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Abstract

Cloud-RAN is a key 5G enabler; it centralizes the baseband processing of
several base stations by executing the baseband functions in a centralized,
virtualized, and shared entity known as the Base Band Unit (BBU)-Pool.
Cloud-RAN paves the way for joint management of the radio and computing
resources of multiple base stations. In fact, centralization and virtualization
allow for decreasing energy consumption which decreases Capital Expendi-
ture (CAPEX) and Operational Expenditure (OPEX). Cloud-RAN architec-
ture permits jointly allocating the radio and computing resources of multiple
base stations. The radio resources include the Resource Blocks (RBs), the
transmission power, and the Modulation Coding Scheme (MCS), whereas the
computing resources include the CPUs resources. This paper investigates
the potential benefits that could be scored thanks to the joint allocation of
these two types of resources, with respect to energy consumption and overall
throughput, when radio resources are finite and computing resources are not.
The latter is an effect of the C-RAN architecture, which allows scalability
and fast computing resource provisioning. Due to the unconstrained avail-
ability of computing resources, the joint allocation of radio and computing
resources has a negligible impact when the objective is throughput maximiza-
tion. However, it is highly beneficial when the target is energy consumption
minimization in comparison to the sequential allocation that consists of allo-
cating radio resources first, and then computing resources are allocated. For
that, we formulate a Mixed Integer Linear Programming (MILP) problem



having the objective of minimizing energy consumption. When the goal is
to minimize energy consumption, the joint allocation of radio and comput-
ing resources reduces the total energy consumption by up to 21.3% when
compared to the case where radio and computing resources in the BBU pool
are allocated sequentially. Furthermore, given the NP-hardness of solving a
MILP problem, we propose a two-step low-complexity matching game-based
algorithm with a transmission power adjustment mechanism that aims at
performing close to the MILP solver. The results show that our proposed
matching game algorithm is a good alternative for solving the joint-allocation
MILP problem, producing results that are very close to the MILP optimal
solutions.

Keywords: Cloud-RAN, Joint Radio and Computing Resource Allocation,
Energy consumption minimization, Mixed Integer Linear Programming
(MILP), Matching Game.

1. Introduction

The demand for mobile data is increasing at an extraordinary pace.
The fifth generation of mobile networks (5G) attempts to address this issue
through various technologies such as Cloud-Radio Access Network (Cloud-
RAN), among others [1, 2]. A base station traditionally comprises a Remote
Radio Head (RRH) and a Base Band Unit (BBU). The RRH is in charge
of executing radio frequency functions, while the BBU is in charge of exe-
cuting baseband functions. In Cloud-RAN, the BBU is decoupled from the
RRH such that the BBUs are hosted virtually in a cloud known as the BBU
Pool [3]. Cloud-RAN carries many advantages, including the ability to create
a scalable and flexible network. Furthermore, centralization and cloudifica-
tion enable more efficient resource utilization while lowering CAPEX and
OPEX [1].

Strategies to reduce energy consumption are critical in 5G [1, 2] since a
massive number of base stations must be deployed to satisfy users’ demands.
In this paper, we consider the joint allocation of radio and computing re-
sources in Cloud-RAN. Precisely, we are interested in understanding how
the joint allocation of radio and computing resources, compared to a sequen-
tial allocation of these resources, may help minimize the energy consumed for
transmission and baseband processing while still meeting the users’ quality
of service requirements. On the one hand, radio resource allocation con-



sists of assigning to each user a number of Resource Blocks (RBs) as well
as a Modulation and Coding Scheme (MCS) index and transmission power.
These resources are necessary to transmit users’ data over the air interface.
The RBs provide the carrier frequencies to transmit data symbols, while the
MCS index specifies the modulation and code rate. The power has to be al-
located such that it achieves the minimum Signal to Interference plus Noise
Ratio (SINR) required to use the selected MCS. On the other hand, com-
puting resource allocation consists of assigning users’ radio frames to CPUs
in the BBU pool and ensuring that their processing deadlines are met. It is
worth mentioning that the amount of time required to process users’ data by
the CPUs in the BBU pool is heavily dependent on radio parameters (i.e.,
MCS, number of RBs, transmission power): the transmission power alloca-
tion affects the user’s signal to interference plus noise ratio (SINR), hence
limiting the maximum MCS index that can be adopted. The MCS index,
along with the number of allocated RBs for each user, affects its processing
demand [4] and hence the amount of required processing resources in the
BBU pool [5, 6]. Besides, if users’ quality of service requirements have to be
satisfied, a minimum throughput target per user has to be guaranteed. This
throughput increases with the MCS and the number of allocated RBs [7, 5].

We formulate the joint allocation of radio and computing resources in
Cloud-RAN as a Mixed Integer Linear Programming (MILP) problem that
jointly allocates the transmission power, the resource blocks, the MCS in-
dexes, and the CPU time to process the data of each user. We consider the
goal of minimizing energy consumption and compare the results to those ob-
tained when the goal is to maximize the system’s throughput. To quantify
the impact of joint radio and computing resources allocation, we compare it
to a sequential scheme that performs radio resources allocation followed by
allocating computing resources. Figure 1 shows the difference between se-
quential and joint allocation of radio and computing resources. In a setting
where radio resources (transmission power, RB number, MCS) and com-
puting resources (CPU time) are allocated sequentially, as in Figure 1a,
minimizing a user’s transmission power while still meeting its throughput
target may result in MCS and RBs assignments that require more comput-
ing resources, consuming more energy. A joint radio and computing resource
allocation scheme that controls the radio and computing resource parameters
at the same time would be more capable of minimizing total energy consump-
tion (i.e., the sum of transmission and processing energy). Even though joint
allocation may be more computationally complex than sequential allocation,



(a) Sequential allocation

(b) Joint allocation

Figure 1: Sequential allocation vs. Joint allocation of radio and computing resources

it would be advantageous if it exhibits significant energy consumption reduc-
tions.

Recently, the matching theory has gained a lot of attention because of
the possibility of modeling many problems in wireless networks as match-
ing games and solving such problems using various matching algorithms [8].
Players should try to match with other players in such a way that their utility
and benefits are maximized. Given that solving an MILP problem is highly
complex and is NP-hard [9], we design a low-complexity two-step algorithm
that allocates RBs, transmission power, and MCS indexes to users using a
matching game and a transmission power adjustment mechanism.

We analyze the convergence and the complexity of the matching-based
algorithm and compare its results to the optimal performance of the MILP
problem. The main contributions of this paper are summarized as follows:

• We model the joint radio and computing resource allocation problem as
an MILP problem that allocates RBs, power, MCS indexes, and CPU
resources to users.

• We consider two objectives; energy consumption minimization and



throughput maximization. From the operator’s perspective, these two
objectives are critical in Cloud-RAN and 5G. We show that joint radio
and computing resource allocation may greatly benefit energy consump-
tion minimization.

• We compare the performance of the joint scheme of radio and comput-
ing resource allocation to that of a sequential method in which radio
and computing resource allocation is done sequentially.

• We propose a two-step algorithm based on a matching game and a
transmission power adjustment mechanism to achieve solutions close
to the optimal solution of the joint-allocation MILP problem.

• We provide the convergence and complexity analysis of the matching-
based algorithm. We also compare the run-time of the MILP solver
with the matching-based algorithms.

• We compare the performance of the proposed matching-based algo-
rithm to the optimal MILP problem considering the metrics related to
energy consumption, throughput, and fairness.

The rest of the paper is organized as follows: Section 2 surveys the related
work. The MILP problem is formulated in section 3. In section 4, the
matching-based algorithm with transmission power adjustment is presented.
The simulation settings are described in section 5, and the results of the
simulations are discussed in section 6. Finally, our work is concluded in
section 7.

2. Related Work

2.1. Radio and Computing Resource Allocation

Works in the literature have considered radio or computing resource al-
location independently [10, 11, 12, 13]. Authors in [10] formulate a radio
allocation MILP problem. It considers RBs and MCS assignments in addi-
tion to power allocation. Their model is quite limited as it considers only
one base station but none of the interference caused by other base stations.
Additionally, the problem only considers radio allocation without consider-
ing computing resource allocation. Moreover, it does not aim at minimizing
the total energy consumption. To optimize system throughput and energy



efficiency, the authors of [11] formulate a Mixed Integer Non-Linear Pro-
gramming (MINLP) problem, then relax it into a lower-complexity two-step
approach for both radio and compute resources. The computing resource al-
location occurs first by mapping users to Virtual Machines (VM). Secondly,
the radio resource allocation is done by controlling the beam-forming vectors.
Nevertheless, the scope of this allocation is limited as the algorithm does not
consider the existence of multiple RBs or sub-carriers nor the selection of
MCS indexes based on the SINR. The authors in [12] consider joint beam-
forming vector design and BBU computational resources allocation. They
aim to minimize the total system power consumption while considering the
constraints of users’ Quality of Service (QoS), fronthaul capacity, transmit
power per RRH, and per Antenna. Compared to our work, the paper in
[12] does not consider the RBs or MCS assignments nor the effect on the
required processing time. Similarly, [14] considers joint radio and computing
resource allocation where they control the beamforming vectors and use a bin-
packing algorithm to allocate virtual machines to process users’ data, aiming
to maximize the weighted sum-rate. In [13], the authors investigate the joint
communication (i.e., radio) and computing resource allocation. They con-
sider power allocation and RB assignment in addition to mapping RRH to
BBUs running as virtual machines. The problem is formulated using queuing
theory to minimize the mean response time. Then, an auction-theory-based
algorithm is proposed. Unlike our work, this paper does not tackle the joint
allocation problem with the goal of minimizing the total energy consumption.

A coordination scheme between radio and computing resources allocation
has recently been considered in [5], where computing resources cannot sat-
isfy all users’ demands. The authors propose, in particular, two coordination
schemes between radio and computing resources that maximize throughput
and users’ satisfaction. The proposed schemes permit feedback from the
computing scheduler to the radio scheduler to update radio resource pa-
rameters based on computing resource availability. Authors demonstrate a
significant ability to decrease the amount of wasted transmission power. In
the same context, and to reduce the complexity of the Integer Linear Pro-
gramming (ILP)-based coordination algorithms, lower complexity Recurrent
Neural Network (RNN)-based algorithms are developed in [15]. They are
trained to perform close to the ILP solver. Results show a significant reduc-
tion in the execution time compared to the ILP problems. Unlike our work,
these coordination schemes are not based on the joint allocation between
radio and computing resources and do not seek to optimize overall energy



consumption.
To jointly optimize the throughput and the functional split, the authors

of [16] formulate the problem as an ILP problem that allocates resource
blocks, fronthaul bandwidth, and computing resources. Considering service-
aware resource allocation in an Open-RAN context and aiming to maxi-
mize the sum-rate, [17] formulates a Mixed Integer Non-Linear Programming
(MINLP), and allocate RBs, power, and VNF processing resources subject to
limited fronthaul capacity and end-to-end delay constraints. Due to the NP-
hardness of the problem, the authors devise a low-complexity sub-optimal
algorithm to solve the problem.

Considering latency and limited resource constraints, [18] tackles the
problem of radio and computing resource allocation for edge computing.
The authors allocate uplink, downlink, and computing resources. To solve
the highly complex problem, they formulate the problem as a generalized
Nash equilibrium problem and devise an algorithm to find this equilibrium.
Considering edge computing and aiming to minimize the delay, [19] consider
joint time allocation and offloading using Non-Orthogonal Multiple Access
(NOMA) and demonstrate its improvement in comparison with Orthogonal
Multiple Access schemes.

2.2. Matching Games

Due to the NP-Hardness of the ILP and the MILP problems, many pa-
pers in the literature propose low-complexity tools as an alternative. In this
context, the matching-game theory appears at the forefront as one of the
promising tools. The fundamental properties of matching games in wireless
networks, along with several applications, have been presented in [8]. Differ-
ent matching models have been used, including one-to-one, one-to-many, and
many-to-many matching models, and algorithms have been proposed to solve
each of these problems. The stable marriage problem is an example that can
help us understand the basics of matching theory [20]. Consider a set of men
M = A,B,C and a set of women W = a, b, c. Each man and each woman
has a preference list for the opposite gender; the ones they mostly prefer to
be married to. The fundamental solution concept for a matching game is
the notion of stable matching. A stable matching is a matching where no
blocking pair exists. Suppose that A is matched with a, B is matched with b,
and C is matched with c. However, A prefers b over its current match a, and
b prefers A over its current match B. Hence the pair (A,b) is a blocking pair
as each has the incentive to leave its current partner and switch to another.



Hence, a matching algorithm should converge to a stable matching with no
blocking pair.

To solve the Stable-Marriage problem, Gale-Shapely proposed the De-
ferred Acceptance algorithm. In this algorithm, each player from each set
creates its preference list. Players from one set make proposals, and the play-
ers from the other set accept or reject the proposals. For example, the men
can be the ones who propose, and the women accept or reject. The other
option is to reverse the roles. Supposing that men are the ones who propose,
each man proposed to his most preferred woman. Then, each woman exam-
ines the proposals she received, accepts the most preferred man among those
who proposed and rejects the other proposals. In the next iteration, men
who are already matched will not propose, but those who are unmatched
will propose to their second preferred woman. The women who receive the
proposals accept the proposals if they are better than their current matches
and reject them if they are not. Men who become unmatched will join the
next round and propose to the next preferred women on their list. As this al-
gorithm is guaranteed to converge to a stable matching, this iterative process
will be repeated until a stable matching is attained.

Similarly, matching theory has applications in mobile communication.
More precisely, we have users, base stations, operators, etc., competing with
each other and forming preferences over other sets (i.e., a user prefers to
match with RBs that help satisfy his requirements, and an RB, on behalf
of the operator, prefers to match with a user who results in the least in-
terference). A bipartite one-to-one matching game is used to model the
assignment of LTE-U users to Unlicensed bands in [21]. The famous Gale-
Shapley algorithm is used to realize a stable matching; then, an algorithm
is proposed to improve the total throughput by allowing users to switch
their assignments if this increases their utilities. In [22], the issue of caching
in small base stations is modeled as a many-to-many matching game be-
tween small base stations and video content from service providers. In [23], a
many-to-many matching game is formulated to model the assignment in re-
lay networks between source nodes and sub-channels where Non-Orthogonal
Multiple Access (NOMA) is used for channel access.

In [24], the authors consider the issue of resource allocation for a full-
duplex OFDMA Network. A full duplex base station communicates with
half duplex uplink and downlink users, and the objective is to maximize the
network sum-rate by joint user pairing, sub-channel assignment, and power
allocation. Because of the non-convexity of the optimization problem, it is



solved using a cyclic three-sided matching between the sets of transmitting
users (uplink), sub-channels, and receiving users (downlink). In contrast to
this paper, our work aims to minimize the total energy consumption, and
we use our proposed matching game with a transmission power adjustment
mechanism to achieve this objective.

The matching-coalition approach is used also in [25], where a NOMA-
based MEC model that aims at improving energy efficiency is considered. A
joint optimization problem is formulated where the problems of user asso-
ciation, power control, and computational resource allocation are combined
to optimize energy consumption. Due to the NP-hardness of the model,
the authors propose to use a matching and coalition framework. First, the
generalized (resident-oriented) Gale-Shapely algorithm is used to formulate
a matching between users and access points while neglecting co-channel in-
terference. Then, the coalition approach is used to allow users to enhance
their results by considering externalities. Externalities mean that assign-
ments/matchings lead to changes in players’ preferences. The preference
lists are assumed to be fixed to assure the problem theoretically converges
to a stable matching. However, the obtained solution might not be optimal
because considering fixed preference lists ignores the externalities. Accord-
ingly, a coalitional game is proposed allowing the modification of choices,
but this time accounting for co-channel interference. However, unlike our
work, the authors do not consider OFDM or assign MCS indexes to users.
In [26], the problem of resource allocation of sub-channels in heterogeneous
Cloud-RAN is addressed. The authors consider a downlink model that con-
sists of one eNB transmitting to mobile users, RRHs transmitting to RRH
users, and D2D transmitters transmitting to D2D receivers. However, not
more than one radio sub-channel is used by an RRH or D2D user. An opti-
mization problem aiming to maximize the system throughput is modeled as a
mixed integer non-linear programming. Then a two-step algorithm based on
matching theory and coalition games is used to find sub-optimal solutions.
In contrast, our paper does not restrict RB allocation to one per user, and
it also allocates radio power, MCS, and CPU resources.

In contrast to these research papers, we consider in this paper the joint
radio and computing resource allocation. Our model considers transmission
power allocation, MCS assignment, RBs allocation, CPU assignment, and
computing resource allocation. To the best of our knowledge, In the current
literature, there is no explicit comparison of joint vs. sequential resource
allocation. Furthermore, the advantages, limitations, and influence of the



Figure 2: Cloud-RAN basic architecture

chosen objective function have not yet been investigated. Moreover, our
paper proposes a matching-based algorithm that aims at providing solutions
close to those of the optimal MILP problem.

This paper is an extension of our work in [27]. While [27] only models the
joint MILP problem, which is NP-hard, and shows the benefits of having a
joint radio and computing resources allocation, this extension provides a low-
complexity alternative to the MILP problem. It is based on matching theory,
and it yields solutions that are close to the optimal MILP problem solutions.
Also, this extended version also includes convergence and complexity analyses
of the proposed matching-theory-based algorithm.

3. Problem Formulation

In this section, we first present the problem of joint allocation of radio
and computing resources allocation in Cloud-RAN, and we model it as a
Mixed Integer Linear Programming (MILP) problem.

3.1. Cloud-RAN

In traditional RAN, the base station consists of a Radio Remote Head
(RRH) responsible for Radio Frequency functions and a Base Band Unit



Table 1: Summary of the general notations

Parameters Definition
B Set of base stations
Ub Set of users for each BS b ∈ B

Ub Set of users in BS b ∈ B who have achieved the demanded throughput
N The total number of users in the system
R Set of RBs that can be used in the system

Rb,u Set of RBs assigned to user u ∈ Ub

I Set of MCS indexes that can be used in the system
C Set of CPU cores in the shared BBU pool (multi-core data center).
MCSb,u the assigned MCS index to user u ∈ Ub.
thr,u The achieved throughput by user u ∈ Ur

thr,u(b) The possible achieved throughput by user u ∈ Ur if it uses RB b

ts,i,c
Data processing time when a frame is transmitted over s number of resource
blocks using MCS index i, and processed over CPU c

tTTI The duration of one Transmission Time Interval (TTI)

Rs,i
Data length (in bits) when a frame is transmitted over s number of resource
blocks using MCS index i

Rb,u
min minimum required rate for a user u ∈ Ub

d Processing time deadline

xb,u
r,i Binary variable that assigns the RB r and MCS index i to user u ∈ Ub

yb,us,i,c
A binary variable that indicates a user u ∈ Ub uses s total number of RBs and
MCS index i and that its frame is processed on CPU c

βb,u
i Binary variable that indicates that user u ∈ Ub uses MCS index i

zb,ur,i
An auxiliary binary variable used to enforce the condition of not using an MCS
index unless the SINR exceeds a specific threshold

P b,u
r

A continuous variable that indicates the transmission power of user u ∈ Ub over
RB r.

Pmax
Tx

Maximum total radio transmission power of user u ∈ Ub.

P c
comp Computing Power of a CPU c ∈ C

γth
i The minimum SINR threshold to use MCS index i

gb,u,b
′

r The channel gain between user u ∈ Ub and the base station b′ ∈ B on RB r ∈ R,

σb,u The channel noise for user u ∈ Ub

PLr The preference list of an RB r
PLu The preference list of a user u
PL1

u The first element in the preference list of a user u
prop(u) The RB the that a user u proposes to be matched with
prop(r) The users that have proposed to the RB r in the current iteration

ACCEPT b(u) A Boolean to indicate RB b accepts user u

REJECT b(u) A Boolean to indicate RB b rejects user u
SINRr,u(b) The possibly achieved SINR of user u ∈ Ur if it uses RB b in the next iteration

(BBU) responsible for all other functions. To account for peak hours, oper-
ators usually allocate excess resources to base stations that are rarely fully
used. This increases capital and operational expenditure. To minimize the
latter, Cloud-RAN emerges as an alternative based on centralization and
virtualization. Cloud-RAN centralizes the baseband processing of multiple



base stations running as virtual machines in a powerful data center called the
BBU-pool. This adds scalability and flexibility to the network as resources
can be supplied on-demand. Additionally, it allows cutting down expenses
as it is possible to release and shut down resources that are not needed.
Thanks to virtualization and centralization, reducing the overprovisioning
of resources will be possible. Moreover, centralization allows Cloud-RAN to
better manage and optimize the network due to the globalized control of
resources. The simplified architecture of Cloud-RAN is shown in Figure 2.

3.2. Model input and parameters

To study the performance of joint radio and computing resources alloca-
tion, we consider the following scenario: a set of base stations B, a set of
users Ub of each BS b, a set of Resource Blocks R for each base station, a set
of MCS indexes I that can be used in the system, and a set of CPU cores
C in the shared BBU pool (multi-core data center). As in [5], we focus on
the uplink direction in which the BBU pool needs to execute the complex
and energy-consuming decoding function. We assume that each user has a
maximum transmission power equal to Pmax

Tx and that the CPU power con-
sumption is equal to P c

comp. We define the following parameters: gb,u,b
′

r is the
channel gain between user u ∈ Ub , who belongs to base station b ∈ B, and
the base station b′ ∈ B on RB r ∈ R, γth

i is the minimal SINR threshold
that allows using a given MCS index i ∈ I. We denote by σb,u the channel
noise for user u ∈ Ub, Rs,i the throughput of transmission when the data are
transmitted over s number of RBs using an MCS index i ∈ I, and ts,i,c the
required time to process these data on CPU core c ∈ C. Each CPU should
process the assigned data before the deadline d. This deadline is imposed
by the Hybrid Automatic Repeat Request (HARQ) mechanism and equals
2ms [5]. Not respecting this deadline would lead to retransmitting the radio
frame, thus, wasting the initial transmission. We also suppose that users
have different QoS requirements; each user requests a minimum throughput
Rb,u

min that must be satisfied. We note that the duration tTTI of the Trans-
mission Time Interval (TTI) over which a user transmits its frame is 1 ms.
The system model is shown in Fig. 3.

To determine the time required to process each user’s frame, we use the
model in [4] built using the Open Air Interface (OAI) RAN simulator. This
model provides the required processing time, ts,i,c , of a user’s frame as a
function of the total number of used RBs, the MCS index, and the CPU



Figure 3: The system model where uplink transmission is considered. Resource Blocks,
radio power, MCS indexes, and CPUs are the decision variables.

frequency. The formula is given by:

ts,i,c[µs] =
s

f 2
c [GHz]

2X
j=0

αji
j (1)

In Eq. (1), s represents the total number of RBs , fc is the working fre-
quency of the CPU, and i is the used MCS index. Additionally, j defines the
exponent, given the model is a second-order polynomial.

Based on experimental studies, [4] provides the values of alpha corre-
sponding to the overall uplink processing: α0 = 35.545, α1 = 1.623, and
α2 = 0.086.

On the other hand, we use the 3GPP standard [7] to determine the Trans-
port Block Size (TBS), which is the number of bits transmitted by a transport
block in 1 ms, as a function of the number of RBs and the MCS index. Then
we get the throughput by dividing the TBS by the transmission duration.
We note that using the MCS index to calculate the throughput is more real-
istic than using Shannon’s capacity formula. The latter only gives the upper
bound of the channel’s throughput and does not distinguish useful bits from
redundancy and physical layer overhead bits, as the TBS does. The summary



of general notations used throughout this chapter is shown in Table 1.

3.3. MILP problem

We formulate a Mixed Integer Linear Programming Model (MILP) for
joint radio and computing resource allocation, which minimizes the total
energy consumption. This MILP problem should be optimized by assigning
RBs and MCS indexes to users, the power of their signals, and the CPUs that
will process their data. The MILP problem contains the following decision
variables:

• xb,u
r,i is a binary decision variable equal to 1 if user u ∈ Ub uses an MCS

index i ∈ I on RB r ∈ R; otherwise, it is zero.

• yb,us,i,c is a binary decision variable that is equal to 1 if and only if a
user u ∈ Ub transmits data using an MCS index i ∈ I over a total of s
resource blocks, and the user’s data are processed on CPU c ∈ C; and
zero otherwise.

• The binary decision variable βb,u
i is equal to 1 if and only if a user

u ∈ Ub uses MCS i ∈ I on any of its RBs; and zero otherwise.

• Finally, pb,ur is a continuous variable that indicates the transmission
power of user u ∈ Ub on RB r ∈ R.

We note that M is the big-M notation used to enforce the conditions ex-
plained below. The formulated MILP optimization problem is defined as
follows:

min
X
b∈B

X
u∈Ub

X
r∈R

pb,ur · tTTI +
X
b∈B

X
u∈Ub

X
s∈N∩[1,|R|]

X
i∈I

X
c∈C

ts,i,c · yb,us,i,c · P c
comp

(2)

s.t. xb,u
r,i ∈ {0, 1}, ∀b ∈ B, u ∈ Ub, r ∈ R, i ∈ I (3)

yb,us,i,c ∈ {0, 1}, ∀b ∈ B, u ∈ Ub, s ∈ N ∩ [1, |R|], ; i ∈ I, c ∈ C (4)

zb,ur,i ∈ {0, 1}, ∀b ∈ B, u ∈ Ub, r ∈ R, i ∈ I (5)

βb,u
i ∈ {0, 1}, ∀b ∈ B, u ∈ Ub, i ∈ I (6)

pb,ur ≥ 0, ∀b ∈ B, u ∈ Ub, r ∈ R (7)X
u∈Ub

X
i∈I

xb,u
r,i ≤ 1, ∀b ∈ B, r ∈ R (8)



X
s∈N∩[1,|R|]

X
i∈I

X
c∈C

yb,us,i,cRs,i ≥ Rb,u
min,∀b ∈ B, u ∈ Ub (9)

X
r∈R

pb,ur ≤ Pmax
Tx ,∀b ∈ B, u ∈ Ub (10)

pb,ur ≤ M
X
i∈I

xb,u
r,i ,∀b ∈ B, u ∈ Ub, r ∈ R (11)

xb,u
r,i ≤ βb,u

i , ∀b ∈ B, u ∈ Ub, r ∈ R, i ∈ I (12)X
i∈I

βb,u
i ≤ 1, ∀b ∈ B, u ∈ Ub, (13)

gb,u,br pb,ur ≥ γth
i (σb,u +

X
b′∈B−{b}

X
u′∈Ub′

gb
′,u′,b

r pb
′,u′

r )−Mzb,ur,i

∀b ∈ B, u ∈ Ub, r ∈ R, i ∈ I
(14)

M(1− zb,ur,i ) ≥ xb,u
r,i ∀b ∈ B, u ∈ Ub, r ∈ R, i ∈ I (15)X

r∈R

X
i∈I

xb,u
r,i =

X
s∈N∩[1,|R|]

X
i∈I

X
c∈C

s× yb,us,i,c∀b ∈ B, u ∈ Ub, (16)

X
s∈N∩[1,|R|]

X
c∈C

yb,us,i,c ≤ βb,u
i , ∀b ∈ B, u ∈ Ub, i ∈ I, (17)

X
b∈B

X
u∈Ub

X
s∈N∩[1,|R|]

X
i∈I

ts,i,c × yb,us,i,c ≤ d, ∀c ∈ C (18)

The objective function in (2) minimizes the total energy consumption of
radio transmission and BBU processing. Equations (3), (4), (5), and (6)
ensure that the decision variables are binary, while (7) ensures that the power
variable is continuous and non-negative. Equation (8) ensures that users
belonging to one base station cannot use the same RB and that no more than
one MCS can be used on this RB. The minimum throughput requirement of
a user is ensured by (9), while the limit on the total transmission power of
a user is imposed by (10). Equation (11) ensures that the signal power of a
user on an RB is zero if this RB is not used. Equations (12) and (13) together
ensure that a user transmits using the same MCS index over all its assigned
RBs. Knowing that using an MCS index requires the SINR to be above a
threshold, equations (14) and (15) together make sure that if the SINR is
lower than the threshold of an MCS index, then the user cannot use this
MCS index. This condition is enforced by using an auxiliary binary decision
variable zb,ur,i . To find the processing time and throughput for a user, it is



necessary to know the total number of used resource blocks by a user [7, 4];
this is done by (16) and (17). Finally, (18) ensures that each CPU can process
the data assigned to it without violating the deadline constraint.

On the other hand, to understand how different objectives can affect the
benefit of joint allocation, we consider a modified optimization problem that
maximizes the total throughput while maintaining the same constraints as
before. While Eq. (2) minimizes the total energy consumption, the modified
objective in Eq. (19) maximizes the total throughput of users in the system.
The objective function becomes as follows:

max
X
b∈B

X
u∈Ub

X
s∈N∩[1,|R|]

X
i∈I

X
c∈C

Rs,i × yb,us,i,c (19)

4. Matching Game-Based Solution

The optimization problem proposed in the previous section is an NP-
hard problem [9]. For this reason, we are interested in proposing a lower-
complexity algorithm that can perform as close to the MILP problem solver’s
optimal solution as possible, which jointly allocates radio and computing re-
sources to reduce overall energy consumption. In other words, such an al-
gorithm seeks to output the optimal MILP problem solutions regarding the
MCS index, the number of RBs, the power, and the CPU resources. We
note that we are considering the case where computing resources and radio
resources are. Hence, our algorithm neglects computing resource allocation,
as all frames can get CPU resources within the deadline. However, the re-
quired computing resources depend on the MCS and the number of RBs,
which are radio parameters. To optimize the total energy consumption, our
algorithm takes the interest of the computing schedulers (i.e., minimizing the
total energy consumption) when allocating RBs and MCS indexes. To that
end, we propose a two-phase algorithm described as follows:

• Step 1: In the first step of the algorithm, we apply matching theory
to associate RBs and MCS index to each user. The details of this step
are shown in Section 4.1.

• Step 2: The second step aims at adjusting the radio transmission power
to minimize the total energy consumption. This step is detailed in
Section 4.2.



Before delving into the details of these two steps, we first go over the
definitions of the matching games and stable matching.

Definition 1. Given the set of users Ub associated to a base station b and
the set of resource blocks R, a many-to-one matching1 µ is a function on the
set Ub ∪R such that:

• ∀r ∈ R either µ(r) ∈ U or µ(r) = ∅ , i.e., each RB is either matched
to one user or unmatched;

• ∀u ∈ U , µ(u) ∈ P(R) where P(R) = {R′ ⊆ R}, i.e., each user is
matched to a feasible set of resource blocks;

• ∀r ∈ R and ∀u ∈ U , µ(r) = u if and only if r ∈ µ(u), i.e., an RB r is
matched to a user u if and only if the user u is matched to the RB r.

In a matching game, the two sets of agents rank their preferences and
attempt to find a stable match [28]. We define ≻u as the ”prefer” relation of
a user u such that r ≻u r′ when user u prefers r to r′. Similarly, ≻r is the
”prefer” relation of RB r such that u ≻r u

′ when RB r prefers u to u′.
The definition of a stable matching is given as follows:

Definition 2. A matching is said to be stable if there are no blocking pairs
and it is individually rational, where

• a blocking pair is a couple of agents (r,u), such that u ≻r µ(r) and (a)
r ≻u ∅ or (b) there exist t ∈ µ(u) such that r ≻u t;

• an individually rational matching is when no agents of the two sets
would be better off by breaking the current matching, i.e., if µ(r) = u
then u ≻r ∅ and µ(u) ≻u (µ(u) \ r).

The problem of allocating RBs to users from different base stations can
be seen as a many-to-many matching that maps the users of all base stations
to the available RBs. Each user can be associated to many RBs and each RB
to many users, under the constraint that no two users from the same base
station can use the same RB.

1This model is also known as the college admission problem. When each element of
the set Ub can be matched with at most one element of R and vice-versa, each element of
the set R can be matched with at most one element of Ub, the matching µ is said one-to-
one. This model is also known as the marriage problem. When each element of U can be
matched with many elements of R and vice-versa the matching µ is said many-to-many.



4.1. Step 1: The matching algorithm for associating RBs and MCS index to
users

We describe and analyze in this section the Step 1 of our proposed match-
ing game-based solution.

4.1.1. Algorithm Description

In this step, users assume that they fully use the total available radio
transmission power Pmax

Tx . The algorithm operates iteratively. In each iter-
ation, each user forms a preference list (PL) by ranking the set of available
RBs in decreasing order of achievable SINR. To find the achievable SINR,
each user will equally divide Pmax

Tx on all the RBs already assigned to the
user plus the RB it is measuring the SINR on. The user proposes to only one
RB in each iteration. In contrast, RBs rank users based on the decreasing
channel gain. After receiving all users’ proposals, the RBs accept or reject
users. We note that an essential condition must be met: two users from the
same base station cannot be assigned to the same RB.

In the next iteration, a user only proposes to a new RB if its minimal
throughput target is not yet satisfied and if this new RB will not worsen the
throughput. We note that if the interference on this new RB is high, the
MCS index may become so low that the throughput worsens.

We should point out that a user only proposes to a given RB once and
does not propose again if it is rejected. Algorithm 0 describes this procedure.
At the end of this algorithm, all users who transmit operate using their
maximum transmission power Pmax

Tx .
It is worth mentioning that in each iteration, the preference of users on

RBs could change due to dynamics caused by other users matching with
other RBs. However, only semi-dynamic Preference Lists (PLs) are consid-
ered to ensure the algorithm converges to a stable matching; this practically
means that a user can change its preference for the RBs to which it has not
yet proposed, but it does not change the preference over RBs to which it
has proposed earlier. The stability proof is demonstrated in the following
subsection. At the end of the algorithm, the SINR for each user is calculated
on each RB assigned to this user. The minimum SINR of these RBs should
be higher than the threshold of the assigned MCS. The assigned MCS index
is chosen such that it is the highest one satisfying this condition.



Algorithm 1 Matching Game for RBs and MCS index allocation

Input: B,Ub∈B,R, I...
Output: RB and MCS assignment.

Forming RBs’ preference lists:
1: for ∀r ∈ R do
2: PLr = {u1, u2...., ui...|ui ∈ Ub,∀b ∈ B and gb

′,ui,b
′

r >= g
b′′,ui+1,b

′′

r ,∀b′, b′′ ∈ B}
3: end for

Forming users’ preference lists:
4: for b ∈ B do
5: for b ∈ Ub∈B do
6: PLu = {r1, r2, ...., ri, ...|ri ∈ R and SINRb,u(ri) ≥ SINRb,u(ri+1)}
7: end for
8: end for
9: REPEAT=1
10: while REPEAT do
11: REPEAT=0
12: for b ∈ B do
13: for u ∈ Ub do

Semi-dynamic adjustment of users’ preference lists:
14: PLu = {r1, r2, ...., ri, ...|ri ∈ PLu and SINRb,u(ri) ≥ SINRb,u(ri+1)}
15: if thb,u < Rb,u

min and thb,u < thb,u(PL1
u) then

Users propose to RBs:
16: prop(u) ={PL1

u}
17: prop(r) =prop(r)

S
{u}

18: PLu = PLu \ prop(u)
19: else
20: prop(u) = ϕ
21: end if
22: end for
23: end for
24: for ∀r ∈ R do
25: for ∀u ∈ prop(r) do

A RB accept or reject a user:
26: ACCEPT r(u) or REJECT r(u)
27: if ACCEPT r(u) then
28: REPEAT = 1
29: end if
30: end for
31: end for
32: end while

4.1.2. Proof of Matching-Stability

In many-to-one matching games, a stable matching may not exist. We
introduce a restriction on users’ preferences to guarantee the solution’s stabil-



ity. In particular, we assume that users can modify their preferences for RBs
to which they have not proposed yet, but they can not change their prefer-
ences for RBs to which they have already proposed. Under this assumption,
we can state the following stability theorem along with its proof.

Theorem 1. Step 1 of the matching-based algorithm for associating RBs and
MCS index to users converges to a stable matching.

Proof. Using Definition 2, in order to show that our algorithm converges to
a stable matching, we have to prove that (i) there are no blocking pairs and
(ii) the matching is individually rational.

Given that the algorithm has converged such that RB r is matched with
user u′ and RB r′ is matched with user u, suppose there is a blocking pair
(u, r) which consists of a user u and an RB r, such that r prefers u to its
current matching u′ and u prefers r to one of its associated RB r′. However,
if user u prefers r to r′, it should have proposed to it following the preference
list, and either it did so and got rejected by r, which means that r prefers its
current matching to u and this is a contradiction of the assumption above, or
u prefers r′ to r which also contradicts the assumption above. Consequently,
our algorithm converges to a stable matching without any blocking pair.

The matching is individually rational because a user u will have proposed
to an RB r only because its utility (i.e., throughput) increases such that
µ(u) ≻u (µ(u) \ r), and on the other hand an RB does not accept a user
that is not in its preference list, i.e., a user that is ranked inferior to the ”no
match” option.

4.2. Step 2: Transmission power adjustment for energy consumption reduc-
tion

For each user, the transmission radio power is equal. This could lead to
having a high SINR on an RB but a lower one on another. The MCS index
that can be used is limited by the lowest SINR on the assigned RBs. Hence
in this second step of our proposed solution, users who are already satisfied
decrease their MCS indexes as much as possible under the condition that they
remain satisfied. Then all the satisfied users minimize their radio power by
solving the following convex problem. To reduce power consumption, users
need to set their SINR to be precisely equal to the threshold of the MCS
they are using. This problem is solved again if at least one previously non-
satisfied user becomes satisfied due to the reduction of interference and the



ability to use a higher MCS index; this problem will be repeated, including
the newly satisfied users. We reuse the notations in Table 1. We define U b

as the set of users who attained their requirement, Rb,u as the set of RBs
assigned to user u, and MCSb,u as the lowest MCS index a user can use while
remaining satisfied. The following optimization problem minimizes the total
radio power consumption; it only has pb,ur as a decision variable, given that
the RBs and MCS will already be determined before solving the problem.

min
X
b∈B

X
u∈Ub

X
r∈R

pb,ur (20)

s.t.
X

r∈Rb,u

pb,ur ≤ Pmax
Tx ,∀b ∈ B, u ∈ U b (21)X

r/∈Rb,u

pb,ur = 0,∀b ∈ B, u ∈ U b (22)

pb,ur ≥
γth
MCSb,u

gb,u,br

(σb,u +
X

b′∈B−{b}

X
u′∈Ub′

gb
′,u′,b

r pb
′,u′

r )

∀b ∈ B, u ∈ U b, r ∈ Rb,u, i ∈ I (23)

We note that, as presented in Eq. (1), the computing resources required
by users depend on the number of allocated RBs and the MCS index. Hence,
after the power-adjustment phase, the chosen radio parameters (i.e., MCS,
RBs) will determine the computing resources required by users. We recall
that our study considers there is no bottleneck for computing resources at
the BBU pool. Hence the scheduling is done in a First-In-First-Out manner.

4.3. Algorithmic complexity

The worst-case scenario of the matching game algorithm (i.e., Step 1 of
our proposed solution) refers to the case where all users propose to all RBs.
The maximum number of iterations, in this case, is equal to: |B|·|maxUb|·|R|.

Regarding the power adjustment phase (i.e., Step 2 of our proposed so-
lution), it is a convex optimization problem; hence, it can be solved effi-
ciently with simplex/interior point methods. Given that the power adjust-
ment would allow some users to become satisfied because the interference
would decrease, allowing a higher MCS to be used, the algorithm will be re-
peated every time a user becomes satisfied. The worst scenario for this step
refers to the case where at each iteration, only one more user gets satisfied.



If all users will eventually be satisfied, the number of iterations will not be
repeated more than |B| · |maxUb| times.

5. Simulation Settings

In this section, the simulation environment is presented along with the
performance metrics used for evaluating our proposed solution.

5.1. Simulation environment

To code and run the simulation, we use MATLAB. The MATLAB code
calls GUROBI optimizer to solve the MILP problem. We acknowledge that
solving an MILP problem is an NP-hard problem, and it is impossible to
use it in a real setting where allocation decisions have to be made every
1 ms; however, the MILP solver allows us to measure the potential gains
of the optimal joint allocation of radio and computing resources. Our study
considers an area with a variable number of base stations ranging from 1 to 8.
Each base station is separated from its neighboring base stations by a minimal
distance that follows a uniform distribution between 0.4km and 0.6km. Each
base station has 24 RBs for transmission, where the frequency reuse equals
1. Each base station serves two users. One would argue that having only
two users per base station is not realistic. However, the reason behind this
simple choice is two-fold: On the one hand, as the MILP problem in NP-
hard, adding more users and RBs could prevent our MILP problem from
producing an optimal solution. On the other hand, we recall that our goal is
to compare the performance of the joint allocation of radio and computing
resources vs. the sequential allocation and to study the potential benefits of
the joint allocation when the goal is energy consumption minimization. As
we are targeting the case where radio and computing resources are sufficient
to satisfy the QoS of users, having only two users is adequate to model this
scenario.

The position of each user follows a Poisson Point Process (PPP) such that
each user is located in a disk of a radius of 200m and centered at the base
station. Each user demands a throughput that follows a uniform distribution
between 0.25 and 8 Mbps, and the total demand of the users from the same
base station does not exceed 8 Mbps. To find the SINR threshold of the MCS
indexes γth

i , we use the tables in [29], which map the SINR threshold to a
Channel Quality Indicator (CQI) with specified modulation order and code
rate. Then, we use the MCS table in [7] to map each CQI to its corresponding



MCS index. Hence, we end up with a set of possible MCS indexes:{0, 2, 4, 6,
8, 11, 13, 15, 18, 20, 22, 24, 26, 28}. The maximum user transmission power
respects the 3GPP specifications in [30]. Based on it, Pmax

Tx should be equal to
23 dBm with a tolerance of +/- 2 dBm. Hence we fix Pmax

Tx = 250 mW ≈ 24
dBm. We suppose the noise spectral density is -174 dBm/Hz, and the Noise
Figure is 8dB. For the channel gain, we use the ABG model [31] that models
path loss and shadowing at a carrier frequency equal to 2GHz. Moreover,
we consider the effect of Rayleigh fading such that it follows an exponential
distribution with a unit mean. Considering a Cloud-RAN architecture, the
baseband processing of these base stations is hosted in a shared BBU pool.
For simplicity, we consider just one CPU core with a power consumption of
P c
comp = 30W and a clock frequency equal to 2.4GHz. We also assume that

when the CPU core executes BBU functions for users, it consumes the max
CPU power P c

comp. In contrast, we suppose the power consumption is zero
when the CPU is idle. Our simulation setting focuses on the case where the
sum of users’ throughput demand is smaller than the system capacity, and
the computing resources are sufficient to process the data of all users.

5.2. Performance metrics

To analyze the performance of our model, we consider the following per-
formance metrics:

• Radio transmission energy consumption; the total radio transmission
energy of all users in the system.

• Computing energy consumption; the total computing energy consump-
tion of all users in the system.

• Total energy consumption; the sum of the total transmission and com-
puting energy consumption in the system.

• Throughput; the sum of throughput of all users.

• CPU Idle time; The percentage of time for which the CPU is idle

• Satisfaction ratio; The ratio of achieved throughput of a user divided
by its minimum requirement. For a user u ∈ Ub, the satisfaction ratio
is defined as

SAT (b, u) =
th(u)

Rb,u
min



where th(u) is the achieved throughput by user u, and Rb,u
min is its

requested throughput.

• Fairness; using Jain’s fairness index [32] defined as:

JI =

(P
b∈B

P
u∈Ub

SAT (b, u)
�2

(N ×
P

r∈R
P

u∈Ub
(SAT (b, u))2)

• Non-satisfied users; the number of users that fail to achieve their re-
quested throughputs.

• RB utilization; The percentage of utilization of the total RBs from all
base stations.

6. Results

In this section, we plot and analyze the performance of the joint radio and
computing resource allocation vs. the sequential resource allocation, consid-
ering the two objectives of minimizing the total energy consumption and
maximizing the total throughput. As we mentioned before, the sequential
allocation separates the allocation of radio resources from that of comput-
ing resources by solving them in order. So, when considering the objective
of energy consumption minimization in the sequential allocation, the radio
allocation aims at minimizing the radio transmission energy consumption,
while the computing allocation minimizes the computing energy consump-
tion. The radio allocation is done by modifying the joint MILP formulation
such that the parameters, variables, and constraints related to computing
resource allocation are removed. Then, after choosing the radio parameters,
the CPU resources are allocated. Moreover, we compare the performance of
the MILP-based solutions to that of the proposed low-complexity algorithms:

• the matching with fixed preference lists; this is step-1 of our solution,
except that the preference lists are initialized in the beginning and are
no more modified in each iteration;

• the matching with semi-dynamic preference lists; this is step-1 of our
algorithm.

• the matching with semi-dynamic preference lists followed by radio power
adjustment; this is our proposed two-step matching algorithm.



We have opted to compare the proposed matching-based solutions to the
optimal values output by the solver. To the best of our knowledge, there is
no algorithm that jointly allocates RBs, MCS, and power while considering
the effect on the computing requirements. Hence, the best way to benchmark
the performance of the proposed matching-based algorithms is to compare
them to the optimal, which is the MILP. The performance is measured using
the metrics defined in Section 5.2 as a function of the number of base stations
managed by the same BBU pool. In the simulation, we only consider the
allocation for one Transmission Time Interval (TTI) that is equal to 1 ms.
The simulation is repeated 25 times for the MILP problems and 100 times
for the matching algorithms, and the 95% confidence intervals are plotted.

6.1. Radio transmission and computing energy consumption

Figures 4a, 4b, and 4c show the performance of the joint allocation prob-
lems vs. the sequential concerning the radio transmission energy consump-
tion, computing energy consumption, and total energy consumption, respec-
tively. The energy consumption is measured during one TTI. We clearly
notice that :

• When considering the objective of minimizing total energy consump-
tion, the joint radio and computing resources allocation, compared to
the sequential one, consumes more energy for radio transmission (as
shown in Figure 4a), less energy for computing (Figure 4b) and less to-
tal energy (Figure 4c). For instance, when the number of BSs is equal
to 8, the joint radio and computing allocation reduces the total energy
consumption by 21.3% compared to the sequential counterpart.

• When considering the objective of throughput maximization, both joint
and sequential allocation use all the available radio and computing re-
sources to maximize the throughput. Hence, they both have similar
performance for throughput maximization. This will be further ex-
plained later on in the paper. On the other hand, maximizing through-
put objective would consume up to 325% more total energy than the
joint allocation with the objective of minimizing energy consumption
would do.

• The proposed matching algorithms without power adjustment fully use
the available transmission power. However, as our two-step matching



(a)
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Figure 4: Energy consumption as a function of the number of base stations managed by
the BBU pool: (a) Tx energy consumption (in mJ), (b) Computing energy consumption
(in mJ), (c) Total energy consumption (in mJ)



algorithm combines the power adjustment algorithm with the matching-
based algorithm, the radio transmission energy consumption is very
close to that of the joint variation of the energy consumption mini-
mization algorithm.

• Regarding computing energy, the fixed PL and the two-step algorithm
performs very close to the joint allocation with the objective of min-
imizing energy consumption. The Semi-Dynamic-PL Matching con-
sumes a little more. The reason behind these results is that the Semi-
Dynamic-PL Matching algorithm allows for using even higher MCS
indexes, which require more computing resources. On the other hand,
combining it with power adjustment in the two-step algorithm allows
for decreasing the MCS to the least one that can satisfy the required
throughput of a user. This permits to reduce the excess allocated re-
sources and helps satisfy more users. Hence the computing energy
consumed by the latter algorithm is close to the MILP-based joint al-
location of the energy consumption minimization. Overall, the total
energy consumption for our two-step algorithm is the closest to the
joint energy consumption minimization algorithm and is less than the
other two matching algorithms.

6.2. Throughput

The performance concerning the throughput metric as a function of the
number of base stations in the BBU pool is plotted in Fig. 5. Since the
objective of minimizing the total energy consumption must guarantee the
requested throughput for every user, both the joint and sequential allocation
achieve similar results with this objective. The slight differences result from
the different decisions on the MCS indexes and number of RBs; together,
they control the TBS size, which indicates the throughput. Our two-step
algorithm achieves the lowest throughput while it remains close to the opti-
mal solution of the MILP problem. The other matching algorithms achieve
slightly higher throughput The reason behind this tendency is that some
users can use high MCS indices when employing high radio power, allowing
them to do far more than what they had expected.

6.3. CPU idle time

Fig. 6 shows the percentage of CPU idle time as a function of the number
of base stations connected to the BBU pool. Using the computing model



Figure 5: Throughput as a function of the number of base stations in the BBU pool

Figure 6: CPU Idle time as a function of the number of base stations in the BBU pool



Figure 7: Fairness as a function of the number of base stations in the BBU pool

described in section 3.2, minimizing the computing energy consumption is
consistent with reducing the CPU utilization, or in other words, increasing
the CPU idle time. This explains why the joint allocation with the objective
of minimizing energy consumption, which is the best algorithm that reduces
compute energy consumption, achieves higher CPU idle times than the se-
quential allocation. Again, both the joint and sequential allocation with the
objective of maximizing throughput have much lower CPU idle time than en-
ergy consumption minimization objectives counterparts. This is interpreted
by the fact that maximizing throughput algorithms make the most use of
all available computing resources. On the other hand, the matching-based
algorithms, and especially our two-step algorithm, preserve outcomes that
are similar to the joint MILP-based problem with energy consumption min-
imization.

6.4. Fairness and users’ satisfaction

Given that the proposed matching algorithms are not guaranteed to sat-
isfy the requirements of all users as the MILP problems do, we study and
plot the graphs of fairness and the percentage of non-satisfied users for the
matching-based algorithms as a function of the number of base stations in



Figure 8: Percentage of Non-satisfied users as a function of the number of base stations
in the BBU pool

the BBU pool in figures 7 and 8. Compared to the fixed PL matching, the
results show that allowing the semi-dynamic preference lists increases the
fairness and the number of satisfied users. Additionally, the performance
in terms of fairness and the number of satisfied users is further enhanced
when enabling power adjustment in our two-step algorithm. Furthermore,
we plot the box-plots of the satisfaction ratio of non-satisfied users in figure
9. We define the satisfaction ratio as the achieved throughput divided by the
required throughput.The results show that combining matching and power
adjustment in the two-step algorithm is better than the other two algorithms,
recalling that the number of non-satisfied users dropped when combining the
algorithms. This combination not only satisfies more users but also improves
the satisfaction ratio among non-satisfied users.

6.5. MCS and RB selection

To understand how the various algorithms behave, we observe the algo-
rithms’ decisions based on the MCS indexes assignment and the number of
RBs assigned to users. Fig. 10 shows the percentage of utilized RBs in each
base station as a function of the total number of base stations connected



Figure 9: Box plot of the satisfaction ratio of non-satisfied users

to the BBU pool, and Fig. 11 shows the cumulative distribution probabil-
ity of the selected MCS indexes for each algorithm. Considering the energy
consumption minimization objective and analyzing both figures, the joint al-
gorithm tends to favor allocating users with a low number of RBs but high
MCS indexes. In fact, achieving the same throughput for a given user could
be done by either using a lower number of RBs and a high MCS index if
the SINR level permits so, or using a higher number of RBs with a lower
MCS index [7]. The joint allocation with the objective of minimizing energy
consumption would go for the first alternative which is increasing the MCS
index but transmitting over a low number of RBs. This requires increasing
the transmission power to increase the MCS over these RBs but would de-
crease the required computing resources. As a result, the computing energy
consumption decreases, so the total combined energy consumption decreases.
In contrast, the sequential allocation firstly solves the radio allocation that
minimizes transmission power independently of the computing resources al-
location.The results show that the sequential algorithm minimizes the trans-
mission power and spreads the data over a higher number of RBs but with a
lower MCS index. On the other hand, the maximizing throughput algorithm



Figure 10: RBs Utilization as a function of the number of base stations in the BBU pool

Figure 11: The Cumulative Distribution Function of MCS assignment



uses all the RBs in each base station and the maximum transmission power
for every user. This justifies the very high RB utilization and the high MCS
indexes, as Fig. 10 and Fig. 11 show. However, the maximizing throughput
algorithm should ensure its selections do not increase the interference, wors-
ening performance. On the other hand, the fixed PL matching algorithm has
an RB utilization that is very close to that of the joint energy consumption
minimization. When the preference lists are allowed to be partially modi-
fied, some users will take advantage of that in an attempt to improve their
throughput by using more resource blocks. That is why the semi-dynamic PL
matching with and without power adjustment uses a slightly higher number
of RBs. Regarding the MCS, Fig. 11 shows that both matching algorithms
without power adjustment use high MCS indexes. When power adjustment
is applied in our two-step algorithm, and the power gets decreased so that a
user does not receive more than its request, it would be possible to use lower
MCS indexes.

Fig. 12 further supports this previous explanation. In fact, these heat
maps show the intensity of assigning the pair composed of 1) the number
of resource blocks and 2) MCS indexes to users. While the joint energy
consumption minimization algorithm intensely allocates a lower number of
RBs to users and a very high MCS index, the sequential favors assigning
a higher number of RBs but lower MCS indexes. On the other hand, the
maximizing throughput algorithms assign more RBs and high MCS indexes
to users. Moreover, the matching algorithms without power adjustment tend
to use fewer RBs and excessively high MCS indexes. In contrast, the two-
step algorithm decreases the MCS index for some users, which automatically
improves the MCS for others. Hence, while it uses a lower number of RBs,
this algorithm uses high, but not excessively high, MCS indexes to satisfy
more users.

6.6. Execution Time

Fig. 13 shows the reduction of the execution time of the matching algo-
rithms relative to the Joint-MILP-Energy Consumption Minimization. Our
algorithm significantly reduces the execution time. However, we are measur-
ing the performance using MATLAB on a Core-i9-9880H CPU. This adds
overhead. Hence, our results achieved times that are higher than 1 ms. How-
ever, since our algorithm has a tractable complexity, it would be possible
to implement our algorithms using low-level code, which would permit to
respect the 1 ms requirement.



(a) Joint - Minimize energy consumption (b) Sequential - Minimize energy consumption

(c) Joint, Sequential - Maximize throughput (d) Matching - Fixed PL

(e) Matching - Semi-Dynamic PL (f) Our two-step Matching Algorithm

Figure 12: The intensity of assigning a pair of (number of Resource Blocks, MCS index)
to users



Figure 13: Redution of execution Time relative to Joint - Min. Total Energy Consump-
tion as a function of the number of base stations in the BBU pool

As final notes, we have reduced the size of the MILP problem and made
the problem tractable by using a small number of resource blocks, a small
number of users, and a small number of base stations. The reason is that
an MILP problem is known to be NP-hard and is unable to output results
for a larger network. However, the tendency of the three variants of the
matching-based solutions will persist for a larger network. The matching
with semi-dynamic PL is at least as good as the one with fixed PL. On the
other hand, including power adjustment in the 2-step solution will produce
results that are at least as good as the matching without power-adjustment.
Moreover, the results of the maximizing throughput objective help us under-
stand the performance of the energy minimization objective in case all the
radio resources are required to satisfy the demands of users. Suppose that
the QoS requirements (i.e., minimum throughput) of users are increased so
that the throughput maximization objective can fulfill the needs without be-
ing able to improve the assigned data rates. This means, more or less, all the
radio resources (i.e., RBs and transmission power) are needed to satisfy the
minimum throughput requirement (i.e., Equation (9)). On the other hand,
since the energy consumption minimization objective should fulfill the mini-



mum requirement constraint, it will give the same results as the throughput
maximization objective. In other terms, all the radio resources are needed,
and it is not possible to use less to save energy. In such a case, the joint
and sequential allocation will perform the same, even if the goal is energy
consumption minimization, as long as the bottleneck happens at the level of
the radio resources.

Finally, the proposed 2-step algorithm can perform close to the joint en-
ergy consumption minimization MILP algorithm, with good fairness among
users and much lower complexity. Not only does our algorithm achieve near-
optimal solutions, but also it reduces the execution time significantly relative
to the MILP solver. Hence, it can serve as a suitable alternative to the MILP
problem for efficient implementation by operators.

7. Conclusion

In this paper, we have studied the performance of joint radio and comput-
ing resources allocation in Cloud-RAN. We have formulated a Mixed Integer
Linear Programming model and compared the performance of the joint allo-
cation with respect to a sequential allocation, considering the two objectives
of minimizing energy consumption and maximizing throughput. The results
demonstrate that when the computing resources are sufficient, the joint al-
location with the objective of minimizing energy consumption is beneficial
and achieves performance gains by reducing the total energy consumption.
Given that we used a high-complexity problem solver to analyze the bene-
fits of joint allocation and that it is impractical to use such a solver in an
actual implementation, we proposed a lower-complexity two-step matching
algorithm with a power adjustment mechanism to perform close to the MILP
optimization problem. Our results showed that the proposed algorithm could
perform close to the joint allocation for the energy consumption minimiza-
tion problem but with much lower complexity. As the RAN architecture
is moving towards Open RAN which encourages multi-vendor support and
openness, we plan to test the benefits of joint allocation of radio and com-
puting resources in the context of RAN sharing between multiple operators
considering different objectives including profit maximization and cost min-
imization.
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and Computing Schedulers in Cloud-RAN, in: 2021 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM).

[6] M. Sharara, S. Hoteit, P. Brown, V. Vèque, On Coordinated
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