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Einstein's field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with di↵erent boundary conditions. Multiple solutions have been utilized to predict cosmic scales, and among them, the Friedmann-Lemaître-Robertson-Walker solution that is the back-bone of the development into todays standard model of modern cosmology: the ⇤-CDM model. However this is naturally not the only solution to Einsteins field equation.

We will explore the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics. Interestingly, in their extremal cases, these solutions yield identical predictions for horizons and escape velocity. These solutions can be used to formulate a new cosmological model that resembles the Friedmann equation. However, a significant distinction lies in the fact that the extremal universe solution does not require the ad hoc insertion of the cosmological constant; instead, it naturally emerges from the derivation itself. To the best of our knowledge, all other solutions relying on the cosmological constant do so by initially ad hoc inserting it into Einstein's field equation. This clarification unveils the true nature of the cosmological constant, suggesting that it serves as a correction factor for strong gravitational fields, accurately predicting real-world cosmological phenomena only within the extremal solutions of the discussed metrics, all derived strictly from Einstein's field equation.

Moreover, in the extremal model, the cosmological redshift seems to be explained simply as a special type of cosmic gravitational redshift arising from the extremal solution. This eliminates the need for the hypothesis of an expanding space. Although this view may challenge the prevailing consensus in cosmology today, we must question the validity of the Big Bang hypothesis based on pure science and derivations from Einstein's field equation, even if it should make us unpopular.

The Extremal Universe Exact Solution from Einstein's Field Equation gives the Cosmological Constant directly and explains the Cosmological Redshift without the need for the Big Bang Hypothesis

1 Extremal solutions to Einsteins field equation

The Reissner-Nordström [START_REF] Reissner | Über die eigengravitation des elektrischen feldes nach der einsteinschen theorie[END_REF][START_REF] Nordström | On the energy of the gravitation field in Einstein's theory[END_REF] metric for a spherical charged gravitational object is an exact solution to Einsteins [START_REF] Einstein | Die grundlage der allgemeinen relativitätstheorie[END_REF] field equation and is given by:

ds 2 = ✓ 1 2GM c 2 r + r 2 Q r 2 ◆ c 2 dt 2 ✓ 1 2GM c 2 r + r 2 Q r 2 ◆ 1 dr 2 r 2 (d✓ 2 + sin 2 ✓d 2 ) (1)
Here, in SI units, we have

r 2 Q = k e qq G c 4 ,
where k e is the Coulomb constant and q is the charge. The special case when r Q = GM c 2 is well known as the extremal solution of the Reissner-Nordström metric, seen for example Zee [START_REF] Zee | Einstein gravity in a nutshell[END_REF] and Aretakis [START_REF] Aretakis | Dynamics of Extremal Black Holes[END_REF]. Furthermore, the Kerr [START_REF] Kerr | Gravitational field of a spinning mass as an example of algebraically special metrics[END_REF] metric is given by:

ds 2 = ⌃ (cdt a sin 2 ✓d ) 2 ⌃ dr 2 ⌃d✓ 2 sin 2 ✓ ⌃ (adt (r 2 + a 2 )d ) 2 (2) 
where = r 2 r s r + a 2 and ⌃ = r 2 + a 2 cos 2 ✓, and r s = 2GM c 2 . The Kerr metric also has an extremal solution when a = GM c 2 . The Kerr-Newman [START_REF] Newman | Note on the kerr spinning-particle metric[END_REF][START_REF] Newman | Metric of a rotating, charged mass[END_REF] metric extends the Kerr metric to include charge, and it is given by:

ds 2 = ⌃ (cdt a sin 2 ✓d ) 2 ⌃ dr 2 ⌃d✓ 2 sin 2 ✓ ⌃ (adt (r 2 + a 2 )d ) 2 (3) 
Here, = r 2 r s r + a 2 + r 2 Q and ⌃ = r 2 + a 2 cos 2 ✓, where r s = 2GM c 2 . In the special case of a = 0, it simplifies to the Reissner-Nordström metric and in the special case of r Q = 0, it simplifies to the Kerr metric.

The extremal solutions of the Reissner-Nordström metric (r Q = GM/c 2 ), as well as the extremal solution of the Kerr metric (a = GM/c 2 ) and the extremal solution of the Kerr-Newman metric [START_REF] Zee | Einstein gravity in a nutshell[END_REF][START_REF] Guidry | Modern General Relativity[END_REF]), all have one and the same horizon given by:

(a 2 + r 2 Q = G 2 M 2 /c 4 ) (see
r h = GM c 2 (4) 
This is half the Schwarzschild radius. In the Schwarzschild [START_REF] Schwarzschild | über das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der einsteinschen theorie[END_REF] metric, the escape velocity is

v e = q 2GM
r , see [START_REF] Augousti | An observation on the congruence of the escape velocity in classical mechanics and general relativity in a Schwarzschild metric[END_REF]. However, in the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics, the escape velocity is given by:

v e = r 2GM r G 2 M 2 c 2 r 2 (5) 
We will soon see that this higher-order term G 2 M 2 c 2 r 2 , which di↵erentiates it from, for example, the Schwarzschild metric, could play a critical role in understanding the cosmos.

Table 1 summarizes the known key results from the extremal solutions. However, relatively few people have shown interest in these extremal solutions, resulting in a limited number of predictions being discussed based on them. From our perspective, these predictions are unrelated to cosmological models, which we will explore in the next section.

G 2 M 2 c 2 r 2 v e = q 2GM r G 2 M 2 c 2 r 2
Table 1: The table sumarize the extremal solutions of the metrics we will be looking at.

Cosmological Model

The horizon and escape velocity play a central role in predicting black holes. Interestingly, the Hubble sphere also exhibits several mathematical aspects of a black hole, including a horizon known as the Hubble radius (r H = c H 0 ) as we now will discuss. The Friedmann critical mass-equivalent for the universe is given by M c = c 3 2GH 0 . When considering a Hubble sphere with the Friedmann critical mass, the Schwarzschild radius is given by

r s = 2GM c c 2 = 2G c 3 2GH 0 c 2 = c H 0 (6) 
This implies that the Schwarzschild radius is exactly identical to the Hubble radius if the Hubble sphere were filled with the Friedmann critical mass-energy. The mathematical similarities between Hubble spheres and black holes have led several researchers in prominent journals such as Nature to suggest and speculate that the observable universe could be inside a black hole (see Pathria [START_REF] Pathria | The universe as a black hole[END_REF] and Stuckey [START_REF] Stuckey | The observable universe inside a black hole[END_REF]).

It is important to note that our intention is not to claim that we live inside a black hole, but rather to highlight the mathematical properties shared by the Hubble sphere and black holes. However, in the ⇤-CMD model, the universe has expanded well beyond the Hubble radius due to the assumption of space expansion, including an accelerating expansion attributed to dark energy. The hypothesis of dark energy appeared necessary to reconcile the model with high-redshift supernova observations.

The escape velocity and the horizon derived from the metric of interest have practical applications, even in cosmology. For instance, Schutz [START_REF] Schutz | Gravity from the Ground Up[END_REF] derived the critical density of the universe based on simply the escape velocity formula from the Schwarzschild metric, resulting in an equation that depends on the Hubble constant. However, in this discussion, we will not explore cosmology through the escape velocity derived from the Schwarzschild metric. Instead, we will focus on the predictions of the escape velocity using the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics.

Subsequently, we will derive an equation analogous to the Friedmann [START_REF] Friedmann | Über die krüng des raumes[END_REF] equation from the escape velocity in the extremal solutions. Our interest lies initially in the special case where the escape velocity is equal to the speed of light (c). Let us rephrase the escape velocity formula as follows:

r 2GM r G 2 M 2 c 2 r = c 2GM r G 2 M 2 c 2 r 2 = c 2 8⇡G⇢r 2 3 G 2 M 2 c 2 r 2 = c 2 8⇡G⇢ 3 G 2 M 2 c 2 r 4 = c 2 r 2 8⇡G⇢ 3 G 2 M 2 c 2 r 4 3 = c 2 r 2 (7) 
Here, ⇢ = M V = M 4 3 ⇡r 3 represents the volumetric mass density of a sphere with radius r. Next, we replace r with the Hubble radius r H = c H 0 , and furthermore, it must be equal to r h = GM c 2 since the escape velocity is c at the horizon r h = GM c 2 . Therefore, we assume that

r H = r h = GM u c 2 = c H 0 (8) 
Here, M u is the mass equivalent of all mass and energy in the universe we are considering. Solving for

M u gives M u = c 3 GH 0 ⇡ 1.77 ⇥ 10 53 kg (when assuming H 0 = 70 km • s 1 • Mpc 1
), which means the mass is exactly twice that of the critical mass (mass equivalent) of the Friedmann universe, which is

M c = c 3 2GH 0 . Next, let's replace r = r H = c
H 0 in equation 7, and we obtain:

8⇡G⇢ 3 G 2 M 2 u c 2 r 4 H 3 = c 2 r 2 H 8⇡G⇢ 3 G 2 M 2 u c 4 r 4 H c 2 3 = c 2 r 2 H 8⇡G⇢ 3c 2 r 2 H 3 = c 2 c 2 H 2 0 8⇡G⇢ 3 r 2 H 3 = H 2 0 8⇡G⇢ 3 H 0 c 2 c 2 3 = H 2 0 (9)
Next, it's important to note that the ad hoc inserted cosmological constant in general relativity theory is identical to

⇤ = 3 H 0 c 2 ⌦ ⇤ . When ⌦ ⇤ = 1, we have ⇤ = 3 H 0 c
2 , which means we can rewrite the equation as follows:

H 2 0 = 8⇡G⇢ ⇤c 2 3 ( 10 
)
This equation is identical to the Friedmann equation for homogeneous, isotropic universe, except our cosmological constant has been derived from the extremal solutions of Einstein's field equations rather than being ad hoc inserted in the field equation (or later). To our knowledge, the extremal solutions have not been previously utilized to construct a cosmological model. In 1917, Einstein [START_REF] Einstein | Cosmological considerations in the general theory of relativity[END_REF] ad hoc inserted a cosmological constant into his field equation, which he referred to as an extended field equation. It was based on sound reasoning and was actually aimed at achieving a steady-state universe model. However, after Hubble's discovery of cosmological redshift in 1929, Einstein removed the cosmological constant, allegedly referring to it as his biggest blunder (although this statement is uncertain, as it comes from a single source, Gamow [START_REF] Gamow | My World Line : An Informal Autobiography[END_REF]). Later, in 1998, a astrophysicists team led by Saul Perlmutter [START_REF] Perlmutter | Measurements of ! and from 42 high-redshift supernovae[END_REF] and another led by Brian Schmidt and Adam Riess [START_REF] Reiss | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF] that observed high-redshift supernovae that did not conform to the model, the cosmological constant was again reintroduced and praised along with the hypothesis of dark energy.

However, for the first time, we have a cosmological model that is identical to the Friedmann model, except the cosmological constant is derived and likely carries a considerably di↵erent interpretation than it is traditionally given. If we use energy density rather than mass density we get

H 2 0 = 8⇡G⇢ E ⇤c 4 3 ( 11 
)
where:

⇢ E = E V = E 4 3 ⇡r 3 H = Mc 2 4 3 ⇡r 3 H
, represents the volumetric energy density of a sphere with radius equal to the Hubble radius.

Cosmological Redshift from Einstein's Extremal Universe

The cosmological redshift in the extremal solution is as follow:

z = 1 2 2 = q 1 2GMu r 1 c 2 + G 2 M 2 u c 4 r 2 q 1 2GMu r 2 c 2 + G 2 M 2 u c 4 r 2 2 1 ( 12 
)
Here, r 1 and r 2 represent the distance from the emitter (for example a supernova or galaxy) to the Hubble sphere horizon and r 2 the distance from the Hubble sphere horizon to the observer (in our case basically Earth based observatories). The first term of the Taylor series expansion is given by:

z ⇡ (r 1 r 2 )GM u c 2 r 1 r 2 (13) If r 1 = r H = GMu c 2
, which corresponds to the observer's distance to the Hubble sphere horizon, then we have:

z ⇡ (r H r 2 )GM u c 2 r H r 2 Furthermore, since M u = c 3
GH 0 , we can substitute GMu c 2 with r H , resulting in:

z ⇡ (r H r 2 ) r 2 (14) 
Moreover, when the object emitting the photons (galaxies, quasars 1 , supernovas) is not too far away from us, we can approximate also r 2 in the denominator as r H . Substituting this approximation into the denominator, we obtain:

z ⇡ (r H r 2 ) c H 0 z ⇡ (r H r 2 )H 0 c (15)
We define the distance d as the di↵erence between r H and r 2 . This distance represents the distance from us to the object that emits the photons, such as stars, galaxies, supernovas, and quasars. Consequently, the expression becomes:

z ⇡ dH 0 c (16) 
This corresponds to the well-known prediction of cosmological redshift approximation also used in the standard model (see for example [START_REF] Schutz | Gravity from the Ground Up[END_REF][START_REF] Wald | General Relativity[END_REF][START_REF] Schneider | Extragalactic Astronomy and Cosmology[END_REF]). However, in the extremal solutions of Einstein's field equations that we have derived, this redshift does not seem to be related to the expansion of space. Instead, it appears to be a pure gravitational redshift caused by the mass (energy) within the entire Hubble sphere. Therefore, we must, based on pure scientific principles, assert that the universe is likely not expanding and even question the entire Big Bang hypothesis.

To our knowledge, the extremal solution is the only solution in Einstein's field equations that directly yields the cosmological constant without any ad hoc insertion, as we demonstrated in the previous section, so our model seems simpler and likely more robust than models that need ad hoc inserted constants. Our new cosmological model is an exact solution to Einsteins original field equation with no ad hoc inserted constant. This alone should at least hopefully be enough to make other researchers curious and investigate the model in more depth than we can do in a single paper. Only rigorous investigation by a series of researchers over time can determine whether this extreme universe is a better model than the current standard model. However, this possibility should not be prematurely excluded, despite going against the consensus. After all, both solutions come from Einstein's field equation.

Implications

We will now summarize some of the most important implications in terms of cosmological predictions of the extremal universe:

• The cosmological constant does not need to be ad hoc inserted as done today; it automatically arises from the extremal solutions of Einsteins field equation and is given by

⇤ = 3 H 0 c 2 .
• The cosmological redshift prediction in the non-extremal solutions will incorrectly predict cosmological redshift for objects very far away, i.e., those significantly close to the Hubble sphere horizon (the Hubble horizon). If the extremal universe is the correct model of the real universe, then other solutions of the Einstein field equation will give incorrect predictions of the cosmological constant for objects significantly close to the Hubble horizon. To address 1 quasars are assumed to be early forming glaxies.

this, hypotheses of dark energy have been added, but this is likely unnecessary and requires careful investigation over some time before any firm conclusions can be made, see also [START_REF] Haug | Lorentz relativistic mass makes dark energy superfluous?[END_REF]. We also note that the extremal solutions of Einsteins field equation that we have discussed gives exactly the same escape velocity and horizon as a relativistic modified Newtonian theory [START_REF] Haug | A new full relativistic escape velocity and a new Hubble related equation for the universe[END_REF], it should also be investigated if this is a coincidence or not, we think not.

• The amount of energy (mass) in the Hubble sphere is twice the Friedmann critical mass. Therefore, it is

M u = c 3 GH 0 instead of M c = c 3 2GH 0 .

Deeper philosophical aspects of the Extremal solutions

The extremal solutions have received relatively little attention, especially regarding their predictions in cosmology. Although all three metrics studied yield the same horizon and escape velocity (in the extremal solutions), they di↵er in their interpretation. The extremal solution of the Reissner-Nordström metric lacks rotation but possesses charge, while the extremal solution of the Kerr metric has rotation but no charge. The Kerr-Newman metric's extremal solution possesses both charge and rotation. Nonetheless, all of these solutions lead to the same cosmological equation, as shown in Equation 11. Still from a deeper philosophical aspect they have di↵erent interpretations.

Our findings should not be considered in isolation be considered in conjunction with recent research by Haug and Spavieri [START_REF] Haug | Micro black hole candidates and the Planck scale: Schwarzschild micro black holes can only match a few properties of the Planck scale, while a Reissner-Mordström and Kerr micro black hole matches all the properties of the planck scale[END_REF], who have recently demonstrated that only the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics provide a perfect match between the Planck mass micro black hole and all the properties of the Planck scale. In contrast, the Schwarzschild metric can only match a few aspects of the Planck scale.

It is also considered a mystery why the electromagnetic force is enormous compared to the gravitational force. If we compare the Coulomb force between a proton and an electron to the theoretical gravitational force between a proton and an electron, we obtain:

|F c | |F G | = k e |e||e| r 2 G Mprme r 2 ⇡ 2.26 ⇥ 10 39 (17) 
Where F c represents the Coulomb force [START_REF] Coulomb | Premier mémoire sur l'électricité et le magnétisme[END_REF], F G denotes the Newtonian gravitational force [START_REF] Newton | Philosophiae Naturalis Principia Mathematica[END_REF], and e represents the elementary charge. Additionally, M pr and m e respectively refer to the proton and electron masses. The significant disparity in strength between the electrostatic and gravitational forces is well-documented in the literature. However, despite this knowledge, the gravitational force between a proton and an electron has never been measured. Thus, there is still clearly room for us to gain a deeper understanding of gravity at the atomic and subatomic scales.

On the other hand for two Planck [START_REF] Planck | Der Königlich Preussischen Akademie Der Wissenschaften[END_REF][START_REF] Planck | Vorlesungen über die Theorie der Wärmestrahlung[END_REF] masses (m p = q ~c G ) the electrostatic force is identical to the gravitational force as we have

|F c | |F G | = k e |qp||qp| r 2 G mpmp r 2 = 1 (18) 
Here, q p represents the Planck charge: q p = e p ↵ . The fact that these forces are equal at the Planck scale indicates the potential unification of electromagnetic and gravitational forces at the Planck scale as expected by multiple researchers. However, this is based on Newton's theory, and we need to move beyond it. In the extremal solution of the Reissner-Nordström metric, we have:

r 2 Q = nk e |q p ||q p | G c 4 = nGm p m p G c 4 (19)
Here, n represents the number of Planck masses in the large gravitational mass M , so we have n = M mp . The extremal solution of Reissner-Nordström is consistent with the electrostatic force being identical to the gravitational force at the Planck scale. The term G c 4 is identical to part of Einsteins gravitational constant and is needed to convert the units to the right form needed for predicting gravity phenomena.

If gravity is ultimately caused at the Planck scale as first suggested by Eddington [START_REF] Eddington | Report On The Relativity Theory Of Gravitation[END_REF] in 1918 and assumed by most researchers working on quantum gravity theory today (see for example [START_REF] Adler | Six easy roads to the Planck scale[END_REF][START_REF] Hossenfelder | Can we measure structures to a precision better than the Planck length? Classical and Quantum Gravity[END_REF][START_REF] Hossenfelder | Minimal length scale scenarios for quantum gravity[END_REF][START_REF] Haug | Di↵erent mass definitions and their pluses and minuses related to gravity[END_REF]), then the extremal solution could be the only truly valid exact solution for real phenomena. This suggests that the extremal solution of the Reissner-Nordström metric could be the most realistic model for the universe. This possibility could explain why no ad hoc inserted constants are needed in this specific solution to fit cosmological observations. Naturally, this hypothesis needs to be carefully investigated and, at this stage, can be seen as plausible.

Conclusion

We have demonstrated that the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics all yield the same cosmological model, which is analogous to the Friedmann equation. However, there is a significant distinction in that the cosmological constant is now derived rather than being ad hoc inserted into the field equation. Additionally, the cosmological redshift observed in the extremal solution appears to be a specific instance of gravitational redshift caused by the mass and energy within the Hubble sphere.

This discovery implies that the universe may ultimately exist in a steady state, suggesting that the Big Bang never actually occurred. Naturally, this notion requires careful study and investigation. Nonetheless, considering that this new cosmological model is an exact solution to Einstein's field equation and the only solution known to us where the cosmological constants emerge automatically without the need for ad hoc insertion, we believe it warrants careful consideration by the research community over an extended period before being rejected or accepted.
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Appendix

c 4 r 4 and solve with respect to M this gives

For the Hubble sphere the mass is

Alternatively set the Cosmolocal constant ⇤ = 0 and the mass of the universe is

GH 0 is the first taylor series approximation