations
are only curves, i.e T = R. In addition, for normalized functionals, the authors restrict themselves to kernels
of the form k(b, d)(t) = c1[b,d](t), for some c > 0.

Continuity of functionals has been studied, notably in [Divol and Polonik, 2019]
and [Chung and Lawson, 2022]. In the first, it was fully characterized, but only for linear functionals.
In the latter, functionals were considered under the L1 metric. Due to the nature of the statistical results
in Section 3, we are particularly interested in ∥ · ∥∞, so we repeat the proof of [Divol and Polonik, 2019,
Theorem 3] for linear functionals ρ and we derive results for normalized functionals ρ.

Proposition 4.12. Suppose that the persistence of any point in D1 and D2 is bounded by a uniform constant
U and that k satisfies (19), (21) and (22). Then,

∥ρ(D1)− ρ(D2)∥∞ ≤
(
Lkpers

p
p,ϵ(D1) + p(LkU + C)(persp−1

p−1,ϵ(D1) + persp−1
p−1,ϵ(D2))

)
dB(D1, D2),

(24)

∥ρ(D1)− ρ(D2)∥∞ ≤
(
Lk + 2p(LkU + C)

persp−1
p−1,ϵ(D1) + persp−1

p−1,ϵ(D2)

perspp,ϵ(D1)

)
dB(D1, D2). (25)

Proof. Let Γ : D1 → D2 be a matching between the two diagrams. For any t ∈ T,

|ρ(D1)(t)− ρ(D2)(t)| ≤
∑
x∈D1

wϵ(x)
p|k(x)(t)− k(Γ(x))(t)|+ k(Γ(x))(t)|wϵ(x)

p − wϵ(Γ(x))
p|

≤ sup
x∈D1

|k(x)(t)− k(Γ(x))(t)|
∑
x∈D1

wϵ(x)
p

+ sup
x∈D1

|k(Γ(x))(t)|
∑
x∈D1

|wϵ(x)
p − wϵ(Γ(x))

p|

≤ LkdB(D1, D2)pers
p
p,ϵ(D1)

+ p(LkU + C)
∑
x∈D1

|wϵ(x)− wϵ(Γ(x))|(wϵ(x)
p−1 + wϵ(Γ(x))

p−1),

where in the last inequality, we used that ∥k(Γ(x))∥∞ ≤ Lk∥(x1, x2) − (x1+x2

2 , x1+x2

2 )∥∞ +

∥k
(
x1+x2

2 , x1+x2

2

)
∥∞ = Lk

x2−x1

2 + C. The sum in the second term can be bounded from above by
dB(D1, D2)(pers

p−1
p−1,ϵ(D1) + persp−1

p−1,ϵ(D2)).

Consider now the normalized version.

|ρ(D1)(t)− ρ(D2)(t)| ≤
|ρ(D1)(t)− ρ(D2)(t)|∑

x∈D1
wϵ(x)p

+ ρ(D2)
|∑x∈D1

wϵ(x)
p −∑y∈D2

wϵ(y)
p|∑

x∈D1
wϵ(x)p

≤dB(D1, D2)

(
Lk + p(LkU + C)

persp−1
p−1,ϵ(D1) + persp−1

p−1,ϵ(D2)

perspp,ϵ(D1)

)

+ p(LkU + C)dB(D1, D2)
persp−1

p−1,ϵ(D1) + persp−1
p−1,ϵ(D2)

perspp,ϵ(D1)

≤
(
Lk + 2p(LkU + C)

persp−1
p−1,ϵ(D1) + persp−1

p−1,ϵ(D2)

perspp,ϵ(D1)

)
dB(D1, D2).

Combine persp−1
p−1,ϵ(D1) + persp−1

p−1,ϵ(D2) ≤ 2maxk=1,2 pers
p−1
p−1,ϵ(Dk) with the observation that the bound

is symmetric so that we can have perspp,ϵ(D2) in the denominator.
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Remark 4.13. The result we give for ρ is a special of [Divol and Polonik, 2019, Theorem 3]. To see this,
notice that using the notations of that article, Lip(ϕ) = Lk, A = p, and α = p, where ‘p’ is from our work.
In their article, p = ∞ and a = 1. In particular, we see exactly that ∥k∥∞ ≤ LkU + C.

For a function f , all points in its persistence diagram have birth value at least min f and a death value of at
most max f , so that U = 2(max f −min f) is sufficient. Using Proposition 4.3, we can conclude from (24)
(resp. (25)) that ρ (resp. ρ) is continuous with respect to the bottleneck distance, on the space of persistence
diagrams. Via stability of the diagram with respect to the input from Theorem 4.1, it translates to continuity
with respect to the input function.

In Section 3, we show convergence of functionals on random functions. These results are conditioned on
controlling the complexity of the family F := (ρt)t∈K , where ρt : RM → R. In particular, we need the
bracketing entropy of F to be finite. It is a well-known result and consequence of (19, 20).

Proposition 4.14. Let N[](ϵ,F , ∥·∥) denote the bracketing number of F , with brackets [u, l] of size ∥u−l∥ ≤
ϵ. Consider ρ as in (4) with k satisfying (19, 20). Then, for any probability measure P on RM and r ≥ 1,

N[](ϵ, {ρt}t∈T, ∥ · ∥Lr(P )) ≤
2D+1LD diam(K)

ϵD
,

where D is the dimension of T. As a consequence, the bracketing entropy J[](∞,F , ∥ · ∥Lr(P )) is finite

J[](∞,F , ∥ · ∥Lr(P )) :=

∫ ∞

0

√
logN[](ϵ,F , ∥ · ∥Lr(P ))dϵ < ∞.

Proof. First, since P is a probability measure, ∥ρt∥Lr(P ) =
(∫

|ρt|rdP
)1/r ≤ ∥ρt∥∞

∫
dP = ∥ρt∥∞, so

N[](ϵ, {ρt}t∈T, ∥ · ∥Lr(P )) ≤ N[](ϵ, {ρt}t∈T, ∥ · ∥∞). Combining (20) with the fact that ρ(x) is a weighted
average of k, for any x ∈ RM and s, t ∈ T, the normalized functional is L-Lipschitz in time

|ρt(x)− ρs(x)| ≤ Ld(t, s).

Let K be given by (19). Then, [Kosorok, 2008, Theorem 9.22] states that

N[](2ϵL, {ρt}t∈K , ∥ · ∥∞) ≤ N(ϵ,K, d),

where N(ϵ,K, d) is the covering ϵ-number of (K, d). By assumption, T is of finite dimension that we will
denote by D. By compacity of K, it has a finite diameter, say U . Therefore, N(ϵ,K, d) ≤ max(1, U

ϵD
).

Let t0 /∈ K, t1 ∈ K. We have that ρt1 is uniformly bounded,

|ρt1(x)| ≤ |ρt0(x)|+ Ld(t0, t1) = Ld(t0, t1),

so that ρt0 = 0 ∈ [ρt1−ϵL, ρt1−ϵL], for ϵ > d(t0, t1). The brackets in the proof of [Kosorok, 2008, Theorem
9.22] are of the form [ρt − ϵL, ρt + ϵL], so that N[](2ϵL, {ρt}t∈T, ∥ · ∥∞) ≤ N(ϵ,K, d) for ϵ > d(t0, t1).
In particular, one bracket is enough for ϵ > max(U1/D, d(t0, t1)), while, for ϵ ≤ max(U1/D, d(t0, t1)), we
have N[](2ϵL, {ρt}t∈T, ∥ · ∥∞) ≤ 1 +N[](2ϵL, {ρt}t∈K , ∥ · ∥∞) ≤ 1 +N(ϵ,K, d) ≤ 2N(ϵ,K, d).

Finally, since Lr(P ) is dominated by ∥ · ∥∞ for any probability measure P ,

J[](δ, {ρt}t∈T, Lr(P )) =

∫ δ

0

√
log(N[](ϵ, {ρt}t∈T, Lr(P )))dϵ

≤
∫ δ

0

√
log(N[](ϵ, {ρt}t∈T, ∥ · ∥∞))dϵ

≤
∫ min(δ,2Lmax(U1/D,d(t0,t1)))

0

√
log(N( ϵ

2L ,K, d))dϵ

≤
∫ min(δ,2Lmax(U1/D,d(t0,t1)))

0

√
log (2D+1ULD)− 1

D
log(ϵ)dϵ.

As limδ→0

∫ 1

δ

√
− log(ϵ)dϵ < ∞, we conclude that J[](δ, {ρt}t∈T, Lr(P )) < ∞.
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Figure 6: Signatures of ϕ1 and ϕ4, estimated on reparametrized signals described above. The top row shows
the first 3-second window from the 30-second signal, for both functions. The bottom row shows the estimated
signatures and the confidence intervals.

5 Numerical illustration

To illustrate the signatures and their stability, we propose to estimate the signatures of processes with different
periodic functions. Then, we compare the estimate to the signature of a process with a different reparametri-
sations.

We will consider periodic functions ϕ1 and ϕ4 defined by

ϕθ = θ(sin(6πt) + |t− ⌊t⌋ − 1
2 | − 1

2 ) + 5 sin(4πt), for θ ∈ R.

The observed signal follows the discrete model (10), with T = 30 and a sampling rate of 50Hz. The
reparametrisations are generated by integrating twice a Markov chain of accelerations, with a truncated Gaus-
sian transition kernel. The noise is a Gaussian process with covariance

Γ(s, t) = σ2 exp

(
− (s− t)2

2τ2

)
.

We fix the temporal scale τ , but we vary σ = 0.1, 0.5, 2. to illustrate the impact of noise on the signature.

For ρ, we take the silhouette introduced in Example 4.9, where the weights are the 0.2-truncated 1-persistence
(ϵ = 0.2, p = 1) and we use the projection π−9,9 as in (23). We infer the signatures on 3-second windows
(M = 3 · 50). We construct the 1%-confidence intervals by resampling 200 times, with block lengths of 2
seconds (L = 2 · 50).

In Figure 6, for the same random realization γ1, we calculate the empirical signature F̂ for ϕ1 and ϕ4, and
estimate the corresponding confidence intervals for F . For low noise levels, the variance due to the number of
observations and the variability in the endpoints is small, compared to the difference between the functionals.
As the noise level increases, the observed function looses its recurrent appearance and the signatures become
dominated by the noise.

Consider now two observations with the same periodic function ϕ1, but different reparametrisations γ1, γ2.
In Figure 7, we can see that for small values of noise, the signatures are close, what confirms their invariance
to reparametrisation. It is worth noting that the signals contain different numbers of periods. For more noisy
observations, the signatures lose the robustness.
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Figure 7: Signatures of ϕ1, estimated on two different reparametrized observations. The top row shows the
first 3-second window from the two observed signals. The bottom row shows the estimated signatures and
the confidence intervals.
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[Radulović, 1996] Radulović, D. (1996). The bootstrap for empirical processes based on stationary observa-
tions. Stochastic Processes and their Applications, 65(2):259–279.

[Ramsay and Silverman, 2002] Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Anal-
ysis: Methods and Case Studies. Springer Series in Statistics. Springer, New York.

[Shevchenko, 2017] Shevchenko, G. (2017). Kolmogorov continuity theorem and holder norm. MathOver-
flow. https://mathoverflow.net/q/279085 (version: 2017-08-19).

[Steinwart, 2022] Steinwart, I. (2022). Mathematics of Gaussian Processes for Machine Learning.

[Su et al., 2014] Su, J., Kurtek, S., Klassen, E., and Srivastava, A. (2014). Statistical analysis of trajectories
on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance. The Annals of
Applied Statistics, 8(1):530–552.

[Tang and Muller, 2008] Tang, R. and Muller, H.-G. (2008). Pairwise curve synchronization for functional
data. Biometrika, 95(4):875–889.

A Measurability of functionals

For our analysis of such signals, in section 4, we will introduce functionals of the form ρt : C([0, T ],R) → R,
t ∈ T, where the index set T is a (compact) metric space. Then, we will apply these functions pathwise and
study the random variable ρ(S), where ρ is seen as a map C([0, T ],R) to RT. Since ρt is applied pathwise, it
is not obvious under what conditions ρ(S) is a random variable. Such considerations could be circumvented
by using outer probabilities [Radulović, 1996, Kosorok, 2008], but we address them in Proposition A.1.
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As a stochastic process, S : (Ω,A) → (C([0, T ], σ(R[0,T ]))) is a random variable on the measured space
(Ω,A, η), where σ(R[0,T ]) is the σ-algebra generated by the product topology on R[0,T ] and η is the law of
S. In our model, η is determined by ϕ, µ and ν.

Proposition A.1. Let γ : (Ωr,Ar) → (C([0, T ],R), σ(∥ · ∥∞)) and W : (Ωn,An) → (C([0, T ],R), σ(R[0,T ]))

be independent random variables and S = ϕ ◦ γ+W as in (1). If f : C([0, T ],R) → C(T,R) is continuous
and C(T,R) is ∥ · ∥∞-separable, then f(S) is (C(T,R), ∥ · ∥∞)-measurable.

For the proof, we will need the following lemma.

Lemma A.2 (Pettis’ measurability theorem). Consider h : Ω → E, where (E, dE) is a Banach space. If E
is separable as a metric space and h is weakly-measurable, then h is measurable with respect to the Borel
σ-algebra induced by dE .

Proof (proposition A.1). First, assume that S is weakly-measurable on E = C([0, T ],R) and that
(C([0, T ],R), ∥ · ∥∞) is separable. Using lemma A.2, we get that S is σ(∥ · ∥∞)-measurable. Because
f : C([0, T ],R) → C(T,R) is continuous, it is measurable for the two σ-algebra on the domain and co-
domain. This allows us to conclude that f(S) is (C(T,R), σ(∥ · ∥∞))-measurable.

Let us now verify the assumptions of Lemma A.2. By continuity of ϕ, the composition
ϕ ◦ γ : (Ωr,Ar) → (C([0, T ],R), σ(R[0,T ]) is measurable. As a sum of two (independent) random variables,
S = ϕ ◦ γ +W is (C([0, T ],R), σ(R[0,T ])-measurable for (Ω,A), where Ω = Ωr ×Ωn and A = Ar ⊗An.
The product σ-algebra σ(R[0,T ]) coincides with that of weak measurability on R[0,T ]. The space C([0, T ],R)
with the topology induced by ∥f∥∞ := supx∈[0,T ] |f(x)| is a Banach, separable space. Any subspace of a
separable metric space is separable, so S(Ω) is also separable.

Remark A.3. Lemma A.2 and its application to prove the measurability of the process were taken from the
course [Steinwart, 2022].

B Invariance of the signature to reparametrisation

Consider (C([0, T ],R), ∥ · ∥∞) with the Borel σ-algebra. We assume that µ1, µ2 are Borel measures on the
restriction of that σ-algebra to a closed subspace Γ ⊂ C([0, T ]). We denote by δt : γ 7→ γ(t) the evaluation
map, we let (δt)⋆µ1 = µ1 ◦ (δt)−1 be the measure which characterizes the marginal distribution of γ1(t) and
we proceed similarly for µ2. Note that the evaluation is measurable, as it corresponds to weak-measurability.
Similarly, we denote δ0,T : γ 7→ (γ(0), γ(T )) ∈ R2.

Proposition B.1. If the marginals (δ0,T )⋆µ1 and (δ0,T )⋆µ2 are equal, then

F (ϕ ◦ γ1) = F (ϕ ◦ γ2).

Proof. We first need to show that we can condition on (γ(0), γ(T )). The space of continuous functions
C([0, T ],R) is Polish, and so is Γ, because it is a closed subspace. Let A = σ(δ0,T ) be the σ-algebra
generated by the evaluations. By [Bogachev, 2007, Corollary 10.4.6], there is a regular conditional measure
((µ1)x(dγ))x∈R2 .
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Lemma 2.1 implies that γ 7→ ρt(ϕ ◦ γ) is constant on δ−1
0,T (x), for any x = (s, r) ∈ R2. For any t ∈ T, using

the regular conditional measure property [Bogachev, 2007, Definition 10.4.1],

Ft(ϕ ◦ γ1) =
∫
Γ

ρt(ϕ ◦ γ)µ1(dγ)

=

∫
R2

∫
δ−1
0,T (x)

ρt(ϕ ◦ γ)(µ1)x(dγ)(δ0,T )⋆µ1(dx)

=

∫
R2

∫
δ−1
0,T (x)

ρt(ϕ ◦ γ)(µ2)x(dγ)(δ0,T )⋆µ2(dx)

= Ft(ϕ ◦ γ2).

Since γ1, γ2 are reparametrisations, we require Γ to be included in the space of injective functions. An
example is given in (8).

While it is disappointing to require equality of the marginals (δ0,T )⋆µ1 and (δ0,T )⋆µ2 in Proposition B.1,
removing this assumption poses a difficulty which we now discuss. Consider γ1 and γ2 fixed, assume that
R := R1 < R2 and let T1 = γ−1

2 (R). For continuous functions on an interval, we can only control the
stability of the persistence diagram in the bottleneck distance dB (see Theorem 4.1).

As an example, consider the case when R2 = R + 1. Then, the distance between the persistence diagrams
dB(D(ϕ◦γ1), D(ϕ◦γ2)) is of the order of the amplitude Aϕ := maxϕ−minϕ, as the multiplicity of the point

(minϕ,maxϕ) differs by at least one between both diagrams. The term
perspp,ϵ(ϕ◦γ1)+perspp,ϵ(ϕ◦γ2)

perspp,ϵ(ϕ◦γ1)
is roughly

constant (1 ≤ R1+R2

R1
≤ 3). Therefore, the fact that the difference between ρ(ϕ ◦ γ1) and ρ(ϕ ◦ γ2) will be

small is not reflected by Proposition 4.12 which gives a trivial bound. Instead, let D1 = D((ϕ ◦ γ2)|[0,T1]
),

D2 = D((ϕ ◦ γ2)|[T1,T ]) and consider

∥ρ(ϕ ◦ γ1)− ρ(ϕ ◦ γ2)∥∞ ≤ ∥ρ(D1)− ρ(D1 ⊔D2)∥∞ + ∥ρ(D1 ⊔D2)− ρ(ϕ ◦ γ2)∥∞. (26)

Conveniently, a normalized functional of a union of diagrams is a weighted average of the normalized func-
tionals of the individual diagrams

ρ(D1 ⊔D2)(t) = ρ(D1)(t)
perspp,ϵ(D1)

perspp,ϵ(D1 ⊔D2)
+ ρ(D2)(t)

perspp,ϵ(D2)

perspp,ϵ(D1 ⊔D2)
,

so that

|ρ(D1)(t)− ρ(D1 ⊔D2)(t)| = |ρ(D1)(t)

(
perspp,ϵ(D1)

perspp,ϵ(D1 ⊔D2)
− 1

)
+ ρ(D2)(t)

perspp,ϵ(D2)

perspp,ϵ(D1 ⊔D2)
|

= |ρ(D1)(t)− ρ(D2)(t)|
perspp,ϵ(D2)

perspp,ϵ(D1 ⊔D2)

≤ (LkAϕ + C)
perspp,ϵ(D2)

perspp,ϵ(D1 ⊔D2)
.

We claim that if ϕ is regular enough and R2 − R is small, then so is perspp,ϵ(D2). For example,
with [Herbert Edelsbrunner et al., 2023, Corollary 4.6], if ϕ|[R,R2]

is continuous and has finitely many critical
points, then the total variation of ϕ[R2,R] is equal to pers1,0(D2).

Thanks to Proposition 4.12, the second term in (26) is the error made when approximating the diagram of
ϕ|[0,R2]

by the union of diagrams of ϕ|[0,R] and ϕ|[R,R2]
. For a particularly good cutting point R, that is, when

R is a global maximum, D1 ⊔D2 = D(ϕ ◦ γ2). However, in general, the support of the union of diagrams
differs from the diagram of the whole interval. To show stability, we miss the study of dB(D1⊔D2, D(ϕ◦γ2)).
A possible avenue is given by the tools introduced in [Herbert Edelsbrunner et al., 2023].
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C Proof of Theorem 2.5

We start by treating S path–wise. Using Proposition 4.12 and the bottleneck stability of persistence diagrams,

∥ρ(ϕ ◦ γ1 +W )− ρ(ϕ ◦ γ2 +W )∥ = ∥ρ(ϕ+Wγ−1
1

)− ρ(ϕ+Wγ−1
1

)∥

≤ Lk

(
1 + 4pU max

k=1,2

persp−1
p−1,ϵ(ϕ+Wγ−1

k
)

perspp,ϵ(ϕ+Wγ−1
k

)

)
∥Wγ−1

1
−Wγ−1

2
∥∞,

(27)

where Lk is a regularity constant of the kernel and U is an upper-bound on the persistence of any point in
both diagrams. The persistence of any point in the diagram D(h) of a function h is bounded by Ah. Hence,
the persistence of a point in D(ϕ+W ) is bounded by U = Aϕ+W ≤ Aϕ+AW ≤ Aϕ+(Aϕ−ϵ−q) ≤ 2Aϕ.

Next, we obtain an upper–bound of maxk=1,2

persp−1
p−1,ϵ(ϕ+W

γ
−1
k

)

perspp,ϵ(ϕ+W
γ
−1
k

)
. By Proposition J.1, we can assume that W

has α-Hölder paths with a (random) constant ΛW , for α := min(1,r1−1)
r2

. This implies that 1
α + 1 < p and we

use the continuity of truncated persistence from Proposition 4.5 to obtain

persp−1
p−1,ϵ(ϕ+Wγ−1

k
) ≤ persp−1

p−1,ϵ(ϕ|[0,T ])+ (p− 1)∥W∥∞(persp−2
p−2,ϵ(ϕ|[0,T ])+persp−2

p−2,ϵ(Wγ−1
k

)). (28)

For any x ∈ [0, 1] and p ≥ 0, the function p 7→ xp is decreasing, so that

persp−1
p−1,ϵ(ϕ|[0,T ]) = (Aϕ − ϵ)p−1

∑
(b,d)∈D

max
(

d−b−ϵ
Aϕ−ϵ , 0

)p−1

≤ (Aϕ − ϵ)p−1
∑

(b,d)∈D

max
(

d−b−ϵ
Aϕ−ϵ , 0

)p−2

= (Aϕ − ϵ)persp−2
p−2,ϵ(ϕ).

Since ∥W∥∞ < (Aϕ − ϵ)/2 and the persistence does not depend on the parametrisation persp−2
p−2,ϵ(Wγ−1

k
) =

persp−2
p−2,ϵ(W ), equation (28) becomes

persp−1
p−1,ϵ(ϕ+Wγ−1

k
) ≤ (Aϕ − ϵ)persp−2

p−2,ϵ(ϕ)

(
1 + p−1

2

(
1 +

persp−2
p−2,ϵ(W )

persp−2
p−2,ϵ(ϕ)

))
≤ p(Aϕ − ϵ)persp−2

p−2,ϵ(ϕ)

(
1 + 1

2

persp−2
p−2,ϵ(W )

persp−2
p−2,ϵ(ϕ)

)
.

An upper–bound for the persistence of W is given in Proposition 4.4

perspp,ϵ(W ) ≤ (AW − ϵ)p
(
1 + pT

(
2ΛW

ϵ

)1/α)
,

where ΛW is the path–wise Hölder constant of W . The amplitude Aϕ upper–bounds the persistence of a
point and it is also realized as the persistence of a pair of a global minimum and a global maximum, so
persp−2

p−2,ϵ(ϕ|[0,R]) ≥ (R− 2)(Aϕ − ϵ)p−2 and hence

perspp,ϵ(W )

persp−2
p−2,ϵ(ϕ)

≤
(

AW−ϵ
Aϕ−ϵ

)p−2

(AW − ϵ)2 T
R−2

(
1 + p

(
2ΛW

ϵ

)1/α)
.

Putting the above together, with p ≥ 2,

persp−1
p−1,ϵ(ϕ+Wγ−1

k
) ≤ p(Aϕ − ϵ)persp−2

p−2,ϵ(ϕ)

(
1 +

(
AW−ϵ
Aϕ−ϵ

)p−2

(AW − ϵ)2 T
R−2 max

(
1, p

(
2ΛW

ϵ

)1/α))
.

We have therefore an upper–bound for the numerator. To lower–bound the denominator, we use Proposi-
tion 4.6:

perspp,ϵ(ϕ+Wγ−1
k

) ≥ perspp,ϵ+AW
(ϕ)

≥ (R− 2)(Aϕ − (AW + ϵ))p

≥ (R− 2)(Aϕ − (Aϕ − ϵ+ q + ϵ))p = (R− 2)qp.
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We conclude that we have an upper–bound CΛW
on

persp−1
p−1,ϵ(ϕ+W

γ
−1
k

)

perspp,ϵ(ϕ+W
γ
−1
k

)
, that is

CΛW
:= Lk

1 + 8p2Aϕ

(Aϕ − ϵ)persp−2
p−2,ϵ(ϕ)

(
1 +

(
AW−ϵ
Aϕ−ϵ

)p−2

(AW − ϵ)2 T
R−2 max

(
1, p

(
2ΛW

ϵ

)1/α))
(R− 2)qp

 .

As AW ≤ Aϕ − ϵ− q, the only remaining stochastic term in CΛW
is Λ1/α

W . Also, the bound only depends on
R (which is fixed), but not on γ itself.

Let π : Ar,1 × Ar,2 → R be a coupling of µ1 and µ2. Specifically, π is a measure on the product space
(G × G,Ar,1 ⊗ Ar,2), such that π(A,G) = µ1(A) and π(G, A) = µ2(A), for all A ∈ A. Then, π ⊗ ν :

((A1, B1), (A2, B2)) 7→ π(A1, A2)ν(B1 ∩ B2) is a coupling of µ1 ⊗ ν and µ2 ⊗ ν. Using the coupling
and (27),

|E[ρ(ϕ ◦ γ1 +W ) | W ]− E[ρ(ϕ ◦ γ2 +W ) | W ]| =
∣∣E(γ1,γ2)∼π[ρ(ϕ ◦ γ1 +W )− ρ(ϕ ◦ γ2 +W ) | W ]

∣∣
≤ E(γ1,γ2)∼π [|ρ(ϕ ◦ γ1 +W )− ρ(ϕ ◦ γ2 +W )| | W ]

≤ CΛW
E[∥Wγ−1

1
−Wγ−1

2
∥∞ | W ],

≤ CΛW
ΛWE[∥γ−1

1 − γ−1
2 ∥α∞].

We have thus completely separated the bound into a product, with terms depending on ν and (µ1, µ2).

On one hand, it remains to take the expectation with respect to W . We bound the moments of ΛW using
Theorem J.2, obtaining

E[ΛW ] ≤ 16α+1
α (Kr2,r1)

1/r2

E[Λ1+1/α
W ] ≤ 6r2+2K(1/r2+1/(r1−1))

r2,r1 .

On the other hand, by Jensens’ inequality, E[∥γ−1
1 − γ−1

2 ∥α∞] ≤ E[∥γ−1
1 − γ−1

2 ∥∞]α. Using the lower–
bound on the modulus of continuity,

sup
r∈[0,R]

|γ−1
1 (r)− γ−1

2 (r)| = sup
t∈[0,T ]

|t− γ−1
2 (γ1(t))| ≤ sup

t∈[0,T ]

1

vmin
|γ2(t)− γ1(t)|.

Taking the infimum over couplings, we obtain the 1−Wasserstein distance W1(µ1, µ2).

D Proof of Proposition 2.7

We start by proving a lemma.

Lemma D.1 (Perturbed, path–wise version). Consider a continuous perturbation W ∈ Cα
Λ([0, T ],R) and

set δ := ∥W∥∞. If 2δ ≤ maxϕ−minϕ, then

∥ρ(ϕ+W )− ρ(ϕ)∥∞ ≤ Lk(P1δ + P2δ
2 + P3δ

3) =: LkP (δ),

where

P1 =1 + 4AϕCTC
ϵ
p−1,p(ϕ),

P2 =8CTC
ϵ
p−1,p(ϕ) + 4pAϕ(CTC

ϵ
p−2,p(ϕ) +

Cp−3,Λ,α,T

perspp,ϵ(ϕ)
),

P3 =4p
(
CTC

ϵ
p−2,p(ϕ) +

Cp−3,Λ,α,T

perspp,ϵ(ϕ)

)
,

and

CT =
⌈T ⌉

⌊T ⌋ − 2
, Cϵ

p,p′(ϕ) =
perspp,ϵ(ϕ)

persp
′

p′,ϵ(ϕ)
, Aϕ = ∥ϕ∥∞.
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Proof. By the diagram stability theorem, dB(D(ϕ +W ), D(ϕ)) ≤ ∥W∥∞ ≤ δ. The persistence of a point
in D(ϕ) and D(ϕ +W ) is bounded by 2Aϕ and 2Aϕ+W ≤ 2(Aϕ + δ) respectively. Using Proposition 4.5,
we also bound perspp−1,ϵ(ϕ+W ) ≤ persp−1

p−1,ϵ(ϕ) + pδ(persp−2
p−2,ϵ(ϕ) + persp−2

p−2,ϵ(W )). Using the uniform
bound on persistence from Proposition 4.4, persp−2

p−2,ϵ(W ) ≤ Cp−3,Λ,α,T . Finally, putting these together with
Proposition 4.12, we obtain:

∥ρ(ϕ)− ρ(ϕ+W )∥ ≤Lk

(
1 + 2pU

persp−1
p−1,ϵ(ϕ) + persp−1

p−1,ϵ(ϕ+W )

perspp,ϵ(ϕ)

)
dB(D(ϕ), D(ϕ+W ))

≤δLk

(
1 + 4p(∥ϕ∥∞ + δ)

2⌈T⌉persp−1
p−1,ϵ(ϕ|[c,c+1])+pδ(persp−2

p−2,ϵ(ϕ)+Cp−3,Λ,α,T )

(⌊T⌋−2)perspp,ϵ(ϕ)

)
≤Lk

(
1 + 4AϕCTC

ϵ
p−1,p(ϕ)

)
δ +

Lk

(
8CTC

ϵ
p−1,p(ϕ) + 4pAϕ(CTC

ϵ
p−2,p(ϕ) +

Cp−3,Λ,α,T

perspp,ϵ(ϕ)
)
)
δ2 +

4Lkp
(
CTC

ϵ
p−2,p(ϕ) +

Cp−3,Λ,α,T

perspp,ϵ(ϕ)

)
δ3.

Proof of Proposition 2.7. Combining lemma D.1 and theorem 2.3,

∥ρ(ϕ ◦ γ1 +W1)− ρ(ϕ ◦ γ2 +W2)∥ ≤ ∥ρ(ϕ+ (W1)γ−1
1

)− ρ(ϕ|[0,R1]
)∥

+ ∥ρ(ϕ|[0,R1]
)− ρ(ϕ|[0,R2]

)∥
+ ∥ρ(ϕ|[0,R2]

)− ρ(ϕ+ (W2)γ−2
2

)∥
≤ Lk(P (δ1) + P (δ2) + 2 4

min(R1,R2)
ρ(ϕ|[c,c+1]))

≤ Lk

(
P (δ1) + P (δ2) +

8
min(R1,R2)−2

Aϕ

2

)
≤ Lk

(
P (max(δ1, δ2)) +

4Aϕ

min(R1,R2)−2

)
.

E Exponential mixing of the reparametrisation process

Proposition E.1. Consider (γn)
N
n=1 as in (11) with (Vn)

N
n=1 as in Model 1 or 2. Then, βfrac(γ)(k) → 0

exponentially fast.

The proof of this proposition relies on the continuity of the transition kernel with respect to the Lebesgue
measure and the use of the following sufficient condition.

Theorem E.2 ([Doukhan, 1995, Section 2.4, Theorem 1]). Let (Zn)n be a stationary Markov chain and ν a
non-negative and non-zero measure. If there exists r ∈ N∗ such that

P (Zr ∈ A | Z0 = z) ≥ ν(A), for any z, and A any P-measurable set, (29)

then (Zn)n is β-mixing and the coefficients decay exponentially fast.

Condition (29) is called a Doeblin condition. It consists in providing a non-trivial lower–bound on the family
of measures (P r(z,A))z . We first treat the case where (Vn)n∈N are all i.i.d. The case where (Vn)n∈N is a
Markov Chain is similar, but technically more difficult.

E.1 Model 1

Recall that γn = γn−1+Vn−1. In Model 1, Vn is independent from (Vk)k<n and γ0, so (γn)n∈N is a Markov
chain. We will now verify (29). Let r := ⌈2/(b− a)⌉ and ϵ = ⌊ b−a

r ⌋.
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Lemma E.3. Consider two measures µ1, µ2 such that µk(A) ≥ ckµ(A), for A ∈ B([ak, bk]). Then, for any
0 < ϵ < min(b1 − a1, b2 − a2), we have that (µ1 ⋆ µ2)(A) ≥ c1c2ϵµ(A), for any A ∈ B([a1 + a2 + ϵ, b1 +

b2 − ϵ]).

We now apply this Lemma E.3 inductively to µ1 and µ2 the measures of
∑r1

n=1 Vr1 and Vr1+1 respectively,
for 1 ≤ r1 ≤ r − 1. We conclude that P (

∑r
n=1 Vn ∈ A) ≥ cµ(A) for all A ∈ B(B), where B :=

[r(a+ ϵ)− ϵ, r(b− ϵ) + ϵ] and c := c1c2ϵ
r−1. Thanks to our choice of r and ϵ, B is an interval of length at

least 1.

Let x0 ∈ [0, 1[ and A ∈ B([0, 1]). We write frac−1(A) = ∪k∈ZA + k, where A + k = {a + k | a ∈ A}.
Then,

P (frac(γr) ∈ A | γ0 = x0) = P

(
x0 +

r∑
n=0

Vn ∈ frac−1(A)

)

= P

(
r∑

n=0

Vn ∈
⋃
k∈Z

(A+ k)− x0

)

≥ P

(
r∑

n=0

Vn ∈
⋃
k∈Z

(A+ k − x0) ∩B

)

≥ cµ

(⋃
k∈Z

(A+ k − x0) ∩B

)
= c

∑
k

µ(A+ k − x0 ∩B),

where the last equality follows from the fact that µ(A ∩ (A + 1)) = 0, because A ⊂ [0, 1]. Notice that for
any set A+ z ∩B = (A ∩ (B − z)) + z and that µ(A+ z) = µ(A), for any z ∈ R. Hence, for any k ∈ Z,

µ (A+ k − x0 ∩B) = µ(k − x0 + (A ∩ (B − k + x0))) = µ(A ∩ (B − k − x0)).

Recall that B is an interval of length greater than 1, so (B − k − x0)k∈Z is a cover of R. Hence,

P (frac(γr) ∈ A | γ0 = x0) ≥ c
∑
k

µ(A ∩ (B − k − x0))

≥ cµ

(
A ∩

⋃
k

(B − k − x0)

)
= cµ(A).

We can therefore set µ := cµ. The measure does not depend on x0 and it has total mass c > 0.

We now show that (frac(γn))n∈N is strictly stationary: for any K ∈ N∗, τ ∈ N and n1, . . . nK , the vectors
(frac(γn1

), . . . , frac(γnK
)) ∼ (frac(γn1+τ ), . . . , frac(γnK+τ )), where X ∼ Y is a shorthand notation for

“X and Y have the same distribution”. It is enough to show that for any K ≥ 1, (frac(γ0), . . . , frac(γK)) ∼
(frac(γn), . . . frac(γn+K)), for any n ≥ 0. We write (frac(γn), . . . frac(γn+K)) = frac(frac(γ0 +∑n−1

r=0 Vr) + frac(0, Vn, . . . ,
∑n+K−1

r=n Vr)) and we analyze the two terms separately. Here, frac is applied

component–wise. First, because (Vn)n∈N are i.i.d,
(∑k

r=0 Vr

)
∼
(∑n+k

r=n Vr

)
, for any n, k ∈ N. Therefore,

(0, V0, . . . ,
∑n−1

r=0 Vr) ∼ (0, Vn, . . . ,
∑n+K−1

r=n Vr). It also remains true when we apply frac component–
wise, because it is a measurable mapping RK+1 → RK+1. Second, we claim the following lemma on the
sum of two random variables, one of which is uniform.

Lemma E.4. If U ∼ U([0, 1]) and Z is a real–valued random variable independent of U , then
frac(U + Z) ∼ frac(U) ∼ U .

Before showing Lemma E.4, we conclude the proof by applying it to U = γ0 and Z =
∑n−1

r=0 Vr. Indeed,
γ0 is independent from (Vr)

n−1
r=0 , so we obtain that frac(γ0) ∼ frac(γ0 +

∑n−1
r=0 Vr). Finally, combining the
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above with frac((0, V0, . . . ,
∑n−1

r=0 Vr)) ∼ frac((0, Vn, . . . ,
∑n+K−1

r=n Vr)), we have that frac(γ0, . . . , γK) ∼
frac(γn, . . . , γn+K).

Proof of Lemma E.4. First, it is clear that for s ≤ 0, P (frac(U + Z) < s) = 0 and that for s > 1, 1 ≥
P (frac(U + Z) < s) ≥ P (frac(U + Z) ≤ 1) = 1. For 0 < s < 1,

P (frac(U + Z) ≤ s) = P

(
U + Z ∈

⋃
k∈Z

[k, k + s]

)
=
∑
k∈Z

P (U + Z ∈ [k, k + s]). (30)

Because U and Z are independent, P (U + Z ∈ [k, k + s]) = (µU ⋆ µZ)([k, k + s]), where µU and µZ

are the probability measures of U and Z respectively and ⋆ denotes their convolution. Note that since µ is
translation–invariant,

(µU ⋆ µZ)([k, k + s]) =

∫
R

∫ 1

0

1[k,k+s](z + u)dudµZ(z)

=

∫
R
µ([0, 1] ∩ [k − z, k + s− z])dµZ(z)

=

∫
R
µ([−k,−k + 1] ∩ [−z,−z + s])dµZ(z)

=

∫
R
µ([−k,−k + 1[∩[−z,−z + s])dµZ(z)

Going back to (30),

P (frac(U + Z) ≤ s) =
∑
k∈Z

∫
R
µ([−k,−k + 1[∩[−z,−z + s])dµZ(z)

=

∫
R

∑
k∈Z

µ([−k,−k + 1[∩[−z,−z + s])dµZ(z)

=

∫
R
µ([−z,−z + s])dµZ(z)

= µ([0, s])

∫
R
dµZ(z).

= s.

Therefore, the distribution function of frac(U + Z) is uniform on [0, 1] and therefore also equal to that of
frac(U).

E.2 Model 2

The process (fracγn)n∈N is defined in (11), via the Markov chain (Vn)n∈N. Recall that this Markov chain has
a transition probability kernel P , with support included in I = [vmin, vmax]. Therefore, (frac(γn))n∈N is not
itself a Markov Chain (of order 1). However, the process ((γn, Vn))n∈N is a Markov Chain. We characterize
its distribution and we verify that it satisfies the Doeblin condition (29), which takes the remaining of this
Section.

Consider now (R,B(R)) and let (x,A) 7→ 1A(x), which is also a transition probability kernel. We define
a product kernel on R := R × I , where I = [vmin, vmax]. It is characterised by the following measure on
rectangles

((y, v), (A×B)) 7→ 1A(y)P (v,B).

More generally, it extends to any set A ∈ B(R) as ((y, v), (A×B)) 7→ P (v,Ay), where

Ay = {v ∈ I | (y, v) ∈ A} (31)
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y = vmin

y = vmax

(u, v)

(u+ hv, v − η)

(u+ hv, v + η)

(u+ hv, v)

(u+ 2hv, v)

Ω̃2
u,v

Step 2

(u+ n0hv, v)

Ω̃n0
u,v

Steps 3-4

(u+ n1hv, v)

Ω̃n1
u,v

Step 5

(u+ nu,vhv, v)

Ω̃nu,v
u,v

≥ 1

≥ 1
Step 6

Figure 8: A schematic illustration of the form of a densitys’ support. The density lower–bounds
P̃n((u, v), ·)).

is the projection of A ∩ {x = y} onto the second coordinate. We define the map T

T : R2 → R2

(x, v) 7→ (x+ hv, v),

and we let P̃ be the pull-back of the product kernel P by this map. Explicitly, for A ∈ B(R),

P̃ ((u, v), A) = P (v,Au+hv). (32)

In what follows, we show (29) for the Markov chain ((fracγn, Vn))n∈N, which has transition probability
kernel frac⋆P̃ .

Figure 8 illustrates the proof. For (u, v) ∈ R, we show that P̃n((u, v), ·)) is lower–bounded by a uniform
measure of which we carefully characterise the support, Ωn

u,v . In Steps 1-6, we show that for a certain nu,v ∈
N, the support of this uniform measure, Ωnu,v

u,v , is large enough. In Step 0, we show that nu,v ≤ N ∈ N, for all
(u, v) ∈ R. We conclude in Step 0 by showing (29). Compared with the i.i.d case treated in Section E.1, Step
0 is the analogue of Lemma E.3, except that the iteration requires the additional Steps 2-5.

Step 1 lower–bound for P̃ 2((u, v), ·)
For (u, v) ∈ R and (z1, z2) ∈ R, according to (31),

([0, z1]× [vmin, z2])u+h(v+y) =

{
[vmin, z2], if u+ h(v + y) ∈ [0, z1],

∅, otherwise.

In (32), we observe that integrating with respect to P̃ 2 amounts to integrating P along a vertical strip, so
marginalizing with respect to (γ1, V1),

P̃ 2((u, v), ]−∞, z1]× [vmin, z2]) =

∫
R

P̃ ((u, v), dxdy))P̃ ((x, y), ]−∞, z1]× [vmin, z2])

=

∫
I

P (v, dy)P (y, (]−∞, z1]× [vmin, z2])u+h(v+y))

=

∫ max((z1−u)/h−v,vmax)

vmin

P (v, dy)P (y, [vmin, z2])
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Differentiating the above expression with respect to z1 and then z2, for z1 ≤ u+ h(v + vmax), we get

∂P̃ 2((u, v), ]−∞, z1]× [vmin, z2])

∂z1
= fv

(
z1−u

h − v
)
P
(
z1−u

h − v, ]vmin, z2]
)

f⋆2
(u,v)(z1, z2) =

∂2P̃ 2((u, v), ]−∞, z1]× [0, z2])

∂z1∂z2
= fv

(
z1−u

h − v
)
f z1−u

h −v
(z2).

As fv(y) ≥ µ01[v−η,v+η](y), we have f⋆2
(u,v)(z1, z2) ≥ µ2

0, if
z1 − u

h
− v ∈ [max(vmin, v − η),min(vmax, v + η)],

z2 ∈
[
max

(
vmin,

z1 − u

h
− v − η

)
,min

(
vmax,

z1 − u

h
− v + η

)]
.

The above is equivalent to{
z1 = u+ 2hv + khη

z2 = v + (k + l)η,
for some l ∈ [−1, 1], k ∈ [−1, 1] ∩

[
vmin−v

η , vmax−v
η

]
. (33)

So, P̃ 2((u, v), ·) has a density f⋆2
(u,v) with respect to the Borel measure on R2. That density is lower–bounded:

for (z1, z2) ∈ R ∩ Ω2
(u,v), we have f⋆2

(u,v) (z1, z2) ≥ µ2
0, where

Ω2
(u,v) := {(u+ 2hv, v) + k(hη, η) + l(0, η) | k, l ∈ [−1, 1]}. (34)

When vmin−v
η < −1 and 1 < vmax−v

η , then Ω2
(u,v) ⊂ R and we carry on with the induction to Step 1.

Otherwise, we go directly to Step 1 as Ωn+1 ∩Rc ̸= ∅.

Step 2 Lower–bound for n ≥ 3, while Ωn
(u,v) ∩Rc = ∅

We start by defining the parallelograms Ωn
(u,v) and showing some properties of the vectors that generate them.

Then, by induction that for n ≥ 2, we will show the following statement:

For 0 < ϵ < min
(
1
4 ,

η
2 (vmax − vmin)

)
and η < (vmax − vmin)/2,

P̃n has a density f⋆n lower–bounded by
(
ηϵ
2

)n−2
µn
0 on Ωn

(u,v).
(35)

Our induction is valid while Ωn
u,v ⊂ R and Step 2 shows how to modify it when it ceases to be the case. Our

arguments become progressively more geometric, for what we find the illustration of the proof in Figure 9
helpful.

To define Ωn
(u,v), let v2 := T (0, η) = (hη, η) and for n ≥ 3,

vn = (1− ϵ) (T (0, η) + T (vn−1)) ∈ R2. (36)

For n ≥ 3, we define
Ωn

(u,v) := {Tn (u, v) + l (0, η) + kvn | l, k ∈ [−1, 1]} . (37)

Notice that if we take n = 2 in (37), we get Ω2
(u,v) from as defined in (34).

While one can obtain an explicit expression of vn, it is of little pratical interest: we only need to ensure that
the horizontal component of vn remains sufficiently large. This is detailed in the proof of Lemma E.5.

Since we have shown the statement (35) for n = 2, we proceed with the induction step. For (z1, z2) ∈
Ωn+1

(u,v) ∩R, we calculate

P̃n+1((u, v), ]−∞, z1]× [vmin, z2]) =

∫
R∩{x+yh≤z1}

P̃n((u, v), dxdy)P (y, [vmin, z2])

=

∫
R∩{x+yh≤z1}

f⋆n
(u,v)(x, y)P (y, [vmin, z2])dxdy.
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(u, v)

y = vmin

y = vmax

y = v0

y = v + 2η

y = v − 2η

Ω2
(u,v)

x
=
x
0

+
h

(2
v 0

−
η

)

T 2(u, v)

(0, η)
v2

P0 = T−1(z1, z2)

P1

P−1

Pλ

Ω3
(u,v)

T (Ω
2
(u,
v)
)

T 3(u, v)

(0, η)

v3

(z1, z2)

Figure 9: Illustration of Ωn
(u,v) for n = 2, 3 and of the segment Pλ. Our argument consists in showing that

for any (z1, z2) ∈ Ωn+1
(u,v), the length of the intersection of Pλ with Ωn

(u,v) is at least ηϵ/2. While the dark
green region is Ω3, the lighter colour shows a larger region where the lower–bound is valid.

We can rewrite R∩{x+ yh ≤ z1} = {(x, y) ∈ R | y ∈ I, x ≤ z1 − yh}. Differentiating with respect to z1,
we obtain

∂P̃n+1((u, v), ]−∞, z1]× [vmin, z2])

∂z1
=

∫
y

f⋆n
(u,v)(z1 − yh, y)P (y, [vmin, z2])dxdy,

where fv is defined in (12). For z2 ≥ vmin, we get

f⋆n+1
(u,v) (z1, z2) =

∂2P̃n+1((u, v), ]−∞, z1]× [vmin, z2])

∂z1∂z2
=

∫
I

f⋆n
(u,v)(z1 − yh, y)fy(z2)dy. (38)

The expression in (38) is similar to that from Step 2, except that it is integrated over I . We can lower–bound
the integrand: f⋆n

(u,v) is lower–bounded by
(
ηϵ
2

)n−2
µn
0 on Ωn

(u,v) for n ≥ 2 and fy by µ0 on [y−η, y+η]∩I .
To lower-bound f⋆n+1

(u,v) , it remains to lower–bound the length of the integration domain. For the calculations,
we take the following parametrisation of [z2 − η, z2 + η] ∩ I ,{

λ ∈ [−1, 1] | Pλ := P0 + λη(−h, 1) ∈ Ωn
(u,v)

}
, where P0 = T−1(z1, z2). (39)

Lemma E.5. The length of the segment (39) is at least ϵ
2 .

For the sake of readablity, we differ the proof of Lemma E.5 to Section E.2.1. Finally, going back to (38), we
have the desired lower–bound

f
⋆(n+1)
(u,v) (z1, z2) ≥

(
ηϵ
2

)n−2
µn
0 × µ0 ×

(
ηϵ
2

)
=
(
ηϵ
2

)(n+1)−2
µn+1
0 , for (z1, z2) ∈ Ωn+1

u,v .

In addition, for ϵ < 1
/(

1 + 3(vmax−vmin)
2η

)
,

(0, 1) · (vn+1 − vn) = (1− ϵ)η − ϵ(0, 1) · vn > (1− ϵ)η − ϵ(vmax − vmin) > ϵvmax−vmin

2 .

The height of Ωn
u,v grows with n, by at least a constant, positive term. Hence, it eventually reaches

vmax − vmin, in which case Ωn ∩Rc ̸= ∅.
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y = vmin

y = vmax

Ωn0−1
(u,v)

Ωn0

(u,v)

A BE D

Dλ

Ωn0

(u,v)

A B E D A B

A + (0, η(1 − ε/2))

Ω̃n0+1
(u,v)

E D

Figure 10: Illustration of Step 3 and the proof of (40). The leftmost polygon represents Ωn0−1, at the
iteration before the first non-trivial intersection occurs. The two middle parallelograms illustrate the two
cases, xE ≤ xB and xB ≤ xE respectively, from the proof of (40). On the right, the bottom part of the
polygon Ω̃n0+1 as constructed in Step 3. The dashed lines represent the integration segments, whose length
is measured by L.

Step 3 First non–empty intersection with the boundary
Let n0 := min{n ∈ N | µ(Ωn ∩ Rc) > 0}. Without loss of generality, Ωn0 extends beyond vmin. We
will now construct a region Ω̃n0+1 ⊂ R such that f⋆(n0+1)

(u,v) ≥
(
ηϵ
2

)n0−2
µn0
0 on Ω̃n0+1 and for which

Ω̃n0+1∩ (R×{vmin}) is lower–bounded. Since we can choose η arbitrarily small, we can treat the lower and
upper boundaries independently, so we focus on the construction of Ω̃n0+1

u,v on the boundary R×{vmin} first.

For P ∈ R× {vmin}, we consider Pλ as in (39), under the constraint that the integration segment lies within
R, that is, {λ ∈ [0, 1] | Pλ ∈ Ωn0}. We denote the length of this segment by L(P )

L(P ) := |{λ ∈ [−1, 1] | P + ηλ (−h, 1) ∈ Ωn0 ∩R}| ,

and we let A,B be the endpoints of Ωn0 ∩ (R× {vmin}). We rely on the following claim, whose proof is in
Section E.2.2. Figure 10 illustrates the situation.

The set {P ∈ Ωn0 ∩ R× {vmin} | L(P ) ≥ ϵ
2} is not empty. If we denote by

D = A+ (xD, 0) and E = A+ (xE , 0) its right- and left-endpoints, then for some
c0 > 0 independent of (u, v), we have

xB + c0 ≤ xD − xE .

(40)

In particular, L(P ) ≥ ϵ
2 implies that f⋆n0+1

(u,v) (P ) ≥
(
ηϵ
2

)n0−1
µn0+1
0 . By convexity of Ωn0 ∩ R, we have

L(P ) ≥ ϵ
2 for P on the segment T (E)T (D), so we can include that segment in Ω̃n0+1. As L(E) = L(P ),

where P = E + (1− ϵ/2)kη (−h, 1) , for k ∈ [0, 1], we have the same lower–bound on the density holds on
T (P ). So, we can include a segment of height η(1 − ϵ/2) above T (E) in Ω̃n0+1. Therefore, we can define
Ω̃n0+1 as the polygon with vertices T (E) + (0, η(1− ϵ/2)), T (E), T (D), Tn0+1 (u, v) − (0, η) + vn0+1

and Tn0+1 (u, v) + (0, η) + vn0+1.

We have obtained a convex pentagon Ω̃n0+1 on which P̃n0+1((u, v), ·) is lower–bounded by a measure with
density lower–bounded by

(
ηϵ
2

)n0−1
µn0+1
0 . Because T preserves lengths on horizontal cross-sections, (40)

implies that the length of T (D)T (E) is equal to that of ED, which is longer by c0 = ηh/4 than the intersec-
tion at n0.

Step 4 Induction for n > n0 + 1

Assume that Ω̃n0+1 ∩ (R × {vmax}) = ∅. As a consequence of calculations for Step 4, Ω̃n
u,v is grow-

ing upwards. Indeed, the calculations rely on Assumption (12) and the fact that vn has a horizontal com-
ponent whose length we control. Therefore, they adapt to Ω̃n

u,v , with vn being the vector from T (D) to
Tn0+1 (u, v)− (0, η) + vn0+1.
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In addition, (40) still holds. Indeed, redefine A, B, D and E, except with n0 replaced by n0 + 1 in the
expression of L. We notice that A, B coincide with T (E) and T (D) from the previous iteration. Because
AB is now of length at least c0 = hη/4, the proof is easier as we fall in the first case. We define Ω̃n0+2 as
in Step 4.

We can now iterate this procedure, obtaining a lower–bound of f⋆n
u,v by a uniform constant, on a convex and

polygonal domain Ω̃n. Crucially, both the height of Ω̃n and the length of its intersection with R × {vmin}
grow, by uniformly lower–bounded amounts.

Step 5 Intersection with both boundaries
For some n1 ∈ N, the intersection Ω̃n1

u,v ∩ (R∩{vmax}) is not trivial. By a procedure analogue to that in Step
5, we can define Ω̃n1+1, which non–trivially intersects both boundaries. Using the procedure from Step 5, it
is clear that the intersection will not only remain non–trivial with n, but also increase.

Step 6 Cross-sections with length at least 1
By definition, Ω̃n is delimited by a convex, polygonal domain. The length of any horizontal cross-section of
Ω̃n is lower–bounded by the minimum of the lengths of the intersections with the lower and upper bound-
aries1. Recall that by Step 6, these two are increasing, and this by at least hη/4 at each iteration. Hence, for
some n = nu,v , all horizontal sections of Ω̃nu,v

u,v are of length at least 1.

By construction of Ω̃n
(u,v), we have obtained a region such that for any n ≥ nu,v ,,

1. P̃n((u, v), ·) is lower–bounded by
(
ηϵ
2

)n−2
µn
0µ on Ω̃n

u,v , (µ being the Lebesgue measure)

2. {Ω̃n
(u,v) + (k, 0)}k∈Z is a cover of R.

Step 7 Uniform lower–bound
We now show that we can choose a uniform N ∈ N, such that nu,v ≤ N for all (u, v) ∈ R. Fix (u, v) ∈ R

and let Ω̄2
u,v be defined as in (33), except with η

2 instead of η. We can then perform Step 7 to Step 7, so we
obtain a domain Ω̄

n̄u,v
u,v with cross-sections of length at least 1, for some n̄u,v ≥ nu,v .

Notice that the shrinked parallelogram at n = 2 is contained in parallelograms for different initial conditions.
Specifically, we have Ω̄2

u,v ⊂ Ω2
x,y for (x, y) ∈ Cu,v , where Cu,v = T−2(Ω̄2

u,v). In particular, nx,y ≤ n̄u,v ,

for all (x, y) ∈ Cu,v . Since (
◦

Cu,v)(u,v)∈[0,1]×I is an open cover of [0, 1]×I , by compacity, we can find a finite
cover {Cuk,vk}Kk=1. Clearly, N = max1≤k≤K n̄uk,vk < ∞ gives a uniform bound on (nu,v)(u,v)∈[0,1]×I .
The bound is also valid on R × I , because the whole construction is invariant with respect to horizontal
translations.

Finally, for (u, v) ∈ R, we have that P̃N ((u, v), ·) is lower–bounded by
(
ηϵ
2

)N−2
µN
0 µ, on Ωu,v and

{Ω(u,v) + (k, 0)}k∈Z is a cover of R, where Ωu,v := Ω̃N
u,v .

Step 8 Conclusion
We can now go back to (fracγn, Vn). By lower–bounding P̃N with a uniform measure, we can use the same

1To see this, consider the parallelogram on the 4 vertices of Ω̃n which belong to the boundary. That parallelogram is
included in Ω̃n by convexity, so the lengths of the horizontal sections between the length of both bases.
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arguments as in Section E.1 to conclude. For A ∈ B([0, 1]× I), we have

frac⋆P̃
N ((u, v), A) = P̃N ((u, v), frac−1(A))

≥ P̃N ((u, v), frac−1(A) ∩ Ω(u,v))

≥ Cµ(frac−1(A) ∩ Ω(u,v)) (minorating on Ω(u,v))

= Cµ(∪k∈ZA+ (k, 0) ∩ Ω(u,v)) ({A+ (k, 0)}k disjoint)

= C
∑
k∈Z

µ(A+ (k, 0) ∩ Ω(u,v))

= C
∑
k∈Z

µ(A ∩ (Ω(u,v) − (k, 0))) (µ translation–invariant)

≥ Cµ(∪k∈ZA ∩ (Ω(u,v) − (k, 0)))

= Cµ(A) ({Ω(u,v) + (k, 0)}k∈Z is a cover of R),

where C = Cη,ϵ,µ0,N :=
(
ηϵ
2

)N−2
µN
0 . The lower–bound is uniform in (u, v) and also shows that the

measure is non-trivial. We conclude the proof of Proposition E.1 by applying Theorem E.2.

E.2.1 Proof of Lemma E.5

We recall that for some l, k ∈ [−1, 1],

(z1, z2) = Tn+1 (u, v) + l (0, η) + kvn,

where vn is given in (36), so

Pλ := T−1 (z1, z2 + λη) = Tn (u, v) + η(l + λ) (−h, 1) + k(1− ϵ) ((0, η) + vn) . (41)

For a parallelogram Ω generated by vectors x, y and centered around the origin, we have

P ∈ Ω ⇐⇒
{

xT y⊥ ≤ PT y⊥ ≤ −xT y⊥

−yTx⊥ ≤ PTx⊥ ≤ yTx⊥,
(42)

where (x1, x2)
⊥ = (x2,−x1). Combining (41) with (42), we have that Pλ ∈ Ωn

(u,v) if and only if{
η(0, 1) · v⊥n ≤ η(l + λ)(−h, 1) · v⊥n + k(1− ϵ)

(
η(0, 1) · v⊥n + vn · v⊥n

)
≤ −η(0, 1) · v⊥n

−ηvn · (0, 1)⊥ ≤ η2(l + λ)(−h, 1) · (0, 1)⊥ + k(1− ϵ)
(
η2(0, 1) · (0, 1)⊥ + ηvn · (0, 1)⊥

)
≤ ηvn · (0, 1)⊥

⇐⇒
{

(1, 0) · vn(−1 + k(1− ϵ)) ≤ −(l + λ)(1, h) · vn ≤ (1, 0) · vn(1 + k(1− ϵ))

vn · (1, 0)(−1− k(1− ϵ)) ≤ (−hη)(l + λ) ≤ vn · (1, 0)(1− k(1− ϵ)).

As (1, h) · vn > 0 and denoting

an :=
1

hη
(1, 0) · vn, bn := 1− (0, h) · vn

(1, h) · vn
,

we have

Pλ ∈ Ωn ⇐⇒
{

bn(−1− k(1− ϵ))− l ≤ λ ≤ bn(1− k(1− ϵ))− l

an(−1 + k(1− ϵ))− l ≤ λ ≤ an(1 + k(1− ϵ))− l.

Finally, taking into account that λ ∈ [−1, 1], we obtain that

λ ∈ [max(−1, bn(−1−k(1−ϵ))−l, an(−1+k(1−ϵ))−l),min(1, bn(1−k(1−ϵ))−l, an(1+k(1−ϵ))−l)],

which is of length

min(1, bn(1− k(1− ϵ))− l, an(1 + k(1− ϵ))− l)+

+min(1, bn(1 + k(1− ϵ)) + l, an(1− k(1− ϵ)) + l) =

= min(2min(1, an, bn), (an + bn)(1− k(1− ϵ)), 1 + bn(1 + k(1− ϵ)) + l,

1 + an(1− k(1− ϵ)) + l, 1 + bn(1− k(1− ϵ))− l, 1 + an(1 + k(1− ϵ)− l)
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We claim that for n ≥ 2,

an ≥ 1, bn ≥ 1

2
. (43)

Combining (43) with l, k ∈ [−1, 1], 0 < ϵ ≤ 1
2 , we conclude that the length of (39) is at least ϵ

2 .

It remains to show (43). For an, we proceed by induction. Using v2 = T (0, η) for n = 2 and v3 =

(1 − ϵ)η (3h, 2), we verify that a2, a3 ≥ 1. Notice that (T (x, y)) · (1, 0) = ((x, y) + (yh, 0)) · (1, 0) =

(x, y) · (1, h). Then,

vn+1 · (1, 0) = (1− ϵ)(T (0, η) + T (vn)) · (1, 0) = (1− ϵ) [hη + vn · (1, h)] .

Using the induction hypothesis, vn · (1, 0) ≥ hη combined with vn · (0, h) ≥ 0,

vn+1 · (1, 0) ≥ 2hη(1− ϵ) ≥ hη,

since ϵ ≤ 1
2 .

For bn, we can calculate directly b2 = hη
hη+hη = 1

2 . For n ≥ 3, we can express vn using (36), so that

(1, 0) · vn
(1, h) · vn

=
(1, 0) · (T (0, η) + T (vn−1))

(1, h) · (T (0, η) + T (vn−1))

=
hη + (1, 0) · T (vn−1)

2hη + (1, h) · T (vn−1)

=
1

2
+

1

2

((1, 0)− (0, h)) · T (vn−1)

2hη + (1, h) · T (vn−1)

≥1

2
,

where the last inequality follows from

((1, 0)− (0, h)) · T (vn−1) = (1, 0) · vn−1 + (0, h) · vn−1 − (0, h) · vn−1 ≥ 0.

E.2.2 Proof of (40)

Notice first that L(A) = 0 and L(P ) = 0 for any P ∈ R × {vmin} to the left of A, so that 0 ≤ xB , xD, xE .
Second, consider P = A+

(
xB + (1− ϵ/2)ηh 1

1−b , 0
)

. As L(P ) = ϵ
2 , we have that {P | L(P ) ≥ ϵ

2} ≠ ∅,

so D and E exist. In addition, we know that xD ≥ xB + (1 − ϵ/2)ηh 1
1−b . In particular, b ≤ 1 implies that

xB < xD.

Since A ∈ Ωn0
u,v , we can write A = Tn0 (u, v) + lAη (0, η) − vn0

. By definition, n0 is the first time such
that Ωn

0 ∩ Rc has non-trivial measure, so, using the relation between Ωn0−1 and Ωn0 , we can conclude that
lA ≤ 0 ≤ 1− ϵ/2.

We distinguish two cases, depending which one of ηϵh/2 or xB is greater. First, if ηhϵ/2 ≤ xB , then
xE = ηhϵ/2. Indeed, the triangle formed by A, E and A+(0, ηϵ/2) is in Ωn0 , so L (A+ (ηhϵ/2, 0)) ≥ ϵ/2.
Therefore,

xD − xE ≥ xB + (1− ϵ
2 )ηh

1
1−b − ηh ϵ

2

≥ xB + ηh(2(1− ϵ
2 )− ϵ

2 )

≥ xB + 5
4ηh,

where in the last two inequalities, we have use that 1
2 ≤ b and ϵ ≤ 1

2 .

Next, if xB < ηhϵ/2, then ηhϵ/2 ≤ xE . So, for x ≤ ηh,

L (A+ (x, 0)) =
1

ηh

(
x− (0,h)·vn

(1,h)·vn (x− xB)+

)
=

1

ηh
(xb− xB(1− b)). (44)
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Notice that L (A+ (ηh, 0)) ≥ ϵ
2 for ϵ ≤ 2

5 small enough,

L (A+ (ηh, 0))− ϵ

2
=

1

ηh
(ηhb− xB(1− b))− ϵ

2

= b− (1− b)
xB

ηh
− ϵ

2

≥ b− (1− b)
ϵ

2
− ϵ

2

= b
(
1 +

ϵ

2

)
− 3

2
ϵ

≥ 1

2

(
1− 5

2
ϵ

)
,

so xE ≤ ηh. Using (44), we find that xE = 1
b (ηhϵ/2 + xB(1− b)). Finally,

xD − xE − xB = xB

(
1− 1−b

b

)
+ ηh 1−ϵ/2

1−b − 1
bηhϵ/2− ηh ϵ

2

= xB(2− 1
b ) + ηh

(
1

1−b +
ϵ
2 (

1
b − 1

1−b )
)
− ηh ϵ

2

= xB(2− 1
b ) +

ηh
1−b

(
1− ϵ

b (b− 1
2 ))
)
− ηh ϵ

2 .

Since 1
2 ≤ b ≤ 1, we have b−1/2

b ≤ 1 and 1
1−b ≥ 2, so that

xD − xE − xB ≥ 2(1− ϵ)ηh− ηhϵ/2 ≥ ηh(1− 3
2ϵ).

Combining the two cases with ϵ < 1
2 , we conclude that

xD − xE ≥ xB + ηhmin
((
1− ϵ

2

)
, 5
4

)
≥ xB + 1

4ηh.

F Mixing-preserving operations: mixing coefficients of (Xn)n∈N

Proposition F.1. Let Xn be as in(13). For any k ∈ N,

βX(k +M − 1) ≤ βS(k) ≤ βfrac(γ)(k) + βW (k).

The proposition is a consequence of Lemmata F.2 and F.3, combined with the fact that ϕ is continuous, so
βϕ(γ)(k) ≤ βfrac(γ)(k). The proofs of the lemmata essentially consist in manipulating the definitions.

Lemma F.2. For two random variables U : (ΩU , σ
U ) → R, V : (ΩV , σ

V ) → R with
(βU (k))k∈N, (βV (k))k∈N ∈ ℓ1 summable, we have βU+V (k) ≤ βU (k) + βV (k). If U and V are defined
on the same probability space, but are independent, the same holds true.

Proof. Define Z := U + V . Then, Z is (ΩZ , σ
Z)-measurable, where ΩZ = ΩU × ΩV and σZ = σU ⊗ σV .

As σZ is generated by products of elements from σU and σV , we only need to consider (countable) partitions
AU ,BU and AV ,BV of σU

−∞,0, σ
U
k,∞ and σV

−∞,0, σ
V
k,∞ respectively. For any AU ∈ AU , AV ∈ AV and

BU ∈ BU , BV ∈ BV , by definition of the product probability measure,

P ((AU×AV ) ∩ (BU ×BV ))−P (AU×AV )P (BU×BV ) = (PU (AU ∩BU )−PU (AU )PU (BU ))PV (AV ∩BV )

+PU (AU )PU (BU )(PV (AV ∩BV )−PV (AV )PV (BV )).
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Since βU is is summable,
∑

AU ,BU
|PU (AU ∩ BU ) − PU (AU )PU (BU )| < ∞ (idem for V ), so we can

regroup terms and∑
AU∈AU ,AV ∈AV ,
BU∈BU ,BV ∈BV

P ((AU×AV ) ∩ (BU×BV ))− P (AU×AV )P (BU×BV )=
∑

AU∈AU ,
BU∈BU

(PU (AU ∩BU )−PU (AU )PU (BU ))

× ∑
AV ∈AV ,
BV ∈BV

PV (AV ∩BV ) (= 1)

+
∑

AU∈AU ,
BU∈BU

PU (AU )PU (BU ) (= 1)

× ∑
AV ∈AV ,
BV ∈BV

(PV (AV ∩BV )−PV (AV )PV (BV ))

≤ βU (k) + βV (k).

We conclude by taking the sup over partitions of ΩZ .

Lemma F.3. Consider S = (Si)i∈N with coefficients βS(k) and define Xn = (Sn, . . . , Sn+M−1). Then,

βX(k +M − 1) ≤ βS(k).

Proof. First, note that the σ-algebra generated by a vector coincides with the σ-algebra generated by its
components

σ(Xn1
, . . . Xn2

) = σ((Sn1
, . . . , Sn1+M−1), . . . , (Sn2

, . . . , Sn2+M−1))

= σ(Sn1
, . . . , Sn2+M−1)

= σS
n1,n2+M−1.

Then, any partition A ⊂ σX
n1,n2

is also in σS
n1,n2+M−1. Since βX is defined as a sup over such partitions,

βX(k + M − 1) ≤ βS(k). For k ≤ M , we can take A = B ⊂ σ(Sk). Since Sk is a continuous random
variable, βX(k) = 1.

G Gaussian approximation for dependent data

Theorem G.1 ([Kosorok, 2008, Theorem 11.22]). Let (Xn)n∈N ⊂ Rd be a stationary sequence and consider
a functional family F = (Ft)t∈T with finite bracketing entropy. Suppose there exists r ∈]2,∞[, such that

∞∑
k=1

k
2

r−2 βX(k) < ∞, (45)

Then,
√
N(F̂t − Ft) converges to a tight, zero–mean Gaussian Gd process with covariance (15).

Theorem G.2 ([Bühlmann, 1995, Theorem1]). Let (Xn)n∈N ⊂ Rd be a stationary sequence and consider
a functional family F = (Ft)t∈T with finite bracketing entropy. Suppose that βX(k) −−−−→

k→∞
0 decrease

exponentially and that F satisfies (19,21). Let the bootstrap sample be generated with the Moving Block
Bootstrap, where the block size L(n) satisfying L(n) → ∞ and L(n) = O(n1/2−ϵ) for some 0 < ϵ < 1

2 .
Then, √

N(F̂ ∗
N − E∗[F̂ ∗

N ]) →∗ Gd in probability,

where Gd is the zero-mean Gaussian Process with the covariance (15).

H Proofs of Propositions 4.4 and 4.5

Proof of Proposition 4.4. We first note that when Ah ≤ ϵ, then perspp,ϵ(h) = 0. For the non-trivial case, we
follow the proof of Theorem 4.13 in [Perez, 2022]. An upper-bound of the covering number of the image of
h, at radius τ > 0 is T (2Λ/τ)1/α + 1, so that

perspp,ϵ(h) ≤ p

∫ A(f)

ϵ

(
T

(
2Λ

τ

)1/α

+ 1

)
(τ − ϵ)p−1dτ = (Ah − ϵ)p + pT (2Λ)1/α

∫ A(f)

ϵ

(τ − ϵ)p−1

τ1/α
dτ
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We recall that since Ah

τ ≥ 1 and 1
α ≤ p− 1, (Ah

τ )1/α ≤ (Ah

τ )p−1, so

(τ − ϵ)p−1

τ1/α
=

1

A
1/α
h

(
Ah

τ

)1/α

(τ − ϵ)p−1 ≤ A
p−1−1/α
h

(
1− ϵ

τ

)p−1

.

Finally, by recognizing that 1− ϵ/τ ≤ 1− ϵ/Ah, we obtain

perspp,ϵ(h) ≤ (Ah − ϵ)p + pT (2Λ)1/αA
p−1−1/α
h (1− ϵ/Ah)

p−1(Ah − ϵ)

≤ (Ah − ϵ)(1− ϵ/Ah)
p−1[Ap−1

h + pT (2Λ)1/αA
p−1−1/α
h ]

≤ (Ah − ϵ)p
(
1 + pT

(
2Λ
Ah

)1/α)
≤ (Ah − ϵ)p

(
1 + pT

(
2Λ
ϵ

)1/α)
,

where we have used that ϵ1/α ≤ A
1/α
h

By Hölder continuity, Ah ≤ TαΛ, so the ratio TΛ1/α

A
1/α
h

≥ 1 denotes how small the amplitude of h is relative to

what it could be, under the Hölder assumption. Interestingly, that term increases as Ah gets smaller, but the
whole bound is indeed increasing in Ah, which is of the order of Ap

h +A
2−1/α
h .

Proof of Proposition 4.5. Let f, g ∈ C([0, T ]) such that ∥f − g∥∞ < ϵ/4. Let Γ : D(f) → D(g) be a
matching. Recall that |wϵ(b, d)− wϵ(ηb, ηd)| ≤ |b− ηb|+ |d− ηd| ≤ 2∥(b, d)− (ηb, ηd)∥∞. In addition, if
d− b < ϵ/2, then both wϵ(b, d) = 0 = wϵ(Γ(b, d)). Using the bound on the difference of p-powers as in the
proof of Proposition 4.3,∣∣∣∣∣∣
∑

(b,d)∈D(f)

wϵ(b, d)
p −

∑
(b′,d′)∈D(g)

wϵ(b
′, d′)p

∣∣∣∣∣∣ ≤ p
∑

(b,d)∈D(f)

|wϵ(b, d)− wϵ(Γ(b, d))|max{wϵ(b, d)
p−1, wϵ(Γ(b, d))

p−1}

≤ 2p∥f − g∥∞
∑

(b,d)∈D(f)
d−b≥ϵ/2

max{wϵ(b, d)
p−1, wϵ(Γ(b, d))

p−1}

≤ p

 ∑
(b,d)∈D(f)
d−b≥ϵ/2

(wϵ(b, d) + 2ϵ/4)p−1

 ∥f − g∥∞.

Since f is continuous on a compact domain, it is uniformly continuous, so the right-hand side is finite and
depends only on f .

For the Lipschitz character, we follow the proof of [Perez, 2022, Lemma 3.20]. For f, g ∈ Cα
Λ([0, T ]),∣∣∣∣∣∣

∑
(b,d)∈D(f)

wϵ(b, d)
p −

∑
(b′,d′)∈D(g)

wϵ(b
′, d′)p

∣∣∣∣∣∣ ≤ p
∑

(b,d)∈D(f)

|wϵ(b, d)− wϵ(Γ(b, d))|max{wϵ(b, d)
p−1, wϵ(Γ(b, d))

p−1}

≤ 2p∥f − g∥∞

 ∑
(b,d)∈D(f)

wϵ(b, d)
p−1 +

∑
(b′,d′)∈D(g)

wϵ(b
′, d′)p−1


= 2p(persp−1

p−1,ϵ(D(f)) + persp−1
p−1,ϵ(D(g))∥f − g∥∞.

By Lemma 4.4, persp−1
p−1,ϵ(D(f)) ≤ 21/α

1−1/(p−1)αΛ
p−1T (p−1)α−1, so that

|perspp,ϵ(D(f))− perspp,ϵ(D(g))| ≤ 22+1/α

1− 1/(p− 1)α
Λp−1T (p−1)α−1∥f − g∥∞.
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I Lipschitz constant for kpi and kpi,t

First, (x, y) 7→ exp(−(x2 + y2)) is 2
√
2

e −Lipschitz with respect to the Euclidean norm,
so 4

e−Lipschitz for the Minkowski norm. Let us now consider kpi,t(b, d)(x, y) =

1
2πσ2

(
2− ∥(b,d)−(x,y)∥∞

σ

)r
+
exp

(
− (b−x)2+(d−y)2

2σ2

)
. Then, for r > 1,∣∣∣∣(2− ∥(b,d)−(x,y)∥∞

σ

)r
+
−
(
2− ∥(b′,d′)−(x,y)∥∞

σ

)r
+

∣∣∣∣ = ∣∣∣∣∫ 1

0

d
dt

(
2− ∥(b,d)+(b′−b,d′−d)t−(x,y)∥∞

σ

)r
+
dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣r (2− |b+(b′−b)t−x|
σ

)r−1

+
(−1)b−x>b′−bt (b

′−b)
σ 1|b+(b′−b)t−x|≥|d+(d−d′)t−y|

+ r
(
2− |d+(d′−d)t−y|

σ

)r−1

+
(−1)d−y>d′−dt (d

′−d)
σ 1|b+(b′−b)t−x|≤|d+(d−d′)t−y|

∣∣∣∣ dt.
≤
∫ 1

0

r
σ

((
2− |b+(b′−b)t−x|

σ

)r−1

+
|b− b′|+ r

(
2− |d+(d′−d)t−y|

σ

)r−1

+
|d− d′|

)
dt

≤ r
σ

(
(2− min(|b−x|,|b′−x|)

σ )r−1
+ |b− b′|+ r(2− min(|d−y|,|d′−y|)

σ )r−1
+ |d− d′|

)
≤ 2r

σ (2− min(∥(b,d)−(x,y)∥∞,∥(b′,d′)−(x,y)∥∞)
σ )r−1

+ ∥(b, d)− (b′, d′)∥∞
≤ 2rr

σ ∥(b, d)− (b′, d′)∥∞.

Then, we obtain

|kpi,t(b, d)(x, y)− kpi,t(b′, d′)(x, y)| ≤ 1
2πσ2

∣∣∣∣(2− ∥(b,d)−(x,y)∥∞
σ

)r
+
−
(
2− ∥(b′,d′)−(x,y)∥∞

σ

)r
+

∣∣∣∣ exp(− (b−x)2+(d−y)2

2σ2

)
+ 1

2πσ2

(
2− ∥(b′,d′)−(x,y)∥∞

σ

)r
+

∣∣∣exp(− (b−x)2+(d−y)2

2σ2

)
− exp

(
− (b′−x)2+(d′−y)2

2σ2

)∣∣∣
≤ 1

2πσ2
2rr
σ ∥(b, d)− (b′, d′)∥∞ + 1

2πσ2 2
r 4
e

∥∥∥( b−x
σ , d−y

σ

)
−
(

b′−x
σ , d′−y

σ

)∥∥∥
∞

≤ 2r−1

πσ3 (r + 2) ∥(b, d)− (b′d′)∥∞.

J Moments of the Hölder constant of a stochastic process

Let (Wt)t∈[0,T ] be a stochastic process. A path t 7→ Wt(ω) is said to be α-Hölder if |Wt(ω) − Ws(ω)| ≤
ΛW (ω)|s − t|α, for any s, t ∈ [0, T ]. Many processes, for example Gaussian processes, do not admit a
uniform constant. Based on [Azäis and Wschebor, 2009, Hu and Le, 2013, Shevchenko, 2017], we will now
give a condition under which ΛW,ω is a random variable and we will calculate its moments.

Proposition J.1 ([Azäis and Wschebor, 2009, Proposition 1.11]). Suppose W satisfies (9) with Kr2,r1 and
let α ∈]0, r1

r2
[. Then, there exists a version (Vt)t∈[0,1] of W and a random variable ΛV,α > 0, such that, for

all s, t ∈ [0, 1],
P (|Vt − Vs| ≤ ΛV,α|t− s|α) = 1 and P (W (t) = V (t)) = 1.

Theorem J.2 ([Shevchenko, 2017]). Let r2 ∈ N be such that Kr2,αr2 < ∞ and 1− α > 1
r2

, r2 ≥ 2,

E[ΛW ] ≤ 16 α+1
α TK

1/r2
r2,r2α+1.

In addition,

E[Λk
W ] ≤


(
23+2/r2 α+2/r2

α

)k
K

k/r2
r2,r2α+1, for 0 < k ≤ r2,(

23+2/r2 α+2/r2
α

)k
Kk,k(α+2/r2)−1, for k > r2.

Lemma J.3 (Garsia–Rodemich–Rumsey Inequality [Hu and Le, 2013, Lemma 1.1]). Let G : R+ → R+ be
a non–decreasing function with limx→∞ G(x) = ∞ and δ : [0, T ] → [0, T ] continuous and non–decreasing
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with δ(0) = 0. Let G−1 and δ−1 be lower–inverses. Let f : [0, T ] → R be a continuous functions such that∫ T

0

∫ T

0

G

( |f(x)− f(y)|
δ(x− y)

)
dxdy ≤ B < ∞.

Then, for any s, t ∈ [0, T ],

|f(s)− f(t)| ≤ 8

∫ |s−t|

0

G−1(4B/u2)dδ(u).

Proof of Theorem J.2. Consider a path W (ω) of the stochastic process and set
B(ω) :=

∫ T

0

∫ T

0
G
(

|Wt(ω)Ws(ω)|
δ(t−s)

)
dtds, where G(u) = ur2 and δ(u) = uα+2/r2 . Then, G−1(u) = u1/r2

and d
duδ = (α+ 2/r2)u

α+2/r2−1. Applying Lemma J.3,

|Wt(ω)−Ws(ω)| ≤ 8

∫ |s−t|

0

G−1(4B(ω)/u2)dδ(u)

≤ 8

∫ |t−s|

0

(
4B(ω)

u2

)1/r2

(α+ 2/p)uα+2/r2−1du

≤ 8(4B(ω))1/r2(α+ 2/r2)

∫ |t−s|

0

uα−1du

= 8(4B(ω))1/r2 α+2/r2
α |t− s|α.

As this is valid for any s, t ∈ [0, T ], ΛW (ω) ≤ 8(4B(ω))1/r2 α+2/r2
α . By Jensens’ inequality,

E[ΛW ] ≤ 23+2/r2 α+2/r2
α E[B(ω)1/r2 ] ≤ 23+2/r2 α+2/r2

α E[B(ω)]1/r2 . (46)

By linearity of expectation,

E

[∫ T

0

∫ T

0

G

( |Wt(ω)Ws(ω)|
δ(t− s)

)
dtds

]
=

∫ T

0

∫ T

0

E[|Wt(ω)Ws(ω)|r2 ]
δ(t− s)r2

dtds

=

∫ T

0

∫ T

0

E[|Wt(ω)Ws(ω)|r2 ]
|t− s|pα+2

dtds

≤
∫ T

0

∫ T

0

Kp,pα+1dtds

= T 2Kr2,r2α+1.

Finally, E[ΛW ] ≤ 23+2/r2 α+2/r2
α T 2/r2K

1/r2
r2,r2α+1, as long as r2α+1 ≤ r2 and we can simplify the constants

if r2 > 2. Consider now the higher moments. If k ≤ r2, we can still apply Jensens’ inequality in (46):

E[Λk
W ] ≤

(
23+2/r2 α+2/r2

α

)r2
E[B(ω)k/r2 ] ≤

(
23+2/r2 α+2/r2

α

)k
E[B(ω)]k/r2 ≤

(
23+2/r2 α+2/r2

α

)k
K

k/r2
r2,r2α+1.

However, if k ≥ r2,

E

(∫ T

0

∫ T

0

G

( |Wt(ω)Ws(ω)|
δ(t− s)

)
dtds

)k/r2
 =

∫ T

0

∫ T

0

E[|Wt(ω)Ws(ω)|k]
δ(t− s)k

dtds

=

∫ T

0

∫ T

0

E[|Wt(ω)Ws(ω)|k]
|t− s|kα+2k/r2

dtds

≤
∫ T

0

∫ T

0

Kk,k(α+2/r2)−1dtds

= T 2Kk,k(α+2/r2)−1.
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