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Abstract 
In discovery proteomics, as well as many other “omic” approaches, the possibility to test for the 
differential abundance of hundreds (or of thousands) of features simultaneously is appealing, despite 
requiring specific statistical safeguards, among which controlling for the False Discovery Rate (FDR) 
has become standard. Moreover, when more than two biological conditions or group treatments are 
considered, it has become customary to rely on the one-way Analysis of Variance (ANOVA) 
framework, where a first global differential abundance landscape provided by an omnibus test can 
be subsequently refined using various post-hoc tests. However, the interactions between the FDR 
control procedures and the post-hoc tests are complex, because both correspond to different types 
of multiple test corrections. This article surveys various ways to orchestrate them in a data 
processing workflow and discusses their pros and cons. 
 
Keywords: Quantitative proteomics; Data processing; Biomarker discovery; One way Analysis of 
Variance (OW-ANOVA); False Discovery Rate (FDR); Post-Hoc Tests (PHTs). 

1. Introduction 
In its most general form, the biomarker selection problem amounts to select some features that can 
be significantly associated to a difference of biological status, with the objective to subsequently 
refine decision making (diagnostic, prognostic, patient follow up, etc.).  One of the most widespread 
and efficient ways to achieve biomarker selection is to perform a series of statistical tests (one for 
each feature available) and to retain those few that pass a user-defined significance threshold. This 
conceptual simplicity makes the procedure easily automatable, even though, on large omics data, 
two obstacles may raise questions and hinder the interpretation of the resulting biomarkers. 

The first obstacle derives from the increase of instrumental throughputs: Many omics technologies 
provide quantitative measurements about thousands of features for each sample analyzed. From a 
biological perspective, this near exhaustiveness is a bliss, however, it also increases the chances that, 
for some of the putative biomarkers, random fluctuations concur with the change of biological 
status, hereby leading to artefactual significances; and thus to misleading biomarkers (a.k.a., false 
positives, a.k.a., false discoveries). To cope for this, it has become standard to control for the so-
called False Discovery Rate (or FDR). FDR control procedures form a class of Multiple Test Corrections 
(MTCs), which aims at adjusting the significance value used to retain putative biomarkers as a 
function of the total number of measured features (see [1] for a proteomics oriented tutorial on FDR 
and related statistical notions). Therefore, in the end, the increment of omics measurement does not 
lead to an increment of false discoveries. Unfortunately, the theory underlying FDR control is not 
trivial and its correct application to biomarker selection remains at the center of an ever-renewed 
body of literature [2][3][4][5][6][7][8]. 

The second obstacle derives from the increasing complexity of the biological questions, and more 
specifically, from the increasing complexity of the associated experimental designs. In its simplest 
form, one seeks for biomarkers discriminating between two biological conditions, e.g., Healthy vs. 
Disease (in a clinical context), or Wild-type vs. Mutant (in a fundamental research context), e.g., 
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[9][10]. However, more refined experimental designs are increasingly popular: Multiple comparisons 
(e.g., [9][11]), time-course (e.g., [12], which should not be confused with longitudinal analyses, for 
which specific temporal models are used [13]), strata (e.g., [14], where samples belong to patients 
with different degrees of illness, etc.), or multi-factorial designs (involving for instance a combination 
of severity, treatment and responsiveness, like in [12][15]).  All these experimental designs share the 
need to compare     biological conditions. While an important corpus of applied statistic articles 
is dedicated to this subject, the most well-known statistical framework to address such experimental 
designs is that of the analysis of variance (or ANOVA). The reason for the popularity of ANOVA is 
twofold [16][17]: first, it is general enough to fit a variety of experimental designs; second, it 
generalizes the well-known t-test in an intuitive way making its interpretation easier. However, 
beyond this superficial simplicity, some technical difficulties appear, notably when Post-Hoc Tests 
(PHTs, see Section 2.3) are involved in the ANOVA. 

If one depicts a dataset as a table where the rows correspond to the features (the putative 
biomarkers) and the columns correspond to the samples; then our first obstacle relates to the 
increment of the number of rows, while the second obstacle relates to the increasingly complex 
structure that binds the columns together. As previously mentioned, many solutions were proposed 
to each obstacle taken independently, among which FDR control (for the first obstacle) and ANOVA 
(for the second one) have been the preferred ones. Unfortunately, the combined application of FDR 
control and ANOVA is intricate as PHTs include a form of MTC that relates to the number of 
compared biological conditions. Broadly speaking, an FDR control amounts to a column-wise MTC, 
while a PHT amounts to a row-wise one. It is thus essential to orchestrate them in a manner that 
remains statistically rigorous and biologically relevant. This article reviews various ways to do so in a 
proteomics context (yet, its conclusions can easily be transposed to other omics settings).  

2. Preliminary considerations 
2.1. False discovery control in proteomic differential analyses 

Because of the important inter-individual variance of the proteome, but also because of the 
classically small number of available assays, it is expected that at least a few proteins displaying 
differential abundance in the experiment do not convey any biological meaning (these proteins are 
the false positives of the biomarker selection process). Their precise proportion among the 
biomarkers selected is unfortunately not accessible. However, since Benjamini and Hochberg seminal 
work [18], we have known that this quantity can be estimated, using a False Discovery Rate (a.k.a. 
FDR, that is an abstract quantity that may differ from the real proportion of false discoveries in the 
data, but would be correct once averaged over multiple similar datasets [1]); or controlled at a given 
user-defined threshold (e.g., 1%), using adjusted p-values [19] (or similarly, q-values [20]). 

Because of the complexity of the underlying theory, the user-defined control threshold is often 
conflated with the FDR itself, as in sentences like “Differentially abundant proteins were validated at 
1%FDR”. In addition to advocate for a vocabulary simplification [1][5] with respect to biostatistics 
theory [21], this conflation tends to reduce the FDR framework to a feature selection method 
embedding its own multiple test correction. As such, the FDR control procedure has progressively 
stepped out of its original and prime role, namely assessing the statistical significance of a set of 
selected features (hereafter referred to as the “Statistical Rigor” role), and has gained two other 
roles.  

The first additional role is that of a quality control measure: The tuning to a default value (typically 
1% in label-free discovery analyses) is more justified by the standardization capacities it yields 
(hereby providing a ground level to compare different analyses from different labs) than by advanced 
statistical reasons. The second additional role is that of practical filter: It helps the researcher 
focusing on an acceptable number of proteins by filtering out the others.  



Finally, FDR control is now motivated by three roles: Statistical Rigor (SR), Quality Control (QC) and 
Practical Filter (PF). Ideally, these three motivations concur: By filtering the list of putative 
biomarkers to 1%, hereby fitting with the QC standards, one brings rigorous statistical support to 
those deemed differentially abundant while substantially reducing their number to an order of 
magnitude that is compatible with the constraints of post-proteomic validation wet-lab experiments. 
However, every practitioner has ever faced a situation where this classical FDR threshold leads to a 
list of biomarkers, which is either far too short or far too long with respect to the anticipated 
validation experiments. Of course, it is possible to adjust the list by different tunings on preliminary 
filters (modifying the minimal number of peptides per protein, adjusting the minimal acceptable fold-
change1, etc.), but if it is insufficient, one may be tempted to adjust the FDR threshold to 
unrealistically low or high thresholds. This illustrates well that concretely, the tuning of the cutoff 
often results from a negotiation between the QC and the PF roles, while the SR one is simply 
assumed inherent to the methodology. Although not absurd in a simple “binary” experimental design 
(e.g., Healthy vs. Disease) this view reaches its limit with more complex ones (time courses, strata, 
etc., see Section 1), which calls for a more explicit prioritization of the aforementioned roles. 

2.2. ANOVA-related vocabulary 
From a statistician viewpoint, the ANOVA is essentially a modeling framework, which assumes a 
response variable (e.g., protein abundance) to result (possibly after transformation) from a linear 
combination of explanatory variables (e.g., treatment, phenotype, experimental factor, etc.), up to 
some unexplained variations (a.k.a. noise, a.k.a. residuals). Under some mathematical assumptions, 
the noise can be decomposed in such manner that it informs us about the veracity of one of the 
hypotheses that prevailed when the practitioner built their linear model. More specifically, by 
comparing the noise decomposition to the F-distribution, one defines a statistical test, which can 
assess the significance of a contrast null hypothesis (a contrast null hypothesis is a hypothesis 
assessing a linear relationship between the response variables and the explanatory variables that 
equates to 0). For illustration purpose, let us consider the classical t-test, which null hypothesis 
reads: 

  
                  

where    is the mean of group  . Testing protein abundance   as to know whether its means 
significantly differ between groups 1 and 2 is equivalent to considering the model, 

                 

and then to test the contrast          When,     groups are considered simultaneously, a 
hardly more complex linear model makes it possible to test whether their   means equates, or not: 

  
                        

Such a test is referred to as an omnibus test and its null hypothesis can be recovered by testing 
simultaneously     well-chosen pairwise contrasts. 

As most of the practitioners are seldom interested in the underlying mathematical model, it has 
become customary to conflate the modelling framework (the ANOVA) and the statistical testing of 
the contrast. For instance, the fixed-effect one-way ANOVA (i.e., an ANOVA model involving only one 
non-random experimental factor, as opposed to random- and mixed-effect models [25]) is often (and 

                                                           
1
 Applying a cut-off on the fold-change is a common practice in proteomics, however, if improperly achieved, it 

can hinder the statistical rigor. Notably, it has been demonstrated that applying such a cut-off downstream of 
the FDR is invalid [4]. It remains possible to incorporate the fold-change cut-off in the statistical test [22], but 
the resulting p-value interpretation can be a bit more difficult. Moreover, depending on how it is conducted, it 
can even lead to involuntary p-value hacking [23], so that applying such a filter prior to differential abundance 
testing constitutes a nice trade-off [24]. 



harmlessly) conflated with the omnibus test, and referred to as an “ANOVA test”. However, this 
conflation hinders the scrutiny of the interactions between the statistical tests and their multiplicity 
corrections, as it will appear in Section 3.2. 

2.3. Post-Hoc Tests 
The omnibus test is like any other statistical test: the interesting results it exhibits are those 

corresponding to the rejection of its null hypothesis (namely,   
         ), i.e., cases where the   

groups can reasonably be suspected to have some of their means different from the others. For 
those cases, textbooks in statistics suggest to apply a post-hoc test (PHT) downstream of the rejected 
omnibus test, as to find which group means do not equate. 

Essentially, a PHT is a tool that combines two distinct statistical steps. The first step is a series of 

other tests which aim at refining   
         . For instance, Tukey-Kramer HSD (Honest Significance of 

Difference) proposes to test                    , to find which pairs of groups display significant 

differences. Scheffé’s extends this by considering all possible subsets of groups.  Conversely, 
Dunnett’s proposes to test only                    , to check which groups are significantly 

different from the reference group 1 (see [26] for a thorough description of the available PHTs). The 
second step is a multiple test correction (MTC), to avoid that the inflation of   leads to an inflation of 
significant tests. For instance, if one compares a reference treatment to 100 alternative treatments 
that are in fact placebos, we can expect one of them to be significant by chance at a significance level 
of 1%. To cope for such effect, many PHTs encompass a Family-Wise Error Rate correction (FWER, 
[27]), that is a correction broadly akin to that of Bonferroni’s, despite subtle variations from one to 
another. 

However, this workflow has two flaws that are usually not described in textbooks. First, significant 

rejection of   
          may not be confirmed by the downstream PHT and conversely, a significant 

rejection of a couple of means equality can be observed despite the non-rejection of   
          in 

the first place [28], which calls for alternative workflows [26]. Second, the conflation of the test 

series (those aiming at refining the omnibus test of   
         ) and the MTC into a single tool 

encourages a form of narrow-mindedness where statistical guidelines are blindly applied regardless 
of their relevance [29]. Let us illustrate this with two examples: 

 What if one is only interested in the pairwise comparisons of the form        ? If one 
seeks proteins which are differentially abundant within all these pairs (without exception), 
one should not correct for multiple testing using an FWER.  

 Conversely, if from the beginning, one is only interested in comparing the new treatments or 

placebos against the reference treatment, why should   
          be tested in the first 

place? It would be equally sounded to consider as many pairwise t-tests as necessary, and 
then to apply a well-chosen MCT [30].  

Naturally, the writers of most of the textbooks were aware of this, but we should keep in mind that 
their first editions have often been anterior to the big data era, or even to the desktop computer, as 
to propose guidelines to experimental research in various domains [29]. In those times, most of the 
computations were performed manually, or, at best, using a pocket calculator [31]. In such 
circumstances, proposing a straightforward workflow that minimized the computations (e.g., “spend 
time to deal with the pairwise comparisons only for the cases where an omnibus test has allowed 

you to reject   
         ”) was probably more important than to account for the great diversity of 

experimental designs allowed by omics technologies (which were still to be created). Then, the 
weight of traditions did the rest [29] so that authors have only recently started to advocate for 
mindful use of PHTs [26][30]. 

2.4. Contrast-based testing at scale 
In omics biology, Limma [32] is probably one of the most popular implementations of ANOVA. The 
reason essentially lies in its moderated statistics, which allows for a better estimation of the variance 



of the putative biomarkers in a context where biological samples may be scarce. This is why similar 
moderated statistics have been developed for count data (e.g., spectral counting, or any quantitative 
omics data produced by an NGS instrument), like EdgeR [33] or DEseq2 [34]. However, the influence 
of Limma goes beyond this.  

Notably, it has popularized the test serialization, i.e., the testing of hundreds (or even thousands) of 
omics features (historically microarray probes) in an independent way. As opposed to the “pre-
omics” statistical textbook guidelines, it does not systematically apply an omnibus test for each 
feature, and then a PHT in case of rejection. On the contrary, it allows for a direct focus on the 
specific contrasts of interest (as advocated in Section 2.3), together with the necessary MTCs. 

Following this line has now become so mainstream that the warnings in Limma documentation ([35] 
Section 13.3) are classically ignored, while they pinpoint the difficulty of performing MTCs 
simultaneously on the rows and on the columns of the data table. To cope for them, the authors 
have proposed four options, all of which with restrictions on the condition of applications, or with an 
explicit lack of mathematical support (see Sections 3.2 and 3.3). However, these warnings step out of 
the specific case of Limma (and of its moderated statistics), as they are ubiquitous to complex 
experimental designs.  

Finally, tools like Limma advocate for a rational separation between the various constituents of the 
one-way ANOVA workflow. Instead of considering a so-called “ANOVA test” (a linear model + an 
omnibus test) and PHT (including a row-wise MTC) among which FDR control has no specific 
identified place, one should think in terms of (i) a global linear model, (ii) the contrasts of interest, 
and (iii) the different types of MTCs needed. Owing to the difficulty of performing simultaneously 
row-wise and column-wise MTCs, this article proposes solutions to their application, in the specific 
case where the multiplicity of proteins tested is accounted for by an FDR; and the multiplicity of 
contrasts is accounted for by an FWER. Several options are discussed at the light of (1) the underlying 
biological motivation; (2) the type of linear model (classical or involving moderated statistics); and (3) 
the various roles classically endowed to FDR (statistical rigor, quality control and practical filter). 

3. Various scenarios 
This section is organized into four subsections, each presenting one family of scenarios. As most of 
them are rather classical (in the sense they are either derived from textbooks or from very popular 
statistical packages, e.g., Limma or multcomp [30]) the objective is essentially to discuss their pros 
and cons, depending on the proteomic question and on the three FDR roles (SR, QC and PF). Notably, 
we explain why the most classical scenario according to textbooks (Section 3.1) is of little interest in 
an omics biology context. Its natural alternative is depicted in Section 3.2. Because of an 
unquestionable statistical rigor, it can be over-conservative (i.e., it can discard too any putative 
discovery because excessively cautious), which may hinder the other roles (QC and PF). This is why 
Sections 3.3 and 3.4 describe various ways to loosen the rigor, while remaining sufficiently correct 
from a statistical viewpoint, at least according to the biological question and data analysis objectives. 
To illustrate the differences of conservativeness between these scenarios, they are compared on a 
publicly available dataset.  

Before describing this dataset, some warning is necessary. Displaying a comparison of several 
statistical workflows on a given dataset is extremely slippery, for two reasons: First, it may give the 
wrong impression that any of the scenarios can be applied to any dataset. Although true from a 
computational standpoint, it is not from a biological one. Each scenario answers to a specific 
question and changing the scenario implicitly amounts to changing the question one answers to. 
Second, it may suggest to unexperienced readers that it makes sense to test several statistical 
workflows and then to a posteriori choose the one which results are the most satisfactory. However, 
doing so is essentially equivalent to throwing the dice several times and choosing the best outcome. 
Such type of “hazard-cheating” is classically referred to as p-value hacking and it does not comply 



with scientific good practices. Nonetheless, when it comes to open the black box of statistical testing, 
relying on a concrete example to exhibit different behaviors is insightful. To cope with this dilemma, 
the chosen dataset corresponds to an experimental design which processing could advantageously 
rely on a two-way ANOVA, while the scenarios presented are centered on the one-way ANOVA. By 
doing so, one easily circumvents the question of which scenario to use “to best make the data speak” 
(in a way that would possibly differ from the scientific motivations of the authors who published the 
dataset in the first place) as to focus on the computational behavior of the statistical procedures.  

The chosen dataset, hereafter referred to as RESET, results from a label-free proteomics experiment, 
which takes part into a larger multi-omic investigation about controlling the growth of Escherichia 
coli cells thanks to an external control of RNA polymerase expression [12]. It contains 6 different 
biological groups (3 samples each) and 1,634 identified and quantified proteins. The relationship 
between the six conditions is purposely ignored, and we will hereafter assume that all the pairwise 
comparisons are equally interesting. Doing so will lead us to consider the Tukey Honest Significant 
Differences (or Tukey HSD) as the running example of PHT. This PHT is probably the most 
straightforward to picture, and in addition, it makes the row-wise MTC particularly important as it 
leads to considering as many as 15 contrasts on 6 conditions. It has therefore a real pedagogical 
interest; however, replacing it by another PHT would not qualitatively alter the conclusions of the 
comparisons, nor the discussion of the article. 
 
In the following sections, all the R codes to run each scenario on the RESET dataset are provided in 
the text. To have these code chunks run, it is necessary to rely on a recent version of R (version 4.3.0 
or newer), as well as to have the following packages installed, together with their dependencies: 
DAPAR, cp4p, readxl, multcomp, MSnbase, apcluster, Mfuzz, magrittr. Then, it is necessary to 
download the data spreadsheet of [12] (available here: 
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00115/suppl_file/sb1c00115_si_006.xlsx) and 
to run the preliminary code provided in Supporting Information (see 
suppmat1_R_code_RESET_data_preparation.rtf; just copy-paste it in R console). This code opens a 
window to select the spreadsheet, imports its numerical data into the R environment and formats 
them as to make subsequent statistical processing the easiest possible. 
 
To describe the scenarios, the following generic notations are used:   refers to the number of 
proteins being tested;   (respectively,   ) refers to the number of proteins being selected, globally 

(respectively, in contrast  );   denotes the number of contrasts (which should not be confused with 
 , the number of groups or of biological conditions, see Figure 1a). To illustrate this on the RESET 
dataset,  =1634,  =6 and  =15, while   and    (with     ) will change depending on each 

scenario. 

 

 

Figure 1: (a) schematic representations of the data and contrast tables with a recap of the mathematical notations.  
(b) The textbook scenario (omnibus tests + FDR + PHTs) 

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00115/suppl_file/sb1c00115_si_006.xlsx


3.1. The textbook scenario: omnibus tests + FDR + PHTs 
The most natural way to apply the ANOVA framework to the omics world is simply to iteratively 
process each omic features. In other words, if there are   quantified proteins, apply   omnibus 
tests, and for those which are deemed significant according to some criterion, apply a PHT. As in the 
proteomics community, the significance criterion for differential abundance analysis has long been 
the FDR (cf. Introduction), it also makes sense to use it to select the proteins worth of a PHT. 
Therefore, the complete procedure becomes: apply   omnibus tests on the   proteins, select the   
ones with the smallest p-values, with   so that the FDR is controlled at a user-defined threshold, and 
then apply the PHTs on the original dataset (in fact, on its linear model), yet restricted to these   
proteins only (see Figure 1b). Applying this scenario to the RESET dataset requires a few lines of R 
code using DAPAR package [36]: 

# Compute ANOVA models 

anova.models <- t(apply(qData,1, OWAnova, conditions=as.factor(sTab$Condition))) 

names(anova.models) <- rownames(qData) 

 

# Perform Omnibus test 

omnibus.res <- testAnovaModels(anova.models, test = "Omnibus") 

 

# FDR control: Filter out proteins with an adjusted p-value < 1% 

omnibus.adjp <- adjust.p(omnibus.res$P_Value$anova_1way_pval)$adjp 

omnibus.da.prot <- which(omnibus.adjp$adjusted.p < 0.01) 

cat(length(omnibus.da.prot), " proteins are DA out of ", nprot,  

    " (i.e., ", length(omnibus.da.prot)/nprot*100, "%)", sep="") 

 

# Post-Hoc Test 

ressc.textbook <- testAnovaModels(anova.models[omnibus.da.prot], test = "TukeyHSD") 

# Important question shows up here: rejection threshold on FWER adjusted p-values? 

textbook.seltab <- compute.selection.table(ressc.textbook$P_Value, 0.01)  # why not 0.05? 

textbook.seltab 

 
The first chunk of code computes the linear model and the second one applies the omnibus test in a 
rather automated way. In the third chunk, one has to tune the FDR threshold. Rather classically, we 
can really on 1%, as from a QC perspective, it is the most standard threshold. However, in the next 
chunk, one has to tune the rejection threshold for the PHT, which will apply to the FWER-corrected 
p-values of the pairwise contrasts. Depending on the chosen value (as there is no “standard” one), 
the number of protein/contrast pairs exhibiting differential abundance will be different. As an 
example, at 1%, they are 9,541 of them, compared to 11,174 at 5% (+17%). Finally, the overall 
pipeline is extremely sensitive to the PHT significance level, so that the QC role classically attributed 
to the FDR becomes meaningless. 

Moreover, it is important to understand that subsequently to the PHTs, some proteins may display 
differential abundance for zero, one or even several contrast(s). Conversely, the number of 
differentially abundant proteins may largely differ from one contrast to another. This can be easily 
pictured on the lower data table of Figure 2b, where the proportion of crossed cells within each 
column and in the entire data table is not the same.  From the researcher viewpoint, this may 
compromise the PF role of the feature selection process, as it is not possible anymore to keep the 
desired number of candidates for post-proteomics validation associated to each contrast.  

Finally, the number of discovered differential abundances is strictly speaking not FDR-controlled, as 
each contrast was not corrected for the multiplicity of the protein tested (observe that on Figure 2b, 
after the FDR control, one goes back to a truncated version the original dataset, which has not 
undergone column-wise MTC). Therefore, if one protein exhibits a strong differential abundance in a 
first contrast (say group 1 vs. group 2), the low p-value of the omnibus test will make the protein pass 
the FDR threshold. Then, the protein can appear differentially abundant in other contrasts (say group 
1 vs. group 3 or group 2 vs. group 3), where it should not have passed the significance threshold with 
an independent (column-wise) p-value adjustment. In other words, the SR role of the FDR is lost (in 
spite of a selection process, which can be tuned to be stringent enough).  



To summarize, with this scenario, the FDR thresholding cannot fulfill with any of the three roles one 
expects. Considering, it should not be promoted for most of the application cases. However, as an 
easy-to-reproduce workflow, it can be interesting to reduce the number of hypotheses to 
subsequently explore (originally, as many as   times  ) when a proteomic experiment is conducted 
at a very exploratory stage of a research project. For instance, if one is primarily interested in a hand-
waving overview of which proteins could be changers between various groups, so that an up/down 
regulation mechanisms can be hypothesized, upstream more comprehensive experiments and 
associated significance computations.  However, as described below (see Section 3.3), another 
workflow is generally more adapted to do so. 

3.2. Swapping scenarios: the FDR is saved for the end 
An alternative to the previous scenario is to swap PHTs and FDR control. As described on the path A 

illustrated on Figure 2, the   omnibus tests are followed by as many PHTs, leading to a table of    by 
  p-values, and   FDR controls are finally applied to provide a subset of   lists of respectively 
           proteins. As with the previous scenario, the values            may not be equal, and 

even in case of equality, the   lists of differentially abundant proteins may not be the same from one 
contrast to another. However, and in contradiction with the previous scenario, the practitioner can 
tune the   FDR thresholds to have broadly equal           . Although questioning from a SR 

viewpoint, doing so may be useful in a PF aim. Nevertheless, if the FDR thresholds are all tuned to a 
same value dictated by QC standards, then the scenario is compatible with both the SR and QC roles 
(briefly, as no processing occurs downstream of the FDR control, it remains valid). 

 

Figure 2: [A] The swap scenario (Omnibus tests + PHTs+ FDRs); [B] The contrast-based equivalent to the swap scenario; [C] 
The scenario corresponding to the “separate” option in Limma 

This second scenario can be seen as the ultimate one, in the sense that it is sufficiently flexible to 
manage a trade-off between the three roles of FDR. However, studying the code to run it should 
raise questions: 

# Compute ANOVA models 

# Does not need to be recomputed after processing the textbook scenario 

anova.models <- t(apply(qData,1, OWAnova, conditions=as.factor(sTab$Condition))) 

names(anova.models) <- rownames(qData) 

 

# Perform Omnibus test 

# Does not need to be recomputed after processing the textbook scenario 

omnibus.res <- testAnovaModels(anova.models, test = "Omnibus") 

 



# Post-Hoc Test 

# NB: results from omnibus test is no longer used, previous step can be bypassed. 

ressc.swap <- testAnovaModels(anova.models, test = "TukeyHSD") 

 

# FDR control: Filter out proteins with an adjusted p-value < 1% 

swap.sep.padjtab <- separateAdjPval(ressc.swap$P_Value) 

swap.sep.seltab <- compute.selection.table(swap.sep.padjtab, 0.01) 

swap.sep.seltab 

 

The first two code chunks are the same as in the previous scenario, so they do not need to be re-run. 
As for the third one, interestingly enough, it does not take the omnibus test result as input (second 
chunk), but the linear model (first chunk). It means the omnibus test chunk is in fact useless for this 
scenario. As argued in Sections 2.3 and 2.4, if an omnibus test is systematically followed by PHTs, the 
omnibus test is not needed (at least, no longer, as saving computations could be a valuable 
objectives few decades ago). Conversely, a workflow like “Linear model + multiple contrast tests + 

protein-wise FWER controls + contrast-wise FDR controls” (as illustrated on the path B of Figure 2) is 

more representative of the R code used.   

As this workflow adheres to Limma’s philosophy (see Section 2.3), let us check if it is possible to run it 
while benefiting from the moderated statistics. In the documentation, four options are implemented 
(see the decideTests function, [35]). Those termed “separate” and “global” do not correct 
for contrast multiplicity and are discussed in the next section. The “NestedF” one is restricted to 

microarray data. Finally, the “hierarchical” one is the closest from our expectations, in the 
sense that it proposes both row-wise and column-wise MTCs. Unfortunately, the documentation 
contains the following warning: “The "hierarchical" method offers power advantages when 

used with adjust.method="holm" to control the family-wise error rate. However its properties 
are not yet well understood with adjust="BH".” In other words, the MTC can either be an FWER 
with statistical guarantees (Holm’s method amounts to a sequential Bonferroni-like control of the 
FWER [27]), or an FDR, without statistical guarantees (BH refers to Benjamini and Hochberg 
procedure to control the FDR [18]). Moreover, a deeper look in the code indicates the chosen MTC 
(be it Holm or BH) is applied both row-wise and column-wise, so that it does not fit our scope, where 
the column-wise MTC is expected to be an FDR and the row-wise one an FWER. 

3.3. The no-FWER scenarios 
Boldly skipping the row-wise MTCs in the previous scenario (as illustrated on the path C of Figure 2) 

may be tempting, as doing so will avoid the inflation of p-values that is subsequent to the FWER 
control: 

# re-test the same anova models without MTC 

result.noFWER <- testAnovaModels(anova.models, test = "TukeyNoMTC")  

 

# directly apply FDR control (1%) 

noFWER.sep.padjtab <- separateAdjPval(result.noFWER$P_Value) 

noFWER.sep.seltab <- compute.selection.table(noFWER.sep.padjtab, 0.01) 

noFWER.sep.seltab 

 

Indeed, more protein/contrast pairs appear as differentially abundant using this approach than the 
previous one involving an FWER control (11,030 vs. 8,610). At first glance, this gain of statistical 
power may appear as a p-value hacking, which is incompatible with statistical rigor. However, it is not 
necessarily the case if one avoids subsequent over-interpretation. In fact, this scenario is rather 
common: it is implemented in Limma (under the method “separate” in the decideTests 
function) where it is the default method. As explained in the documentation, this method “[…] does 
multiple testing for each contrast separately […]. Using this method, testing a set of contrasts 
together will give the same results as when each contrast is tested on its own. The great advantage of 
this method is that it gives the same results regardless of which set of contrasts are tested together. 
The disadvantage of this method is that it does not do any multiple testing adjustment between 
contrasts. Another disadvantage is that the raw p-value cutoff corresponding to significance can be 
very different for different contrasts […]. This method is recommended when different contrasts are 



being analysed to answer more or less independent questions.” Using DAPAR routines, the Limma 
version of this scenario reads: 

# and Limma counterpart 

limma.res <- limmaCompleteTest(qData, sTab, comp.type="OnevsOne") 

 

# subsequent FDR control 

limma.sep.padjtab <- separateAdjPval(limma.res$P_Value) 

limma.sep.seltab <- compute.selection.table(limma.sep.padjtab, 0.01) 

limma.sep.seltab 

 

Using this code, the number of differential protein/contrast pairs is even larger (11,281). The 
increment with respect to the previous one (11,030) directly stems from Limma’s moderated 
statistics (see Discussion). Anyway, using this scenario, the most difficult point is to determine 
whether the questions at stake are sufficiently independent to justify the suppression on the FWER 
control. Notably, comparisons involving independent biological conditions do not imply that the 
associated contrasts (or questions) are independent. As a counter-example, just think about the 
testing of hundreds of placebo treatments depicted in the introduction: although chemically 
independent, the manifold of treatments requires MTC. Finally, this scenario trades some statistical 
prudence with a small increment of the statistical power: the only difficulty is to determine whether 
this imprudence is acceptable considering the data, or if it hides some data dredging. In the second 
case only, the SR role attributed to the FDR is compromised by the lack of upstream FWER control. As 
for the PF and QC roles, this scenario stands exactly at the same point as that of Section 3.2.  

Let us now depict another situation where it is possible to solve the entanglement of row-wise 
FWERs and column-wise FDRs by getting rid of the former ones, without compromising the SR role of 
the latter ones. The corresponding scenario is well suited to answer a “global” question, i.e., a 
question that does not translate into several specific contrasts. In those cases, the statistical rigor is 
preserved despite the absence of FWER control because multiple contrasts are no longer tested 
simultaneously. As example, consider a time-course with so many time-stamps that exhaustive 
pairwise comparisons are intractable. To cope for this, one focuses on the global trend of each 
protein, as to discriminate between those which abundance remains stable despite random 
fluctuations, and those which abundance changes significantly. Of course, one may also be interested 
in whether each variation of abundance amounts to an up or down-regulation; as well as whether it 
occurs at the beginning, at the middle or at the end of the time-course. However, depending on the 
application, these refinements may remain of qualitative nature (i.e., devoid of associated 
significance values), without flawing the biological reasoning and results. 

In those cases, the omnibus test is sufficient to provide a global significance value to each protein 
profile, while complementary information can be emphasized with exploratory and descriptive tools, 
like cluster analysis. As an illustration, Figure3a schematizes several clusters obtained on averaged 
and standardized protein profiles (i.e., each protein profile is constructed by averaging all the 
samples’ values within each group; then the profile is centered on 0 and scaled to a unitary variance 
[37]). By combining these clusters with the result of an omnibus test, it is possible to spot proteins 
which profiles (whatever their shape) are significantly different from a flat profile, according to the 
user-defined FDR threshold. Doing so using DAPAR routines is rather straightforward: 

omnibus.limma.res <- limmaCompleteTest(qData, sTab, comp.type="anova1way") 

 

wrapperRunClustering(obj = MSnSet(exprs = as.matrix(qData), fData = qData, pData = sTab),   

                     adjusted_pvals =  

                       adjust.p(omnibus.limma.res$P_Value$anova_1way_pval)$adjp$adjusted.p, 

                     clustering_method = "kmeans", 

                     k_clusters = 9, 

                     FDR_thresholds = c(0.01)) 

 

The code can be customized in many ways to change the number of clusters, the clustering method, 
the omnibus test (e.g., replacing Limma’s version by the classical ANOVA one) or the FDR cutoffs 
used to highlight protein profiles with significant trends. For most proteomic experiments that will 



need post-analytics validations, results of this type are sufficient. However, it is important to avoid 
over-interpretation when describing them. For instance, if among a cluster exhibiting an early 
downfall in profiles, one protein is significantly differentially abundant according to the omnibus test, 
it is not possible to conclude that the early down-regulation itself is significant. Saying so would 

amount to transfer the significance associated to the global rejection of   
          to a more 

specific question (namely, the early down-regulation), which would constitute a statistically 
unsupported claim. However, it remains nonetheless possible to conduct downstream experiments 
to assess further this early down-regulation. Therefore, as long as one discriminates between 
conclusions that require statistical significance supports, and intermediate evidence along the course 
of a biological investigation (which may not require a similar support as experimental confirmations 
are expected), it is possible to keep a safe and rigorous line of reasoning. Most importantly, doing so 
makes it possible to reconcile the three roles of FDR control: SR (as long as one does not over-
interpret and accepts an answer to a broader question), PF and QC (notably, managing a single 
selection process makes it easier to reach an agreement between the last two roles, as with a single 
binary contrast). 

 

Figure 3: (a) Omnibus tests + FDR + Clustering; (b) Single FDR control over stacked contrasts (“global” option Limma) 

Lastly, in the cases which do not fall in the previous categories (i.e., the questions are not sufficiently 
independent and they require going beyond a global approach), the simplest workaround is to stack 
all the contrasts in a single large contrast, so that the cumbersome combinations of row-wise and 
column-wise MTCs is replaced by a single column-wise MTC (see Figure 3b). Concretely, two p-values 
yielded by a same protein for two different contrasts are considered exactly as two p-values resulting 
from two proteins tested in a single contrast. This strategy has also been promoted by Limma’s 
authors, through the method referred to as “global” in the decideTests function. This 
approach has many advantages, which are listed in Limma user’s guide [35]. Their paraphrasing here 
would be of little interest, but to summarize, the PF and QC roles classically endowed to FDR control 
procedure are fully accounted for.  

Unfortunately, depending on the column-wise MTC, this approach may lack theoretical support. 
Notably, when this MTC amounts to an FDR control (which is the most classical approach in 
proteomics), the authors say the following: “[…] there is no theorem which proves that 
adjust.method="BH" in combination with method="global" will correctly control the false 
discovery rate for combinations of negatively correlated contrasts, however simulations, experience 
and some theory suggest that the method is safe in practice.” Although the absence of theoretical 
guarantee should not systematically discard the application of an otherwise interesting approach, 
relying on qualitative and simulation-based empirical arguments only is not sufficient to trust in the 
SR role fulfillment. A middle of the road approach is to stack the   p-value vectors manually and then 
to run a tool like CP4P [38]. CP4P makes it possible to check the conditions of application of BH FDR 



control through the visualization of the p-value calibration, as well as to some extent, to correct for 
minor calibration defaults, as detailed in [24]. Then, depending on the calibration assessment, the 
practitioner may decide (or not) to use this scenario (i.e., a single FDR control on stacked contrasts, 

i.e., adjust.method="BH" in combination with method="global" in Limma). The following 
code implements this strategy: 

# Same linear model previously computed 

limma.res <- limmaCompleteTest(qData, sTab, comp.type="OnevsOne") 

 

# Calibration check: In this case, it is nearly perfect! 

calibration.plot(stack(limma.res$P_Value)[,1]) 

 

# FDR control 

limma.glob.padjtab <- globalAdjPval(limma.res$P_Value) 

limma.glob.seltab <- compute.selection.table(limma.glob.padjtab, 0.01) 

limma.glob.seltab 

 

The first code chunks re-compute the linear model as used before. The second chunks display the 
CP4P plot, which in this case, indicate a very good calibration. Then, the last one deals with the FDR, 
like in the previous scenarios. 

3.4. More advanced scenarios 
The above scenarios should answer most experimental designs. However, it is possible to tailor more 
specific tools based on another generic approach: Firstly, for each protein, one aggregates all the p-
values resulting from the   contrasts into a single p-value; secondly, one applies an FDR control on 
this single “aggregated contrast” (see Figure 4). Theoretically speaking, aggregating the multiple p-
values resulting from multiple contrasts into a single protein-wise p-value can be seen as a form of 
MTC. Thus, by leveraging the appropriate procedure, the SR role should be preserved. 

 

Figure 4: In this scenario, the various contrast p-values are aggregated for each protein so as to provide a single p-value for 
each, then FDR control is applied. 

Many p-value combination methods endowed with proof of correct calibration exist in the literature 
(Harmonic mean [39], Fisher combination [40], etc.), but not as many can be interpreted as contrast 
summarization. Following a previously described use-case, let us assume we are mainly interested by 
a global view of differential abundance, as for instance, in a time-course experiment. In this context, 
a protein can be interesting because it displays a consistent trend, even if this trend is sometimes 
significant and sometimes not (for instance, the protein is constantly up-regulated, but this is not 
significant between some consecutive time stamps, while it is between others). One may thus be 
tempted to focus on the smallest p-value between the   contrasts for each protein, as a marker of its 
“most significant fold change”. However, taking the minimum out of   p-values requires a 
subsequent Šidák correction [41], which as-a-matter-of-factly corresponds to an FWER control: 



           
      

     
 

 

After computing this single p-value for each protein, it becomes easy to subsequently control the 
FDR, as a single “aggregated contrast” remains. Conversely, if one is interested in the “worst fold 
change” among    contrasts, it is possible to consider the max p-value. Although very conservative, 
this can be instrumental when comparing the weakest link among cascading events. Then, it is 
possible to adapt Šidák correction to maintain the correct calibration, and to compute p-values as 
follows: 

       
      

     
 

 

The interest of this approach is that depending on the question at stake, it is possible to rely on the 
important body of literature about how to combine statistical tests to simplify the interferences 
between the MTCs resulting from the multiple contrasts and those resulting from the manifold of 
proteins tested. For illustration purpose, the R codes to apply these worst / best-case scenarios are 
provided in Supporting Information (either with a classical ANOVA model, or with Limma, see file 
suppmat2_R_complete_code_for_exhaustive_comparisons.rtf). 

Likewise, it is possible for advanced users to mix the scenarios of Sections 3.1 to 3.3. For instance, it 
is possible to apply the “global” method (stack all the contrasts prior to FDR control) inherited from 
Limma to a classical ANOVA. The combinatory of all these “mixed scenarios” is rather high, so the 
code chunks are provided in the Supporting Information (file 
suppmat2_R_complete_code_for_exhaustive_comparisons.rtf). Using this code, it is possible to 
compare the amount of proteins deemed differentially expressed according to each scenario. Doing 
so to choose the one providing the largest amount of proteins is of course nonsensical from a 
statistical viewpoint. However, a global comparison of their result sheds an interesting light about 
the conservative/liberal behavior of each component of the workflows, as detailed in the next 
section. 

4. Discussion 
Using the codes available in Supporting Information, Table 1 summarizes various scenarios with 

respect to the number of significant (protein, contrast) pairs. This comparison leaves aside the 

textbook scenario (Section 3.1), but to define a baseline, let us recall that if its PHT significance 

threshold is moved from 1% to 5% (irrespective of the FDR threshold), 17% of additional significant 

contrasts are found (from 9,541 to 11,174). With this in mind, let us compare the “global” and 

“separate” approach to FDR, the moderated and classical linear models (i.e., using Limma or a 

classical ANOVA), and 2 scenarios (the “swapped” one —see Section 3.2; and the No-FWER one —see 

Section 3.3). However, let us recall that Limma does not propose a scenario like the swapped one, 

and forcing its implementation would be hazardous, because of the lack of theoretical and empirical 

studies about the interference between two different types of MTCs and the moderated statistics.  

Table 1: Number of significant (protein, contrast) pairs according to the various scenarios 

 SEPARATE GLOBAL 

SWAP (CLASSIC) 8,610 8,586 
NO-FWER (CLASSIC) 11,030 11,077 
NO-FWER (LIMMA) 11,281 11,349 

Table 2: Number and percentage of proteins deemed significant (out of 1,634) according to their best and worst contrast 
with Limma and a classical linear model  

 WORST CONTRAST BEST CONTRAST 

LIMMA 353 (21.7%) 1,334 (81.6%) 



CLASSIC MODEL 354 (21.7%) 1,303 (79.7%) 
 

Based on the numbers in the columns, it appears that using a global or separate FDR control has little 

influence on the conservative/liberal behavior of the workflow. As advocated in Limma’s 

documentation, it is essentially a matter experiment design (independence of the contrasts), of 

choice (each approach having their pros and cons, described in the documentation) and of correct 

calibration. However, comparing the rows of the table is more insightful. Broadly, using the 

moderated statistics, 250 to 275 additional contrasts are found significant (i.e. the difference 

between the last two lines). Conversely, adding an FWER control leads to 10 times more contrasts 

(≈2,500) being considered as non-significant. This clearly rise questions about Limma’s increased 

sensitivity, which is the main reason of its popularity. While it partially roots in the moderated 

statistics (as regularly advocated), one sees it also roots in the lack of MTC across contrasts. In fact, 

this latter reason is majority by a tenfold. A similar comparison about the best/worst contrast 

scenarios (Section 3.4) is reported in Table 2, and it also indicates that the moderated statistics, 

although interesting, is not a game-changer on its own. On the contrary, the absence of row-wise 

MTC (or a change in the PHT threshold in the case of the textbook scenario) can dramatically increase 

the number of proteins that are declared differentially abundant. However, both must be scrutinized 

at the light of possible p-value hacking. With this regards, it has been recently demonstrated that 

excessive trust in moderated statistics could be damaging [7], and guidance about when and how 

row-wise MTC can be safely gotten rid of (and when it cannot) as provided here, is insightful. 

5. Conclusions 
The fixed-effect one-way ANOVA workflow is particularly popular to process omics data. The reasons 
are threefold: First, its genericity, which makes it suitable enough to a large variety of designs and of 
biological questions. Second, its ease of understanding and interpretation, as a straightforward 
extension to the t-test. Third, its considerable importance from a historical perspective.  

However, its systematic use may not be adapted to modern omics data: First, despite being rather 
generic, it is usually possible to find an alternative contrast-based workflow that is more specific to 
the design or biological question considered. Second, its computational efficacy has become of 
limited (or null) interest according to the modern computational resources. Finally, its PHTs difficultly 
orchestrate with the need for FDR control. All these advocate for a restricted use of the traditional 
one-way ANOVA workflow, and for the growing use of now well-established contrast-based 
scenarios. 

Doing so notably makes it possible to replace ANOVA PHTs by off-the-shelf FWER control procedures. 
The latter ones are generally a bit simpler to combine with FDR controls, even though complex 
situations may still exist. For those, it is mandatory to wonder about which roles are expected from 
the FDR control, between “statistical rigor”, “practical filter” and “quality control”: Depending on 
their respective importance, one or several scenarios among those listed above can be preferred. 

Acknowledgement and fundings 
The author wish to thank Hélène Borges, Yohann Couté and Virginie Brun for fruitful discussions. This 
work was supported by grants from the French National Research Agency: ProFI project (ANR-10-
INBS-08), GRAL CBH project (ANR-17-EURE-0003), LIFE project (ANR-15-IDEX-02) and MIAI @ 
Grenoble Alpes (ANR-19-P3IA-0003). 



Reference 
[1] Burger, T. (2018). Gentle introduction to the statistical foundations of false discovery rate in 

quantitative proteomics. Journal of proteome research, 17(1), 12-22. 
[2] Barber, R. F., Candès, E. J. (2015). Controlling the False Discovery Rate via Knockoffs. The Annals 

of Statistics, 2055-2085. 
[3] Stephens, M. (2017). False discovery rates: a new deal. Biostatistics, 18(2), 275-294. 
[4] Ebrahimpoor, M., Goeman, J. J. (2021). Inflated false discovery rate due to volcano plots: 

problem and solutions. Briefings in bioinformatics, 22(5), bbab053. 
[5] Etourneau, L., Varoquaux, N., Burger, T. (2021). Unveiling the links between peptide 

identification and differential analysis FDR controls by means of a practical introduction to 
knockoff filters. In Statistical Analysis of Proteomic Data: Methods and Tools (pp. 1-24). New 
York, NY: Springer US. 

[6] Etourneau, L., Burger, T. (2022). Challenging Targets or Describing Mismatches? A Comment on 
Common Decoy Distribution by Madej et al. Journal of Proteome Research, 21(12), 2840-2845. 

[7] Li, Y., Ge, X., Peng, F., Li, W., Li, J. J. (2022). Exaggerated false positives by popular differential 
expression methods when analyzing human population samples. Genome biology, 23(1), 79. 

[8] Ren, Z., Barber, R. F. (2022). Derandomized knockoffs: leveraging e-values for false discovery rate 
control. arXiv preprint arXiv:2205.15461. 

[9] Lacombe, M., Jaquinod, M., Belmudes, L., Couté, Y., Ramus, C., Combes, F., ... Brun, V. (2020). 
Comprehensive and comparative exploration of the Atp7b−/− mouse plasma proteome. 
Metallomics, 12(2), 249-258. 

[10] Capizzi, M., Carpentier, R., Denarier, E., Adrait, A., Kassem, R., Mapelli, M., ... Humbert, S. (2022). 
Developmental defects in Huntington’s disease show that axonal growth and microtubule 
reorganization require NUMA1. Neuron, 110(1), 36-50. 

[11] Vilallongue, N., Schaeffer, J., Hesse, A. M., Delpech, C., Blot, B., Paccard, A., ... Nawabi, H. (2022). 
Guidance landscapes unveiled by quantitative proteomics to control reinnervation in adult visual 
system. Nature Communications, 13(1), 6040. 

[12] Ropers, D., Couté, Y., Faure, L., Ferré, S., Labourdette, D., Shabani, A., ... De Jong, H. (2021). 
Multiomics Study of Bacterial Growth Arrest in a Synthetic Biology Application. ACS Synthetic 
Biology, 10(11), 2910-2926. 

[13] Hedeker, D., Gibbons, R. D. (2006). Longitudinal data analysis. Wiley-Interscience. 
[14] Povero, D., Yamashita, H., Ren, W., Subramanian, M. G., Myers, R. P., Eguchi, A., ... Feldstein, A. E. 

(2020). Characterization and proteome of circulating extracellular vesicles as potential 
biomarkers for NASH. Hepatology communications, 4(9), 1263-1278. 

[15] Binda, O., Juillard, F., Ducassou, J. N., Kleijwegt, C., Paris, G., Didillon, A., ... Lomonte, P. (2023). 
SMA-linked SMN mutants prevent phase separation properties and SMN interactions with FMRP 
family members. Life Science Alliance, 6(1). 

[16] Tsuji, T., Shiozaki, A., Kohno, R., Yoshizato, K., Shimohama, S. (2002). Proteomic profiling and 
neurodegeneration in Alzheimer's disease. Neurochemical research, 27(10), 1245-1253. 

[17] Eckel-Passow, J. E., Oberg, A. L., Therneau, T. M., Bergen III, H. R. (2009). An insight into high-
resolution mass-spectrometry data. Biostatistics, 10(3), 481-500. 

[18] Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 
57(1), 289-300.  

[19] Murray, M. H., Blume, J. D. (2021). FDRestimation: Flexible False Discovery Rate Computation in 
R. F1000Research, 10(441), 441. 

[20] Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. 
The Annals of Statistics, 31(6), 2013-2035. 

[21] Ge, Y., Dudoit, S., Speed, T. P. (2003). Resampling-based multiple testing for microarray data 
analysis. Test, 12(1), 1-77. 



[22] McCarthy, D. J., Smyth, G. K. (2009). Testing significance relative to a fold-change threshold is a 
TREAT. Bioinformatics, 25(6), 765-771. 

[23] Giai Gianetto, Q., Couté, Y., Bruley, C., Burger, T. (2016). Uses and misuses of the fudge factor in 
quantitative discovery proteomics. Proteomics, 16(14), 1955-1960. 

[24] Wieczorek, S., Gianetto, Q. G., Burger, T. (2019). Five simple yet essential steps to correctly 
estimate the rate of false differentially abundant proteins in mass spectrometry analyses. Journal 
of proteomics, 207, 103441. 

[25] Mercier, C., Truntzer, C., Pecqueur, D., Gimeno, J. P., Belz, G., Roy, P. (2009). Mixed-model of 
ANOVA for measurement reproducibility in proteomics. Journal of proteomics, 72(6), 974-981. 

[26] Ruxton, G. D., & Beauchamp, G. (2008). Time for some a priori thinking about post hoc testing. 
Behavioral ecology, 19(3), 690-693 

[27] Goeman, J. J., Solari, A. (2014). Multiple hypothesis testing in genomics. Statistics in medicine, 
33(11), 1946-1978. 

[28] Tian, C. H. E. N., Manfei, X. U., Justin, T. U., Hongyue, W. A. N. G., Xiaohui, N. I. U. (2018). 
Relationship between Omnibus and Post-hoc Tests: An Investigation of performance of the F test 
in ANOVA. Shanghai archives of psychiatry, 30(1), 60. 

[29] Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587-606. 
[30] Bretz, F., Hothorn, T., Westfall, P. (2016). Multiple comparisons using R. CRC press. 
[31] Efron, B., Tibshirani, R. (1991). Statistical data analysis in the computer age. Science, 253(5018), 

390-395. 
[32] Ritchie, M. E., Phipson, B., Wu, D. I., Hu, Y., Law, C. W., Shi, W., Smyth, G. K. (2015). limma 

powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids 
research, 43(7), e47-e47. 

[33] Robinson, M. D., McCarthy, D. J., Smyth, G. K. (2010). edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. bioinformatics, 26(1), 139-140. 

[34] Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2. Genome biology, 15(12), 1-21. 

[35] Smyth, G. K. (2005). Limma: linear models for microarray data. In Bioinformatics and 
computational biology solutions using R and Bioconductor (pp. 397-420). Springer, New York, NY. 
See online version (29 Oct 2022), section 13.3, page 63. 
https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf  

[36] Wieczorek, S., Combes, F., Lazar, C., Giai Gianetto, Q., Gatto, L., Dorffer, A., ... Burger, T. (2017). 
DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics. 
Bioinformatics, 33(1), 135-136. 

[37] Futschik, M. E., Kumar, L. (2009). Introduction to Mfuzz package and its graphical user interface. 
Analysis, 1-13. 

[38] Giai Gianetto, Q., Combes, F., Ramus, C., Bruley, C., Couté, Y., Burger, T. (2016). Calibration plot 
for proteomics: A graphical tool to visually check the assumptions underlying FDR control in 
quantitative experiments. Proteomics, 16(1), 29-32. 

[39] Wilson, D. J. (2019). The harmonic mean p-value for combining dependent tests. Proceedings of 
the National Academy of Sciences, 116(4), 1195-1200. 

[40] Fisher, R. A. (1992). Statistical methods for research workers. In Breakthroughs in statistics (pp. 
66-70). Springer, New York, NY. 

[41] Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal 
distributions. Journal of the American Statistical Association, 62(318), 626-633.   

 

 

 

 

https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf


 


