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Abstract 9 

Building LCA aims at guiding designers towards more sustainable projects. Many sources of 10 

uncertainties affect environmental modelling. Therefore, the reliability of decisions based on building 11 

LCA is questioned. However, information on uncertainties can strengthen decisions, when properly 12 

addressed. In this study, seven statistical metrics are compared based on dependent samplings for 13 

sensitivity analyses (SA) and uncertainty analyses (UA). It allows to identify a set of indicators on 14 

which conclusions are more reliable. For the first time, this methodology is applied to comparative 15 

building LCA, considering three construction alternatives: a concrete, a concrete blocks and a 16 

wooden-framed house. A new SA method, based on Morris, helps identifying which of 153 uncertain 17 

factors are more likely to influence decisions. More precise data is then collected on these uncertain 18 

factors. In this case study, the Heijungs significativity metric and the distribution of relative 19 

differences were the most appropriate metrics to assess UA results. They allow to determine, for 20 

each indicator, which is the best alternative and how much better it performs. Consequently, the 21 

non-conclusive indicators are discarded. Applying this methodology, decision are enhanced by 22 

uncertainties and rely on a smaller set of indicators to select an alternative in terms of environmental 23 

performance. 24 

Keywords: 25 

Building design;           Life cycle assessment;           Comparison of alternatives;          Uncertainty 26 

analysis;          Sensitivity analysis. 27 
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Acronyms: 1 

BAIA: Building Attribute to Impact Algorithm; 2 

CDF: Cumulative Density Function; 3 

CED: Cumulative Energy Demand; 4 

CF: Characterisation Factors; 5 

CompLCA: Comparative Life Cycle Assessment 6 
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LCIA: Life Cycle Impact Assessment;  20 

LSH: Latin Hypercube Sampling; 21 

MC: Monte Carlo; 22 

MQ: Means and Quantiles; 23 

PDF: Probability Density Function; 24 

RI: Relative Influence;  25 

RP: Ranking Probability; 26 

SA: Sensitivity Analysis;  27 

SC: Shuttered Concrete;  28 

SM: Supplementary Materials;  29 

SMD: Standardised Mean Difference; 30 

UA: Uncertainty Analysis;  31 
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WF: Wooden-Framed. 1 

Symbols 2 

  : alternative 1 3 

    : i-th sample of alternative 1 4 

  : alternative 2 5 

    : i-th sample of alternative 2 6 

  : mean of the      and      7 

 : standardized Mean Difference of Cohen’s d 8 

 : sample index 9 

 : sample index 10 

 : number of environmental indicators 11 

  : Heijungs significativity metric 12 

     : superiority statistic for alternative 1 13 

     : superiority statistic for alternative 2 14 

 : number of characterisation factors 15 

 : number of sub-processes in the inventory 16 

 : sample size 17 

   : standard deviation 18 

 : set of background environmental data 19 

 : set of characterisation factors 20 

 : threshold to set an alternative preference 21 

 : Heaviside step function 22 

  23 
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1 Introduction 1 

The building and construction sectors account for almost 40 % of the global energy consumption and 2 

of the greenhouse gases emissions worldwide [1]. In addition, they cause high resource consumption 3 

and waste production, as well as various pollution in air, water and soil [2–4]. The life cycle 4 

assessment (LCA) methodology [5,6] is recognised as a suitable eco-design tool to mitigate the 5 

building sector impacts. More than assessing the environmental impacts of one construction project, 6 

building LCA is useful to compare alternatives. It should therefore provide reliable and robust results 7 

in order to guide decision makers towards more sustainable projects. However, many sources of 8 

uncertainties and variabilities can affect the environmental modelling of products [7–11]. Tackling 9 

these uncertainties is one of the challenges of building LCA identified by Nwodo and Anumba [12], 10 

especially in the case of comparative LCA (CompLCA) and in the early design phase of a building 11 

project [13]. In this work, a methodology is proposed to deal with uncertainties in CompLCA of 12 

building design alternatives. It aims at informing on uncertainties to strengthen the reliability of the 13 

decision making. 14 

1.1 Uncertainties in LCA 15 

Uncertainties are discussed in LCA since the early 1990s [14]. The generic uncertainty terms generally 16 

encompasses the concepts of uncertainty i.e. lack of knowledge on the true value of a quantity, and 17 

variability i.e. natural stochastic variation of a quantity [7,8]. Uncertainties are linked to all steps of 18 

an LCA [10]: goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA), 19 

and interpretation. In addition, they can be related to the representativeness of the LCA model 20 

(model uncertainties), the model input parameters (parameter uncertainties), or choices related to 21 

the context of the study (scenario uncertainties) [10]. Thus, LCA results may change significantly 22 

depending on assumptions made by LCA practitioners [15]. 23 

Since 2010, despite being increasingly mentioned in the LCA literature [10], uncertainties have not 24 

been taken into account in most articles on LCA. According to Bamber et al. [11], less than 20 % of 25 

the papers published between 2014 and 2018 quantified uncertainties. This can be explained by lack 26 

of information in some environmental databases [10,13], difficulties and lack of tools to address 27 

uncertainties (especially for correlated data) [16,17], or complexity of communicating and 28 

interpreting LCA results with uncertainties [9,18]. Heijungs et al. (2019) emphasised the need to 29 

tackle these challenges and recommended to stop producing LCA results without uncertainties. 30 

1.1.1 Uncertainty and sensitivity analysis 31 

Several statistical and analytical methods are available to deal with uncertainties in LCA. On the one 32 

hand, uncertainty analysis (UA) methods are applied to propagate uncertainties throughout the 33 

model, i.e. from input to output. Among available UA methods, the random Monte Carlo (MC) 34 

sampling is the most used in LCA [9] due to its availability in most LCA software [11]. On the other 35 

hand, sensitivity analysis (SA) methods are useful to identify the most influential uncertain factors on 36 

which model refinement should focus, and to sort the uncertain factors by influence [19,20]. In the 37 

following, the generic term “uncertainty” encompassed UA and SA. “UA” or “SA” terms are used to 38 

specifically discuss uncertainty propagation or factor influence quantification respectively.  39 

1.1.2 Uncertainty quantification in CompLCA 40 

LCA is often used to compared design alternatives. Given the numerous uncertainties in 41 

environmental modelling of products, robustness and reliability of CompLCA results are questioned. 42 

Decision makers who are familiar with uncertainties, fear that they change the conclusions of their 43 
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studies. Yet, taking uncertainties appropriately into account can help interpretation because trade-1 

offs between alternatives are better highlighted [21,18]. 2 

Appropriate management of uncertainty in CompLCA requires the use of adequate sampling 3 

strategies and comparison metrics for UA and SA. Firstly, it involves using dependent sampling [22], 4 

also called paired simulations or blocked simulations [23]. The basic idea behind dependent sampling 5 

is to consider the same background data and the same choices in the foreground system when 6 

comparing product alternatives [24]. More globally, it involves considering the correlation between 7 

pairs of input and output variables [17], i.e. using the same sampling for uncertain factors affecting 8 

the compared alternatives [10]. 9 

Secondly, once dependent sampling is applied, several metrics can be used for the UA. They were 10 

discussed by Mendoza Beltran et al. [18] and Heijungs [25]. They all rely on pairwise comparison 11 

between alternatives. A null hypothesis significance testing is applied to identify if the mean 12 

environmental impact of an alternative    is significantly different than the mean impact of an 13 

alternative    [22,26]. However, this approach is not appropriate in CompLCA based on Monte Carlo 14 

simulations [23]. In addition, it does not answer the two main questions in CompLCA: how often and 15 

how much    is less impactfull than    [25]. Overlap statistics [21] can be computed in order to 16 

quantify the degree of overlap of output distributions of the compared alternatives. A large overlap 17 

means that    and    leads to similar environmental impacts. An extension of this approach, the 18 

stochastic multi-attribute analysis, can be applied to identify trade-off and to support decision 19 

making when handling several environmental indicators [27,28]. Discernibility analysis (DA) [29] is 20 

the most popular approach to compare UA results. It consists in counting how often    performs 21 

better than    among all sampled values. But the DA does not inform on how much    is less 22 

impactfull than    [25]. In order to fill this gap, Heijungs [25] proposed a new indicator, called 23 

Heijungs Significativity Metric (HSM) in this article, able to quantify how often    is significantly less 24 

impactfull (with a given degree of significance) than   , thus answering both meaningful questions in 25 

CompLCA. A first application of this metric can be found in Michiels and Geeraerd [30]. The above-26 

mentioned metrics have some drawbacks: they should be computed for each pair of alternatives and 27 

for each environmental indicator, increasing the computation and analysis time. Moreover, 28 

thresholds needs to be defined to indicate an alternative preference. 29 

Contrarily to UA, the comparison of SA results of pairs of alternatives has rarely been addressed in 30 

the literature. Instead of identifying the most influential factors for each alternative separately, SA 31 

performed in a CompLCA can highlight which uncertain factors are more likely to change the 32 

conclusion [31]. Wei et al. [32] and Ravikumar et al. [33] applied respectively the FORM method from 33 

the reliability theory, and moment-independent SA, in order to identify the most influential factors in 34 

a decision context. 35 

A global framework for UA and SA is still missing to our knowledge in CompLCA. 36 

1.2 Uncertainties in the CompLCA of building alternatives 37 

Buildings have specifically a very long lifetime, so that the impacts of the use stage are predominant 38 

compared to those of the construction, renovation and end-of-life (EOL) stages [2,34]. Building LCA is 39 

increasingly used, however, the results are mostly deterministic [13,35]. Among the papers on 40 

building LCA published between 2000 and 2020, less than 10 % mentioned uncertainties and less 41 

than 1 % applied uncertainty quantification methods [35]. 42 
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Marsh et al. [13] summarised the sources of uncertainties in building LCA and sorted them by their 1 

life cycle stage. Uncertain factors included in building LCA studies are mostly linked to the LCI and 2 

correspond to parameters uncertainties (e.g. uncertainties in quantities or physical properties of 3 

building materials or systems, or in the service lifetime). As pointed out by several authors, the 4 

potential environmental gains are the largest in early design phase, but uncertainties are also higher 5 

in this phase as many decisions have yet to be made [36–39,13]. 6 

Regarding the specific subject of uncertainties in CompLCA of buildings, the set of 14 studies listed in 7 

Table 1 was found. Only studies performed at the building level were selected, thus stochastic 8 

comparison of building materials [40,41,32,42,43] was not considered. Furthermore, the selected 9 

articles compare building design or renovation alternatives in an uncertain context using LCA. The 10 

studies focusing on the comparison of methodological choices are not included [44–48]. In the 11 

14 articles, two to twelve alternatives were compared, mostly for residential buildings. In addition to 12 

parameter uncertainties, other uncertain factors were taken into account, such as model uncertainty 13 

(e.g. characterisation factors CF), scenario uncertainty (e.g. allocation rules or functional unit), spatial 14 

variability (e.g. occupancy and climate) or temporal variability (e.g. future climates or energy mix). 15 

Uncertainty propagation was performed in one study using an analytical method [49]. All other 16 

articles used statistical methods, mostly the MC random sampling. This makes possible using 17 

dependent sampling. However, dependent sampling was applied only in half of the listed papers, and 18 

its application was not always clearly stated. When the samples from each alternative were not 19 

dependent, the authors compared all alternatives using probability density functions (PDF) [50], 20 

histograms with errors bars [51], boxplots [52,38,53], violin plots, or statistics on the distributions 21 

such as mean or standard deviation [54]. This kind of visualisation may be misleading as correlations 22 

between alternatives in foreground and background systems do not appear. The seven studies 23 

considering dependent samplings used DA or similar methods in order to compare alternatives, 24 

which were visually compared by plotting DA results in graphs [55] or in matrices [36]. Another 25 

option was to plot the distribution of impact ratios [56,57], or the distribution of impact differences 26 

[39,58,59] between pairs of alternatives. This is in line with the recommendations of Marsh et al. [13] 27 

to use dependent sampling, and DA or HSM. No application of HSM was yet found in CompLCA of 28 

buildings. 29 
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Table 1: Studies on comparative probabilistic building LCA. 1 

Article Alternative 
compared 

Uncertain factors UA Dependent 
sampling 

Method for CompLCA 

Huijbregts et 
al., 2003 [56] 

2 alt.: level of 
insulation for a 
house 

Parameter: envelop, energy 
used 
Scenario: allocation, EOL, time 
horizon 
Model: spatial variability, CF 

10000 MC 
runs 

X Distribution of 
    

    
 * 

(similar to DA) 

Blengini and 
Di Carlo, 
2010 [51] 

2 alt.: low energy 
and standard house 

Fabrication, transportation and 
EOL of building envelop and 
systems, energy used 

10000 MC 
runs 

 Histograms with error bars 
 

 

Hoxha et al., 
2014 [49] 

2 alt.: reinforced 
concrete vs. 
wooden house 

Material quantities and service 
life, EPD impact values 

Analytical  Histograms with error bars 

Heeren et al., 
2015 [57] 

2 alt: massive vs. 
wooden house 

Building size , material physical 
properties, service life, , use 
scenarios, variability of climate 
and occupancy, electricity mix 

4500 MC 
runs 

X Distribution of 
    

    
 

(similar to DA) 

Favi et al., 
2018 [52] 

3 alt: renovation 
options for a house 

Materials quantities and 
physical properties, systems, 
service life, impact values, 
climate variability  

Sobol 
sequences, 
8192 runs 

 Boxplots 

Hester et al., 
2018 [36] 

12 alt: design 
variants for a house 

Building geometry, systems, 
service life, climate variability  

5000 MC 
runs 

 
BAIA 

X 
For energy 

related 
input 

DA : 
 

 
  

  
    

    
   

  
    

    
  

  
    

Mean normalised 

difference : 
 

 
            
 
   

 

  
            
 
   

 

Matrix of results to show 
pairwise comparison 

Piroozfar et 
al., 2019 [54] 

2 alt.: 
contemporary vs. 
traditional houses 

Materials quantities 1000 MC 
runs  

Mean, median, standard 
deviation, coefficient of 
variance 

Harter et al., 
2020 [38] 

7 alt.: shapes for an 
office building 

Building size and orientation, 
material physical properties, 
systems, use scenarios 

500 LHS 
runs  

Boxplots 

Ylmén et al., 
2020 [39] 

2 alt: wooden vs 
concrete 
framework for an 
office building 

Question to answer with the 
LCA, decision rules, confidence 
level in the LCA results, rules to 
build future scenarios, 
functional unit 

5000 MC 
runs 

Not clearly 
stated 

Distribution of:           

(similar to DA) 

Zhang and 
Zheng, 2020 
[58] 

5 alt: structures 
systems for a multi-
storey building 

Emission factors 10000 MC 
runs 

Not clearly 
stated 

Mean, median, standard 
deviation, variance, 90 % 
confidence interval 
CDF 
Distribution of:          : 

(similar to DA) 

Famiglietti et 
al., 2021 [55] 

2 alt.: heat pump 
vs. gas boiler for a 
house 

Param: energy, system 2000 MC 
runs 

Not clearly 
stated 

DA 

Galimshina et 
al., 2021 [53] 

8 alt.:  renovation 
options for a 
multifamily house 

Systems, impact values, service 
life, variability of occupancy, 
variability of future climate, 
future electricity mix 

MC runs 
on a 

surrogate 
model 

 

Boxplots  

Hart et al., 
2021 [50] 

3 alt.: wooden, 
steel and concrete 
structures 

Structural frames related 
impacts 

1000 MC 
runs  

PDF 
Violin plot 

Pannier et al., 
2022 [59] 

3 alternatives: 
smart vs. 
conventional 
multifamily house 

Energy savings 
Variability of occupancy 

1000 MC 
runs per 

occupancy 
scenarios 

X 

Distribution of: 
         

                
 

(similar to DA) 

*     corresponds to the impact value of alternative    at the i-th run in the sampling. 2 
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Contrary to UAs, SAs did not use dependent sampling for building LCA. However, it was done at the 1 

component level in order to compare two insulation materials [32].  2 

1.3 Aim of the study 3 

Heijungs [25] provided recommendations to compare product alternatives “in a sea of uncertainties” 4 

using UA. The present article aims at applying a global UA and SA framework to surf on the sea of 5 

uncertainties in CompLCA of building. Therefore, the sampling strategy of a screening SA method is 6 

adapted to a comparative context, and to handle all kinds of uncertain factors; which was not done 7 

previously. After this SA stage, the uncertainty characterisation of the main uncertain factors is 8 

improved before conducting an UA.  9 

As highlighted in Table 1, even recent studies did not apply dependent sampling to compare building 10 

design alternatives using LCA. Suitable UA in comparative context is thus performed. Different 11 

metrics are investigated and presented using various data visualisation methods. This manner of 12 

exploiting CompLCA results is new in building applications. In the next sections, the methodology 13 

(§ 2) and the LCA model (§ 3) are described and applied to compare three building design 14 

alternatives presented in § 4. In the results section (§ 5), SAs and UAs are run based on dependent 15 

sampling and different comparison metrics are applied. Finally, the results and methodology are 16 

discussed in § 6, before concluding in § 7 on the most appropriate metrics to address uncertainties, 17 

and strengthen the decision making in building LCA. 18 

2 Methodology to address uncertainties in building compLCA 19 

The proposed methodology to address uncertainties in building compLCA is split in five stages, that 20 

are discussed in the following subsections:  21 

1. Selection of the alternatives and of the LCA model 22 

2. Identification of uncertain factors and gross characterisation of uncertainties 23 

3. Sensitivity analysis in a comparative context 24 

4. Improvement of the uncertainty characterisation for the most influential factors 25 

5. Uncertainty analysis in an alternatives-comparison context 26 

2.1 Selection of the alternatives and of the LCA model 27 

The first step consists in the definition of alternatives. A building designer may have to choose 28 

between: levels of energy performance, architectural forms, construction types, technical solutions, 29 

or refurbishment alternatives. After this goal and scope step, the LCA model is built to enable the 30 

comparison of alternatives corresponding to the same functional unit. 31 

Classical LCA is performed using averaged values regarding the background system. For instance if 32 

electricity is consumed, constant average environmental impacts are considered all along the life 33 

cycle. In the case of buildings, this assumption is no more valid due to the long life span (several 34 

decades) during which the electricity production system is likely to change. Furthermore, electric 35 

heating induces a high peak demand during cold days, when GHG emissions of electricity production 36 
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are higher than average. It is therefore essential to associate a dynamic building energy simulation 1 

(DBES), yielding temporal evolution of buildings energy loads (hourly time-step) with a model or data 2 

accounting for temporal variation of the electricity production mix and related impacts. In this way, 3 

the impacts of building operation, that still represent the largest share of environmental impacts 4 

[60,61] due to long buildings lifetimes, are more accurately calculated. This is a way to progress 5 

towards a dynamic LCI modelling for buildings [62]. 6 

2.2 Identification of uncertain factors and uncertainty characterisation 7 

Many input parameters are required to perform DBES and LCA. They are part of the uncertain factors 8 

and can be listed by a designer, referring to the model. However, other sources of uncertainties exist 9 

such as: model uncertainty; uncertainty due to choices; spatial, temporal and technological 10 

variabilities; epistemic uncertainties; mistakes; or meta-uncertainties [7–9]. A non-exhaustive list of 11 

uncertain factors in the context of building LCA is provided by Marsh et al. [13]. When data is 12 

available, the different uncertainty types should be included in the analysis. 13 

The first characterisation of uncertainty on the identified factors is based on expert knowledge or 14 

available data from literature. Building designers may have experience to define variation ranges for 15 

some parameters (e.g. conductivity of an insulation material), but do not necessarily know the 16 

associated probability distribution. Therefore, we suggest the use of uniform distributions for a quick 17 

uncertainty characterisation. The distributions will be updated in stage #4. For other sources with 18 

which the designer is not familiar, data should be gathered (e.g. literature review) in order to 19 

associate a probability distribution with continuous factors, or a set of possible values with discrete 20 

factors. In order to facilitate this task, uncertainty databases for the building sector should be 21 

developed, similarly to the work of Hoxha [63]. 22 

2.3 Sensitivity analysis (SA) for alternatives’ comparison 23 

An SA is conducted in order to identify the most influential factors. This step is important for a better 24 

understanding of LCA modelling. Thus, decision makers become aware of aspects having a key 25 

influence on LCA results. In addition, they can search for further information on sensitive factors. 26 

2.3.1 SA method 27 

The Morris method [64] adapted by Pannier et al [37,65] was used. It has the advantage to precisely 28 

quantify the influence of uncertain factors with much less simulations than the variance-based Sobol 29 

method [66], which is considered as a reference. An elementary variance (square of the elementary 30 

effect) is calculated instead of an elementary effect. A sensitivity index similar to the expectancy of 31 

the variance computed in the Sobol method is obtained [37]. It is named MA-Morris (for Multilevel 32 

Adapted Morris) method in this article. Its performance was investigated for continuous factors as 33 

well as categorical factors (i.e. discrete factors without logical order) with many levels1 [65]. Some 34 

categorical factors had 200 levels, previously generated with a stochastic model. This number of 35 

levels allows to reach convergence on the mean for almost all environmental indicators. MA-Morris 36 

was able to quantify the importance of all kinds of uncertain factors with small differences compared 37 

to the Sobol method [65]. A sensitivity index    for the  -th uncertain factor, similar to the 38 

expectancy of the variance computed for Sobol, is obtained using MA-Morris, as explained in [65]. 39 

Then, the influence of the factor   is quantified based on the relative influence     indicator proposed 40 

                                                           
1
 In [65], the comparison between Sobol and MA-Morris was done for the same case studied than the one of 

this article. 
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in [37], and calculated as in (1). It is defined as the share of the sensitivity index of one factor 1 

relatively to the sum of the sensitivity indices of all factors. 2 

    
  

    
 (1) 

2.3.2 Application to alternatives comparison 3 

The distributions of uncertain factors are sampled following the design of experiments (DoE) of MA-4 

Morris. As the aim is to compare alternatives, a dependent sampling is used: for uncertain factors 5 

appearing in several alternatives, the same DoE must be used for all alternatives, as pointed out by 6 

Henriksson et al. [22]. This means that for one given simulation, the values of the uncertain factors 7 

are the same for all alternatives. Thus, the alternatives can be compared by performing   simulations 8 

all things being equal otherwise. For one alternative, the results of the DoE can be summarized in a 9 

matrix consisting of   rows (one for each simulation performed) and of   columns (one for each 10 

environmental indicator considered).  11 

The sensitivity indices are computed for each alternative separately as well as for a metric reflecting 12 

the alternatives comparison context: in our case the pairwise difference between alternatives. The 13 

following calculation is performed to get the pairwise difference; for each of the   simulations and 14 

for each of the   indicators, the impact value of    is subtracted from that of   : 15 

       

             
   

             
   

             
   

             
  (2) 

with the matrices representing the results for alternative    (right matrix), and    (left matrix). In 16 

one row of the matrices, the coefficients are the value of the   indicators calculated during the same 17 

simulation. In columns, the coefficients are the   values calculated for the   simulations for a given 18 

indicator. 19 

Performing SA in a comparative context is important before performing UA in a comparative context 20 

in order to improve the uncertainty characterisation on factors than can may change the ranking of 21 

alternatives. 22 

2.4 Improvement of uncertainty characterisation 23 

For the most influential factors identified using SA, uncertainty characterisation is refined in order to 24 

get more reliable UA results. Literature and technical review are more deeply investigated for these 25 

factors. 26 

In order to determine for which factors characterisation should be improved, uncertain factors are 27 

ranked by increasing relative influence   , for each alternative and each pairwise difference      . 28 

This is done for all environmental indicators. The set of most influential factors can be defined as the 29 

set of factors covering at least a certain share of the total influence for all indicators and alternatives 30 

as suggested by Lacirignola et al. [67]. If many factors belong to this set, the building designer will 31 

spend too much time searching for additional information. A different approach is thus chosen here. 32 

A budget is set regarding the number of influential factors. The uncertainty characterisation is 33 

improved only for the 15 most influential factors, i.e. giving the 15 highest    among all alternatives 34 

and indicators. 35 
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2.5 Uncertainty analysis (UA) for alternatives’ comparison 1 

The improved distributions of uncertain factors are sampled with Sobol sequences for a more 2 

efficient (higher convergence speed) exploration of the variation ranges [68]. As for SA, dependent 3 

sampling is used, allowing to obtain distributions of results for each alternative and each pairwise 4 

difference      . Four types of analyses corresponding to seven methods (see Table 2) are tested. 5 

The key question is how often and how much one alternative performs better than another one, for 6 

each indicator. 7 

Table 2: Alternatives’ comparison methods and their notations. 8 

Analysis type Alternatives’ comparison method Notation 

Distribution Plot of distributions Di 

Alternative preference Discernibility analysis DA 

Probability of occurrence of rankings RP 

Impact gaps between alternatives Computation of means and quantiles MQ 

Standardised mean difference SMD 

Cross-analysis Distribution of relative differences DRD 

Heijungs significativity metric    HSM 

 9 

Firstly, impact distributions of each alternative are plotted for each indicator to get an overview of 10 

impact values and dispersions. This analysis is called Di. 11 

Secondly, analyses are carried out to understand how often an alternative performs better: 12 

 A discernibility analysis [29], called DA, is performed for all pairwise comparisons. It consists 13 

in counting the cases where             and dividing this number by the sample size. This 14 

gives the probability that a randomly sampled alternative      performs better than the 15 

corresponding alternative     . A probability closed to 0 (respectively to 1) indicates that    16 

(respectively to   ) more often has the lowest impacts and thus performs better. When the 17 

probability is close to 0.5 for one indicator, both alternatives are undistinguished. 18 

 An analysis of the most represented ranking is conducted. The ranking between all 19 

alternatives is assessed for all simulations. The probability of occurrence of each possible 20 

ranking is computed. For this analysis, the pairwise difference is not necessary. This analysis 21 

is called RP (ranking probability). 22 

This kind of analysis can only be applied to dependent samplings; non-overlap statistics or other 23 

measures of superiority are available for independent samplings [25]. In addition, it does not indicate 24 

how much an alternative performs better. 25 

Thirdly, impact gaps between alternatives are assessed: 26 

 Statistics on distributions (e.g. means, medians, and quantiles) are computed to find how 27 

much better an alternative performs. This analysis is called MQ (means and quantiles). 28 

 In addition, the standardised mean difference (SMD) also called Cohen’s   [69] is calculated 29 

to find how many standard deviations separate the means for each pairwise comparison. For 30 

dependent samplings, d is the mean of the pairwise difference divided by the standard 31 

deviation of the pairwise difference, as in (3). A small difference between these statistics or 32 

a small   (i.e. small mean of the pairwise difference) indicate that the two products have 33 

similar environmental impacts. 34 
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 (3) 

with   the SMD,    the mean pairwise difference between    and    defined in (4) and      standard 1 

deviation of the pairwise difference defined in (5). 2 

                   
 

 
          

 

   

 (4) 

      
 

   
                 

 
 

   

 (5) 

with   the number of simulations and   the simulation index. 3 

Lastly, instead of performing the second and third types analysis, we can compute at the same time 4 

how often and how much one alternative performs better than another using the following metrics: 5 

 The distribution of the relative differences (noted DRD) is computed as described in equation 6 

(6) for each indicator similarly to Pannier et al. [70,59]. For each of the   simulations the 7 

impacts difference between alternatives is computed, and then normalised by the maximum 8 

impact value. This gives a dimensionless series of values, which is displayed as a boxplot. 9 

Visually, one can see how often one alternative performs better (part of the boxplot below 10 

the 0-axis). In addition, the shape of the boxplot indicates how much one alternative perfoms 11 

better. For a thick boxplot, the uncertain factors strongly affect the results, which are more 12 

likely to be questioned. For a flattened boxplot, whatever the values of uncertain factors, the 13 

impact difference between the two alternatives are always in the same order of magnitude. 14 

If the flattened boxplot is centred on the 0-axis (e.g. in a range of      around the 15 

indifference line), both alternatives have similar impacts; otherwise, one alternative is clearly 16 

preferred. 17 

         
                

 (6) 

 The superiority statistic       (resp.      ) introduced by Heijungs [25] is computed to find 18 

the probability that alternative    (resp.   ) performs at least     better than alternative    19 

(resp.   ).       represents the number of times where           exceeds   
 

   
, divided by 20 

the sample size  , as in (7). Heaviside step function   (8) allowing for counting the 21 

occurrences.       is built symmetrically. Large values for the Heijungs significativity metric 22 

  , called HSM, indicate a strong preference for one alternative.       is given by: 23 

      
 

 
   

    
    

    
 

   
  

 

   

 (7) 

with   the threshold for defining a better alternative, and   the Heaviside step function 24 

defined as in equation (8): 25 

       
     
     

  (8) 

For each environmental indicator, the seven methods are applied and their results are compared. It 26 

is possible to identify indicators for which it is likely to get much lower impact for one alternative. An 27 

alternative ranking can be obtained for such indicators and decision makers can be more confident in 28 
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their choices. On the contrary, if for one indicator: i) the impact values of the two alternatives are 1 

always close or ii) there is as much chance that one alternative or another performs better; the 2 

results are debatable and the final decision should not rely on this indicator. 3 

3 LCA model and framework to deal with uncertainties 4 

Many energy and LCA simulations are required when running SA and UA. The building LCA 5 

framework of Figure 1 is used for uncertainty quantification in a comparative context. Based on 6 

modelled alternatives and uncertain factors defined by a user, the statistical programming 7 

environment R manages the entire SA or UA process: creation of the DoE, launch of building 8 

simulations, post-processing of results. The model framework used in this study is presented in the 9 

next subsections. 10 

 11 
Figure 1: Building LCA framework to perform sensitivity and uncertainty analysis. 12 

3.1 DBES 13 

Before performing LCA, DBES is run using the COMFIE model [71] of the software Pleiades2. This is an 14 

important step for a precise assessment of the temporal evolution of energy loads, that generally 15 

account for a large part of buildings impacts. In this reduced multizone building model, the building is 16 

split in thermal zones with homogenous operative temperature. Thermal zones are meshed using a 17 

finite volume discretisation. Energy balance is applied in order to get zones operative temperatures 18 

and eventually heating or cooling loads. The reliability of this DBES tool has been verified through 19 

model intercomparison [72–75] and comparison with measurements [76,77]. 20 

The DBES takes as inputs the characteristics of the building site, envelope and equipment, and the 21 

occupancy scenarios of each zone. These inputs are uncertain and the predefined values are 22 

modified at each simulation based on the DoE. It has been shown that the variability of two of these 23 

inputs, namely climate and occupancy, may lead to significant gaps in the building energy assessment 24 

[78,79]. Specific models, described in the next two paragraphs, are used to account for these 25 

variabilities. In both case, the approach consists in generating a diversity of realistic scenarios 26 

(climates or occupancy), and randomly sampling from the generated scenarios for each simulation. 27 

                                                           
2
 https://www.izuba.fr/logiciels/outils-logiciels/ 
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A sample of meteorological years is generated by applying the model of Ligier et al. [80,81]. The 1 

temperature and radiation of a typical meteorological year are characterised into a mean trend and a 2 

residual series, using a Fourier decomposition and a seasonal auto-regressive moving average model. 3 

Then, new realistic series are produced based on the identified characteristics. The model is designed 4 

to maintain the natural correlation between temperature and radiation. The obtained climate files 5 

are representative of the present climate. 6 

The stochastic occupancy model of Vorger [82,83] enables generating realistic occupancy scenarios. 7 

Depending on the building type and location, occupants are generated for each run. Their presence 8 

and activities over the simulated year are defined with a 10 min timestep using time-inhomogeneous 9 

Markov chains calibrated on a French time use survey. Based on the sampled activities and 10 

measurements campaigns data, energy for appliances and water consumptions are estimated. In 11 

addition, adaptive actions can be set (e.g. window opening). The occupancy model gives as output 12 

scenarios of presence, temperature setpoints, appliances and water consumptions, windows 13 

shadings and openings. 14 

After a DBES, the building loads are available for every hour of the simulated year and R launches the 15 

associated LCA simulation. 16 

3.2 LCA 17 

LCA is performed using the LCA engine EQUER [84–86] of the software Pleiades. All life cycle stages 18 

of the project are considered. Being developed as a decision support tool, a consequential-oriented 19 

approach is implemented in Pleiades LCA through three main modelling choices. Firstly, the approach 20 

proposed by Polster et al. [84] to account for benefits and burdens of recycled materials corresponds 21 

to the 50/50 substitution method, also described in Schrijvers et al. [87]. Secondly, electricity 22 

exported to the grid (e.g. with photovoltaics panels) results in avoided impacts. Thirdly, for biogenic 23 

carbon, the approach of Polster et al. [84] is followed. It consist in accounting impacts separately at 24 

construction and end-of-life stages. It corresponds to the -1/+1 approach, described in Hoxha et al. 25 

[88], and has the advantage of differentiating origins (trees replanted or not after harvesting) and 26 

end-of-life options (reuse, disposal, incineration with or without energy recovery) of bio-based 27 

materials. The reliability of the tool has been investigated through models intercomparisons in 28 

different projects: PRESCO, COIMBA, BENEFIS [89–91]. Despite methodological differences, the 29 

compared models ranked building alternatives in the same way in most cases. 30 

In countries with a large share of electrical heating such as France, the electricity consumption 31 

fluctuates significantly over the year. Consequently, the electricity production mix adapts and the 32 

related impacts vary. The hourly model of electricity production of Roux et al. [92]3 is linked with 33 

Pleiades LCA to take temporal variation of impacts of electricity use into account. To be consistent 34 

with the consequential-oriented approach of Pleiades LCA, the marginal version of the model [92] is 35 

used. In this study, the electricity production allocated to the building project corresponds to the 36 

production differences between i) the production required to supply the reference electricity 37 

demand, and ii) the production required to supply the reference demand increased by the additional 38 

electricity load for the project. 39 

Pleiades LCA and the marginal dynamic electricity mix model take as an input the characteristics of 40 

the building envelope (quantities of materials) and systems (equipment and energy sources), as well 41 

as water use and energy loads. Environmental data from ecoinvent v3.2 [93] are used for fabrication 42 

                                                           
3
 Their model will be integrated in Pleiades LCA soon. 
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and end-of-life of materials and components, energy, water and transport processes. All above-1 

mentioned parameters are subject to uncertainties. 2 

In addition, uncertainties in background environmental data and in LCIA are specifically modelled 3 

(see Figure 2). Brightway2 [94] is used to generate environmental databases for Pleiades LCA 4 

containing uncertainties. Regarding uncertainties on the background environmental data of the 5 

building project,   random samples are drawn from the uncertainty distributions provided by 6 

ecoinvent, resulting in   technosphere and biosphere matrices. In addition, for uncertainties on LCIA, 7 

uncertainty distributions are affected to characterisation factors (CF) using Brightway2:   samplings 8 

are drawn to get   sets of characterisation factors. Combining the   technosphere and biosphere 9 

matrices to the   characterisation matrices,     lists of impact values of building materials and 10 

processes are obtained, corresponding to   databases containing uncertainties for Pleiades LCA. 11 

Finally, for each simulation, Pleiades LCA uses one of the randomly sampled database. 12 

 13 

Figure 2: Generation of the databases with uncertainties on the background data and on the characterisation factors. 14 

At the end of an LCA simulation, 14 environmental indicators or fluxes listed in Table 3 are obtained. 15 

Table 3: Environmental indicators or fluxes. 16 

Indicator / flux Legend Unit Reference 

Climate change GWP100 Clim. Change kg CO2 eq IPCC 2013 [95] 

Cumulative Energy Demand CED MJ CED [96] 

Abiotic Depletion of Minerals Resources kg Sb CML [97] 

Mass of Waste Waste kg Flux from ecoinvent [93] 

Water use Water litre Flux from ecoinvent [93] 

Fine particulate matter 
formation 

Particulate M. kg PM10 eq ReCiPe [98] 

Photochemical ozone 
formation 

P. Ozone kg NMVOC eq ReCiPe [98] 

Volume occupied by 
radioactive waste 

Rad. Waste m3 Flux from ecoinvent [93] 

Ionising radiation Ioni. Rad.  kg 235U eq ReCiPe [98] 

Human toxicity Hum. Tox. CTUh USEtox [99] 

Eutrophication Eutrop. kg PO4
3- eq CML [97] 

Acidification Acid. kg SO2 eq CML [97] 

Ecotoxicity Ecotox. CTUe USEtox [99] 

Land use Land use points ReCiPe [98] 

Process / material Inventory # 1

• Sub process / material # 1

• Sub process / material # i

• Sub process / material # K

Process / material Inventory # j

• Sub process / material #...

Process / material Inventory # N

• Sub process / material #...

LCIA # Climate Change

• CF # 1

• CF # k

• CF # M

Uncertainties in background 

environmental data 

X sets of background 

environmental data

Uncertainties in LCIA

Y sets of 

characterisation factors

Impacts values with uncertainties 

for building materials and 

processes

X*Y databases for 

Pleiades LCA
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4 Case study 1 

The methodology is applied to compare three houses located in the experimental platform INCAS (Le 2 

Bourget-du-Lac, France), using the previously defined LCA framework. These buildings were studied 3 

in many research projects; they are therefore precisely characterised. In this study, however, we 4 

assume to be in the design phase when a designer or a customer wants to choose the construction 5 

type having the lowest impacts. 6 

4.1 Compared alternatives  7 

The three building alternatives are two-storey single-family houses, whose performance corresponds 8 

to the passive house standard [100]. They have the same geometry, area and orientation; only their 9 

construction type differ. The first alternative is a shuttered concrete (SC) house with extruded 10 

polystyrene external insulation , as described in Munaretto et al. [77]. The second alternative has a 11 

double-wall (DW) type of construction: it consists in two rows of concrete blocks with glass wool in-12 

between [101,102]. The last alternative is a wooden-framed (WF) house, with wood wool inside OSB 13 

panels and a concrete ground floor slab, as described by Brun et al. [103]. In this case study, the 14 

insulation thickness in the walls of DW and WF were slightly modified to reach the same thermal 15 

resistance as SC, enabling to compare the construction types, all things being equal otherwise. All 16 

alternatives have an electric air heating system, an electric domestic hot water system, and a double-17 

flow mechanical ventilation system. The EOL assumptions are given in . The complete description of 18 

the houses and the modelling assumptions can be found in Pannier [31]. 19 

Table 4: EOL assumptions. 20 

Material type EOL 

Inert waste[104] 66 % material recovery 

34 % inert material landfill 

Wooden material [105] 43 % material recovery 

34 % incineration with heat recovery 

23 % non-hazardous waste landfill4 

Other combustible materials [104] 31 % incineration with heat recovery 

69 % non-hazardous waste landfill 

Plaster 100 % non-hazardous waste landfill 

Glass wool 100 % non-hazardous waste landfill 

Steel frame [106] 85 %recycled 

15 % inert material landfill 

 21 

4.2 Functional unit 22 

The single-family house of 90 m² net floor area is studied over its entire lifecycle, including 23 

construction, use, renovation and EOL stages. The building lifetime is an uncertain factor taking 24 

values between 40 and 200 years. Regarding the use stage, an occupancy scenario is randomly 25 

sampled, but the same scenario is applied to all compared alternatives.  26 

                                                           
4
 Impacts of non-hazardous waste landfill are assumed to be six times greater than the impacts of inert material 

landfill [84]. 
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4.3 Uncertain factors and uncertainty characterisation 3 

A list of 153 uncertain factors is considered. The categories of uncertain factors included in the study 4 

can be found in Table 5 with the main assumptions regarding the variation ranges of their uniform 5 

distributions. Many categories were considered in this study to reflect a wide variety of uncertainties 6 

a designer can face, regarding the building site, materials, components, construction processes, 7 

systems or use, as well as uncertainties related to background environmental data or LCIA… 8 

However, no uncertainties were accounted for neither regarding the material EOL processes, nor on 9 

the evolution of the building and its context along its long lifetime. The complete list of uncertain 10 

factors is given in the Supplementary Materials (SM) with their detailed variation ranges and the 11 

alternative to which they relate. 12 

In this first step of uncertainty quantification, uniform distributions were chosen for all continuous 13 

factors. In the case study, ranges are defined around a reference value; values and variation ranges 14 

are found in the literature and reported in Table 5. Globally, low variation ranges were chosen for 15 

uncertainties related to building materials. This reflects the case where a designer has already 16 

selected suppliers for the materials of all alternatives to be compared. Quite large variation ranges 17 

are defined for thermal bridges, as they can vary depending on the data sources: e.g. catalogues or 18 

default values in simulation software [107,108]. 19 

Four factors are categorical: climate, occupancy, environmental background data, and choice of the 20 

polystyrene extrusion process. A random sample is drawn among available levels. 21 
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Table 5: Categories of uncertain factors included in the case study. Categorical factors are in bold. Uniform distribution 1 
truncations are given in the SM. A relative variation is expressed with a “%” sign, the variation is absolute otherwise. 2 

N° Uncertain factors Variation ranges and data sources 

1-6 Site-related:  

 albedo +/- 0.05 as in Munaretto et al. [77] 

 orientation +/- 2° as in Munaretto et al. [77] 

 transportation distances of 
materials 

[109–112,57] 

 water network efficiency [113] 

 variability of climate 2 000 climate files, model of Ligier et al. [80,81] 

7 Variability of occupancy 2 000 occupancy scenarios, model of Vorger [82,83] 

8-11 Ventilation-related:   

 ventilation rate of 
unoccupied zones 

+/- 50 % as in Munaretto et al. [77] 

 double flow heat exchanger 
efficiency 

+/- 5 % as in Spitz et al. [101] 

 fan consumptions +/-0.37 Wh/m3 as in Merzkirch et al. [114] 

12-21 Windows transmittances (U 
value) 

+/- 5 % as in Spitz et al. [101], Munaretto et al. [77] 

13-30 Solar factors of windows +/- 5 % as in Spitz et al. [101], Munaretto et al. [77] 

31-35 Surfaces Emissivity Ranges defined in Macdonald [115] for the available 
materials; +/- 5 % otherwise as in Munaretto et al. [77] 

36-40 Surfaces Absorptivity Ranges defined in [115] for the available materials ;+/- 
15 % otherwise as in Munaretto et al. [77] 

41-65 Materials Thickness +/- 5 % for layers of less than 5 cm; +/- 0.25 cm for 
larger layers 

66-86 Materials Conductivity Ranges defined in [115] for the available materials; +/- 
5 % otherwise as in [101] 

87-108 Materials specific heat  Ranges defined in [115] for the available materials; +/- 
10 % otherwise 

109-124 Heat transfer coefficients Based on the literature review of Munaretto [108] 

125-133 Thermal bridges in each room -75% to +25% as in [37] 

134-144 Lifetime of:  

 building [116,2,4,57] 

 components [49,117] 

145-149 Characterisation factor of gases 
contributing to climate change 

+/- 2 σ around the values given by Myhre and Drew 
[118] 

150 Environmental background 
data 

2 000 uncertain databases from ecoinvent v3.2 
generated with Brightway2 [94] 

151-153 Specific construction processes:   

 construction material waste Based on an analysis of the INIES database [117] 

 polystyrene extrusion 
process 

Choice between R134a and CO2 as a blowing agent 

 steel rate in concrete 0.2 to 4.2 % as in Hoxha et al. [49] 

 3 
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5 Results 1 

The three houses alternatives (SC, DW and WF) with uncertainties are compared by analysing the SA 2 

and UA results. For information purposes, the deterministic DBES and LCA results are in the SM. 3 

5.1 Sensitivity analysis 4 

5.1.1 Influential factors in a comparison context 5 

For each of the three alternatives (SC, DW, WF), 22 h of calculation are required for the 6 

15 400 simulations. The results are presented in Figure 3 for two environmental indicators and in the 7 

SM for all indicators. For each indicator, six bars are shown. The first three bars show the results of 8 

the building alternatives, and the next three correspond to the pairwise impact differences 9 

(     ;      ;      ). The colours correspond to the relative influence     of an 10 

uncertain factor. Only the most influential factors appear in the legend and the number in bracket 11 

corresponds to the uncertain factor number in Table 5 and SM. 12 

  
Figure 3: SA results on the comparison of the three design alternatives for two indicators. 13 

The most influential factors identified when focusing on the individual alternatives are different from 14 

those selected in the comparison context. For example, the variability of occupancy, which has a 15 

large influence on the individual alternatives, has little influence on the pairwise impact differences. 16 

Depending on the objective of the study, we recommend to select the most influential factors among 17 

those having a high relative influence for either the individual alternatives (SC, DW, WF) or the 18 

comparison context (SC-DW, SC-WF, WF-DW). Both are illustrated in this article. 19 

5.1.2 Improvement of the uncertainty characterisation 20 

Many factors should be selected in order to reach a share of 90 % of relative influence for each 21 

indicator and for each pairwise difference: 113 factors in our case. Improving the uncertainty 22 

characterisation for so many factors would be time consuming for a building designer. Therefore, this 23 

task is performed for the shortlist of the 15 most influential factors, i.e. with the highest relative 24 

influence for all indicators, listed in the legend of Figure 3. The updated values are given in SM. 25 

For instance regarding thermal bridges, the designer can use a thermal bridges simulation software 26 

to calculate the ψ-value instead of a catalogue. The distribution was therefore narrowed and 27 

modelled using a normal distribution. Regarding the polystyrene extrusion process, designers can ask 28 

their supplier which blowing agent is used. In this case study, this uncertainty factor has been 29 
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removed: CO2 is chosen. The stochastic occupancy model of Vorger [82,83] can be used to generate 1 

occupancy scenarios corresponding to the market target group of the house being designed. In this 2 

case study, new scenarios are generated to correspond to first-time buyers with one child.  3 

For other uncertain factors, designers can search additional information in scientific or technical 4 

literature. For conductivities, specific heat and windows U-values, a normal distribution is used as in 5 

Munaretto et al. [77] : the mean μ is the centre value of the previous uniform distribution, and the 6 

truncations correspond to the boundary of the previous distribution. The standard deviation σ is 7 

chosen to reflect the uncertainty found in the literature listed in Table 5. The same process is 8 

followed for the steel ratio in concrete, waste of building construction, and building or components 9 

lifetime, using normal distribution as in Hoxha et al. [49]. 10 

For the remaining uncertain factors, we assume that designers have no possibility to improve the 11 

uncertainty characterisation, which is therefore unchanged. In this case study, climate variability is 12 

unchanged (although it would have been possible to refine the climate generation by feeding it with 13 

local data). Environmental background data are also remained unchanged due to lack of expertise of 14 

building designers. Another manner to update uncertain distribution is to follow a Bayesian approach 15 

[119], but this is out of the scope of this article. 16 

5.2 Uncertainty analysis 17 

5,000 simulations of each alternative were performed using a Sobol sequence sampling. 21 h were 18 

necessary to run the 15,000 simulations. A large sampling size was chosen in this study in order to 19 

reach convergence. As shown in the SM, this number could have been reduced to 1,000 with 20 

negligible differences on the results. Even with 100 simulations the rankings remain the same. The 21 

results of the seven methods to interpret UA results in a comparative context are presented in the 22 

next subsections. 23 

5.2.1 Distributions (Di) 24 

The UA results are given in Figure 4 for the climate change indicator through output distributions of 25 

each construction type: SC, DW and WF. The distributions are given for all indicators in the SM. Many 26 

outliers are observed in the distributions that can spread over wide ranges as unbounded 27 

distributions were used for the generation of uncertain environmental databases.  28 

As shown in the deterministic results in SM, the use stage, which has similar impacts for all 29 

alternatives, is the most contributing life cycle stage. Therefore, the impact of the three alternatives 30 

are close. Visually, the distributions of the three alternatives or at least of SC and DW display a large 31 

overlap. Therefore, the DW alternative was removed in some of the graphs presented in the 32 

following sections of this article; but the complete graphs can be found in SM. 33 
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 1 

Figure 4: Output distributions of the alternatives for the climate change indicator. 2 

A summary of the advantages and disadvantages of Di to analyse UA results in a comparative context 3 

is provided in Table 6. 4 

Table 6: Summary of the characteristics of the Di method. 5 

Advantages Disadvantages 

 Easy to understand 

 No specific calculation to 
perform 

 No pairwise comparison 

 Qualitative results 

 Not possible to quantify how often an alternative performs 
better 

 Not possible to quantify how much an alternative performs 
better 

 Results difficult to interpret as the distributions overlap 

 Assumption on the level of overlap up to which an 
alternative ranking in possible 

 6 

5.2.2 Alternative preference 7 

5.2.2.1 Discernibility analysis (DA) 8 

The results of the DA are given in Table 7; each line standing for a pairwise comparison result. The 9 

colour code indicates which alternative has lower impacts. 10 

Table 7: Probability that the impacts of one alternative are lower. 11 

 12 

For indicators having probabilities close to 0 (yellow) or 1 (dark green), a best performing alternative 13 

can easily be identified. Thus for climate change, WF is better than SC and than DW in most cases; in 14 

addition, DW is better than SC. It can be concluded that the construction type WF is the best 15 

alternative for this indicator, while SC is the worst one. Ranking can be established for cumulative 16 
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energy demand, mass of waste, volume occupied by radioactive waste, ionising radiation, and human 1 

toxicity. 2 

For three indicators (fine particulate matter formation, photochemical ozone formation and land 3 

use), only a best or a worst alternative can be identified, but the full ranking cannot be established. 4 

For instance, WF is the worst alternative for the land use, but it is not possible to clearly state that SC 5 

beats DW as the probability reaches 66.5 %. 6 

For the remaining indicators, it is not possible to establish an unequivocal ranking. 7 

Table 8 summarises the rankings or partial rankings obtained with the discernibility analysis when the 8 

probability of occurrence exceeds 80 %. However, as previously mentioned, it is not visible from this 9 

analysis how much one alternative performs better than the two others. 10 

Table 8: Alternative ranking based on the discernibility analysis. 11 

Indicator  Best Intermediate Worst 

Clim. Change WF DW SC 

CED DW SC WF 

Resources - - - 

Waste DW SC WF 

Water - - - 

Particulate M. - - SC 

P. Ozone DW - - 

Rad. Waste SC DW WF 

Ioni. Rad.  SC DW WF 

Hum. Tox. WF DW SC 

Eutrop. - - - 

Acid. - - - 

Ecotox. - - - 

Land use - - WF 

 12 

Note that, in this case study, the WF alternative is the worst option due to the EOL assumptions (that 13 

were not considered as uncertain factors). The share of not recovered wood is sent to non-hazardous 14 

waste landfill, whereas for the other two houses, the share of non-recovered heavy materials is sent 15 

to inert material landfill, which was assumed to have impacts six times lower (see ). 16 

A summary of the advantages and disadvantages of DA is provided in Table 9. 17 

Table 9: Summary of the characteristics of the DA method. 18 

Advantages Disadvantages 

 Quantification of 
how often an 
alternative performs 
better (contrarily to 
Di) 

 Not possible to quantify how much an alternative performs better 

 Results more complex to understand than for Di in presence of more 
than two alternatives: probabilities obtained for each pair of alternatives 

 Assumption on the probability up to which an alternative performs 
significantly better than the other (set at 80 % here) 

 Post-processing necessary to find the alternative ranking based on the 
pairwise probabilities 

 19 
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5.2.2.2 Ranking probabilities (RP) 1 

The results of the ranking analysis are given in Table 10. In each line, a possible ranking is shown. For 2 

climate change, WF is the best alternative while SC is the worst in 97 % of the simulations. In 3 

addition, for photochemical ozone formation, DW is the best alternative in 88 % (40%+48%) of the 4 

cases. The ranking is the same as in Table 8 when considering a probability of occurrence of a ranking 5 

that exceeds 80 %. However, with three alternatives, rankings are easier to obtain with RP than with 6 

DA. 7 

Table 10: Probability of occurrence of each ranking. 8 

 9 

A summary of the advantages and disadvantages of RP is provided in Table 11. 10 

Table 11: Summary of characteristics of the RP method. 11 

Advantages Disadvantages 

 Quantification of how often an 
alternative performs better (contrarily 
to Di) 

 Ranking of alternatives directly 
obtained (contrarily to Di and DA) 

 Most and less frequent rankings 
easily found for each indicator 

 Not possible to quantify how much an alternative 
performs better 

 Results more complex to understand than for Di in 
presence of more than two alternatives: probabilities 
obtained of each ranking 

 Assumption on the probability up to which a partial or 
full ranking is significant 

 12 

5.2.3 Impact gaps between alternatives 13 

5.2.3.1 Computation of means and quantiles (MQ) 14 

In order to identify how much one alternative performs better than another one, statistics on the 15 

distributions are collected in SM. Some statistics are presented for SC and WF in Figure 5 for all 16 

indicators through a radar chart. The central line is the mean of the distribution. The coloured area 17 

contains 50 % of the central values.  18 

From Figure 5, it is difficult to take a decision for most of the indicators. For only four indicators 19 

(climate change, mass of waste, human toxicity, and land use), the mean value of one alternative 20 

does not overlap with the 50 % central values of another alternative. A full or a partial ranking was 21 

established previously for these indicators. For three indicators (cumulative energy demand, volume 22 
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occupied by radioactive waste and ionising radiation) a large overlap is observed in Figure 5, while a 1 

ranking was possible based on the DA and the RP. The figure has a tendency to temper the 2 

distinction between alternatives because their uncertainty propagation results are plotted 3 

independently. It should be complemented by additional analyses, such as pairwise comparison. 4 

 5 

Figure 5: Output distributions of the alternatives SC and WF for all indicators. 6 

A summary of the advantages and disadvantages of MQ is provided in Table 11. 7 

Table 12: Summary of the characteristics of the MQ method. 8 

Advantages Disadvantages 

 Easy to understand 

 Quantitative results 
based on the distribution 
analysis 

 No pairwise comparison 

 Not possible to quantify how often an alternative performs better 

 Not possible to quantify how much an alternative performs better 

 Results more complex to interpret than for Di in presence of more 
than two alternatives: metrics to be analysed for each alternative 

 Assumption on the level of overlap up to which an alternative 
ranking is possible 

 9 

5.2.3.2 Standardised mean difference (SMD) 10 

The SMD was calculated to find how many standard deviations separate the means for each pairwise 11 

comparison (cf. Table 13). According to Cohen [69]   values are small around 0.2 (white values), 12 

medium around 0.5 (yellow values) and high around 0.8 (green values). In our case, environmental 13 

impacts of alternatives are significantly different for climate change, cumulative energy demand, 14 

mass of waste, fine particulate matter formation, photochemical ozone formation, volume occupied 15 

by radioactive waste, human toxicity and land use. A full or a partial ranking was established 16 

previously with DA and RP for these indicators. However, for ionising radiation, a ranking was found 17 

but the Cohen’s d value indicated medium impact differences between the alternatives. 18 
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Table 13: Cohen’s d for each pairwise comparison and each indicators. 1 

 

SC - WF DW - WF SC - DW 

Clim. Change 1.168 1.029 2.174 

CED -1.190 -1.407 1.214 

Resources 0.635 0.348 0.215 

Waste -1.585 -1.625 1.319 

Water 0.366 -0.008 0.615 

Particulate M. 0.970 -0.002 1.529 

P. Ozone 0.113 -0.897 2.669 

Rad. Waste -1.218 -1.101 -0.899 

Ioni. Rad. -0.579 -0.572 -0.500 

Hum. Tox. 1.217 0.947 0.903 

Eutrop. 0.147 0.012 0.686 

Acid. 0.309 -0.294 1.366 

Ecotox. -0.232 -0.468 0.265 

Land use -1.052 -1.029 -0.294 

 2 

A summary of the advantages and disadvantages of SMD is provided in Table 14. 3 

Table 14: Summary of the characteristics of the SMD method. 4 

Advantages Disadvantages 

 Quantification of how 
much an alternative 
performs better (contrarily 
to Di, DA, RP and MQ) 

 Not possible to quantify how often an alternative performs better 
contrarily to DA and RP 

 Not possible to obtain the ranking of alternatives contrarily to DA 
and RP 

 Results more complex to interpret than for Di in presence of more 
than two alternatives: metrics to be analysed for each alternative 

 Assumption on the Cohen’s   value up to which pairs of alternatives 
are distinguishable 

 5 

DA and RP quantify how often an alternative performs better, while SMD quantifies on how much 6 

criteria an alternative performs better. Combining the two analyses gives a broader view on the 7 

results in a comparative context. The combination is shown in Table 15 which corresponds to Table 8 8 

with the background colours of Table 13. For instance, for an indicator, if the Cohen’s   has low 9 

values for at least two pairwise comparisons, then a white background is applied to the line 10 

corresponding to this indicator in Table 15 to show that the impact values are often close to each 11 

other. It is thus possible to read in Table 15 the alternative ranking and to identify if the impact 12 

differences are large enough to distinguish alternatives. Generally, when impact differences are too 13 

small according to SMD, no ranking is possible according to DA or RP. Relying on the life cycle stage 14 

contribution analysis presented for the deterministic results in SM, the indicators for which a 15 

decision can be made are, in this case study where the construction type is compared, those for 16 

which the contribution of the construction and end-of-life stages are higher. A post-processing of 17 

these two analyses is necessary to obtain this broader view, making the results more complex to 18 

obtain. 19 
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Table 15: Alternative ranking and impact differences. 1 

Indicator  Best Intermediate Worst 

Clim. Change WF DW SC 

CED DW SC WF 

Resources - - - 

Waste DW SC WF 

Water - - - 

Particulate M. - - SC 

P. Ozone DW - - 

Rad. Waste SC DW WF 

Ioni. Rad.  SC DW WF 

Hum. Tox. WF DW SC 

Eutrop. - - - 

Acid. - - - 

Ecotox. - - - 

Land use - - WF 

 2 

5.2.4 Cross-analyses 3 

5.2.4.1 Distribution of relative differences (DRD) 4 

The DRD are given in Figure 6 for the pairwise comparison between SC and WF, and in SM for the 5 

other pairs. In these graphs, boxplots are used to represent the distributions: they show the median 6 

value, the first and third quartile, while the whiskers are the 2.5 and 97.5 centiles. The indifference 7 

line (0-axis), where the impacts of both alternatives are equal, is plotted in red. The indifference zone 8 

(yellow zone on the figure) around the indifference line represents the zone where the impact 9 

difference between alternatives ranges between +5 and -5 %. 10 

For some indicators (climate change, mass of waste, human toxicity and land use), more than three 11 

quarters of the values fall outside the yellow zone indicating that impact differences are generally 12 

significant: an alternative can be chosen with a high confidence. 13 

For cumulative energy demand, the impact difference between alternatives may be small in some 14 

cases. However, SC is better in at least 97.5 % of the cases as the upper whisker of the boxplot do not 15 

overlap the indifference line: an alternative can be chosen with a high confidence. 16 

For abiotic depletion of minerals, fine particulate matter formation, volume occupied by radioactive 17 

waste, and ionising radiation, impact differences are smaller. However, one alternative is always 18 

slightly preferred (at least 75 % of the value are upper or lower the 0-axis). 19 

Regarding the five remaining indicators (water, photochemical ozone formation, eutrophication, 20 

acidification and ecotoxicity), impact differences are always small. The final decision should not rely 21 

on these indicators that do not give clear decisive information. 22 



27 
 

 1 

Figure 6: Distribution of the relative differences between SC and WF. 2 

Similar conclusions are made for the comparison between WF and DW. For the comparison between 3 

SC and DW however, all boxplots fall into this yellow zone: the two houses always have similar 4 

environmental impacts.  5 

Using all three pairwise comparisons, the alternative ranking of Table 16 is obtained. A colour code is 6 

used to depict the reliability in the choice: a green background corresponds to a choice with high 7 

reliability, while a yellow background stands for a choice with medium reliability. The following 8 

thresholds are set: i) the choice has high reliability if the mean impact difference is larger than 0.05 9 

and the probability that an alternative performs better exceeds 90 %; ii) the choice has medium 10 

reliability if the mean impact difference is larger than 0.01 and the probability that an alternative 11 

performs better exceeds 75 %. Nine indicators are conclusive, as in the combination of RP and SMD 12 

(Table 15). Due to the thresholds settings, two main differences appear between Table 15 and Table 13 

16. Firstly, the yellow background is more frequent in DRD (Table 16). Secondly, for the volume 14 

occupied by radioactive waste and ionising radiation, only a partial ranking is shown with DRD while a 15 

full ranking was shown in the combination of RP and SMD. 16 



28 
 

Table 16: Alternative ranking and impact differences based on DRD. 1 

Indicator  Relative difference 

Best Intermediate Worst 

Clim. Change WF DW SC 

CED DW SC WF 

Resources - - - 

Waste DW SC WF 

Water - - - 

Particulate M. - - SC 

P. Ozone DW - - 

Rad. Waste SC - - 

Ioni. Rad.  SC - - 

Hum. Tox. WF DW SC 

Eutrop. - - - 

Acid. - - - 

Ecotox. - - - 

Land use - - WF 

 2 

A summary of the advantages and disadvantages of DRD is provided in Table 9. 3 

Table 17: Summary of the characteristics of the DRD method. 4 

Advantages Disadvantages 

 Quantification of how 
often an alternative performs 
better (contrarily to Di, MQ 
and SMD) 

 Quantification of how 
much an alternative performs 
better (contrarily to Di, DA 
and RP) 

 Results more complex to understand than for Di in presence of 
more than two alternatives: plots for each pair of alternatives 

 Assumption on the probability that an alternative performs 
better than the other (visible on the boxplots lines) 

 Assumption on the impact difference up to which an alternative 
performs significantly better than the other (set at +/- 5 % here) 

 Post-processing necessary to find the alternatives ranking based 
on the pairwise plots 

 5 

5.2.4.2 Heijungs significativity metric (HSM)    6 

The    [25] are given in Figure 7 for the pairwise comparison between SC and WF for       and 7 

      , and in SM for other pairs. In 93 % of the cases, WF outperforms SC by 5 % for climate 8 

change (first light red bar). However, WF performs at least 20 % better than SC in only 40 % of the 9 

cases (second dark red bar). For the CED, SC outperforms WF with at least 5 % (resp. 20 %) impact 10 

difference with a probability of 58 % (resp. 4 %). 11 
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 1 

Figure 7:   : Probability that the impact difference between SC and WF reaches at least 5 % or 20 %. 2 

From this analysis, it turns out that SC is better than WF for land use, and slightly better for 3 

cumulative energy demand and mass of waste. WF slightly outperforms SC for climate change, and to 4 

some extent for abiotic depletion of minerals and human toxicity. The photochemical ozone 5 

formation indicator is one of the most uncertain: there is almost as much chance that SC 6 

outperforms WF by 5 % than the reverse. 7 

The conclusions are similar for the pairwise comparison between WF and DW. However, SC and DW 8 

are not distinguishable:    never exceed 25 % for      . Using all three pairwise comparisons, the 9 

alternative ranking of Table 18 is obtained. The same colour code is used as in Table 16, but with 10 

different thresholds. The choice is reliable if    exceeds 80 % for      ; a green background is 11 

applied in this case. The choice is fairly reliable if    exceeds 80 % for      ; a yellow background 12 

is applied in this case. Due to the thresholds settings, only seven indicators are conclusive. In 13 

addition, a partial ranking is available for cumulative energy demand, while a fully one is provided 14 

with DRD and the combination of RP and SMD. 15 

Table 18: Alternative ranking and impact differences based on the cross-analyses. 16 

Indicator     
Best Intermediate Worst 

Clim. Change WF DW SC 

CED - - WF 

Resources - - - 

Waste DW SC WF 

Water - - - 

Particulate M. - - SC 

P. Ozone DW - - 

Rad. Waste - - - 

Ioni. Rad.  - - - 

Hum. Tox. WF DW SC 

Eutrop. - - - 

Acid. - - - 

Ecotox. - - - 

Land use - - WF 

 17 
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A summary of the advantages and disadvantages of HSM is provided in Table 9. 1 

Table 19: Summary of the characteristics of the DRD method. 2 

Advantages Disadvantages 

 Quantification of how often an 
alternative performs better 
(contrarily to Di, MQ and SMD) 

 Quantification of how much an 
alternative performs better 
(contrarily to Di, DA and RP) 

 Results more complex to understand than for Di in presence 
of more than two alternatives: plots for each pair of 
alternatives 

 Assumption on the probability that an alternative performs 
better than the other (set at 80 % here) 

 Assumption on the impact difference significance between 
alternatives   (set at 1, 5 and 20 % here) 

 Post-processing necessary to find the alternatives ranking 
based on the pairwise plots 

 3 

5.2.5 Comparison of the seven methods to interpret UA results in a comparative context 4 

Table 20 summarises the characteristics of all seven methods to analyse UA results in a comparative 5 

context. An additional line in Table 20 shows the characteristics of the combination of DA or RP with 6 

SMD.  7 

Table 20: Comparison of the characteristics of the methods. 8 

Method Type Pairwise 
comparison 

Ranking of 
alternatives 

Impact 
difference 

Assumptions 
required 

Di Qualitative No No No No 

DA Quantitative: how 
often 

Yes After post-
processing 

No 1 threshold 

RP Quantitative: how 
often 

No Yes No 1 threshold 

MQ Quantitative: 
statistics 

No No Yes 1 threshold 

SMD Quantitative: how 
much 

Yes No Yes 1 threshold 

SMD+DA 
/ SMD+RP 

Quantitative: how 
often + how much 

Yes Yes Yes 2 thresholds 

DRD Quantitative: how 
often + how much 

Yes After post-
processing 

Yes 2 thresholds 

HSM Quantitative: how 
often + how much 

Yes After post-
processing 

Yes 2 thresholds 

 9 

Di and MQ give first insight on the results. In addition, Di is the most suitable method to plot many 10 

alternatives within one graph. Di and MQ have a tendency to temper the distinction between 11 

alternatives: alternatives are handled independently and the strong overlap is difficult to interpret. 12 

Yet, it should be noticed that the higher the overlap on an indicator in Di and MQ, the smaller the 13 

pairwise impact difference obtained with SMD, DRD or HSM. For instance, for acidification, the 14 

distributions of SC and WF have a large overlap in Figure 5 and Table 15; Table 16 and Table 18 have 15 

a white background indicating a small impact difference. Furthermore, as Di and MQ are not based 16 

upon pairwise comparisons, it is difficult to get a ranking for highly overlapping distributions. 17 

DA and RP are easy to run. As they rely on the same concepts (counting number of occurrences), 18 

they give the same results for the ranking which requires post-processing for DA; RP is more 19 
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convenient to analyse. SMD does not provide a ranking but highlights if the impact values of pairs of 1 

alternatives are close to each other. DA and SMD relying on pairwise comparison, the interpretation 2 

is more complex when the number of alternatives to be compared increases. All in all, provided that 3 

a threshold is set, DA, RP and SMD help answering either the how much or the how often questions, 4 

but not both. 5 

The last three options (SMD+DA / SMD+RP, DRD and HSM) allow to extract the most information 6 

from the results. As a counterpart, two thresholds should be set: one related to the how much 7 

question, and the other related to the how often question as summarised in Table 21. As for all 8 

pairwise comparison based methods, the interpretation becomes more complex with an increasing 9 

number of alternatives. The results shown in Table 15 (SMD+DA / SMD+RP), Table 16 (DRD) and 10 

Table 18 (HSM) are very similar in terms of ranking and of impacts gaps between alternatives. The 11 

observed difference between the three methods (i.e. partial or full ranking for an indicator, or degree 12 

of reliability of the ranking) is linked to the choice of the thresholds: the mathematical indicators 13 

being different in the three analyses, the thresholds cannot be equivalent.  14 

Applying DRD and HSM is more convenient than applying SMD+DA or SMD+RP as results are 15 

obtained within only one analysis. HSM has the advantage over DRD of precisely quantifying the 16 

impact gap between alternatives by setting the how-much’ threshold   so that an alternative 17 

performs at least     better than the other. However, this is what makes the HSM at bit less flexible 18 

than DRD: if the decision maker wants to change the how-much threshold, a new calculation with a 19 

new   value should be run with HSM, while the indifference zone just needs to be adjusted on the 20 

graph for DRD. Despite of the convenience of HSM, we suggest to use DRD for this flexibility reason. 21 

Table 21: Thresholds for SMD+DA / SMD+RP, DRD and HSM. 22 

Method How-often threshold How-much threshold 

SMD+DA / 
SMD+RP 

Probability that an alternative performs 
better / Probability that a ranking is more 
frequent 

Cohen’d value 

DRD Share of the boxplot above the indifference 
line of Figure 6 

Range of the indifference zone 

HSM Probability that an alternative performs 
better 

  value so that an alternative performs 
at least     better than the others 

6 Discussion 23 

The proposed methodology can be applied by building designers in order to select environmental 24 

indicators for which a reliable alternatives ranking is possible. The final selection is easier as it bases 25 

upon a smaller set of indicators. Discussions with the building owner and other decision makers (e.g. 26 

urban planners), as well as multicriteria decision making methods [27,120,121] are then useful to 27 

select an alternative. 28 

A wide range of uncertain factors that a designer faces were included in the study. However, the list 29 

is not comprehensive. For instance, uncertainties regarding the evolution of the building (e.g. 30 
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material degradation) and its context (climate, grid content, recycling processes…) along its long 1 

lifetime were not considered. The development of prospective scenarios is complex but when 2 

available, these uncertain scenarios can easily be included in the scope without modifying the 3 

methodology. 4 

The simulation time required to performed the 15,000 simulations of the three alternatives was quite 5 

large is this study (21 h), making it difficult to replicate in real practice. However, it was shown that 6 

the number of simulations (and thus the calculation) could be divided by five for this case study, 7 

making such calculation feasible. Another option to decrease the computation time could be using 8 

surrogate models. 9 

UA results depend on assumptions, for instance regarding uncertainty characterisation of the most 10 

influential factors. Yet, uncertainty distributions of input factors often rely on a few real observed 11 

data (much less than the sampling size) potentially leading to inaccurate decisions in a CompLCA 12 

[122]. Uncertainty in the definition of uncertainty, called meta-uncertainty, can be assessed. The 13 

effect of this uncertainty improvement on UA results are shown in Figure 8. For most indicators, the 14 

results interpretation remains the same. Nothing could be concluded for human toxicity without this 15 

step, while this indicator became decisive after improvement. 16 

 17 

Figure 8: Distribution of the relative differences before and after improvement in the uncertainty characterisation. 18 

Other meta-analyses can be carried out. For instance, several uncertainty characterisations can be 19 

tested for the most influential factors, as done by Pomponi et al. [123]. The results robustness to the 20 

baseline can then be checked to identify if uncertainty characterisation modifies the conclusions. In 21 

the SM, several mean values and distribution types were investigated for the building lifetime. In this 22 

case, whatever the distributions for the building lifetime, the conclusions and alternatives ranking 23 

remains unchanged for all indicators. For a holistic meta-analysis, a complete DoE can be generated 24 

as in Lacirignola et al. [67], who analysed their results sensitivity to the distribution types of each 25 

uncertain factors of their model. 26 

In order to further investigate the results and improve uncertainty characterisation, an SA can be 27 

performed on the alternative ranking change. In this additional step, the UA results are used to find 28 

out which uncertain factors lead to a ranking change. Regression, or the COSI or EASI methods 29 
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[124,125] can be used in that sense provided that a specific DoE is used for UA. Otherwise, a regional 1 

SA can be applied: the distribution of each uncertain factor is split into two parts, one corresponding 2 

to the cases where    is better, and the other where    are better. A Kolmogorov-Smirnov test is 3 

then run to compare the two distributions: if they are distinct, the factor is influential in the ranking 4 

change. However, these methods are not compatible with categorical variables having many possible 5 

levels. 6 

In this study, three alternatives are compared, leading to  
 
 
    pairwise comparisons and      7 

possible alternative rankings. The conclusions remain easily interpretable. Yet, increasing the number 8 

of alternatives compared would make the results interpretation much more complex due to the 9 

significant increase of pairwise comparisons. As suggested by Henriksson et al. [22] statistical tests 10 

can be applied in such cases to group alternatives having similar environmental impacts. The UA 11 

results analysis would then be performed on the groups instead of on the alternatives. 12 

The case study presented in this article is only an illustration of the application of SA and UA 13 

methods. Results regarding the comparison of wood versus concrete structures depend on many 14 

assumptions, e.g. on the EOL processes like the recycling percentage of materials, which was not 15 

considered, in this study, in the list of uncertain factors. The selected indicators would probably be 16 

quite different if other alternatives were compared, e.g. gas, electric or wood fuel heating. 17 

7 Conclusion 18 

Uncertainties remain rarely addressed in the comparison of building design alternatives using LCA. 19 

However, studying the effect of uncertainties can help building designers and stakeholders choosing 20 

one alternative: they become able to understand which factors mostly affect results, and to focus on 21 

environmental indicators for which a reliable choice is possible. 22 

An uncertainty quantification approach for comparative LCA combining SA and UA was proposed. It 23 

was applied to compare three construction types for a passive house. The particularities of this 24 

article relies: i) in the wide variety of uncertainties and variabilities included in the scope; ii) in the 25 

adaptation of SA methods to an alternative comparison context; and iii) in the assessment of several 26 

metrics to interpret UA results.  27 

The most influential factors for each individual alternative were not the same as in the comparison 28 

context. In this case, uncertainty on background environmental data, climate variability, and lifetimes 29 

of the building and some of its components were highly influential. After having improved the 30 

uncertainty characterisation for the 15 most influential factors, a UA was performed. Results were 31 

analysed in order to assess if and how much an alternative performs better than another one. 32 

Gathering only one information (if or how much) can be misleading. In addition, it is preferable to 33 

use metrics assessing pairwise comparison of alternatives, than metrics analysing individual 34 

alternatives separately.  35 

Cross-analysis answering both questions at the same time, such as DRD or HSM demonstrated their 36 

ability to give results that are consistent with more common analyses, and to reduce the analysis 37 
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time. In this study, five indicators were conclusive with a high level of confidence regarding the 1 

identification of alternatives performing significantly better or worse than others. According to these 2 

results and assumptions regarding e.g. end of life processes, the wooden-framed house was the best 3 

alternative for climate change and human toxicity, but the worst option for cumulative energy 4 

demand, mass of waste, and land use. The alternative selection is thus based on five indicators 5 

instead of fourteen. Building owners or decision makers can rely on this smaller set of indicators to 6 

make the final decision, with the help of multicriteria decision making methods. 7 

Further application of the methodology is needed in order to better define thresholds that are used 8 

to assess the reliability of the obtained alternative ranking. 9 
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