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Building LCA aims at guiding designers towards more sustainable projects. Many sources of uncertainties affect environmental modelling. Therefore, the reliability of decisions based on building LCA is questioned. However, information on uncertainties can strengthen decisions, when properly addressed. In this study, seven statistical metrics are compared based on dependent samplings for sensitivity analyses (SA) and uncertainty analyses (UA). It allows to identify a set of indicators on which conclusions are more reliable. For the first time, this methodology is applied to comparative building LCA, considering three construction alternatives: a concrete, a concrete blocks and a wooden-framed house. A new SA method, based on Morris, helps identifying which of 153 uncertain factors are more likely to influence decisions. More precise data is then collected on these uncertain factors. In this case study, the Heijungs significativity metric and the distribution of relative differences were the most appropriate metrics to assess UA results. They allow to determine, for each indicator, which is the best alternative and how much better it performs. Consequently, the non-conclusive indicators are discarded. Applying this methodology, decision are enhanced by uncertainties and rely on a smaller set of indicators to select an alternative in terms of environmental performance.

WF: Wooden-Framed. The building and construction sectors account for almost 40 % of the global energy consumption and of the greenhouse gases emissions worldwide [START_REF]IEA, Global Status Report for Buildings and Construction 2019 -Towards a zero-emissions, efficient and resilient buildings and construction sector[END_REF]. In addition, they cause high resource consumption and waste production, as well as various pollution in air, water and soil [START_REF] Sharma | Life cycle assessment of buildings: A review[END_REF][START_REF] Ghewy | millions de tonnes de déchets produits en France en 2010, Commissariat général au développement durable[END_REF][START_REF] Cabeza | Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the buildings sector : A review[END_REF]. The life cycle assessment (LCA) methodology [START_REF]Environmental management -Life cycle assessment -Principles and framework[END_REF][START_REF]Environmental management -Life cycle assessment -Requirements and guidelines[END_REF] is recognised as a suitable eco-design tool to mitigate the building sector impacts. More than assessing the environmental impacts of one construction project, building LCA is useful to compare alternatives. It should therefore provide reliable and robust results in order to guide decision makers towards more sustainable projects. However, many sources of uncertainties and variabilities can affect the environmental modelling of products [START_REF] Huijbregts | Application of uncertainty and variability in LCA -Part I : A general framework for the analysis of uncertainty and variability in life cycle assessment[END_REF][START_REF] Björklund | Survey of approaches to improve reliability in LCA[END_REF][START_REF] Lloyd | Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment: A Survey of Quantitative Approaches[END_REF][START_REF] Igos | How to treat uncertainties in life cycle assessment studies?[END_REF][START_REF] Bamber | Comparing sources and analysis of uncertainty in consequential and attributional life cycle assessment: review of current practice and recommendations[END_REF]. Tackling these uncertainties is one of the challenges of building LCA identified by Nwodo and Anumba [START_REF] Nwodo | A review of life cycle assessment of buildings using a systematic approach[END_REF], especially in the case of comparative LCA (CompLCA) and in the early design phase of a building project [START_REF] Marsh | Tackling uncertainty in life cycle assessments for the built environment: A review[END_REF]. In this work, a methodology is proposed to deal with uncertainties in CompLCA of building design alternatives. It aims at informing on uncertainties to strengthen the reliability of the decision making.

Symbols

Uncertainties in LCA

Uncertainties are discussed in LCA since the early 1990s [START_REF] Fava | Life-cycle assessment data quality. A conceptual framework[END_REF]. The generic uncertainty terms generally encompasses the concepts of uncertainty i.e. lack of knowledge on the true value of a quantity, and variability i.e. natural stochastic variation of a quantity [START_REF] Huijbregts | Application of uncertainty and variability in LCA -Part I : A general framework for the analysis of uncertainty and variability in life cycle assessment[END_REF][START_REF] Björklund | Survey of approaches to improve reliability in LCA[END_REF]. Uncertainties are linked to all steps of an LCA [START_REF] Igos | How to treat uncertainties in life cycle assessment studies?[END_REF]: goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA), and interpretation. In addition, they can be related to the representativeness of the LCA model (model uncertainties), the model input parameters (parameter uncertainties), or choices related to the context of the study (scenario uncertainties) [START_REF] Igos | How to treat uncertainties in life cycle assessment studies?[END_REF]. Thus, LCA results may change significantly depending on assumptions made by LCA practitioners [START_REF] Scrucca | Uncertainty in LCA: An estimation of practitioner-related effects[END_REF].

Since 2010, despite being increasingly mentioned in the LCA literature [START_REF] Igos | How to treat uncertainties in life cycle assessment studies?[END_REF], uncertainties have not been taken into account in most articles on LCA. According to Bamber et al. [START_REF] Bamber | Comparing sources and analysis of uncertainty in consequential and attributional life cycle assessment: review of current practice and recommendations[END_REF], less than 20 % of the papers published between 2014 and 2018 quantified uncertainties. This can be explained by lack of information in some environmental databases [START_REF] Igos | How to treat uncertainties in life cycle assessment studies?[END_REF][START_REF] Marsh | Tackling uncertainty in life cycle assessments for the built environment: A review[END_REF], difficulties and lack of tools to address uncertainties (especially for correlated data) [START_REF] Groen | Ignoring correlation in uncertainty and sensitivity analysis in life cycle assessment: what is the risk?[END_REF][START_REF] Heijungs | Everything is relative and nothing is certain. Toward a theory and practice of comparative probabilistic LCA[END_REF], or complexity of communicating and interpreting LCA results with uncertainties [START_REF] Lloyd | Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment: A Survey of Quantitative Approaches[END_REF][START_REF] Mendoza Beltran | Quantified Uncertainties in Comparative Life Cycle Assessment: What Can Be Concluded?[END_REF]. [START_REF] Heijungs | Everything is relative and nothing is certain. Toward a theory and practice of comparative probabilistic LCA[END_REF] emphasised the need to tackle these challenges and recommended to stop producing LCA results without uncertainties.

1.1.1 Uncertainty and sensitivity analysis Several statistical and analytical methods are available to deal with uncertainties in LCA. On the one hand, uncertainty analysis (UA) methods are applied to propagate uncertainties throughout the model, i.e. from input to output. Among available UA methods, the random Monte Carlo (MC) sampling is the most used in LCA [START_REF] Lloyd | Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment: A Survey of Quantitative Approaches[END_REF] due to its availability in most LCA software [START_REF] Bamber | Comparing sources and analysis of uncertainty in consequential and attributional life cycle assessment: review of current practice and recommendations[END_REF]. On the other hand, sensitivity analysis (SA) methods are useful to identify the most influential uncertain factors on which model refinement should focus, and to sort the uncertain factors by influence [START_REF] Padey | From LCAs to Simplified Models: A Generic Methodology Applied to Wind Power Electricity[END_REF][START_REF] Wender | Sensitivity-based research prioritization through stochastic characterization modeling[END_REF]. In the following, the generic term "uncertainty" encompassed UA and SA. "UA" or "SA" terms are used to specifically discuss uncertainty propagation or factor influence quantification respectively.

Uncertainty quantification in CompLCA

LCA is often used to compared design alternatives. Given the numerous uncertainties in environmental modelling of products, robustness and reliability of CompLCA results are questioned. Decision makers who are familiar with uncertainties, fear that they change the conclusions of their studies. Yet, taking uncertainties appropriately into account can help interpretation because tradeoffs between alternatives are better highlighted [START_REF] Prado-Lopez | Tradeoff Evaluation Improves Comparative Life Cycle Assessment: A Photovoltaic Case Study[END_REF][START_REF] Mendoza Beltran | Quantified Uncertainties in Comparative Life Cycle Assessment: What Can Be Concluded?[END_REF].

Appropriate management of uncertainty in CompLCA requires the use of adequate sampling strategies and comparison metrics for UA and SA. Firstly, it involves using dependent sampling [START_REF] Henriksson | Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts[END_REF], also called paired simulations or blocked simulations [START_REF] Brömssen | Why statistical testing and confidence intervals should not be used in comparative life cycle assessments based on Monte Carlo simulations[END_REF]. The basic idea behind dependent sampling is to consider the same background data and the same choices in the foreground system when comparing product alternatives [START_REF] Koning | Uncertainties in a carbon footprint model for detergents; quantifying the confidence in a comparative result[END_REF]. More globally, it involves considering the correlation between pairs of input and output variables [START_REF] Heijungs | Everything is relative and nothing is certain. Toward a theory and practice of comparative probabilistic LCA[END_REF], i.e. using the same sampling for uncertain factors affecting the compared alternatives [START_REF] Igos | How to treat uncertainties in life cycle assessment studies?[END_REF].

Secondly, once dependent sampling is applied, several metrics can be used for the UA. They were discussed by Mendoza Beltran et al. [START_REF] Mendoza Beltran | Quantified Uncertainties in Comparative Life Cycle Assessment: What Can Be Concluded?[END_REF] and Heijungs [START_REF] Heijungs | Selecting the best product alternative in a sea of uncertainty[END_REF]. They all rely on pairwise comparison between alternatives. A null hypothesis significance testing is applied to identify if the mean environmental impact of an alternative is significantly different than the mean impact of an alternative [START_REF] Henriksson | Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts[END_REF][START_REF] Heijungs | Measures of Difference and Significance in the Era of Computer Simulations, Meta-Analysis, and Big Data[END_REF]. However, this approach is not appropriate in CompLCA based on Monte Carlo simulations [START_REF] Brömssen | Why statistical testing and confidence intervals should not be used in comparative life cycle assessments based on Monte Carlo simulations[END_REF]. In addition, it does not answer the two main questions in CompLCA: how often and how much is less impactfull than [START_REF] Heijungs | Selecting the best product alternative in a sea of uncertainty[END_REF]. Overlap statistics [START_REF] Prado-Lopez | Tradeoff Evaluation Improves Comparative Life Cycle Assessment: A Photovoltaic Case Study[END_REF] can be computed in order to quantify the degree of overlap of output distributions of the compared alternatives. A large overlap means that and leads to similar environmental impacts. An extension of this approach, the stochastic multi-attribute analysis, can be applied to identify trade-off and to support decision making when handling several environmental indicators [START_REF] Prado-Lopez | Stochastic multiattribute analysis (SMAA) as an interpretation method for comparative life-cycle assessment (LCA)[END_REF][START_REF] Prado | Implementation of stochastic multi attribute analysis (SMAA) in comparative environmental assessments[END_REF]. Discernibility analysis (DA) [START_REF] Heijungs | Numerical approaches towards life cycle interpretation -Five examples[END_REF] is the most popular approach to compare UA results. It consists in counting how often performs better than among all sampled values. But the DA does not inform on how much is less impactfull than [START_REF] Heijungs | Selecting the best product alternative in a sea of uncertainty[END_REF]. In order to fill this gap, Heijungs [START_REF] Heijungs | Selecting the best product alternative in a sea of uncertainty[END_REF] proposed a new indicator, called Heijungs Significativity Metric (HSM) in this article, able to quantify how often is significantly less impactfull (with a given degree of significance) than , thus answering both meaningful questions in CompLCA. A first application of this metric can be found in Michiels and Geeraerd [START_REF] Michiels | Two-dimensional Monte Carlo simulations in LCA: an innovative approach to guide the choice for the environmentally preferable option[END_REF]. The abovementioned metrics have some drawbacks: they should be computed for each pair of alternatives and for each environmental indicator, increasing the computation and analysis time. Moreover, thresholds needs to be defined to indicate an alternative preference.

Contrarily to UA, the comparison of SA results of pairs of alternatives has rarely been addressed in the literature. Instead of identifying the most influential factors for each alternative separately, SA performed in a CompLCA can highlight which uncertain factors are more likely to change the conclusion [START_REF] Pannier | Etude de la quantification des incertitudes en ACV des bâtiments[END_REF]. Wei et al. [START_REF] Wei | Using the Reliability Theory for Assessing the Decision Confidence Probability for Comparative Life Cycle Assessments[END_REF] and Ravikumar et al. [START_REF] Ravikumar | Novel Method of Sensitivity Analysis Improves the Prioritization of Research in Anticipatory Life Cycle Assessment of Emerging Technologies[END_REF] applied respectively the FORM method from the reliability theory, and moment-independent SA, in order to identify the most influential factors in a decision context.

A global framework for UA and SA is still missing to our knowledge in CompLCA.

Uncertainties in the CompLCA of building alternatives

Buildings have specifically a very long lifetime, so that the impacts of the use stage are predominant compared to those of the construction, renovation and end-of-life (EOL) stages [START_REF] Sharma | Life cycle assessment of buildings: A review[END_REF][START_REF] Rashid | A review of life cycle assessment method for building industry[END_REF]. Building LCA is increasingly used, however, the results are mostly deterministic [START_REF] Marsh | Tackling uncertainty in life cycle assessments for the built environment: A review[END_REF][START_REF] Feng | Uncertainties in whole-building life cycle assessment: A systematic review[END_REF]. Among the papers on building LCA published between 2000 and 2020, less than 10 % mentioned uncertainties and less than 1 % applied uncertainty quantification methods [START_REF] Feng | Uncertainties in whole-building life cycle assessment: A systematic review[END_REF]. Marsh et al. [START_REF] Marsh | Tackling uncertainty in life cycle assessments for the built environment: A review[END_REF] summarised the sources of uncertainties in building LCA and sorted them by their life cycle stage. Uncertain factors included in building LCA studies are mostly linked to the LCI and correspond to parameters uncertainties (e.g. uncertainties in quantities or physical properties of building materials or systems, or in the service lifetime). As pointed out by several authors, the potential environmental gains are the largest in early design phase, but uncertainties are also higher in this phase as many decisions have yet to be made [START_REF] Hester | Actionable insights with less data: guiding early building design decisions with streamlined probabilistic life cycle assessment[END_REF][START_REF] Pannier | Comprehensive assessment of sensitivity analysis methods for the identification of influential factors in building life cycle assessment[END_REF][START_REF] Harter | Uncertainty Analysis of Life Cycle Energy Assessment in Early Stages of Design[END_REF][START_REF] Ylmén | Managing Choice Uncertainties in Life-Cycle Assessment as a Decision-Support Tool for Building Design: A Case Study on Building Framework[END_REF][START_REF] Marsh | Tackling uncertainty in life cycle assessments for the built environment: A review[END_REF].

Regarding the specific subject of uncertainties in CompLCA of buildings, the set of 14 studies listed in Table 1 was found. Only studies performed at the building level were selected, thus stochastic comparison of building materials [START_REF] Silvestre | Uncertainty modelling of service life and environmental performance to reduce risk in building design decisions[END_REF][START_REF] Su | Life cycle inventory comparison of different building insulation materials and uncertainty analysis[END_REF][START_REF] Wei | Using the Reliability Theory for Assessing the Decision Confidence Probability for Comparative Life Cycle Assessments[END_REF][START_REF] Mohajerani | Fired-Clay Bricks Incorporating Biosolids: Comparative Life-Cycle Assessment[END_REF][START_REF] Richardson | Uncertainty Assessment of Comparative Design Stage Embodied Carbon Assessments[END_REF] was not considered. Furthermore, the selected articles compare building design or renovation alternatives in an uncertain context using LCA. The studies focusing on the comparison of methodological choices are not included [START_REF] Zhang | Stochastic analysis of embodied emissions of building construction: A comparative case study in China[END_REF][START_REF] Zhang | Uncertainty in the life cycle assessment of building emissions: A comparative case study of stochastic approaches[END_REF][START_REF] Zhang | Life cycle carbon emissions of two residential buildings in China: Comparison and uncertainty analysis of different assessment methods[END_REF][START_REF] Morales | Uncertainties related to the replacement stage in LCA of buildings: A case study of a structural masonry clay hollow brick wall[END_REF][START_REF] Ansah | Developing a tier-hybrid uncertainty analysis approach for lifecycle impact assessment of a typical high-rise residential building[END_REF]. In the 14 articles, two to twelve alternatives were compared, mostly for residential buildings. In addition to parameter uncertainties, other uncertain factors were taken into account, such as model uncertainty (e.g. characterisation factors CF), scenario uncertainty (e.g. allocation rules or functional unit), spatial variability (e.g. occupancy and climate) or temporal variability (e.g. future climates or energy mix). Uncertainty propagation was performed in one study using an analytical method [START_REF] Hoxha | Method to analyse the contribution of material's sensitivity in buildings' environmental impact[END_REF]. All other articles used statistical methods, mostly the MC random sampling. This makes possible using dependent sampling. However, dependent sampling was applied only in half of the listed papers, and its application was not always clearly stated. When the samples from each alternative were not dependent, the authors compared all alternatives using probability density functions (PDF) [START_REF] Hart | Whole-life embodied carbon in multistory buildings: Steel, concrete and timber structures[END_REF], histograms with errors bars [START_REF] Blengini | Energy-saving policies and low-energy residential buildings: an LCA case study to support decision makers in Piedmont (Italy)[END_REF], boxplots [START_REF] Favi | Building Retrofit Measures and Design: A Probabilistic Approach for LCA[END_REF][START_REF] Harter | Uncertainty Analysis of Life Cycle Energy Assessment in Early Stages of Design[END_REF][START_REF] Galimshina | What is the optimal robust environmental and cost-effective solution for building renovation? Not the usual one[END_REF], violin plots, or statistics on the distributions such as mean or standard deviation [START_REF] Piroozfar | Life cycle environmental impact assessment of contemporary and traditional housing in Palestine[END_REF]. This kind of visualisation may be misleading as correlations between alternatives in foreground and background systems do not appear. The seven studies considering dependent samplings used DA or similar methods in order to compare alternatives, which were visually compared by plotting DA results in graphs [START_REF] Famiglietti | A comparative environmental life cycle assessment between a condensing boiler and a gas driven absorption heat pump[END_REF] or in matrices [START_REF] Hester | Actionable insights with less data: guiding early building design decisions with streamlined probabilistic life cycle assessment[END_REF]. Another option was to plot the distribution of impact ratios [START_REF] Huijbregts | Evaluating Uncertainty in Environmental Life-Cycle Assessment. A case Study Comparing Two Insulation Options for a Dutch One-Family Dwelling[END_REF][START_REF] Heeren | Environmental Impact of Buildings-What Matters?[END_REF], or the distribution of impact differences [START_REF] Ylmén | Managing Choice Uncertainties in Life-Cycle Assessment as a Decision-Support Tool for Building Design: A Case Study on Building Framework[END_REF][START_REF] Zhang | Reducing building embodied emissions in the design phase: A comparative study on structural alternatives[END_REF][START_REF] Pannier | Stochastic comparative LCA of smart buildings[END_REF] between pairs of alternatives. This is in line with the recommendations of Marsh et al. [START_REF] Marsh | Tackling uncertainty in life cycle assessments for the built environment: A review[END_REF] to use dependent sampling, and DA or HSM. No application of HSM was yet found in CompLCA of buildings. (similar to DA) * corresponds to the impact value of alternative at the i-th run in the sampling. 2 Contrary to UAs, SAs did not use dependent sampling for building LCA. However, it was done at the component level in order to compare two insulation materials [START_REF] Wei | Using the Reliability Theory for Assessing the Decision Confidence Probability for Comparative Life Cycle Assessments[END_REF].

Aim of the study

Heijungs [START_REF] Heijungs | Selecting the best product alternative in a sea of uncertainty[END_REF] provided recommendations to compare product alternatives "in a sea of uncertainties" using UA. The present article aims at applying a global UA and SA framework to surf on the sea of uncertainties in CompLCA of building. Therefore, the sampling strategy of a screening SA method is adapted to a comparative context, and to handle all kinds of uncertain factors; which was not done previously. After this SA stage, the uncertainty characterisation of the main uncertain factors is improved before conducting an UA.

As highlighted in Table 1, even recent studies did not apply dependent sampling to compare building design alternatives using LCA. Suitable UA in comparative context is thus performed. Different metrics are investigated and presented using various data visualisation methods. This manner of exploiting CompLCA results is new in building applications. In the next sections, the methodology ( § 2) and the LCA model ( § 3) are described and applied to compare three building design alternatives presented in § 4. In the results section ( § 5), SAs and UAs are run based on dependent sampling and different comparison metrics are applied. Finally, the results and methodology are discussed in § 6, before concluding in § 7 on the most appropriate metrics to address uncertainties, and strengthen the decision making in building LCA.

Methodology to address uncertainties in building compLCA

The proposed methodology to address uncertainties in building compLCA is split in five stages, that are discussed in the following subsections:

1. Selection of the alternatives and of the LCA model 2. Identification of uncertain factors and gross characterisation of uncertainties 3. Sensitivity analysis in a comparative context 4. Improvement of the uncertainty characterisation for the most influential factors 5. Uncertainty analysis in an alternatives-comparison context

Selection of the alternatives and of the LCA model

The first step consists in the definition of alternatives. A building designer may have to choose between: levels of energy performance, architectural forms, construction types, technical solutions, or refurbishment alternatives. After this goal and scope step, the LCA model is built to enable the comparison of alternatives corresponding to the same functional unit.

Classical LCA is performed using averaged values regarding the background system. For instance if electricity is consumed, constant average environmental impacts are considered all along the life cycle. In the case of buildings, this assumption is no more valid due to the long life span (several decades) during which the electricity production system is likely to change. Furthermore, electric heating induces a high peak demand during cold days, when GHG emissions of electricity production are higher than average. It is therefore essential to associate a dynamic building energy simulation (DBES), yielding temporal evolution of buildings energy loads (hourly time-step) with a model or data accounting for temporal variation of the electricity production mix and related impacts. In this way, the impacts of building operation, that still represent the largest share of environmental impacts [START_REF] Roux | Integrating climate change and energy mix scenarios in LCA of buildings and districts[END_REF][START_REF] Anand | Recent developments, future challenges and new research directions in LCA of buildings: A critical review[END_REF] due to long buildings lifetimes, are more accurately calculated. This is a way to progress towards a dynamic LCI modelling for buildings [START_REF] Negishi | An operational methodology for applying dynamic Life Cycle Assessment to buildings[END_REF].

Identification of uncertain factors and uncertainty characterisation

Many input parameters are required to perform DBES and LCA. They are part of the uncertain factors and can be listed by a designer, referring to the model. However, other sources of uncertainties exist such as: model uncertainty; uncertainty due to choices; spatial, temporal and technological variabilities; epistemic uncertainties; mistakes; or meta-uncertainties [START_REF] Huijbregts | Application of uncertainty and variability in LCA -Part I : A general framework for the analysis of uncertainty and variability in life cycle assessment[END_REF][START_REF] Björklund | Survey of approaches to improve reliability in LCA[END_REF][START_REF] Lloyd | Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment: A Survey of Quantitative Approaches[END_REF]. A non-exhaustive list of uncertain factors in the context of building LCA is provided by Marsh et al. [START_REF] Marsh | Tackling uncertainty in life cycle assessments for the built environment: A review[END_REF]. When data is available, the different uncertainty types should be included in the analysis.

The first characterisation of uncertainty on the identified factors is based on expert knowledge or available data from literature. Building designers may have experience to define variation ranges for some parameters (e.g. conductivity of an insulation material), but do not necessarily know the associated probability distribution. Therefore, we suggest the use of uniform distributions for a quick uncertainty characterisation. The distributions will be updated in stage #4. For other sources with which the designer is not familiar, data should be gathered (e.g. literature review) in order to associate a probability distribution with continuous factors, or a set of possible values with discrete factors. In order to facilitate this task, uncertainty databases for the building sector should be developed, similarly to the work of Hoxha [START_REF] Hoxha | Amélioration de la fiabilité des évaluations environnementales des bâtiments[END_REF].

Sensitivity analysis (SA) for alternatives' comparison

An SA is conducted in order to identify the most influential factors. This step is important for a better understanding of LCA modelling. Thus, decision makers become aware of aspects having a key influence on LCA results. In addition, they can search for further information on sensitive factors.

SA method

The Morris method [START_REF] Morris | Factorial Sampling Plans for Preliminary Computational Experiments[END_REF] adapted by Pannier et al [START_REF] Pannier | Comprehensive assessment of sensitivity analysis methods for the identification of influential factors in building life cycle assessment[END_REF][START_REF] Pannier | Computationally efficient sensitivity analysis for building energy simulation and life cycle assessment with categorical input factors[END_REF] was used. It has the advantage to precisely quantify the influence of uncertain factors with much less simulations than the variance-based Sobol method [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF], which is considered as a reference. An elementary variance (square of the elementary effect) is calculated instead of an elementary effect. A sensitivity index similar to the expectancy of the variance computed in the Sobol method is obtained [START_REF] Pannier | Comprehensive assessment of sensitivity analysis methods for the identification of influential factors in building life cycle assessment[END_REF]. It is named MA-Morris (for Multilevel Adapted Morris) method in this article. Its performance was investigated for continuous factors as well as categorical factors (i.e. discrete factors without logical order) with many levels1 [START_REF] Pannier | Computationally efficient sensitivity analysis for building energy simulation and life cycle assessment with categorical input factors[END_REF]. Some categorical factors had 200 levels, previously generated with a stochastic model. This number of levels allows to reach convergence on the mean for almost all environmental indicators. MA-Morris was able to quantify the importance of all kinds of uncertain factors with small differences compared to the Sobol method [START_REF] Pannier | Computationally efficient sensitivity analysis for building energy simulation and life cycle assessment with categorical input factors[END_REF]. A sensitivity index for the -th uncertain factor, similar to the expectancy of the variance computed for Sobol, is obtained using MA-Morris, as explained in [START_REF] Pannier | Computationally efficient sensitivity analysis for building energy simulation and life cycle assessment with categorical input factors[END_REF]. Then, the influence of the factor is quantified based on the relative influence indicator proposed in [START_REF] Pannier | Comprehensive assessment of sensitivity analysis methods for the identification of influential factors in building life cycle assessment[END_REF], and calculated as in [START_REF]IEA, Global Status Report for Buildings and Construction 2019 -Towards a zero-emissions, efficient and resilient buildings and construction sector[END_REF]. It is defined as the share of the sensitivity index of one factor relatively to the sum of the sensitivity indices of all factors.

(1)

Application to alternatives comparison

The distributions of uncertain factors are sampled following the design of experiments (DoE) of MA-Morris. As the aim is to compare alternatives, a dependent sampling is used: for uncertain factors appearing in several alternatives, the same DoE must be used for all alternatives, as pointed out by Henriksson et al. [START_REF] Henriksson | Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts[END_REF]. This means that for one given simulation, the values of the uncertain factors are the same for all alternatives. Thus, the alternatives can be compared by performing simulations all things being equal otherwise. For one alternative, the results of the DoE can be summarized in a matrix consisting of rows (one for each simulation performed) and of columns (one for each environmental indicator considered).

The sensitivity indices are computed for each alternative separately as well as for a metric reflecting the alternatives comparison context: in our case the pairwise difference between alternatives. The following calculation is performed to get the pairwise difference; for each of the simulations and for each of the indicators, the impact value of is subtracted from that of :

(2)
with the matrices representing the results for alternative (right matrix), and (left matrix). In one row of the matrices, the coefficients are the value of the indicators calculated during the same simulation. In columns, the coefficients are the values calculated for the simulations for a given indicator.

Performing SA in a comparative context is important before performing UA in a comparative context in order to improve the uncertainty characterisation on factors than can may change the ranking of alternatives.

Improvement of uncertainty characterisation

For the most influential factors identified using SA, uncertainty characterisation is refined in order to get more reliable UA results. Literature and technical review are more deeply investigated for these factors.

In order to determine for which factors characterisation should be improved, uncertain factors are ranked by increasing relative influence , for each alternative and each pairwise difference . This is done for all environmental indicators. The set of most influential factors can be defined as the set of factors covering at least a certain share of the total influence for all indicators and alternatives as suggested by Lacirignola et al. [START_REF] Lacirignola | LCA of emerging technologies: addressing high uncertainty on inputs' variability when performing global sensitivity analysis[END_REF]. If many factors belong to this set, the building designer will spend too much time searching for additional information. A different approach is thus chosen here. A budget is set regarding the number of influential factors. The uncertainty characterisation is improved only for the 15 most influential factors, i.e. giving the 15 highest among all alternatives and indicators.

Uncertainty analysis (UA) for alternatives' comparison

The improved distributions of uncertain factors are sampled with Sobol sequences for a more efficient (higher convergence speed) exploration of the variation ranges [START_REF] Saltelli | Sensitivity Analysis : Gauging the Worth of Scientific Models[END_REF]. As for SA, dependent sampling is used, allowing to obtain distributions of results for each alternative and each pairwise difference . Four types of analyses corresponding to seven methods (see Table 2) are tested. The key question is how often and how much one alternative performs better than another one, for each indicator. Secondly, analyses are carried out to understand how often an alternative performs better:

 A discernibility analysis [START_REF] Heijungs | Numerical approaches towards life cycle interpretation -Five examples[END_REF], called DA, is performed for all pairwise comparisons. It consists in counting the cases where and dividing this number by the sample size. This gives the probability that a randomly sampled alternative performs better than the corresponding alternative . A probability closed to 0 (respectively to 1) indicates that (respectively to ) more often has the lowest impacts and thus performs better. When the probability is close to 0.5 for one indicator, both alternatives are undistinguished.  An analysis of the most represented ranking is conducted. The ranking between all alternatives is assessed for all simulations. The probability of occurrence of each possible ranking is computed. For this analysis, the pairwise difference is not necessary. This analysis is called RP (ranking probability).

This kind of analysis can only be applied to dependent samplings; non-overlap statistics or other measures of superiority are available for independent samplings [START_REF] Heijungs | Selecting the best product alternative in a sea of uncertainty[END_REF]. In addition, it does not indicate how much an alternative performs better.

Thirdly, impact gaps between alternatives are assessed:

 Statistics on distributions (e.g. means, medians, and quantiles) are computed to find how much better an alternative performs. This analysis is called MQ (means and quantiles).  In addition, the standardised mean difference (SMD) also called Cohen's [START_REF] Cohen | Statistical Power Analysis for the Behavioral Sciences[END_REF] is calculated to find how many standard deviations separate the means for each pairwise comparison. For dependent samplings, d is the mean of the pairwise difference divided by the standard deviation of the pairwise difference, as in [START_REF] Ghewy | millions de tonnes de déchets produits en France en 2010, Commissariat général au développement durable[END_REF]. A small difference between these statistics or a small (i.e. small mean of the pairwise difference) indicate that the two products have similar environmental impacts.

(3)

with the SMD, the mean pairwise difference between and defined in (4) and standard deviation of the pairwise difference defined in [START_REF]Environmental management -Life cycle assessment -Principles and framework[END_REF].

(4) [START_REF]Environmental management -Life cycle assessment -Principles and framework[END_REF] with the number of simulations and the simulation index.

Lastly, instead of performing the second and third types analysis, we can compute at the same time how often and how much one alternative performs better than another using the following metrics:

 The distribution of the relative differences (noted DRD) is computed as described in equation ( 6) for each indicator similarly to Pannier et al. [START_REF] Pannier | Study of the Quantification of Uncertainties in Building Life Cycle Assessment[END_REF][START_REF] Pannier | Stochastic comparative LCA of smart buildings[END_REF]. For each of the simulations the impacts difference between alternatives is computed, and then normalised by the maximum impact value. This gives a dimensionless series of values, which is displayed as a boxplot.

Visually, one can see how often one alternative performs better (part of the boxplot below the 0-axis). In addition, the shape of the boxplot indicates how much one alternative perfoms better. For a thick boxplot, the uncertain factors strongly affect the results, which are more likely to be questioned. For a flattened boxplot, whatever the values of uncertain factors, the impact difference between the two alternatives are always in the same order of magnitude.

If the flattened boxplot is centred on the 0-axis (e.g. in a range of around the indifference line), both alternatives have similar impacts; otherwise, one alternative is clearly preferred.

(6)

 The superiority statistic (resp. ) introduced by Heijungs [START_REF] Heijungs | Selecting the best product alternative in a sea of uncertainty[END_REF] is computed to find the probability that alternative (resp. ) performs at least better than alternative (resp. ). represents the number of times where exceeds , divided by the sample size , as in [START_REF] Huijbregts | Application of uncertainty and variability in LCA -Part I : A general framework for the analysis of uncertainty and variability in life cycle assessment[END_REF]. Heaviside step function [START_REF] Björklund | Survey of approaches to improve reliability in LCA[END_REF] allowing for counting the occurrences.

is built symmetrically. Large values for the Heijungs significativity metric , called HSM, indicate a strong preference for one alternative.

is given by:

(7)
with the threshold for defining a better alternative, and the Heaviside step function defined as in equation ( 8):

(8)
For each environmental indicator, the seven methods are applied and their results are compared. It is possible to identify indicators for which it is likely to get much lower impact for one alternative. An alternative ranking can be obtained for such indicators and decision makers can be more confident in their choices. On the contrary, if for one indicator: i) the impact values of the two alternatives are always close or ii) there is as much chance that one alternative or another performs better; the results are debatable and the final decision should not rely on this indicator. 

LCA model and framework to deal with uncertainties

DBES

Before performing LCA, DBES is run using the COMFIE model [START_REF] Peuportier | Simulation tool with its expert interface for the thermal design of multizone buildings[END_REF] of the software Pleiades 2 . This is an important step for a precise assessment of the temporal evolution of energy loads, that generally account for a large part of buildings impacts. In this reduced multizone building model, the building is split in thermal zones with homogenous operative temperature. Thermal zones are meshed using a finite volume discretisation. Energy balance is applied in order to get zones operative temperatures and eventually heating or cooling loads. The reliability of this DBES tool has been verified through model intercomparison [START_REF] Brasselet | Banc d'essais comparatif de progiciels de calculs de charges hygrothermiques[END_REF][START_REF] Judkoff | International Energy Agency Building Energy SimulationTest (BESTEST) and Diagnostic Method[END_REF][START_REF] Peuportier | Bancs d'essais de logiciels de simulation thermique[END_REF][START_REF] Brun | Behavioural comparison of some predictive tools used in a low-energy building[END_REF] and comparison with measurements [START_REF] Peuportier | COMFIE, logiciel pour l'architecture bioclimatique, quelques applications pour les vérandas[END_REF][START_REF] Munaretto | Empirical validation of different internal superficial heat transfer models on a full-scale passive house[END_REF].

The DBES takes as inputs the characteristics of the building site, envelope and equipment, and the occupancy scenarios of each zone. These inputs are uncertain and the predefined values are modified at each simulation based on the DoE. It has been shown that the variability of two of these inputs, namely climate and occupancy, may lead to significant gaps in the building energy assessment [START_REF] Tian | A review of sensitivity analysis methods in buildings energy analysis[END_REF][START_REF] Salehi | A case study: The energy performance gap of the Center for Interactive Research on Sustainability at the University of British Columbia[END_REF]. Specific models, described in the next two paragraphs, are used to account for these variabilities. In both case, the approach consists in generating a diversity of realistic scenarios (climates or occupancy), and randomly sampling from the generated scenarios for each simulation. A sample of meteorological years is generated by applying the model of Ligier et al. [START_REF] Ligier | Energy Performance Contracting Methodology Based upon Simulation and Measurement[END_REF][START_REF] Ligier | Development of a Methodology to Guaranteed Energy Performance[END_REF]. The temperature and radiation of a typical meteorological year are characterised into a mean trend and a residual series, using a Fourier decomposition and a seasonal auto-regressive moving average model. Then, new realistic series are produced based on the identified characteristics. The model is designed to maintain the natural correlation between temperature and radiation. The obtained climate files are representative of the present climate.

The stochastic occupancy model of Vorger [START_REF] Vorger | Integration of a comprehensive stochastic model of occupancy in building simulation to study how inhabitants influence energy performance[END_REF][START_REF] Schalbart | Stochastic Prediction of Residents' Activities and Related Energy Management[END_REF] enables generating realistic occupancy scenarios. Depending on the building type and location, occupants are generated for each run. Their presence and activities over the simulated year are defined with a 10 min timestep using time-inhomogeneous Markov chains calibrated on a French time use survey. Based on the sampled activities and measurements campaigns data, energy for appliances and water consumptions are estimated. In addition, adaptive actions can be set (e.g. window opening). The occupancy model gives as output scenarios of presence, temperature setpoints, appliances and water consumptions, windows shadings and openings.

After a DBES, the building loads are available for every hour of the simulated year and R launches the associated LCA simulation.

LCA

LCA is performed using the LCA engine EQUER [START_REF] Polster | Evaluation of the environmental quality of buildings towards a more environmentally conscious design[END_REF][START_REF] Popovici | Contribution to the life cycle assessment of settlements[END_REF][START_REF] Peuportier | Eco-design of buildings using thermal simulation and life cycle assessment[END_REF] of the software Pleiades. All life cycle stages of the project are considered. Being developed as a decision support tool, a consequential-oriented approach is implemented in Pleiades LCA through three main modelling choices. Firstly, the approach proposed by Polster et al. [START_REF] Polster | Evaluation of the environmental quality of buildings towards a more environmentally conscious design[END_REF] to account for benefits and burdens of recycled materials corresponds to the 50/50 substitution method, also described in Schrijvers et al. [START_REF] Schrijvers | Developing a systematic framework for consistent allocation in LCA[END_REF]. Secondly, electricity exported to the grid (e.g. with photovoltaics panels) results in avoided impacts. Thirdly, for biogenic carbon, the approach of Polster et al. [START_REF] Polster | Evaluation of the environmental quality of buildings towards a more environmentally conscious design[END_REF] is followed. It consist in accounting impacts separately at construction and end-of-life stages. It corresponds to the -1/+1 approach, described in Hoxha et al. [START_REF] Hoxha | Biogenic carbon in buildings: a critical overview of LCA methods[END_REF], and has the advantage of differentiating origins (trees replanted or not after harvesting) and end-of-life options (reuse, disposal, incineration with or without energy recovery) of bio-based materials. The reliability of the tool has been investigated through models intercomparisons in different projects: PRESCO, COIMBA, BENEFIS [START_REF] Peuportier | Inter-comparison and benchmarking of LCA-based environmental assessment and design tools[END_REF][START_REF] Salmon | Connaissance de l'impact environnemental des bâtiments // COIMBA 2011, Développement des outils d'évaluation de la qualité environnementale des bâtiments par analyse de cycle de vie, Nobatek, ARMINES[END_REF][START_REF] Lebert | Fédération maisons de qualité[END_REF]. Despite methodological differences, the compared models ranked building alternatives in the same way in most cases.

In countries with a large share of electrical heating such as France, the electricity consumption fluctuates significantly over the year. Consequently, the electricity production mix adapts and the related impacts vary. The hourly model of electricity production of Roux et al. [START_REF] Roux | Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house[END_REF] 3 is linked with Pleiades LCA to take temporal variation of impacts of electricity use into account. To be consistent with the consequential-oriented approach of Pleiades LCA, the marginal version of the model [START_REF] Roux | Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house[END_REF] is used. In this study, the electricity production allocated to the building project corresponds to the production differences between i) the production required to supply the reference electricity demand, and ii) the production required to supply the reference demand increased by the additional electricity load for the project.

Pleiades LCA and the marginal dynamic electricity mix model take as an input the characteristics of the building envelope (quantities of materials) and systems (equipment and energy sources), as well as water use and energy loads. Environmental data from ecoinvent v3.2 [START_REF] Weidema | Overview and methodology, Data quality guideline for the Ecoinvent database version3[END_REF] are used for fabrication and end-of-life of materials and components, energy, water and transport processes. All abovementioned parameters are subject to uncertainties.

In addition, uncertainties in background environmental data and in LCIA are specifically modelled (see Figure 2). Brightway2 [START_REF] Mutel | Brightway: An open source framework for Life Cycle Assessment[END_REF] is used to generate environmental databases for Pleiades LCA containing uncertainties. Regarding uncertainties on the background environmental data of the building project, random samples are drawn from the uncertainty distributions provided by ecoinvent, resulting in technosphere and biosphere matrices. In addition, for uncertainties on LCIA, uncertainty distributions are affected to characterisation factors (CF) using Brightway2: samplings are drawn to get sets of characterisation factors. Combining the technosphere and biosphere matrices to the characterisation matrices, lists of impact values of building materials and processes are obtained, corresponding to databases containing uncertainties for Pleiades LCA. Finally, for each simulation, Pleiades LCA uses one of the randomly sampled database.

Figure 2: Generation of the databases with uncertainties on the background data and on the characterisation factors.

At the end of an LCA simulation, 14 environmental indicators or fluxes listed in Table 3 are obtained. 

Case study

The methodology is applied to compare three houses located in the experimental platform INCAS (Le Bourget-du-Lac, France), using the previously defined LCA framework. These buildings were studied in many research projects; they are therefore precisely characterised. In this study, however, we assume to be in the design phase when a designer or a customer wants to choose the construction type having the lowest impacts.

Compared alternatives

The three building alternatives are two-storey single-family houses, whose performance corresponds to the passive house standard [START_REF] Feist | Passive Houses in Central Europe[END_REF]. They have the same geometry, area and orientation; only their construction type differ. The first alternative is a shuttered concrete (SC) house with extruded polystyrene external insulation , as described in Munaretto et al. [START_REF] Munaretto | Empirical validation of different internal superficial heat transfer models on a full-scale passive house[END_REF]. The second alternative has a double-wall (DW) type of construction: it consists in two rows of concrete blocks with glass wool inbetween [START_REF] Spitz | Practical application of uncertainty analysis and sensitivity analysis on an experimental house[END_REF][START_REF] Goffart | Generation of stochastic weather data for uncertainty and sensitivity analysis of a low-energy building[END_REF]. The last alternative is a wooden-framed (WF) house, with wood wool inside OSB panels and a concrete ground floor slab, as described by Brun et al. [START_REF] Brun | Summer comfort in a low-inertia building with a new free-cooling system[END_REF]. In this case study, the insulation thickness in the walls of DW and WF were slightly modified to reach the same thermal resistance as SC, enabling to compare the construction types, all things being equal otherwise. All alternatives have an electric air heating system, an electric domestic hot water system, and a doubleflow mechanical ventilation system. The EOL assumptions are given in . The complete description of the houses and the modelling assumptions can be found in Pannier [START_REF] Pannier | Etude de la quantification des incertitudes en ACV des bâtiments[END_REF]. 

Functional unit

The single-family house of 90 m² net floor area is studied over its entire lifecycle, including construction, use, renovation and EOL stages. The building lifetime is an uncertain factor taking values between 40 and 200 years. Regarding the use stage, an occupancy scenario is randomly sampled, but the same scenario is applied to all compared alternatives.

Uncertain factors and uncertainty characterisation

A list of 153 uncertain factors is considered. The categories of uncertain factors included in the study can be found in Table 5 with the main assumptions regarding the variation ranges of their uniform distributions. Many categories were considered in this study to reflect a wide variety of uncertainties a designer can face, regarding the building site, materials, components, construction processes, systems or use, as well as uncertainties related to background environmental data or LCIA… However, no uncertainties were accounted for neither regarding the material EOL processes, nor on the evolution of the building and its context along its long lifetime. The complete list of uncertain factors is given in the Supplementary Materials (SM) with their detailed variation ranges and the alternative to which they relate.

In this first step of uncertainty quantification, uniform distributions were chosen for all continuous factors. In the case study, ranges are defined around a reference value; values and variation ranges are found in the literature and reported in Table 5. Globally, low variation ranges were chosen for uncertainties related to building materials. This reflects the case where a designer has already selected suppliers for the materials of all alternatives to be compared. Quite large variation ranges are defined for thermal bridges, as they can vary depending on the data sources: e.g. catalogues or default values in simulation software [START_REF] Cstb | Règles Th-U Fascicule 5 : Ponts thermiques[END_REF][START_REF] Munaretto | Etude de l'influence de l'inertie thermique sur les performances énergétiques des bâtiments[END_REF].

Four factors are categorical: climate, occupancy, environmental background data, and choice of the polystyrene extrusion process. A random sample is drawn among available levels. 

Results

The three houses alternatives (SC, DW and WF) with uncertainties are compared by analysing the SA and UA results. For information purposes, the deterministic DBES and LCA results are in the SM. ). The colours correspond to the relative influence of an uncertain factor. Only the most influential factors appear in the legend and the number in bracket corresponds to the uncertain factor number in Table 5 and SM. The most influential factors identified when focusing on the individual alternatives are different from those selected in the comparison context. For example, the variability of occupancy, which has a large influence on the individual alternatives, has little influence on the pairwise impact differences. Depending on the objective of the study, we recommend to select the most influential factors among those having a high relative influence for either the individual alternatives (SC, DW, WF) or the comparison context (SC-DW, SC-WF, WF-DW). Both are illustrated in this article.

Improvement of the uncertainty characterisation

Many factors should be selected in order to reach a share of 90 % of relative influence for each indicator and for each pairwise difference: 113 factors in our case. Improving the uncertainty characterisation for so many factors would be time consuming for a building designer. Therefore, this task is performed for the shortlist of the 15 most influential factors, i.e. with the highest relative influence for all indicators, listed in the legend of Figure 3. The updated values are given in SM.

For instance regarding thermal bridges, the designer can use a thermal bridges simulation software to calculate the ψ-value instead of a catalogue. The distribution was therefore narrowed and modelled using a normal distribution. Regarding the polystyrene extrusion process, designers can ask their supplier which blowing agent is used. In this case study, this uncertainty factor has been removed: CO 2 is chosen. The stochastic occupancy model of Vorger [START_REF] Vorger | Integration of a comprehensive stochastic model of occupancy in building simulation to study how inhabitants influence energy performance[END_REF][START_REF] Schalbart | Stochastic Prediction of Residents' Activities and Related Energy Management[END_REF] can be used to generate occupancy scenarios corresponding to the market target group of the house being designed. In this case study, new scenarios are generated to correspond to first-time buyers with one child.

For other uncertain factors, designers can search additional information in scientific or technical literature. For conductivities, specific heat and windows U-values, a normal distribution is used as in Munaretto et al. [START_REF] Munaretto | Empirical validation of different internal superficial heat transfer models on a full-scale passive house[END_REF] : the mean μ is the centre value of the previous uniform distribution, and the truncations correspond to the boundary of the previous distribution. The standard deviation σ is chosen to reflect the uncertainty found in the literature listed in Table 5. The same process is followed for the steel ratio in concrete, waste of building construction, and building or components lifetime, using normal distribution as in Hoxha et al. [START_REF] Hoxha | Method to analyse the contribution of material's sensitivity in buildings' environmental impact[END_REF].

For the remaining uncertain factors, we assume that designers have no possibility to improve the uncertainty characterisation, which is therefore unchanged. In this case study, climate variability is unchanged (although it would have been possible to refine the climate generation by feeding it with local data). Environmental background data are also remained unchanged due to lack of expertise of building designers. Another manner to update uncertain distribution is to follow a Bayesian approach [START_REF] Muller | Estimation de l'incertitude sur les flux d'inventaire du cycle de vie -modélisation et développement de facteurs empiriques pour l'approche Pedigree[END_REF], but this is out of the scope of this article.

Uncertainty analysis

5,000 simulations of each alternative were performed using a Sobol sequence sampling. 21 h were necessary to run the 15,000 simulations. A large sampling size was chosen in this study in order to reach convergence. As shown in the SM, this number could have been reduced to 1,000 with negligible differences on the results. Even with 100 simulations the rankings remain the same. The results of the seven methods to interpret UA results in a comparative context are presented in the next subsections.

Distributions (Di)

The UA results are given in Figure 4 for the climate change indicator through output distributions of each construction type: SC, DW and WF. The distributions are given for all indicators in the SM. Many outliers are observed in the distributions that can spread over wide ranges as unbounded distributions were used for the generation of uncertain environmental databases.

As shown in the deterministic results in SM, the use stage, which has similar impacts for all alternatives, is the most contributing life cycle stage. Therefore, the impact of the three alternatives are close. Visually, the distributions of the three alternatives or at least of SC and DW display a large overlap. Therefore, the DW alternative was removed in some of the graphs presented in the following sections of this article; but the complete graphs can be found in SM. A summary of the advantages and disadvantages of Di to analyse UA results in a comparative context is provided in Table 6. 

Discernibility analysis (DA)

The results of the DA are given in Table 7; each line standing for a pairwise comparison result. The colour code indicates which alternative has lower impacts. For indicators having probabilities close to 0 (yellow) or 1 (dark green), a best performing alternative can easily be identified. Thus for climate change, WF is better than SC and than DW in most cases; in addition, DW is better than SC. It can be concluded that the construction type WF is the best alternative for this indicator, while SC is the worst one. Ranking can be established for cumulative energy demand, mass of waste, volume occupied by radioactive waste, ionising radiation, and human toxicity.

For three indicators (fine particulate matter formation, photochemical ozone formation and land use), only a best or a worst alternative can be identified, but the full ranking cannot be established. For instance, WF is the worst alternative for the land use, but it is not possible to clearly state that SC beats DW as the probability reaches 66.5 %.

For the remaining indicators, it is not possible to establish an unequivocal ranking.

Table 8 summarises the rankings or partial rankings obtained with the discernibility analysis when the probability of occurrence exceeds 80 %. However, as previously mentioned, it is not visible from this analysis how much one alternative performs better than the two others. ---Acid.

---Ecotox.

---Land use --WF Note that, in this case study, the WF alternative is the worst option due to the EOL assumptions (that were not considered as uncertain factors). The share of not recovered wood is sent to non-hazardous waste landfill, whereas for the other two houses, the share of non-recovered heavy materials is sent to inert material landfill, which was assumed to have impacts six times lower (see ).

A summary of the advantages and disadvantages of DA is provided in Table 9. Advantages Disadvantages  Quantification of how often an alternative performs better (contrarily to Di)  Not possible to quantify how much an alternative performs better  Results more complex to understand than for Di in presence of more than two alternatives: probabilities obtained for each pair of alternatives  Assumption on the probability up to which an alternative performs significantly better than the other (set at 80 % here)  Post-processing necessary to find the alternative ranking based on the pairwise probabilities occupied by radioactive waste and ionising radiation) a large overlap is observed in Figure 5 A summary of the advantages and disadvantages of MQ is provided in Table 11. 

Advantages

Disadvantages  Easy to understand  Quantitative results based on the distribution analysis  No pairwise comparison  Not possible to quantify how often an alternative performs better  Not possible to quantify how much an alternative performs better  Results more complex to interpret than for Di in presence of more than two alternatives: metrics to be analysed for each alternative  Assumption on the level of overlap up to which an alternative ranking is possible

Standardised mean difference (SMD)

The SMD was calculated to find how many standard deviations separate the means for each pairwise comparison (cf. Table 13). According to Cohen [START_REF] Cohen | Statistical Power Analysis for the Behavioral Sciences[END_REF] values are small around 0.2 (white values), medium around 0.5 (yellow values) and high around 0.8 (green values). In our case, environmental impacts of alternatives are significantly different for climate change, cumulative energy demand, mass of waste, fine particulate matter formation, photochemical ozone formation, volume occupied by radioactive waste, human toxicity and land use. A full or a partial ranking was established previously with DA and RP for these indicators. However, for ionising radiation, a ranking was found but the Cohen's d value indicated medium impact differences between the alternatives. A summary of the advantages and disadvantages of SMD is provided in Table 14. Advantages Disadvantages  Quantification of how much an alternative performs better (contrarily to Di, DA, RP and MQ)  Not possible to quantify how often an alternative performs better contrarily to DA and RP  Not possible to obtain the ranking of alternatives contrarily to DA and RP  Results more complex to interpret than for Di in presence of more than two alternatives: metrics to be analysed for each alternative  Assumption on the Cohen's value up to which pairs of alternatives are distinguishable DA and RP quantify how often an alternative performs better, while SMD quantifies on how much criteria an alternative performs better. Combining the two analyses gives a broader view on the results in a comparative context. The combination is shown in Table 15 which corresponds to Table 8 with the background colours of Table 13. For instance, for an indicator, if the Cohen's has low values for at least two pairwise comparisons, then a white background is applied to the line corresponding to this indicator in Table 15 to show that the impact values are often close to each other. It is thus possible to read in Table 15 the alternative ranking and to identify if the impact differences are large enough to distinguish alternatives. Generally, when impact differences are too small according to SMD, no ranking is possible according to DA or RP. Relying on the life cycle stage contribution analysis presented for the deterministic results in SM, the indicators for which a decision can be made are, in this case study where the construction type is compared, those for which the contribution of the construction and end-of-life stages are higher. A post-processing of these two analyses is necessary to obtain this broader view, making the results more complex to obtain. ---Acid.

---Ecotox.

---Land use --WF

Cross-analyses

Distribution of relative differences (DRD)

The DRD are given in Figure 6 for the pairwise comparison between SC and WF, and in SM for the other pairs. In these graphs, boxplots are used to represent the distributions: they show the median value, the first and third quartile, while the whiskers are the 2.5 and 97.5 centiles. The indifference line (0-axis), where the impacts of both alternatives are equal, is plotted in red. The indifference zone (yellow zone on the figure) around the indifference line represents the zone where the impact difference between alternatives ranges between +5 and -5 %.

For some indicators (climate change, mass of waste, human toxicity and land use), more than three quarters of the values fall outside the yellow zone indicating that impact differences are generally significant: an alternative can be chosen with a high confidence.

For cumulative energy demand, the impact difference between alternatives may be small in some cases. However, SC is better in at least 97.5 % of the cases as the upper whisker of the boxplot do not overlap the indifference line: an alternative can be chosen with a high confidence.

For abiotic depletion of minerals, fine particulate matter formation, volume occupied by radioactive waste, and ionising radiation, impact differences are smaller. However, one alternative is always slightly preferred (at least 75 % of the value are upper or lower the 0-axis).

Regarding the five remaining indicators (water, photochemical ozone formation, eutrophication, acidification and ecotoxicity), impact differences are always small. The final decision should not rely on these indicators that do not give clear decisive information. Similar conclusions are made for the comparison between WF and DW. For the comparison between SC and DW however, all boxplots fall into this yellow zone: the two houses always have similar environmental impacts.

Using all three pairwise comparisons, the alternative ranking of Table 16 is obtained. A colour code is used to depict the reliability in the choice: a green background corresponds to a choice with high reliability, while a yellow background stands for a choice with medium reliability. The following thresholds are set: i) the choice has high reliability if the mean impact difference is larger than 0.05 and the probability that an alternative performs better exceeds 90 %; ii) the choice has medium reliability if the mean impact difference is larger than 0.01 and the probability that an alternative performs better exceeds 75 %. Nine indicators are conclusive, as in the combination of RP and SMD (Table 15). Due to the thresholds settings, two main differences appear between Table 15 and Table 16. Firstly, the yellow background is more frequent in DRD (Table 16). Secondly, for the volume occupied by radioactive waste and ionising radiation, only a partial ranking is shown with DRD while a full ranking was shown in the combination of RP and SMD. convenient to analyse. SMD does not provide a ranking but highlights if the impact values of pairs of alternatives are close to each other. DA and SMD relying on pairwise comparison, the interpretation is more complex when the number of alternatives to be compared increases. All in all, provided that a threshold is set, DA, RP and SMD help answering either the how much or the how often questions, but not both.

The last three options (SMD+DA / SMD+RP, DRD and HSM) allow to extract the most information from the results. As a counterpart, two thresholds should be set: one related to the how much question, and the other related to the how often question as summarised in Table 21. As for all pairwise comparison based methods, the interpretation becomes more complex with an increasing number of alternatives. The results shown in Table 15 (SMD+DA / SMD+RP), Table 16 (DRD) and Table 18 (HSM) are very similar in terms of ranking and of impacts gaps between alternatives. The observed difference between the three methods (i.e. partial or full ranking for an indicator, or degree of reliability of the ranking) is linked to the choice of the thresholds: the mathematical indicators being different in the three analyses, the thresholds cannot be equivalent.

Applying DRD and HSM is more convenient than applying SMD+DA or SMD+RP as results are obtained within only one analysis. HSM has the advantage over DRD of precisely quantifying the impact gap between alternatives by setting the how-much' threshold so that an alternative performs at least better than the other. However, this is what makes the HSM at bit less flexible than DRD: if the decision maker wants to change the how-much threshold, a new calculation with a new value should be run with HSM, while the indifference zone just needs to be adjusted on the graph for DRD. Despite of the convenience of HSM, we suggest to use DRD for this flexibility reason. 

Method

How-often threshold How-much threshold SMD+DA / SMD+RP Probability that an alternative performs better / Probability that a ranking is more frequent

Cohen'd value

DRD

Share of the boxplot above the indifference line of Figure 6 Range of the indifference zone

HSM

Probability that an alternative performs better value so that an alternative performs at least better than the others

Discussion

The proposed methodology can be applied by building designers in order to select environmental indicators for which a reliable alternatives ranking is possible. The final selection is easier as it bases upon a smaller set of indicators. Discussions with the building owner and other decision makers (e.g. urban planners), as well as multicriteria decision making methods [START_REF] Prado-Lopez | Stochastic multiattribute analysis (SMAA) as an interpretation method for comparative life-cycle assessment (LCA)[END_REF][START_REF] Nielsen | Early stage decision support for sustainable building renovation -A review[END_REF][START_REF] Taillandier | Decision support to choose renovation actions in order to reduce house energy consumption -An applied approach[END_REF] are then useful to select an alternative.

A wide range of uncertain factors that a designer faces were included in the study. However, the list is not comprehensive. For instance, uncertainties regarding the evolution of the building (e.g. material degradation) and its context (climate, grid content, recycling processes…) along its long lifetime were not considered. The development of prospective scenarios is complex but when available, these uncertain scenarios can easily be included in the scope without modifying the methodology.

The simulation time required to performed the 15,000 simulations of the three alternatives was quite large is this study (21 h), making it difficult to replicate in real practice. However, it was shown that the number of simulations (and thus the calculation) could be divided by five for this case study, making such calculation feasible. Another option to decrease the computation time could be using surrogate models.

UA results depend on assumptions, for instance regarding uncertainty characterisation of the most influential factors. Yet, uncertainty distributions of input factors often rely on a few real observed data (much less than the sampling size) potentially leading to inaccurate decisions in a CompLCA [START_REF] Heijungs | On the number of Monte Carlo runs in comparative probabilistic LCA[END_REF]. Uncertainty in the definition of uncertainty, called meta-uncertainty, can be assessed. The effect of this uncertainty improvement on UA results are shown in Figure 8. For most indicators, the results interpretation remains the same. Nothing could be concluded for human toxicity without this step, while this indicator became decisive after improvement. Other meta-analyses can be carried out. For instance, several uncertainty characterisations can be tested for the most influential factors, as done by Pomponi et al. [START_REF] Pomponi | A Method to Facilitate Uncertainty Analysis in LCAs of Buildings[END_REF]. The results robustness to the baseline can then be checked to identify if uncertainty characterisation modifies the conclusions. In the SM, several mean values and distribution types were investigated for the building lifetime. In this case, whatever the distributions for the building lifetime, the conclusions and alternatives ranking remains unchanged for all indicators. For a holistic meta-analysis, a complete DoE can be generated as in Lacirignola et al. [START_REF] Lacirignola | LCA of emerging technologies: addressing high uncertainty on inputs' variability when performing global sensitivity analysis[END_REF], who analysed their results sensitivity to the distribution types of each uncertain factors of their model.

In order to further investigate the results and improve uncertainty characterisation, an SA can be performed on the alternative ranking change. In this additional step, the UA results are used to find out which uncertain factors lead to a ranking change. Regression, or the COSI or EASI methods [START_REF] Plischke | An effective algorithm for computing global sensitivity indices (EASI)[END_REF][START_REF] Plischke | How to compute variance-based sensitivity indicators with your spreadsheet software[END_REF] can be used in that sense provided that a specific DoE is used for UA. Otherwise, a regional SA can be applied: the distribution of each uncertain factor is split into two parts, one corresponding to the cases where is better, and the other where are better. A Kolmogorov-Smirnov test is then run to compare the two distributions: if they are distinct, the factor is influential in the ranking change. However, these methods are not compatible with categorical variables having many possible levels.

In this study, three alternatives are compared, leading to pairwise comparisons and possible alternative rankings. The conclusions remain easily interpretable. Yet, increasing the number of alternatives compared would make the results interpretation much more complex due to the significant increase of pairwise comparisons. As suggested by Henriksson et al. [START_REF] Henriksson | Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts[END_REF] statistical tests can be applied in such cases to group alternatives having similar environmental impacts. The UA results analysis would then be performed on the groups instead of on the alternatives.

The case study presented in this article is only an illustration of the application of SA and UA methods. Results regarding the comparison of wood versus concrete structures depend on many assumptions, e.g. on the EOL processes like the recycling percentage of materials, which was not considered, in this study, in the list of uncertain factors. The selected indicators would probably be quite different if other alternatives were compared, e.g. gas, electric or wood fuel heating.

Conclusion

Uncertainties remain rarely addressed in the comparison of building design alternatives using LCA. However, studying the effect of uncertainties can help building designers and stakeholders choosing one alternative: they become able to understand which factors mostly affect results, and to focus on environmental indicators for which a reliable choice is possible.

An uncertainty quantification approach for comparative LCA combining SA and UA was proposed. It was applied to compare three construction types for a passive house. The particularities of this article relies: i) in the wide variety of uncertainties and variabilities included in the scope; ii) in the adaptation of SA methods to an alternative comparison context; and iii) in the assessment of several metrics to interpret UA results.

The most influential factors for each individual alternative were not the same as in the comparison context. In this case, uncertainty on background environmental data, climate variability, and lifetimes of the building and some of its components were highly influential. After having improved the uncertainty characterisation for the 15 most influential factors, a UA was performed. Results were analysed in order to assess if and how much an alternative performs better than another one. Gathering only one information (if or how much) can be misleading. In addition, it is preferable to use metrics assessing pairwise comparison of alternatives, than metrics analysing individual alternatives separately.

Cross-analysis answering both questions at the same time, such as DRD or HSM demonstrated their ability to give results that are consistent with more common analyses, and to reduce the analysis time. In this study, five indicators were conclusive with a high level of confidence regarding the identification of alternatives performing significantly better or worse than others. According to these results and assumptions regarding e.g. end of life processes, the wooden-framed house was the best alternative for climate change and human toxicity, but the worst option for cumulative energy demand, mass of waste, and land use. The alternative selection is thus based on five indicators instead of fourteen. Building owners or decision makers can rely on this smaller set of indicators to make the final decision, with the help of multicriteria decision making methods.

Further application of the methodology is needed in order to better define thresholds that are used to assess the reliability of the obtained alternative ranking.
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  Many energy and LCA simulations are required when running SA and UA. The building LCA framework of Figure1is used for uncertainty quantification in a comparative context. Based on modelled alternatives and uncertain factors defined by a user, the statistical programming environment R manages the entire SA or UA process: creation of the DoE, launch of building simulations, post-processing of results. The model framework used in this study is presented in the next subsections.

Figure 1 :

 1 Figure 1: Building LCA framework to perform sensitivity and uncertainty analysis.

  2 https://www.izuba.fr/logiciels/outils-logiciels/

5. 1

 1 Sensitivity analysis 5.1.1 Influential factors in a comparison context For each of the three alternatives (SC, DW, WF), 22 h of calculation are required for the 15 400 simulations. The results are presented in Figure 3 for two environmental indicators and in the SM for all indicators. For each indicator, six bars are shown. The first three bars show the results of the building alternatives, and the next three correspond to the pairwise impact differences ( ; ;

Figure 3 :

 3 Figure 3: SA results on the comparison of the three design alternatives for two indicators.

Figure 4 :

 4 Figure 4: Output distributions of the alternatives for the climate change indicator.

  Easy to understand  No specific calculation to perform  No pairwise comparison  Qualitative results  Not possible to quantify how often an alternative performs better  Not possible to quantify how much an alternative performs better  Results difficult to interpret as the distributions overlap  Assumption on the level of overlap up to which an alternative ranking in possible 5.2.2 Alternative preference

  , while a ranking was possible based on the DA and the RP. The figure has a tendency to temper the distinction between alternatives because their uncertainty propagation results are plotted independently. It should be complemented by additional analyses, such as pairwise comparison.

Figure 5 :

 5 Figure 5: Output distributions of the alternatives SC and WF for all indicators.

Figure 6 :

 6 Figure 6: Distribution of the relative differences between SC and WF.

Figure 8 :

 8 Figure 8: Distribution of the relative differences before and after improvement in the uncertainty characterisation.

  

  

Table 1 : Studies on comparative probabilistic building LCA. 1
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	Article		Alternative		Uncertain factors	UA	Dependent	Method for CompLCA
			compared				sampling	
	Huijbregts et	2 alt.:	level	of	Parameter: envelop, energy	10000 MC	X	Distribution of	*
	al., 2003 [56]	insulation for a house	used Scenario: allocation, EOL, time	runs		(similar to DA)
						horizon			
						Model: spatial variability, CF			
	Blengini and	2 alt.: low energy	Fabrication, transportation and	10000 MC		Histograms with error bars
	Di	Carlo,	and standard house	EOL of building envelop and	runs		
	2010 [51]				systems, energy used			
	Hoxha et al.,	2 alt.:	reinforced	Material quantities and service	Analytical		Histograms with error bars
	2014 [49]	concrete		vs.	life, EPD impact values			
			wooden house					
	Heeren et al.,	2 alt: massive vs.	Building size , material physical	4500 MC	X	Distribution of
	2015 [57]	wooden house		properties, service life, , use scenarios, variability of climate	runs		(similar to DA)
						and occupancy, electricity mix			
	Favi et al.,	3 alt:	renovation	Materials quantities and	Sobol		Boxplots
	2018 [52]	options for a house	physical properties, systems,	sequences,		
						service life, impact values,	8192 runs		
						climate variability			
	Hester et al.,	12 alt:	design	Building geometry, systems,	5000 MC	X	
	2018 [36]	variants for a house	service life, climate variability	runs	For energy	DA :
								related	
							BAIA	input	Mean	normalised
									difference :
									Matrix of results to show
									pairwise comparison
	Piroozfar et	2 alt.:			Materials quantities	1000 MC		Mean, median, standard
	al., 2019 [54]	contemporary vs.		runs		deviation, coefficient of
			traditional houses				variance
	Harter et al.,	7 alt.: shapes for an	Building size and orientation,	500 LHS		Boxplots
	2020 [38]	office building		material physical properties,	runs		
						systems, use scenarios			
	Ylmén et al.,	2 alt: wooden vs	Question to answer with the	5000 MC	Not clearly	Distribution of:
	2020 [39]	concrete			LCA, decision rules, confidence	runs	stated	(similar to DA)
			framework for an	level in the LCA results, rules to			
			office building		build future scenarios,			
						functional unit			
	Zhang	and	5 alt:	structures	Emission factors	10000 MC	Not clearly	Mean, median, standard
	Zheng, 2020	systems for a multi-		runs	stated	deviation, variance, 90 %
	[58]		storey building					confidence interval
									CDF
									Distribution of:	:
									(similar to DA)
	Famiglietti et	2 alt.: heat pump	Param: energy, system	2000 MC	Not clearly	DA
	al., 2021 [55]	vs. gas boiler for a		runs	stated	
			house						
	Galimshina et	8 alt.: renovation	Systems, impact values, service	MC runs		Boxplots
	al., 2021 [53]	options	for	a	life, variability of occupancy,	on a		
			multifamily house	variability of future climate,	surrogate		
						future electricity mix	model		
	Hart et al.,	3 alt.:	wooden,	Structural frames related	1000 MC		PDF
	2021 [50]	steel and concrete	impacts	runs		Violin plot
			structures					
	Pannier et al.,	3 alternatives:		Energy savings	1000 MC		Distribution	of:
	2022 [59]	smart conventional	vs.	Variability of occupancy	runs per occupancy	X	
			multifamily house		scenarios		

Table 2 : Alternatives' comparison methods and their notations.
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	Analysis type	Alternatives' comparison method	Notation
	Distribution	Plot of distributions	Di
	Alternative preference	Discernibility analysis	DA
		Probability of occurrence of rankings RP
	Impact gaps between alternatives Computation of means and quantiles MQ
		Standardised mean difference	SMD
	Cross-analysis	Distribution of relative differences	DRD
		Heijungs significativity metric	HSM

Firstly, impact distributions of each alternative are plotted for each indicator to get an overview of impact values and dispersions. This analysis is called Di.

Table 3 : Environmental indicators or fluxes. Indicator / flux Legend Unit Reference
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	Climate change GWP100	Clim. Change	kg CO 2 eq	IPCC 2013 [95]
	Cumulative Energy Demand	CED	MJ	CED [96]
	Abiotic Depletion of Minerals Resources	kg Sb	CML [97]
	Mass of Waste		Waste	kg	Flux from ecoinvent [93]
	Water use		Water	litre	Flux from ecoinvent [93]
	Fine	particulate	matter	Particulate M. kg PM10 eq	ReCiPe [98]
	formation				
	Photochemical	ozone	P. Ozone	kg NMVOC eq ReCiPe [98]
	formation				
	Volume	occupied	by	Rad. Waste	m 3	Flux from ecoinvent [93]
	radioactive waste				
	Ionising radiation		Ioni. Rad.	kg 235 U eq	ReCiPe [98]
	Human toxicity		Hum. Tox.	CTU h	USEtox [99]
	Eutrophication		Eutrop.	kg PO 4 3-eq	CML [97]
	Acidification		Acid.	kg SO 2 eq	CML [97]
	Ecotoxicity		Ecotox.	CTU e	USEtox [99]
	Land use		Land use	points	ReCiPe [98]

Process / material Inventory # 1

• Sub process / material # 1 • Sub process / material # i • Sub process / material # K Process / material Inventory # j • Sub process / material #... Process / material Inventory # N • Sub process / material #... LCIA # Climate Change • CF # 1 • CF # k • CF # M X*Y databases for

Pleiades LCA

Table 4 : EOL assumptions.
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	Material type	EOL
	Inert waste[104]	66 % material recovery
		34 % inert material landfill
	Wooden material [105]	43 % material recovery
		34 % incineration with heat recovery
		23 % non-hazardous waste landfill 4
	Other combustible materials [104] 31 % incineration with heat recovery
		69 % non-hazardous waste landfill
	Plaster	100 % non-hazardous waste landfill
	Glass wool	100 % non-hazardous waste landfill
	Steel frame [106]	85 %recycled
		15 % inert material landfill

Table 5 : Categories of uncertain factors included in the case study. Categorical factors are in bold. Uniform distribution truncations are given in the SM. A relative variation is expressed with a "%" sign, the variation is absolute otherwise.
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	N°	Uncertain factors	Variation ranges and data sources
	1-6	Site-related:	
		 albedo	+/-0.05 as in Munaretto et al. [77]
		 orientation	+/-2° as in Munaretto et al. [77]
		 transportation distances of materials	[109-112,57]
		 water network efficiency	[113]
		 variability of climate	2 000 climate files, model of Ligier et al. [80,81]
	7	Variability of occupancy	2 000 occupancy scenarios, model of Vorger [82,83]
	8-11	Ventilation-related:	
		 ventilation rate of unoccupied zones	+/-50 % as in Munaretto et al. [77]
		 double flow heat exchanger efficiency	+/-5 % as in Spitz et al. [101]
		 fan consumptions	+/-0.37 Wh/m 3 as in Merzkirch et al. [114]
	12-21	Windows transmittances (U value)	+/-5 % as in Spitz et al. [101], Munaretto et al. [77]
	13-30	Solar factors of windows	+/-5 % as in Spitz et al. [101], Munaretto et al. [77]
	31-35	Surfaces Emissivity	Ranges defined in Macdonald [115] for the available
			materials; +/-5 % otherwise as in Munaretto et al. [77]
	36-40	Surfaces Absorptivity	Ranges defined in [115] for the available materials ;+/-
			15 % otherwise as in Munaretto et al. [77]
	41-65	Materials Thickness	+/-5 % for layers of less than 5 cm; +/-0.25 cm for
			larger layers
	66-86	Materials Conductivity	Ranges defined in [115] for the available materials; +/-
			5 % otherwise as in [101]
	87-108	Materials specific heat	Ranges defined in [115] for the available materials; +/-
			10 % otherwise
	109-124 Heat transfer coefficients	Based on the literature review of Munaretto [108]
	125-133 Thermal bridges in each room	-75% to +25% as in [37]
	134-144 Lifetime of:	
		 building	[116,2,4,57]
		 components	[49,117]
	145-149 Characterisation factor of gases	+/-2 σ around the values given by Myhre and Drew
		contributing to climate change	[118]
	150	Environmental background	2 000 uncertain databases from ecoinvent v3.2
		data	generated with Brightway2 [94]
	151-153 Specific construction processes:	
		 construction material waste Based on an analysis of the INIES database [117]
		 polystyrene extrusion	Choice between R134a and CO 2 as a blowing agent
		process	
		 steel rate in concrete	0.2 to 4.2 % as in Hoxha et al. [49]

Table 6 : Summary of the characteristics of the Di method.
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Table 7 : Probability that the impacts of one alternative are lower.
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Table 8 : Alternative ranking based on the discernibility analysis.
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	Indicator	Best Intermediate Worst
	Clim. Change	WF	DW	SC
	CED	DW	SC	WF
	Resources	-	-	-
	Waste	DW	SC	WF
	Water	-	-	-
	Particulate M.	-	-	SC
	P. Ozone	DW	-	-
	Rad. Waste	SC	DW	WF
	Ioni. Rad.	SC	DW	WF
	Hum. Tox.	WF	DW	SC
	Eutrop.			

Table 9 : Summary of the characteristics of the DA method.
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Table 12 : Summary of the characteristics of the MQ method.
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Table 13 : Cohen's d for each pairwise comparison and each indicators. SC -WF DW -WF SC -DW
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	Clim. Change	1.168	1.029	2.174
	CED	-1.190	-1.407	1.214
	Resources	0.635	0.348	0.215
	Waste	-1.585	-1.625	1.319
	Water	0.366	-0.008	0.615
	Particulate M. 0.970	-0.002	1.529
	P. Ozone	0.113	-0.897	2.669
	Rad. Waste	-1.218	-1.101 -0.899
	Ioni. Rad.	-0.579	-0.572 -0.500
	Hum. Tox.	1.217	0.947	0.903
	Eutrop.	0.147	0.012	0.686
	Acid.	0.309	-0.294	1.366
	Ecotox.	-0.232	-0.468	0.265
	Land use	-1.052	-1.029 -0.294

Table 14 : Summary of the characteristics of the SMD method.
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Table 15 : Alternative ranking and impact differences.
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	Indicator	Best Intermediate Worst
	Clim. Change	WF	DW	SC
	CED	DW	SC	WF
	Resources	-	-	-
	Waste	DW	SC	WF
	Water	-	-	-
	Particulate M.	-	-	SC
	P. Ozone	DW	-	-
	Rad. Waste	SC	DW	WF
	Ioni. Rad.	SC	DW	WF
	Hum. Tox.	WF	DW	SC
	Eutrop.			

Table 21 : Thresholds for SMD+DA / SMD+RP, DRD and HSM.

 21 

In[START_REF] Pannier | Computationally efficient sensitivity analysis for building energy simulation and life cycle assessment with categorical input factors[END_REF], the comparison between Sobol and MA-Morris was done for the same case studied than the one of this article.

Their model will be integrated in Pleiades LCA soon.

Impacts of non-hazardous waste landfill are assumed to be six times greater than the impacts of inert material landfill[START_REF] Polster | Evaluation of the environmental quality of buildings towards a more environmentally conscious design[END_REF].
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Ranking probabilities (RP)

The results of the ranking analysis are given in Table 10. In each line, a possible ranking is shown. For climate change, WF is the best alternative while SC is the worst in 97 % of the simulations. In addition, for photochemical ozone formation, DW is the best alternative in 88 % (40%+48%) of the cases. The ranking is the same as in Table 8 when considering a probability of occurrence of a ranking that exceeds 80 %. However, with three alternatives, rankings are easier to obtain with RP than with DA.

Table 10: Probability of occurrence of each ranking.

A summary of the advantages and disadvantages of RP is provided in Table 11. 

Advantages

Disadvantages  Quantification of how often an alternative performs better (contrarily to Di)  Ranking of alternatives directly obtained (contrarily to Di and DA)  Most and less frequent rankings easily found for each indicator  Not possible to quantify how much an alternative performs better  Results more complex to understand than for Di in presence of more than two alternatives: probabilities obtained of each ranking  Assumption on the probability up to which a partial or full ranking is significant

Impact gaps between alternatives

Computation of means and quantiles (MQ)

In order to identify how much one alternative performs better than another one, statistics on the distributions are collected in SM. Some statistics are presented for SC and WF in Figure 5 for all indicators through a radar chart. The central line is the mean of the distribution. The coloured area contains 50 % of the central values.

From Figure 5, it is difficult to take a decision for most of the indicators. For only four indicators (climate change, mass of waste, human toxicity, and land use), the mean value of one alternative does not overlap with the 50 % central values of another alternative. A full or a partial ranking was established previously for these indicators. For three indicators (cumulative energy demand, volume ---Acid.

---Ecotox.

---Land use --WF A summary of the advantages and disadvantages of DRD is provided in Table 9.

Table 17: Summary of the characteristics of the DRD method.

Advantages Disadvantages  Quantification of how often an alternative performs better (contrarily to Di, MQ and SMD)  Quantification of how much an alternative performs better (contrarily to Di, DA and RP)  Results more complex to understand than for Di in presence of more than two alternatives: plots for each pair of alternatives  Assumption on the probability that an alternative performs better than the other (visible on the boxplots lines)  Assumption on the impact difference up to which an alternative performs significantly better than the other (set at +/-5 % here)  Post-processing necessary to find the alternatives ranking based on the pairwise plots

Heijungs significativity metric (HSM)

The [START_REF] Heijungs | Selecting the best product alternative in a sea of uncertainty[END_REF] are given in Figure 7 for the pairwise comparison between SC and WF for and , and in SM for other pairs. In 93 % of the cases, WF outperforms SC by 5 % for climate change (first light red bar). However, WF performs at least 20 % better than SC in only 40 % of the cases (second dark red bar). For the CED, SC outperforms WF with at least 5 % (resp. 20 %) impact difference with a probability of 58 % (resp. 4 %). From this analysis, it turns out that SC is better than WF for land use, and slightly better for cumulative energy demand and mass of waste. WF slightly outperforms SC for climate change, and to some extent for abiotic depletion of minerals and human toxicity. The photochemical ozone formation indicator is one of the most uncertain: there is almost as much chance that SC outperforms WF by 5 % than the reverse.

The conclusions are similar for the pairwise comparison between WF and DW. However, SC and DW are not distinguishable: never exceed 25 % for . Using all three pairwise comparisons, the alternative ranking of Table 18 is obtained. The same colour code is used as in Table 16, but with different thresholds. The choice is reliable if exceeds 80 % for ; a green background is applied in this case. The choice is fairly reliable if exceeds 80 % for ; a yellow background is applied in this case. Due to the thresholds settings, only seven indicators are conclusive. In addition, a partial ranking is available for cumulative energy demand, while a fully one is provided with DRD and the combination of RP and SMD. ---Acid.

---Ecotox.

---Land use --WF A summary of the advantages and disadvantages of HSM is provided in Table 9.

Table 19: Summary of the characteristics of the DRD method.

Advantages Disadvantages  Quantification of how often an alternative performs better (contrarily to Di, MQ and SMD)  Quantification of how much an alternative performs better (contrarily to Di, DA and RP)  Results more complex to understand than for Di in presence of more than two alternatives: plots for each pair of alternatives  Assumption on the probability that an alternative performs better than the other (set at 80 % here)  Assumption on the impact difference significance between alternatives (set at 1, 5 and 20 % here)  Post-processing necessary to find the alternatives ranking based on the pairwise plots 5.2.5 Comparison of the seven methods to interpret UA results in a comparative context Table 20 summarises the characteristics of all seven methods to analyse UA results in a comparative context. An additional line in Table 20 shows the characteristics of the combination of DA or RP with SMD. Di and MQ give first insight on the results. In addition, Di is the most suitable method to plot many alternatives within one graph. Di and MQ have a tendency to temper the distinction between alternatives: alternatives are handled independently and the strong overlap is difficult to interpret. Yet, it should be noticed that the higher the overlap on an indicator in Di and MQ, the smaller the pairwise impact difference obtained with SMD, DRD or HSM. For instance, for acidification, the distributions of SC and WF have a large overlap in Figure 5 and Table 15; Table 16 and Table 18 have a white background indicating a small impact difference. Furthermore, as Di and MQ are not based upon pairwise comparisons, it is difficult to get a ranking for highly overlapping distributions.

DA and RP are easy to run. As they rely on the same concepts (counting number of occurrences), they give the same results for the ranking which requires post-processing for DA; RP is more