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Introduction

The center of mass (or centroid), as well as the directly related concept of mean (e.g. [START_REF] Da | By means of the means: Arithmetic, geometric, harmonic[END_REF]), play a key role in many scientific and technologic areas as a consequence of their special important properties. More specifically, from the Newtonian mechanics perspective, the center of mass of an object corresponds to the point such that respective application of forces will only induce only linear, but no angular acceleration (e.g. [START_REF] Serway | Physics for scientists and engineers[END_REF]).

When taken from the statistical point of view, the center of mass becomes the arithmetic mean (as well as its weighted version), which is analogous to the concept of statistical expectance of a given random variable (e.g. [START_REF] Da | Statistical modeling[END_REF]). It should be observed that though the arithmetic mean is a mean, there are other types of means including geometric and harmonic (e.g. [START_REF] Da | By means of the means: Arithmetic, geometric, harmonic[END_REF]).

The arithmetic mean of a discrete set of values x i , i = 1, 2, . . . , N , sampled from a respective random variable X can be simply understood as corresponding to the sum of these values divided by the cardinality of the data set. An analogous operation applies for continuous data, with the sum being replaced by the integration. In the case of a random variable described by a respective probability density function, the respective arithmetic mean can be obtained in terms of the respective expectance, corresponding to the sum of the product between the random variable values and respective relative frequencies.

Other types of means, including the geometric, harmonic, and contraharmonic, also rely on adding terms de-rived from the samples values x i . The weighted arithmetic mean represents an immediate extension of the arithmetic mean which assigns weights to of each of the possible random variable values.

Though there are several types of means -including geometric, harmonic, contraharmonic, and root mean square, the arithmetic and weighted arithmetic mean have the special, and often desirable, property of being invariant to translations of the original random variable scores, in the sense of adding a constant value k to them. However, all the above mentioned means, including the arithmetic, are particularly susceptible to the presence of outliers and skewness (e.g. [START_REF] Da | By means of the means: Arithmetic, geometric, harmonic[END_REF]).

Though many of the types of means rely on adding terms, which are then normalized, the specific case of arithmetic value of a single variable can also be understood in terms of distances between the values of the sample and the respective mean. Given that distances are intrinsically related, through the concept of dissimilarity, to the concept of similarity (e.g. [START_REF] Da | On similarity[END_REF])), it becomes an interesting prospect to consider types of centers and means of a data set that to be obtained not from the distance between the values of the data elements and the mean, but in terms of respective similarities.

The present work aims at developing these ideas, more specifically the consideration of similarity indices (e.g. [START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF][START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF][START_REF] Brusco | A comparison of 71 binary similarity coefficients: The effect of base rates[END_REF][START_REF] Hamers | Similarity measures in scientometric research: The jaccard index versus salton's cosine formula[END_REF][START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF][START_REF]Jaccard index[END_REF][START_REF] Mirkin | Mathematical Classification and Clustering[END_REF][START_REF] Akbas | L1 norm based multiplicationfree cosine similiarity measures for big data analysis[END_REF][START_REF] Akbas | Multiplication-free neural networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Coincidence complex networks[END_REF][START_REF] Wolda | Similarity indices, sample size and diversity[END_REF][START_REF] Hamers | Similarity measures in scientometric research: The Jaccard index versus Salton's cosine formula[END_REF]) as subsidy for defining respective means.

For simplicity's sake, we shall be restricted to discrete 1 random variables taking exclusively positive values, but the extension to non-positive values is straightforward to be achieved by considering the real-valued version of the Jaccard and coincidence similarity indices (e.g. [START_REF]Jaccard index[END_REF][START_REF] Mirkin | Mathematical Classification and Clustering[END_REF][START_REF] Akbas | L1 norm based multiplicationfree cosine similiarity measures for big data analysis[END_REF][START_REF] Akbas | Multiplication-free neural networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Coincidence complex networks[END_REF]). Though there are many types of similarity indices (e.g. [START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF][START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF][START_REF] Brusco | A comparison of 71 binary similarity coefficients: The effect of base rates[END_REF][START_REF] Hamers | Similarity measures in scientometric research: The jaccard index versus salton's cosine formula[END_REF][START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF][START_REF]Jaccard index[END_REF][START_REF] Mirkin | Mathematical Classification and Clustering[END_REF][START_REF] Akbas | L1 norm based multiplicationfree cosine similiarity measures for big data analysis[END_REF][START_REF] Akbas | Multiplication-free neural networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Coincidence complex networks[END_REF][START_REF] Wolda | Similarity indices, sample size and diversity[END_REF][START_REF] Hamers | Similarity measures in scientometric research: The Jaccard index versus Salton's cosine formula[END_REF]), in the present work we shall focus on the Jaccard similarity index (e.g. [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Jaccard | Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines[END_REF][START_REF]Jaccard index[END_REF]).

As it will be illustrated in the present work, the extension of the concept of mean to consider similarities allows the sensitivity to outliers to be substantially reduced.

We start by presenting the Jaccard similarity index for positive values, and then present the respectively obtained similarity mean, followed by an illustration of its substantial robustness to data translations and presence of outliers.

Similarity Indices

Given two N -dimensional non-zero vectors x and y containing only positive elements, the respective Jaccard similarity (e.g. [START_REF]Jaccard index[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF]) can be quantified as:

J(x, y) = N i=1 min(x i , y i ) N i=1 max(x i , y i ) (1)
Interestingly, we necessarily have that 0 < J(x, y) ≤ 1. We also have that:

J(x, y) = J(y, x) (2) 
3 Toward Similarity Means

The rationale henceforth adopted for the consideration of a similarity index as a subsidy for defining a respective means corresponds to:

The similarity mean of a set of samples of a random variable X corresponds to the scalar value x that is most similar to the values in that set.

In the case of a set of N observations x i of a random variable X, the similarity between that set and a value x can be quantified by using the following expression:

J(x, y) = N i=1 min(x, y i ) N i=1 max(x, y i ) (3)
which corresponds to the Jaccard index above considering the et of available scores as one of its vectors and another vector with the same dimension containing all entries identical to x.

Thus, the similarity mean in the above situation can be obtained by searching for the value x that maximizes Equation 3. This maximization can be done in several ways, including considering a sequence of equally spaced values along the range of the original scores, or an optimization method as gradient descent.

The approach described above for defining the similarity mean given a set of samples can be adapted to considering a respective discrete probability density function, involving respective relative frequencies f i in the following manner:

S = N i=1 min(x, x i ) f i N i=1 max(x, x i ) f i (4)
where the relative frequencies f i act as respective weights.

Figure 1 illustrates the arithmetic, as well as the Jaccard means, respectively to a Gaussian-like probability density function. In this particular case, we have that the arithmetic and Jaccard means coincided, taking place right at the middle of the distribution. However, observe that the profile of Jaccard similarities obtained in terms of x (shown in green) resulted moderately skewed.

The effect of scaling a density probability function on the respective arithmetic and Jaccard means are illustrated in Figure 2, which indicates that directly analogous results are obtained.

Figure 3 presents the same distribution as above, but after being translated by 2 to the right-hand side. Again, the arithmetic and Jaccard means coincided, while the similarity profile became less skewed. In order to illustrate the enhanced robustness of the Jaccard mean, we now add an outlier to the previous distribution, as illustrated in Figure 4. Interestingly, the Jaccard mean resulted substantially less affected by the presence of the outlier, while the re-spective similarity profiled underwent a relatively moderate modification when compared with the original distribution in Figure 1.

Figure 5 illustrates the effect of an even stronger outlier, in which case the arithmetic mean resulted substantially. more displaced, while the Jaccard undergoing a more moderate shift.

Figure 5: The effect of adding an even stronger outlier to the distribution in Fig. 1. The Jaccard mean (in red) suffered a substantially smaller effect than the arithmetic mean (in black). The similarity profile (in green) underwent a relatively moderate modification.

Concluding Remarks

The concept of mean, and particularly its arithmetic and weighted arithmetic versions, are frequently adopted in a wide range of areas in science and technology as a means to convey centrality and summarize properties of data sets.

Though the arithmetic and weighted arithmetic means distinguish themselves from other types of means (e.g. geometric, harmonic, and root mean square) by being translational invariant, these two types of means are also particularly susceptible to the presence of outliers or skewness.

In the present work, we developed the concept of similarity mea, in which some type of similarity such as the Jaccard index, are employed to define a respective mean. This is done by searching for the value x that is maximally similar to the set S of values in the supplied set of observations (or scores) of a respective random variable X.

In the present work, the similarity between each candidate value x has its overall similarity with the values in the set S quantified in terms of the Jaccard similarity between the vector containing the N original values in S and an N -dimensional vector with all entries identical to the candidate value x.

This approach can be readily extended to data sets described by probability density functions instead of a set of sampled observations. This has been done by using the relative frequencies of each entry as a weights while calculating the similarity between the two vectors as described above.

The reported approach has been illustrated, at least for the considered data sets, to retain its translational invariance while providing, when compared to the arithmetic mean, substantially enhanced robustness to the presence of outliers.

Future works could involve using other similarity approaches such as the Sørensen-Dice and coincidence indices. In addition, it would be interesting to study the properties of similarity means respectively to more types of data sets and in presence of noise and interference between distributions. Another particularly promising perspective concerns the extension of the suggested concepts and methods to higher dimensional spaces. Yet another interesting prospect regards the identification, in complex networks in which the nodes have been characterized in terms of respective topological measurements, of the node that is most similar to the other nodes, therefore corresponding to its similarity mean node.

The described concepts and developments are believed to have particular potential for applications in data characterization, pattern recognition and deep learning, among many other scientific and technological areas.
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 1 Figure1: A gaussian-like discrete probability density (in blue) and the respectively estimated arithmetic mean (in black) and Jaccard mean (in red). In this particular case, these two means can be verified to coincide one another. Also shown (in green) is the profile of Jaccard similarity values obtained for a fine-grained sequence of values x ranging along the domain of the density function (i.e. from 1 to 7).
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 2 Figure 2: The arithmetic and Jaccard means obtained for a scaled (by a factor of 4) version of the distribution in Fig. 1. The obtained results are directly analogous to those shown in Fig. 1.
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 3 Figure 3: The arithmetic and Jaccard means obtained for a righthand translated (shifted) version of the distribution in Fig. 1. Though these two mean again coincided one another, the similarity profile became less skewed as a consequence of the implemented translation.
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 4 Figure 4: The effect of adding an outlier to the distribution in Fig. 1. The Jaccard mean (in red) suffered a substantially smaller effect than the arithmetic mean (in black). The similarity profile (in green) underwent a relatively moderate modification.
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