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1 Introduction
Nowadays, the Internet of Things (IoT) crosses Deep Neural Network (DNN) inference in

various intelligent applications such as those related to Industry 4.0. Constructing DNNs to run
in real-time on resource-constrained devices is one challenging problem that can be addressed
using two main strategies. The first is offloading DNN layers from resource-constrained devices
to a powerful server to alleviate inference time [8]. The second is splitting DNNs, which aims to
select a set of layers to run locally, yielding the lowest possible inference time [3]. The complete
survey answers 5 questions and considers 46 papers. In this version, we limit the content to
the following questions :

— Q1 : Are small DNNs optimal enough to run in The Edge without DNN offloading being
required ?

— Q2 : What are the used algorithms for DNN splitting and Offloading ?
— Q3 : What are DNN splitting and offloading open issues ?

2 Trade-off Between DNN Inference Speed and Precision
To answer the first question (Q1), we viewed the performances of state-of-the-art Neural

Networks in the field of object detection. We also selected MS COCO data set to train DNNs
running over Raspberry devices because this data set contains many objects linked to industry
4.0, especially electronic devices. We found an accurate DNN model Faster RCNN Inception
v2 proposed in [8]. The mean Average Precision (mAP) has reached up to 97%, however, it
is rather slow with only 0.08 frames per second (FPS). Another work [5] proposes a DNN
known as MobileNet-Tiny, which is relatively faster (4.5 FPS) but less accurate (19.4 % mAP).
Therefore, it can be noted that the more accurate the models, the slower they are and vice
versa. Therefore, offloading DNNs to a powerful server is very beneficial.
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FIG. 1 – The first two DNN layers run on the Edge, and the last three layers run on the server.

3 DNN Splitting and Offloading Algorithms

This section aims to answer the second question (Q2). After a thorough study of different
DNN distribution algorithms in IoT environment, we classified them as follows :

3.1 Algorithms that determine DNN splitting points

In these algorithms, DNNs are split in two parts : one that runs locally and the other is
offloaded to the Cloud server as shown in Figure 1. Among these binary distribution algorithms,
there is [1]. The authors represented DNNs in form of a direct acyclic graph, and used the
Minimum-cut technique to find a fast splitting point. They were able to enhance latency up by
8.08 times. Another related paper is [3], in which the authors proposed the allocation of DNN
over Edge devices and Cloud in form of a latency-minimum allocation problem. An algorithm
was designed to solve the problem in a polynomial time based on testes over collected data
about the latency between nodes and the computation time of DNN segments on each device.
Concerning interpretability, the chosen splitting point could affect the outputs of DNN layers
because edge and server DNN parts are generally linked with an auto-encoder. The latter
should be implemented right after the layer which contains the maximum density of neurons
with a high gradient respecting the right class decision to keep the information flowing up to
that point [2].

3.2 Algorithms that compress Edge layers.

After dividing the DNN into different parts, there are several works that attempt to com-
press layers running on resource-constricted devices, like using early-exit [6]. After conducting
numerous experiments with different Edge devices and network bandwidths, they were able to
improve processing time by 70 % demonstrating that the more powerful the Edge device is,
the higher the chances are to accelerate the inference time.

Another important work [4] compresses the Edge layers using knowledge distillation, as
well as compression of intermediate-data sent to the server using Auto-Encoder demonstrating
that the optimal cutting layer varies depending on memory and bandwidth constraints. The
intermediate data compressed by the Auto-Encoder are supported by rather small bandwidths.
Also, Edge model’s memory size could be divided by 2 by implementing knowledge distillation
for VGG16 and by 7 for MobileNetV1 models.

3.3 Algorithms concerned with loss tolerance.

It’s commonplace that the nature of IoT makes it vulnerable to hardware failure and network
packets loss. In most algorithms, if there had been any kind of loss, we have to resend or
reoffload the weights from clients to servers, which make such algorithms rather slow in terms of
inference time. However, in the case of DNN distribution, there are other methods that permit



facing losses without the need for data re-transmission, such as the Dropout and Residual
Connections. The Dropout technique is defined as temporarily disabling some neurons in the
network, as well as all its incoming and outgoing connections. This paper [7] used Dropout
technique in neural networks so as to simulate packets loss in the physical network by disabling
certain neurons and train the DNN to maintain accuracy despite some neurons being disabled.

4 Open Issues
To provide an answer to the third question (Q3), this section summarizes the future works

mentioned in the previously discussed algorithms, as well as the challenges encountered. The
open issues can be summarized in the following points :

— The need for dynamic solutions in which the distribution varies depending on the available
processing and transmission resources [4][3].

— The lack of model parallelism to accelerate inference time for the algorithms that re-
present DNNs in the form of direct acyclic graphs [1].

— Balancing the accuracy and latency for compression algorithms [6].
— The lack of algorithms for DNN distribution over large- scale IoT environment and mobile

devices [4].

5 Conclusion
In this survey, we proposed an answer to various questions in the field of DNN splitting

and offloading. We demonstrated that the accurate model barely runs in non-GPU Edge de-
vices. Then, we classified and discussed the algorithms used to distribute DNN. We concluded
this work by mentioning open issues and solutions to reinforce splitting algorithms. The com-
plete version will consider other questions and hence will include more articles with additional
information.

References
[1] C.Hu et al. Dynamic adaptive dnn surgery for inference acceleration on the edge. In IEEE

INFOCOM 2019-IEEE Conference on Computer Communications, pages 1423–1431. IEEE,
2019.

[2] F.Cunico et al. I-split : Deep network interpretability for split computing. In 2022 26th
International Conference on Pattern Recognition (ICPR), pages 2575–2581. IEEE, 2022.

[3] L.Hu et al. Coedge : Exploiting the edge-cloud collaboration for faster deep learning. IEEE
Access, 8 :100533–100541, 2020.

[4] M.Sbai et al. Cut, distil and encode (cde) : Split cloud-edge deep inference. In 2021
18th Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON), pages 1–9. IEEE, 2021.

[5] NS.Sanjay et al. Mobilenet-tiny : A deep neural network-based real-time object detection
for rasberry pi. In 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA), pages 647–652. IEEE, 2019.

[6] RG.Pacheco et al. Inference time optimization using branchynet partitioning. In 2020
IEEE Symposium on Computers and Communications (ISCC), pages 1–6. IEEE, 2020.

[7] S.Itahara et al. Packet-loss-tolerant split inference for delay-sensitive deep learning in lossy
wireless networks. In 2021 IEEE Global Communications Conference (GLOBECOM), pages
1–6. IEEE, 2021.

[8] XK.Dang et al. Applying convolutional neural networks for limited-memory application.
TELKOMNIKA (Telecommunication Computing Electronics and Control), 19(1) :244–251,
2020.


	Introduction
	Trade-off Between DNN Inference Speed and Precision
	DNN Splitting and Offloading Algorithms
	 Algorithms that determine DNN splitting points 
	Algorithms that compress Edge layers.
	Algorithms concerned with loss tolerance.

	Open Issues
	Conclusion

