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An optimization-based method for sign-changing elliptic PDEs

We study the numerical approximation of sign-shifting problems of elliptic type. We fully analyze and assess the method briefly introduced in [1]. Our method is based on domain decomposition and optimization. Upon an extra integrability assumption on the exact normal flux trace along the sign-changing interface, our method is proved to be convergent as soon as, for a given loading, the PDE admits a unique solution of finite energy. Departing from the T-coercivity approach, which relies on the use of geometrically fitted mesh families, our method works for arbitrary (interface-compliant) mesh sequences. Moreover, it is shown convergent for a class of problems for which T-coercivity is not applicable. A comprehensive set of test-cases complements our analysis.

Introduction

We are interested in this work in the numerical approximation of elliptic interface problems that present a sign shift. Our main motivation here is the modeling of the interface between a classical material and a metamaterial.

Optical metamaterials are artificial micro-structured materials exhibiting effective electromagnetic properties that cannot be found in Nature, like an electric permittivity or/and a magnetic permeability with negative real part(s). Optical metamaterials are genuinely dispersive. Among them, the so-called negative-index metamaterials (NIMs) are of particular interest: they present over some frequency range a negative refractive index, i.e. simultaneously negative permittivity/permeability (we always refer to the real parts of these coefficients). The existence of such materials has been postulated in 1968 in the seminal work of Veselago [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of ε and µ[END_REF]. The first effective design of a device exhibiting simultaneously negative permittivity/permeability was realized by Smith et al. in 2000 [56, 55]. NIMs have a tremendous amount of potential applications, among which superlensing [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF][START_REF] Pendry | Negative refraction makes a perfect lens[END_REF][START_REF] Nguyen | Superlensing using complementary media[END_REF] or cloaking (either using complementary media [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF], or via anomalous localized resonance [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF][START_REF] Bouchitté | Cloaking of small objects by anomalous localized resonance[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime[END_REF]).

Several models exist in the literature to describe the effective properties of dispersive optical metamaterials. One can cite for instance the Drude-Lorentz class of materials. These effective models can be mathematically justified by (high-contrast) homogenization, starting from the corresponding micro-structures. Typically, optical metamaterials are composed of small, highly conductive inclusions, which are periodically arranged within a dielectric matrix. We mention [START_REF] Bouchitté | Homogenization near resonances and artificial magnetism from dielectrics[END_REF][START_REF] Bouchitté | Homogenization of Maxwell's equations in a split ring geometry[END_REF][START_REF] Lamacz | A negative-index meta-material for Maxwell's equations[END_REF] and the references therein for examples of such settings. For non-lossy materials, the modeling of the interface between a classical material and a metamaterial raises new questions concerning the well-posedness and the approximability of the resulting models, owing to the possible (spatial) sign shift of the coefficients. For Maxwell's equations in the time domain, existence and uniqueness hold irrespectively of the problem data [START_REF] Nguyen | Electromagnetic wave propagation in media consisting of dispersive metamaterials[END_REF]. However, the limiting amplitude principle is not always valid. We refer the reader to [START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform[END_REF][START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part II: Limiting absorption, limiting amplitude principles and interface resonance[END_REF] for an analysis in the case of a plane interface, and to [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF] for a numerical study including corners. In the frequency domain, existence and uniqueness may depend on various parameters, including the frequency, the geometry, the coefficients, or the loading [START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF][START_REF] Ola | Remarks on a transmission problem[END_REF][START_REF] Fernandes | Well-posedness and finite element approximability of time-harmonic electromagnetic boundary value problems involving bianisotropic materials and metamaterials[END_REF][START_REF] Cocquet | On the existence and uniqueness of a solution for some frequency-dependent partial differential equations coming from the modeling of metamaterials[END_REF][START_REF] Hazard | Spectral analysis of polygonal cavities containing a negative-index material[END_REF], which can be interpreted as a signature of the limiting amplitude principle conditional validity.

Among the different mathematical frameworks for studying the well-posedness of signshifting PDEs, two are especially worth discussing in details (we refer the reader to [START_REF] Li | A literature survey of mathematical study of metamaterials[END_REF][START_REF] Nguyen | Negative index materials: some mathematical perspectives[END_REF] for comprehensive surveys). The first one is the T-coercivity theory, introduced by Bonnet-Ben Dhia, Chesnel, and Ciarlet Jr. in [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF][START_REF] Ciarlet | T-coercivity: application to the discretization of Helmholtz-like problems[END_REF][START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF], which is applicable to problems set within an Hilbertian setting. For a given problem, T-coercivity theory aims at proving well-posedness in the Fredholm sense. Whenever the problem is well-posed in the classical (Hadamard) sense, T-coercivity is actually equivalent to the celebrated Banach-Nečas-Babuška conditions. For sign-shifting elliptic problems, it has been shown that the contrast of the coefficients along the sign-changing interface plays a crucial role in the well-posedness of the model, with a super-critical value of the contrast equal to ´1. In 2D, optimal conditions have been derived, which provide a bounded closed interval of p´8, 0q for the contrast (the so-called critical interval, which does contain the super-critical value ´1) outside which the problem is wellposed in the Fredholm sense. The well-posedness of critical (but non super-critical) situations has been tackled for some given configurations in [START_REF] Bonnet-Ben Dhia | Radiation condition for a non-smooth interface between a dielectric and a metamaterial[END_REF], where Fredholmness is recovered in an augmented functional framework. Another interesting approach to study the well-posedness of sign-changing PDEs has been proposed by Nguyen (cf. [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign-changing coefficients[END_REF][START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with signchanging coefficients[END_REF] and [START_REF] Nguyen | Limiting absorption principle and well-posedness for the time-harmonic Maxwell equations with anisotropic sign-changing coefficients[END_REF], respectively in the Helmholtz and Maxwell contexts). The idea is to introduce some loss in the negative material (i.e. a nonzero imaginary part) and to study the behavior, as the loss tends to zero, of the solution to the well-posed lossy system (limiting absorption principle). By means of reflection operators, it is possible to infer conditions on the coefficients under which the limit problem is well-posed. The advantage of such an approach is that it can deal with configurations for which the corresponding operator is not Fredholm (including super-critical cases).

As far as numerical approximation is concerned, when dealing with sign-shifting problems, one needs to deploy dedicated techniques in order to handle the indefiniteness of the model at hand. Interesting yet sub-optimal first attempts include [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF][START_REF] Nicaise | A posteriori error estimates for a finite element approximation of transmission problems with sign-changing coefficients[END_REF] (cf. also [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF]Section 5.1]) and [21, Section 5.2] (based on limiting absorption). The most fruitful approach so far is based on the T-coercivity theory. T-coercivity based approximation [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF][START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF][START_REF] Carvalho | Eigenvalue problems with sign-changing coefficients[END_REF][START_REF] Halla | On the approximation of dispersive electromagnetic eigenvalue problems in two dimensions[END_REF] takes advantage of the knowledge of the bijective operator T to infer meshing rules, under which conforming finite elements can be proved (optimally) convergent. Evidently, T-coercivity based approximation suffers from the same limitations as T-coercivity does; in particular, it can only apply to configurations for which the problem is well-posed in the classical sense. In addition, it is also bound to the explicit knowledge of the operator T, as well as to the use of geometrically fitted meshes in the vicinity of the sign shift. The design of such mesh families can become very intricate for interfaces with general shapes. Therefore, there is room for improvement in designing a numerical method that would be applicable, for a given loading, as soon as a solution of finite energy exists and is unique, and which would not require the use of geometrically constrained meshes. This last criterion is particularly crucial in applications, for instance to simulate the micro-structures of [START_REF] Bunoiu | Homogenization of materials with sign changing coefficients[END_REF], for which sign-shifting cell problems with potentially fairly general interfaces must be solved.

In this work, we fully analyze and validate the method summarily introduced in [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF]. This method constitutes an alternative path for the numerical approximation of sign-shifting PDEs. It is based on a decomposition of the domain into signed subdomains (i.e. subdomains in which the coefficient is sign-definite), and on a recasting of the model into a transmission problem. The numerical method then consists in finding the discrete normal flux trace along the signchanging interface for which some criterion, quantifying the (interface) trace jump between the discrete solutions in both subdomains, is minimal. A key feature of the method is to relax at the discrete level the continuity of the solution at the interface while keeping a control on its jump through the minimization of an augmented functional. Upon an extra integrability assumption on the exact normal flux trace along the sign-changing interface, this method is proved convergent as soon as the problem admits, for a given loading, a unique solution of finite energy (in H 1 ). In particular, the problem is not required to be Fredholm. Furthermore, the convergence proof does not rely on any kind of geometrical constraints on the mesh family (the only needed assumption is that the mesh cells do not cut the interface). As standard with domain decomposition, the implementation of our method can benefit from distributed architectures. As already mentioned in [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF], the type of cost functional we consider has first been deployed in [START_REF] Gunzburger | An optimization-based domain decomposition method for partial differential equations[END_REF][START_REF] Gunzburger | Solution of elliptic partial differential equations by an optimization-based domain decomposition method[END_REF] in the context of optimization-based domain decomposition for classical elliptic equations. With respect to [START_REF] Gunzburger | An optimization-based domain decomposition method for partial differential equations[END_REF][START_REF] Gunzburger | Solution of elliptic partial differential equations by an optimization-based domain decomposition method[END_REF], the novelty in our approach essentially lies in the numerical algorithm, in its analysis, and in its application to sign-changing PDEs. Note that, at the time this manuscript is finalized, another related approach (based on optimal control) has been introduced in [START_REF] Ciarlet | An optimal control-based numerical method for scalar transmission problems with sign-changing coefficients[END_REF], which is valid without the need for extra solution's regularity near the interface, thus remedying one limitation of our method (cf. Remark 6.9). Finally, note that our approach shares some common goals with [START_REF] Burman | Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations[END_REF][START_REF] Burman | Stabilised finite element methods for ill-posed problems with conditional stability[END_REF], in that it aims at approximating problems which are not necessarily well-posed in the classical sense.

The article is organized as follows. In Section 2 we introduce some useful functional analysis tools. In Section 3 we introduce the problem under study. In Section 4 we biefly motivate our approach, in particular we review the limitations of T-coercivity as an approximation method. In Section 5 we recast the continuous problem as an interface problem, and we provide a characterization of its solution on which we base our numerical algorithm. In Section 6 we introduce the numerical method, and we prove its convergence. In Section 7 we devise an (exact) algebraic solver for the discrete optimization problem, and we provide a comprehensive set of numerical experiments demonstrating the efficiency of our approach. Finally, in Appendix A we collect some basic background on Fredholm theory, whereas in Appendix B we prove (sharp) error estimates for the finite element solutions to nonhomogeneous mixed and purely Neumann variable diffusion problems, that are instrumental to finely tune our method.

Functional analysis tools

Let D be a domain in R d , d P t2, 3u, that is a bounded and connected Lipschitz open set of R d . We let Υ :" BD denote the boundary of D. Since D is Lipschitz, a unit normal vector field n can be defined almost everywhere along Υ, which we assume to point outward from D. The set Υ is further partitioned into two disjoint, relatively open Lipschitz subsets Υ t and Υ f , with Υ f ‰ H, such that Υ " Υ t Y Υ f . For q P t1, du, we classically let L 2 pD; R q q be the Hilbert space of those distributions v :" pv 1 , . . . , v q q : D Ñ R q (whenever q " 1, we simply write v) such that ş D |vpxq| 2 dx is finite. Irrespectively of q, the standard inner product and norm in L 2 pD; R q q are denoted by pv, wq D :" ş D vpxq¨wpxq dx and }v} 0,D :" a pv, vq D . For m P N ‹ , α :" pα 1 , . . . , α d q P N d a multi-index, and

B α v :" pB α 1 1 . . .B α d d v 1 , . . . , B α 1 1 . . .B α d d v q q : D Ñ R q ,
we classically let H m pD; R q q be the Hilbert space of those distributions v P L 2 pD; R q q such that }B α v} 0,D ă 8 for all α P N d with p1 ďq α 1 `. . . `αd ď m. We equip H m pD; R q q with the following norm:

}v} 2 m,D :" }v} 2 m´1,D `|v| 2 m,D , |v| 2 m,D :" ÿ α 1 `...`α d "m }B α v} 2 0,D ,
with the convention that H 0 " L 2 . Next, for σ P p0, 1q, letting for w :

D Ñ R q , |w| 2 σ,D :" ż D ż D |wpxq ´wpyq| 2 |x ´y| 2σ`d dxdy,
we classically let H σ pD; R q q be the fractional Hilbert space of those distributions v P L 2 pD; R q q such that |v| σ,D ă 8. In the same vein, for s " m`σ with m :" tsu P N and σ :" s´m P p0, 1q, we denote by H s pD; R q q the fractional Hilbert space of those distributions v P H m pD; R q q such that |B α v| σ,D ă 8 for all α P N d with α 1 `. . . `αd " m. Remark that this definition coincides with the above definition of H σ pD; R q q whenever m " 0. We equip H s pD; R q q with the following Sobolev-Slobodeckij norm:

}v} 2 s,D :" }v} 2 m,D `|v| 2 s,D , |v| 2 s,D :" ÿ α 1 `...`α d "m |B α v| 2 σ,D .
Henceforth, for convenience, we simply write L 2 pDq or H s pDq in place of L 2 pD; Rq or H s pD; Rq, and L 2 pDq or H s pDq in place of L 2 pD; R d q or H s pD; R d q. As standard, we let H 1 0 pDq be the Hilbert space, closed subset of H 1 pDq, obtained as the closure for the }¨} 1,D -norm of C 8 0 pDq. We further let H ´1pDq denote the topological dual of H 1 0 pDq, with duality pairing x¨, ¨yD . Endowed with the norm }t} ´1,D :" sup

vPH 1 0 pDqzt0u xt, vy D }v} 1,D , H ´1pDq is a (reflexive) Banach space.
Let us now turn to the definition of trace spaces, first on the whole domain boundary. We classically let L 2 pΥ; R q q be the Hilbert space of those distributions ϕ :" pϕ 1 , . . . , ϕ q q : Υ Ñ R q (whenever q " 1, we simply write ϕ) such that ş Υ |ϕpxq| 2 dσpxq ă 8. Irrespectively of q, the standard inner product and norm in L 2 pΥ; R q q are denoted by pϕ, ψq Υ :" ş Υ ϕpxq¨ψpxq dσpxq and }ϕ} 0,Υ :" a pϕ, ϕq Υ . For σ P p0, 1q, letting

|ϕ| 2 σ,Υ :" ż Υ ż Υ |ϕpxq ´ϕpyq| 2 |x ´y| 2σ`d´1 dσpxqdσpyq,
we henceforth classically denote by H σ pΥ; R q q the fractional Hilbert space of those distributions ϕ P L 2 pΥ; R q q such that |ϕ| σ,Υ ă 8. We equip H σ pΥ; R q q with the following Sobolev-Slobodeckij norm:

}ϕ} 2 σ,Υ :" }ϕ} 2 0,Υ `|ϕ| 2 σ,Υ .
Next, for s P p 1 2 , 1s, we let γ : H s pD; R q q Ñ H s´1 2 pΥ; R q q (whenever q " 1, we write γ) denote the (linear, bounded) trace operator. By definition, γpvq coincides with v |Υ whenever v is sufficiently regular. There is c γ ą 0 such that, for all v P H s pD; R q q, there holds

}γpvq} s´1 2 ,Υ ď c γ }v} s,D . (1) 
The operator γ is also surjective, with bounded right inverse (cf. e.g. [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Theorem 1.5.1.2]). Henceforth, for convenience, we simply write L 2 pΥq or H σ pΥq in place of L 2 pΥ; Rq or H σ pΥ; Rq, and L 2 pΥq or H σ pΥq in place of L 2 pΥ; R d q or H σ pΥ; R d q. We classically let H ´1 2 pΥq denote the topological dual of H Let us finally introduce the so-called Lions-Magenes trace space. We assume that Υ t ‰ H, so that both Υ t and Υ f are nonempty. The Lions-Magenes space on Υ f , usually denoted H 1 {2 00 pΥ f q, is formally the space of those distributions in H 1 2 pΥ f q which can be extended by zero to distributions in H 1 2 pΥq. More rigorously, letting

|ϕ| 2 1 2 ,Υ f ,00 :" ż Υ f pϕpxqq 2 ρpxq dσpxq,
where ρpxq :" min yPBΥ f |x ´y| is the distance to BΥ f , we define H 1 {2 00 pΥ f q as the fractional Hilbert space of those distributions ϕ P H

1 2 pΥ f q such that |ϕ| 1 2 ,Υ f ,00 ă 8. We equip H 1 {2
00 pΥ f q with the following Sobolev-Slobodeckij norm:

}ϕ} 2 1 2 ,Υ f ,00 :" }ϕ} 2 1 2 ,Υ f `|ϕ| 2 1 2 ,Υ f ,00 .
There holds

H 1 {2 00 pΥ f q " ϕ P H 1 2 pΥ f q | D φ P H 1 2 pΥq s.t. φ|Υ f " ϕ, φ|Υt " 0 (`Ĺ H 1 2 pΥ f q ˘,
in such a way that, letting (the subscript "0zΥ f " in the notation below must be understood as "zero (a.e. on Υ) except on Υ f ")

H 1 0zΥ f pDq :" v P H 1 pDq | γpvq |Υt " 0 ( , (2) 
we have γ `H1

0zΥ f pDq ˘|Υ f " H 1 {2
00 pΥ f q by surjectivity of the trace operator γ :

H 1 pDq Ñ H 1 2 pΥq.
We let H ´1 2 pΥ f q denote the topological dual of H 1 {2 00 pΥ f q, with duality pairing x¨, ¨yΥ f . Endowed with the norm

}θ} ´1 2 ,Υ f :" sup ϕPH 1 {2 00 pΥ f qzt0u xθ, ϕy Υ f }ϕ} 1 2 ,Υ f ,00
, H ´1 2 pΥ f q is a (reflexive) Banach space. For any θ P Hpdiv; Dq, it is possible to give a sense to the normal trace of θ on Υ f (denoted γ n,Υ f pθq) in H ´1 2 pΥ f q via the following divergence formula: for all v P H 1 0zΥ f pDq,

xγ n,Υ f pθq, γpvqy Υ f :" pθ, ∇vq D `pdiv θ, vq D .
Above, we abuse the notation by writing γpvq in place of γpvq |Υ f . By definition, γ n,Υ f pθq coincides with θ |Υ f ¨n whenever θ is sufficiently regular.

Setting of the problem

Let Ω be a domain in R d (i.e. a bounded and connected Lipschitz open set of R d ), d P t2, 3u.

We assume that Ω is partitioned into two disjoint (nonempty) Lipschitz open subsets Ω p and Ω n , so that Ω " Ω p Y Ω n . As it will become clear in what follows, the subscripts 'p' and 'n' refer, respectively, to the positive and negative subdomains. The two subdomains Ω p and Ω n are assumed to be connected. We further suppose that Ω p is such that BΩ p X BΩ has nonzero pd´1q-dimensional measure. We let Γ :" intpBΩ p X BΩ n q denote the (relatively open) interface between Ω p and Ω n , which is a Lipschitz pd´1q-dimensional manifold. Since Γ is Lipschitz, one can define a (unit) normal vector field almost everywhere on Γ. On Figure 1 are depicted various admissible configurations Ω in 2D. The meaning of the classification 2M (for mixed-mixed coupling) and MN (for mixed-Neumann coupling) will be made completely precise in Section 5.3. The top configurations 1a are such that both BΩ p X BΩ and BΩ n X BΩ have nonzero lineic measures. The bottom configuration 1b is, at the opposite, such that |BΩ n X BΩ| 1 " 0 (one even has BΩ n X BΩ " H). For the left and center configurations 1a, and for the configuration 1b, the interface Γ is connected, whereas it is not the case for the right configuration 1a. The left configuration 1a is referred to in the literature as the (symmetric or nonsymmetric, depending on the position of Γ) cavity; see e.g. [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF]Section 3.3]. In the following, we will refer to the configuration 1b as the inclusion case. Let σ : Ω Ñ R dˆd be a symmetric matrix field such that 0 ă σ 5 |ξ| 2 ď σpxqξ¨ξ ď σ 7 |ξ| 2 ă 8 for a.e. x P Ω and all ξ P R d zt0u, and let ρ :" σ 7 {σ 5 ě 1 denote its heterogeneity/anisotropy ratio in Ω. We further assume that σ α :" σ |Ωα P W 1,8 pΩ α q (with obvious notation) for α P tp, nu. When σ is isotropic, i.e. when there is σ : Ω Ñ R satisfying 0 ă σ 5 ď σ ď σ 7 ă 8 such that σ " σ1 d where 1 d is the d ˆd identity matrix, we let

ν :" ´σn|Γ σ p|Γ (3) 
denote the coefficient contrast at the interface (the definition can be adapted to the anisotropic case). Let s : Ω Ñ t´1, `1u be the sign function s.t. s p :" s |Ωp " `1 and s n :" s |Ωn " ´1.

Ω p Ω n Γ Ω p Ω n Γ Ω p Ω n Γ Γ (a) Configurations 2M Ω p Ω n Γ (b) Configuration MN Figure 1: Examples of configurations Ω in 2D.
For f P H ´1pΩq, we study the following anisotropic sign-shifting problem: find ũ P H 1 pΩq such that # ´div ps σ∇ũq " f in Ω, ũ " 0 on BΩ.

For further use, we let ũα :" ũ|Ωα for α P tp, nu. Let us insist on the fact that σ is a real-valued coefficient. We are thus looking for real-valued solutions to Problem [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF]. Note that we could also consider, up to slight adaptations of the method described in Section 6, more general boundary conditions for Problem (4), or/and more complex geometries for the subdomains Ω p and Ω n . We refer to Remark 6.10 for further insight on this question. The weak form of Problem (4) writes: find ũ P H 1 0 pΩq such that apũ, vq :" ps σ∇ũ, ∇vq Ω " xf, vy Ω @v P H 1 0 pΩq.

(5)

A look into T-coercivity

Background on T-coercivity theory

For the reader not familiar with Fredholm theory, on which we are going to rely below, we refer to Appendix A, where some fundamental definitions and results are recalled. Let pU, }¨}q be a real-valued Hilbert space. Let U ‹ denote the topological dual of U , with duality pairing x¨, ¨y. Let b : U ˆU Ñ R be a bounded bilinear form, which is further assumed symmetric, i.e. bpv, uq " bpu, vq for all u, v P U . Under these assumptions, there exists a self-adjoint operator B P LpU, U ‹ q such that, for all u, v P U , xBpuq, vy " bpu, vq. For a given f P U ‹ , we are interested in the following problem: find ũ P U such that

Bpũq " f in U ‹ . (6) 
The target application we have in mind is Problem [START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF], for which (i) U :" H 1 0 pΩq with norm }¨} :" |¨| 1,Ω and duality pairing x¨, ¨y :" x¨, ¨yΩ , and (ii) B :" A where the self-adjoint operator A P LpH 1 0 pΩq, H ´1pΩqq is given by xApuq, vy Ω :" apu, vq for all u, v P H 1 0 pΩq,

with (symmetric) bilinear form a defined by ( 5).

The T-coercivity theory [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF][START_REF] Ciarlet | T-coercivity: application to the discretization of Helmholtz-like problems[END_REF][START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF]] is a variational Hilbertian theory which aims at proving the well-posedness of Problem [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF] in the Fredholm sense. Let us first define this notion. Definition 4.1 (Well-posedness in the Fredholm sense). Problem (6) is said to be well-posed in the Fredholm sense if the operator B is Fredholm of index 0.

In the particular case of Problem [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF], for which B is a self-adjoint operator, Proposition A.4 ensures that, as soon as B is Fredholm, its index is necessarily equal to zero. Proposition A.4 also provides a detailed characterization of the structure of the solutions to Problem [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF]. For an equivalent characterization in the non-necessarily self-adjoint case, we refer to [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF]Theorem 2.27]. A subcase of well-posedness in the Fredholm sense is the well-posedness in the Hadamard (or classical) sense. Problem ( 6) is well-posed in the Hadamard sense when it is well-posed in the Fredholm sense and the operator B is injective, i.e. when B is an isomorphism.

Let us now give the definition of T-coercivity; cf. e.g. [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF]Definition 3].

Definition 4.2 (T-coercivity).

The bilinear form b is said T-coercive if there exists T P LpU q bijective so that there is c ą 0 such that bpu, Tpuqq ě c}u} 2 @u P U.

In other words, the bilinear form b is T-coercive as soon as the (bounded) bilinear form bp¨, Tp¨qq is coercive. The link between T-coercivity and well-posedness is made explicit in the following proposition; see e. T-coercivity is hence a necessary (and sufficient) condition for the well-posedness in the classical sense. Note that T-coercivity is, however, less general than the Banach-Nečas-Babuška (infsup) theory, as it is restricted to the Hilbertian setting (cf. [START_REF] Ern | Finite Elements II: Galerkin approximation, elliptic and mixed PDEs[END_REF]Remark 25.14]).

In practice, proving T-coercivity may be difficult. This is for instance the case for the signshifting Problem (5) when considering a general interface between the positive and negative subdomains. In this situation, what one can usually prove is a weaker result, namely weak T-coercivity; see [5, Definition 2]. Definition 4.4 (Weak T-coercivity). The bilinear form b is said weakly T-coercive if there exist T P LpU q bijective and C P LpU q compact so that there are c 1 ą 0 and c 2 P R such that bpu, Tpuqq ě c 1 }u} 2 ´c2 }Cpuq} 2 @u P U.

The bilinear form b is hence weakly T-coercive as soon as the (bounded) bilinear form bp¨, Tp¨qq fulfills a Gårding's inequality [START_REF] Schatz | An observation concerning Ritz-Galerkin methods with indefinite bilinear forms[END_REF]. When c 2 ď 0, one recovers (plain) T-coercivity for the form b. In the present symmetric case, the link between weak T-coercivity and well-posedness is given in the following proposition; cf. [ and Ω n :" p0, ζq ˆp0, 1q, in such a way that Γ " t0u ˆp0, 1q; cf. the left panel of Figure 1a. The coefficient σ is chosen isotropic and homogeneous in Ω, i.e. σ :" σ1 2 with σ any positive real number. This corresponds to the so-called super-critical case of a (constant) contrast at the interface of ν " ´1. In this case, it can be readily proved that the self-adjoint operator A defined by ( 7) is injective but not surjective. Equivalently, by Proposition A.5, the range of A is not closed in H ´1pΩq. As a consequence, either f P ImA and Problem (5) admits a unique solution (which is of finite energy, i.e. in H 1 0 pΩq), or f P H ´1pΩqzImA and Problem (5) then does not have a solution.

For the latter example, it is clear that the self-adjoint operator A is not Fredholm. If it was, its index would be zero, and injectivity would necessarily imply surjectivity. Since, for self-adjoint operators, weak T-coercivity and Fredholmness (of index 0) are equivalent (cf. Proposition 4.5 above), we conclude that we cannot find T P LpU q such that a is weakly T-coercive in that case. Consequently, there exist settings, for which the problem admits, for admissible loadings only, a unique solution of finite energy, which are not covered by the Tcoercivity theory. Another example of such a setting, this time with disconnected subdomain Ω p , is given by the cloaking device of [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF].

Remark 4.6. We have focused so far on settings for which the (self-adjoint) operator is injective, but not surjective. Let us point out that there exist other non-Fredholm configurations, and thus other settings not covered by the T-coercivity theory. For example, consider again Problem (5) for the 2D cavity setting with contrast ´1 of [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF]Section 3.3], but this time with ζ " ζ (symmetric cavity). In this case, the operator A is such that dimpKerAq " 8, this is hence a non-Fredholm configuration. Note that, for some configurations, it is possible to adapt the functional framework in order to recover Fredholmness of the problem; this is the approach pursued in [START_REF] Bonnet-Ben Dhia | Radiation condition for a non-smooth interface between a dielectric and a metamaterial[END_REF] for critical (but not super-critical) contrasts.

This intrinsic limitation of T-coercivity for sign-shifting problems has direct repercussions on the scope of application of (conforming) T-coercivity based approximation for Problem (5).

T-coercivity based approximation

We make the assumption that Problem ( 6) is well-posed in the Fredholm sense, and that it has a unique solution. Therefore, Problem ( 6) is well-posed in the Hadamard sense and, according to Proposition 4.3, there exists T P LpU q bijective so that the form b is T-coercive (with constant c ą 0).

Let pU h q hą0 be a countable family of finite-dimensional vector spaces satisfying U h Ă U for all h ą 0 in the family. The dimension of the discrete space U h is meant to increase as h tends to zero. In practice, U h is a space of piecewise polynomial functions on a partition T h (of size h) of the domain. Let us define the notion of T-conformity.

Definition 4.7 (T-conformity).

The family of discrete spaces pU h q hą0 is said T-conforming if it is stable by T, i.e. if TpU h q Ď U h for all h ą 0 in the family.

We consider the following conforming approximation of Problem ( 6):

find ũh P U h such that bpũ h , v h q " xf, v h y @v h P U h . (10) 
The following result is adapted from [21, Corollary 1].

Proposition 4.8. Assume that pU h q hą0 is T-conforming. Then, for all h ą 0 in the family, Problem (10) admits a unique solution ũh P U h , and the following estimate holds true:

}ũ ´ũ h } ď ~b~~Tc inf v h PU h }ũ ´vh }. (11) 
In the case of the sign-shifting Problem (5), the operator T is derived from elementary geometrical transforms (symmetries and rotations) with respect to the sign-changing interface. These transforms do preserve polynomials. However, since functions in U h are defined piecewise on the partition T h , one has to make sure the global transform maps a cell in Ω n to another cell in Ω p , or reciprocally. Enforcing T-conformity thus boils down to the design of geometrically fitted mesh families. Their practical construction requires the operator T to be known explicitly. As already pointed out, for a general interface, proving T-coercivity is usually difficult. What is often feasible, however, is to prove weak T 1 -coercivity, for some (other) bijective operator T 1 built as a superposition of localized elementary geometrical transforms. The relevant notion of conformity then becomes T 1 -conformity, and is a local one. In other words, the mesh constraints need only be imposed in this case in a neighborhood of the interface (see [START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF]Definition 3]). In 2D, such weak operators T 1 can be built for general polygonal interfaces; cf. [5, Theorem 1]. In 3D, only partial results exist; in particular, the case of general polyhedral interfaces is still open. Whenever such a weak operator T 1 is available, a result like Proposition 4.8 is valid upon a smallness assumption on h; cf. [START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF]Theorem 2] (in turn based on [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF]Proposition 3]). Proposition 4.9. Consider Problem [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF]. Assume that the form b is weakly T 1 -coercive for some bijective operator T 1 P LpU q. Assume that pU h q hą0 is T 1 -conforming. Then, for all h ą 0 small enough in the family, Problem (10) admits a unique solution ũh P U h , and the following estimate holds true for some ξ ą 0:

}ũ ´ũ h } ď ξ inf v h PU h }ũ ´vh }. (12) 
In practice, for sign-shifting problems, the discrete space U h is usually not stable by the operator T 1 . The problem is not of a geometrical nature, but comes from the use of cut-off functions to localize the different transforms in T 1 . As a by-product, functions in T 1 pU h q are usually non-polynomial on each cell of T h . One has to introduce a new, uniformly (in h) bounded family of operators pT 1 h q hą0 such that T 1 h pU h q Ď U h for all h ą 0 in the family. This family is constructed so that, for all h ą 0 small enough in the family, and for all u h P U h , }pT 1 ´T1 h qpu h q} ď ϑ h}u h } for some ϑ ą 0; cf. [5, Lemma 3]. With such an operator at hand, a result equivalent to that of Proposition 4.9 can then be proved.

Towards an alternative approach

For sign-shifting problems of the form (5), T-coercivity based approximation suffers from three important shortcomings: ' non-Fredholm situations are not covered by T-coercivity theory, yet they may correspond to interesting practical configurations (often super-critical), for which Problem (5) admits a unique solution of finite energy for admissible loadings;

' the operator T must be known explicitly in order to design geometrically fitted mesh families, however it has not been made explicit yet for all 3D Fredholm configurations;

' T-conform meshing may be delicate in practice for general interfaces, especially in 3D.

In non-Fredholm situations, in order to identify whether or not the problem at hand admits a unique solution of finite energy, one may rely on the limiting absorption theory developed by Nguyen (cf. [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign-changing coefficients[END_REF][START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with signchanging coefficients[END_REF] and [START_REF] Nguyen | Limiting absorption principle and well-posedness for the time-harmonic Maxwell equations with anisotropic sign-changing coefficients[END_REF], respectively in the Helmholtz and Maxwell contexts).

In this work, we aim at developing an alternative approach for the numerical approximation of Problem ( 5), enjoying the following features: a) be applicable, without any a priori restriction, as soon as Problem ( 5) admits, for a given loading, a unique solution (of finite energy); b) be applicable without any particular geometrical constraints on the mesh family (except that the mesh cells do not cut the interface).

We will see in the next sections that the new approach introduced herein fulfills the requirements a) and b) above.

Recasting as a transmission problem

We henceforth assume that f P L 2 pΩq. Problem (5) then becomes: find ũ P H 1 0 pΩq such that apũ, vq " pf, vq Ω @v P H 1 0 pΩq.

In this section, we recast Problem [START_REF] Bunoiu | Homogenization of materials with sign changing coefficients[END_REF] into a transmission problem between the positive and negative subdomains.

Notation

Based on the functional analysis tools from Section 2, we begin by introducing some notation. For α P tp, nu, we let

γ α : H 1 pΩ α q Ñ H 1 2 pBΩ α q
denote the usual trace operator in Ω α . We now define the space (here also, the subscript "0zΓ" is to be understood as "zero (a.e. on BΩ α ) except on Γ")

H 1 0zΓ pΩ α q :" ! v α P H 1 pΩ α q | γ α pv α q |BΩαzΓ " 0 ) .
Letting

H 1 {2
00, α pΓq :"

! ϕ α P H 1 2 pΓq | D φα P H 1 2 pBΩ α q s.t. φα |Γ " ϕ α , φα |BΩαzΓ " 0 ) , there holds γ α `H1 0zΓ pΩ α q ˘|Γ " H 1 {2 00, α pΓq. When BΩ n " Γ (inclusion case), then H 1 {2 00, n pΓq " H 1 2 pBΩ n q. We assume in what follows that H 1 {2 00, p pΓq " H 1 {2
00, n pΓq, which holds true for Lipschitz interfaces Γ. We then denote this common Lions-Magenes trace space H 1 {2 00 pΓq. One can easily remark that

H 1 {2 00 pΓq " v |Γ :" γ p pv |Ωp q |Γ " γ n pv |Ωn q |Γ , v P H 1 0 pΩq ( . (14) 
We denote by H ´1 2 pΓq the topological dual of H

1 {2
00 pΓq, and by x¨, ¨yΓ the duality pairing between H ´1 2 pΓq and H 1 {2 00 pΓq.

Weak continuity of the flux

We state (and prove for completeness) here a classical weak continuity property for the (normal) flux at the interface. Recall the notation for the normal trace of a vector field introduced in Section 2. For α P tp, nu, let n α be the unit normal vector field to BΩ α pointing outward from Ω α , and define, for ũ P H 1 0 pΩq solution to Problem (13),

gα,Γ :" γ nα,Γ `sα σ α ∇ũ α ˘. ( 15 
)
Since f P L 2 pΩq, for α P tp, nu, the flux gα :" s α σ α ∇ũ α belongs to Hpdiv; Ω α q. Consequently, γ nα pg α q P H ´1 2 pBΩ α q and gα,Γ " γ nα,Γ pg α q belongs to H ´1 2 pΓq.

Lemma 5.1 (Weak continuity of the flux). There holds gp,Γ " ´g n,Γ in H ´1 2 pΓq.

Proof. The divergence formula in Ω α first yields pdiv gα , v α q Ωα `pg α , ∇v α q Ωα " xg α,Γ , γ α pv α qy Γ @v α P H 1 0zΓ pΩ α q.

Since div gα " ´f almost everywhere in Ω α , we then infer ´pf, v α q Ωα `pg α , ∇v α q Ωα " xg α,Γ , γ α pv α qy Γ @v α P H 1 0zΓ pΩ α q.

Let now v P H 1 0 pΩq. Since v |Ωα P H 1 0zΓ pΩ α q, setting v α " v |Ωα , there holds

´pf, vq Ωα `pg α , ∇vq Ωα " xg α,Γ , v |Γ y Γ ,
where we recall that the notation v |Γ stands for γ p pv |Ωp q |Γ " γ n pv |Ωn q |Γ . Summing over α P tp, nu, and using Problem (13), then yields

xg p,Γ `g n,Γ , v |Γ y Γ " 0 @v P H 1 0 pΩq,
which, by [START_REF] Burman | Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations[END_REF], is finally equivalent to

xg p,Γ `g n,Γ , ϕy Γ " 0 @ϕ P H 1 {2 00 pΓq, i.e. gp,Γ " ´g n,Γ in H ´1 2 pΓq.
As a consequence of Lemma 5.1, for ũ P H 1 0 pΩq solution to Problem [START_REF] Bunoiu | Homogenization of materials with sign changing coefficients[END_REF], one can define

H ´1 2 pΓq Q g Γ :" gp,Γ " ´g n,Γ , (16) 
so that gα,Γ " s α g Γ for α P tp, nu.

Characterization of the solution

For α P tp, nu, and for any g Γ P H ´1 2 pΓq, we introduce in the subdomain Ω α the problem: find u α pg Γ q P H 1 0zΓ pΩ α q such that a α pu α pg Γ q, v α q :" s α pσ α ∇u α pg Γ q, ∇v α q Ωα " pf, v α q Ωα `sα xg Γ , γ α pv α qy Γ @v α P H 1 0zΓ pΩ α q. (17

)
Recall that Ω p and Ω n are assumed connected. Problem [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF] in Ω p always admits a unique solution, since we have supposed that BΩ p X BΩ has nonzero pd´1q-dimensional measure. The same holds true in Ω n as soon as |BΩ n X BΩ| d´1 ‰ 0. In the opposite (inclusion) case, BΩ n " Γ and we then assume that g Γ satisfies xg Γ , 1y Γ " pf, 1q Ωn to ensure that Problem (17) admits a solution, which is unique up to an additive constant. We fix this constant by imposing that pγ n pu n pg Γ qq , 1q Γ " pγ p pu p pg Γ qq , 1q Γ . At this point, we can give a sense to the classification 2M, MN introduced in Figure 1. Remark that the boundary conditions for Problem [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF] in Ω p are always mixed, whereas in Ω n they can be mixed or purely Neumann. Configurations for which both BΩ p X BΩ and BΩ n X BΩ have nonzero pd´1q-dimensional measures feature two subproblems of mixed (M) type; they are hence denoted 2M. Configurations for which |BΩ n X BΩ| d´1 " 0 (inclusion) feature one subproblem in Ω p of mixed (M) type, and one subproblem in Ω n of purely Neumann (N) type; they are hence denoted MN. Definition 5.2 (Transmission solution). For g Γ P H ´1 2 pΓq, we denote by upg Γ q the function defined on Ω (and not necessarily belonging to H 1 0 pΩq) such that upg Γ q |Ωα :" u α pg Γ q with u α pg Γ q P H 1 0zΓ pΩ α q unique solution to Problem [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF] in Ω α , α P tp, nu.

For a given g Γ P H ´1 2 pΓq, the transmission solution upg Γ q belongs to H 1 0 pΩq if and only if γ p pu p pg Γ qq " γ n pu n pg Γ qq almost everywhere on Γ.

The following result establishes an equivalent characterization of the solution to (13).

Proposition 5.3 (Characterization of the solution to ( 13)). Assume that Problem (13) admits a unique solution ũ P H 1 0 pΩq. Then, this solution satisfies ũ " upg Γ q, where g Γ P H ´1 2 pΓq is defined by (15)- [START_REF] Carvalho | Eigenvalue problems with sign-changing coefficients[END_REF]. Furthermore, g Γ is the unique solution to the minimization problem

inf g Γ PH ´1 2 pΓq }γ p pu p pg Γ qq ´γn pu n pg Γ qq } 2 1 2 ,Γ,00 . (18) 
Proof. (i) Let us begin by proving that ũ " upg Γ q. We first check, leveraging the equivalence between Problem [START_REF] Bunoiu | Homogenization of materials with sign changing coefficients[END_REF] and Problem [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF], that in the (inclusion) case when BΩ n " Γ, the compatibility condition xg Γ , 1y Γ " pf, 1q Ωn does hold, which ensures the existence of solutions to Problem [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF] in Ω n for g Γ " g Γ in that case. From [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF] and the fact that gα,Γ " s α g Γ , for α P tp, nu, we infer that

a α pu α pg Γ q, v α q " pf, v α q Ωα `xg α,Γ , γ α pv α qy Γ @v α P H 1 0zΓ pΩ α q.
Using the definition (15) of gα,Γ , we then get

a α pu α pg Γ q, v α q " pf, v α q Ωα `xγ nα,Γ `sα σ α ∇ũ α ˘, γ α pv α qy Γ @v α P H 1 0zΓ pΩ α q,
which yields, applying the divergence formula in Ω α , and using that f " ´divps α σ α ∇ũ α q almost everywhere in Ω α , that a α pu α pg Γ q ´ũ α , v α q " 0 @v α P H 1 0zΓ pΩ α q.

Testing the latter identity with v α " pu α pg Γ q ´ũ α q P H 1 0zΓ pΩ α q, using the uniform ellipticity of s α σ α in Ω α , and the fact that Ω α is connected, we infer that there is c α P R such that

ũα ´uα pg Γ q " c α in Ω α .
In Ω p , since |BΩ p X BΩ| d´1 ‰ 0, we always have c p " 0, hence ũp " u p pg Γ q. In Ω n , when |BΩ n X BΩ| d´1 ‰ 0, then similarly c n " 0 and ũn " u n pg Γ q. In the opposite (inclusion) case, we fix the constant by imposing that pγ n pu n pg Γ qq , 1q Γ " pγ p pu p pg Γ qq , 1q Γ , i.e.

pγ n pũ n ´cn q , 1q Γ " pγ p pũ p q , 1q Γ .

Since ũ P H 1 0 pΩq, this eventually yields c n " 0, and hence ũn " u n pg Γ q as in the mixed case. (ii) Let us now prove that g Γ P H ´1 2 pΓq is the unique solution to the minimization problem [START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform[END_REF]. We first remark that g Γ is indeed a solution to the problem, owing to the nonnegativity of the cost functional and to the fact that γ p pu p pg Γ qq " γ n pu n pg Γ qq in H 1 {2 00 pΓq (since upg Γ q " ũ P H 1 0 pΩq). To show uniqueness now, we assume that there exists another minimizer ǧ Γ P H ´1 2 pΓq to [START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform[END_REF]. Then, one must have γ p pu p pǧ Γ qq " γ n pu n pǧ Γ qq in H 1 {2 00 pΓq, which means that upǧ Γ q P H 1 0 pΩq. In addition, for α P tp, nu, u α pǧ Γ q P H 1 0zΓ pΩ α q solves (17) with g Γ " ǧ Γ . Considering test functions v α P H 1 0zΓ pΩ α q in (17) such that v α :" v |Ωα for v P H 1 0 pΩq, we infer by summing over α P tp, nu that upǧ Γ q P H 1 0 pΩq is solution to Problem [START_REF] Bunoiu | Homogenization of materials with sign changing coefficients[END_REF]. Since Problem (13) admits a unique solution ũ P H 1 0 pΩq, we infer that upǧ Γ q " ũ " upg Γ q. Then, again from [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF], we obtain that xǧ Γ ´g Γ , γ α pv α qy Γ " 0 for all v α P H 1 0zΓ pΩ α q, α P tp, nu. Taking α " p or α " n, we deduce that ǧ Γ " g Γ in H ´1 2 pΓq, which concludes the proof.

Remark 5.4. Note that the uniqueness of the solution to Problem (13) is not needed for the characterization ũ " upg Γ q of Proposition 5.3 to hold true. The uniqueness assumption is only needed to ensure the unique solution to the minimization problem [START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform[END_REF].

The numerical method

We henceforth assume that the domain Ω, as well as the subdomains Ω p and Ω n are (Lipschitz) polytopes.

Discrete setting and discrete subproblems

Let us first precise our definition of an admissible mesh family. Definition 6.1 (Admissible mesh family). A mesh family pT h q hą0 is admissible if (i) for all h ą 0 in the family, T h is a matching simplicial discretization of Ω that is geometrically compliant with the interface Γ (in the sense that there is Γ h , subset of inner faces of the mesh T h , such that Γ " Ť F PΓ h F ), and if (ii) pT h q hą0 is shape-regular in the sense of Ciarlet [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF].

Our definition of admissibility ensures that no mesh cell can cut the interface Γ.

Let T h be a member of an admissible mesh family. The subscript h ą 0 stands for the meshsize, i.e. the maximum diameter of all the simplices in T h . For an integer k ě 1, we introduce the discrete space

U k h,0 :" ! v h P C 0 0 pΩq | v h|T P P k d pT q @T P T h ) Ă H 1 0 pΩq,
where P k d pT q is the vector space of d-variate polynomials of total degree at most k in T . For α P tp, nu, we let T α h denote the restriction of T h to Ω α , and we define

U k,α h,0zΓ :" ! v α,h P C 0 pΩ α q | v α,h|T P P k d pT q @T P T α h , γ α pv α,h q |BΩαzΓ " 0 ) Ă H 1 0zΓ pΩ α q.
We also introduce the discrete space of normal flux traces at the interface

G k,Γ h :" ! g Γ,h P L 2 pΓq | g Γ,h|F P P k d´1 pF q @F P Γ h ) , (19) 
and its affine subspace G k,Γ h,N :"

! g Γ,h P G k,Γ h | pg Γ,h , 1q Γ " pf, 1q Ωn )
, where P k d´1 pF q denotes the space of pd´1q-variate polynomials of total degree at most k on F .

For α P tp, nu, and for any g Γ P H ´1 2 pΓq, we introduce the following conforming finite element approximation of Problem [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF] in the subdomain

Ω α : find u α,h pg Γ q P U k,α h,0zΓ such that a α pu α,h pg Γ q, v α,h q " pf, v α,h q Ωα `sα xg Γ , γ α pv α,h qy Γ @v α,h P U k,α h,0zΓ . (20) 
Problem [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF] always admits a unique solution in Ω p , and the same holds true in Ω n in the case of mixed boundary conditions. In the purely Neumann case of an inclusion, in which we have assumed that g Γ satisfies xg Γ , 1y Γ " pf, 1q Ωn , the solution to Problem [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF] in Ω n is unique up to an additive constant. We fix the constant imposing pγ n pu n,h pg Γ qq , 1q Γ " pγ p pu p,h pg Γ qq , 1q Γ . Definition 6.2 (Discrete transmission solution). For g Γ P H ´1 2 pΓq, we denote by u h pg Γ q the function defined on Ω (and not necessarily belonging to U k h,0 ) such that u h pg Γ q |Ωα :" u α,h pg Γ q with u α,h pg Γ q P U k,α h,0zΓ unique solution to Problem [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF] in Ω α , α P tp, nu.

For a given g Γ P H ´1 2 pΓq, the discrete transmission solution u h pg Γ q belongs to U k h,0 Ă H 1 0 pΩq if and only if γ p pu p,h pg Γ qq " γ n pu n,h pg Γ qq almost everywhere on Γ.

Minimization procedure

We define the cost functional J h : G k,Γ h Ñ r0, 8q such that, for any g Γ,h P G k,Γ h ,

J h pg Γ,h q :" }γ p pu p,h pg Γ,h qq ´γn pu n,h pg Γ,h qq } 2 0,Γ `λphq σ ´2 5 }g Γ,h } 2 0,Γ , (21) 
where λ : p0, 8q Ñ p0, 8q is a function such that lim hÑ0 λphq " 0. When |BΩ n X BΩ| d´1 ‰ 0, we consider the minimization problem

inf g Γ,h PG k,Γ h J h pg Γ,h q, (22) 
otherwise (|BΩ n X BΩ| d´1 " 0) we consider the following variant:

inf g Γ,h PG k,Γ h,N J h pg Γ,h q. ( 23 
)
Lemma 6.3 (Well-posedness of the minimization problems). Both minimization problems [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] and (23) admit a unique solution.

Proof. We focus on Problem [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]; Problem (23) can be treated similarly invoking that G k,Γ h,N is a closed convex subspace of G k,Γ h . The functional J h is continuous, and lim }g Γ,h } 0,Γ Ñ8 J h pg Γ,h q " `8, hence Problem ( 22) admits at least one solution. Let g Γ,h P G k,Γ h . A straightforward computation yields, for all i h , j h P G k,Γ h ,

d 2 J h pg Γ,h qpi h , j h q " 2 `"γ p `u1 p,h pi h q ˘´γ n `u1 n,h pi h q ˘‰ , " γ p `u1 p,h pj h q ˘´γ n `u1 n,h pj h q ˘‰ ˘Γ `2 λphq σ ´2 5 pi h , j h q Γ ,
where, for α P tp, nu, and

ι Γ P L 2 pΓq, u 1 α,h pι Γ q P U k,α h,0zΓ solves a α pu 1 α,h pι Γ q, v α,h q " s α pι Γ , γ α pv α,h qq Γ @v α,h P U k,α h,0zΓ . (24) 
Hence, for all i h P G k,Γ h ,

d 2 J h pg Γ,h qpi h , i h q " 2 }γ p `u1 p,h pi h q ˘´γ n `u1 n,h pi h q ˘}2 0,Γ `2 λphq σ ´2 5 }i h } 2 0,Γ .
Therefore, the cost functional J h is strictly convex on G k,Γ h , meaning that the minimizer to Problem ( 22) is unique. Remark 6.4 (Tikhonov regularization). The addition of the term λphq σ ´2 5 }¨} 2 0,Γ in the cost functional J h , which plays the role of a Tikhonov regularization [START_REF] Tikhonov | On the solution of ill-posed problems and the method of regularization[END_REF] (see also [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF]), ensures the uniqueness of the minimizer to Problems [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] and [START_REF] Ciarlet | T-coercivity: application to the discretization of Helmholtz-like problems[END_REF]. Without this term, the sole existence can be proved, as a consequence of the linear least-squares nature of Problems [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] and [START_REF] Ciarlet | T-coercivity: application to the discretization of Helmholtz-like problems[END_REF].

Mimicking, at the discrete level, the characterization of the continuous solution from Proposition 5.3, we let g Γ,h P G k,Γ h (resp. g Γ,h P G k,Γ h,N ) denote the unique minimizer to Problem [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] (resp. ( 23)), and we define ũh :" u h pg Γ,h q (cf. Definition 6.2) as our approximation of the solution ũ P H 1 0 pΩq to Problem [START_REF] Bunoiu | Homogenization of materials with sign changing coefficients[END_REF]. Remark that ũh is always well-defined, as a consequence of the well-posedness of the subproblems [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF], and of that of the optimization problems [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] and [START_REF] Ciarlet | T-coercivity: application to the discretization of Helmholtz-like problems[END_REF]. Note also that ũh does not a priori belong to U k h,0 , and thus to H 1 0 pΩq. For an algebraic realization of our method, we refer to Section 7.1 below. Remark 6.5 (Link with T-coercivity based approximation). Assume that the bilinear form a from Problem (13) is T-coercive for some operator T, and denote by ũc h P U k h,0 Ă H 1 0 pΩq the conforming finite element approximation of ũ on a T-conform mesh T h (ũ c h is then known to be well-defined; cf. Proposition 4.8). Nothing guarantees, as in Proposition 5.3, that it may exist g Γ,h P G k,Γ h (or even in H ´1 2 pΓq) such that ũc h " u h pg Γ,h q. We hence do not know if the solution ũh given by our approach on T h degenerates towards ũc h when setting the Tikhonov regularization to zero in J h . However, in the case the minimum value of J h without regularization is zero, and is attained for some g Γ,h (whose existence is always guaranteed), then necessarily ũh " u h pg Γ,h q is equal to ũc h P H 1 0 pΩq.

Convergence of the method

Before proving our convergence result, we need to quantify the jump of u h pg Γ q along the interface. Recall that u h pg Γ q is the discrete transmission solution (cf. Definition 6.2) corresponding to the exact normal flux trace g Γ P H ´1 2 pΓq defined by ( 15)- [START_REF] Carvalho | Eigenvalue problems with sign-changing coefficients[END_REF]. The following lemma relies on several error estimates for the discrete solutions to variable elliptic problems featuring either mixed or purely Neumann boundary conditions, which are collected in Appendix B, as well as on the notion of dual regularity exponent (cf. Assumption B.1).

Lemma 6.6 (Bound on the interface jump of u h pg Γ q). Let ũ P H 1 0 pΩq be a solution to Problem [START_REF] Bunoiu | Homogenization of materials with sign changing coefficients[END_REF]. Let m ě 0 be some exponent such that ũ|Ωα P H 1`m pΩ α q for α P tp, nu, and let τ :" minpm, kq. Denote by ε p , ε n P p 1 2 , 1s the dual regularity exponents of the subproblems (17) in Ω p and Ω n , respectively. Then, letting δ :" 2τ `minpε p , ε n q ą 0, the following estimate holds true for some constant c j ą 0:

}γ p pu p,h pg Γ qq ´γn pu n,h pg Γ qq } 0,Γ ď c j ρ h δ 2 `|ũ| 1`τ,Ωp `|ũ| 1`τ,Ωn ˘. ( 25 
)
Proof. According to Proposition 5.3 (and Remark 5.4), upg Γ q " ũ P H 1 0 pΩq, hence there holds γ p pu p pg Γ qq " γ n pu n pg Γ qq on Γ. This allows us to infer that

}γ p pu p,h pg Γ qq ´γn pu n,h pg Γ qq } 0,Γ ď ÿ αPtp,nu }γ α pu α pg Γ q ´uα,h pg Γ qq } 0,Γ .
To estimate the right-hand side of this inequality, we use the approximation results from Appendix B. Note that if pT h q hą0 is admissible in the sense of Definition 6.1, then the mesh families pT α h q hą0 , α P tp, nu, are admissible in the sense of Definition B.3. In Ω p , the subproblem ( 17) is always endowed with mixed boundary conditions. We thus apply the results of Appendix B.2, with D :" Ω p , Υ f :" Γ (hence, Υ t " BΩ p zΓ), a :" σ p , r :" f |Ωp , φ :" 0, and θ :" g Γ . By Remark B.10, we get

}γ p pu p pg Γ q ´up,h pg Γ qq } 0,Γ ď c p ρ h δp 2 |ũ| 1`τ,Ωp , (26) 
with δ p :" 2τ `εp . Assume that the subproblem [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF] in Ω n is also endowed with mixed boundary conditions (case |BΩ n XBΩ| d´1 ‰ 0). Applying again the results of Appendix B.2, this time with D :" Ω n , Υ f :" Γ (hence, Υ t " BΩ n zΓ), a :" σ n , r :" ´f|Ωn , φ :" 0, and θ :" g Γ , we get

}γ n pu n pg Γ q ´un,h pg Γ qq } 0,Γ ď c n ρ h δn 2 |ũ| 1`τ,Ωn ,
with δ n :" 2τ `εn . Recalling [START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF], and remarking that δ " minpδ p , δ n q, (25) follows easily. Now, assume instead that the subproblem [START_REF] Carvalho | Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation[END_REF] in Ω n is of pure Neumann type (case BΩ n " Γ). We then apply the results of Appendix B.3, with D :" Ω n , Λ :" Γ, a :" σ n , r :" ´f|Ωn , and θ :" g Γ . Setting D :" Ω, â :" σ, and û :" ũ, there holds ˆ " ρ and κ " |Γ| ´1 d´1 pγ p pu p pg Γ qq, 1q Γ . We let κ h :" |Γ| ´1 d´1 pγ p pu p,h pg Γ qq, 1q Γ . The Cauchy-Schwarz inequality then yields

|Γ| 1 {2
d´1 |κ ´κh | ď }γ p pu p pg Γ q ´up,h pg Γ qq} 0,Γ , hence, as a consequence of (26), the estimate (63) holds true with D 1 " Ω p , u 1 " ũp , 1 ď ˆ " ρ, and δ 1 " δ p . Using the notation of Lemma B.13, δ " minpδ, δ 1 q, with δ " δ n and δ 1 " δ p . Thus, δ " δ, and we infer

}γ n pu n pg Γ q ´un,h pg Γ qq } 0,Γ ď c n ρ h δ 2 `|ũ| 1`τ,Ωp `|ũ| 1`τ,Ωn ˘,
which, combined to [START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF], yields [START_REF] Cocquet | On the existence and uniqueness of a solution for some frequency-dependent partial differential equations coming from the modeling of metamaterials[END_REF].

We are now ready to prove convergence for our optimization-based method. Let us just briefly recall the principle of our approach. Our approach consists in defining an approximation of the solution ũ P H 1 0 pΩq to Problem (13) as ũh :" u h pg Γ,h q, where g Γ,h P G k,Γ h (respectively g Γ,h P G k,Γ h,N ) solves the well-posed minimization problem [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] (respectively ( 23)), and u h pg Γ,h q is the discrete transmission solution (cf. Definition 6.2) corresponding to g Γ,h . The proof of our convergence result shares ideas with that of [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with signchanging coefficients[END_REF]Theorem 1]. Theorem 6.7 (Convergence of the method). Suppose that Problem (13) admits a unique solution ũ P H 1 0 pΩq. Assume that g Γ P L 2 pΓq, with g Γ as defined in (15)-( 16). Then, choosing λphq in (21) such that λphq " c h δ for some c ą 0 and 0 ă δ ă δ, where δ is the positive number introduced in Lemma 6.6, there holds, strongly as h Ñ 0:

g Γ,h Ñ g Γ in L 2 pΓq, ∇ h ũh Ñ ∇ũ in L 2 pΩq, ũh Ñ ũ in L 2 pΩq, (27) 
where p∇ h q hą0 is the family of broken gradient operators on pT h q hą0 .

Proof. The proof proceeds in three steps.

(i) Weak convergence: By linearity, for α P tp, nu, we first write

u α,h pg Γ,h q " u α,h pg Γ q `ũ 1 α,h , (28) 
with U k,α h,0zΓ Q ũ1 α,h :" u 1 α,h pg Γ,h ´g Γ q as defined in [START_REF] Ciarlet | An optimal control-based numerical method for scalar transmission problems with sign-changing coefficients[END_REF], i.e. solution to

pσ α ∇ũ 1 α,h , ∇v α,h q Ωα " pg Γ,h ´g Γ , γ α pv α,h qq Γ @v α,h P U k,α h,0zΓ . (29) 
Testing ( 29) with ũ1 α,h P U k,α h,0zΓ , and using the Cauchy-Schwarz inequality, yields

}∇ũ 1 α,h } 2 0,Ωα ď σ ´1 5 }g Γ,h ´g Γ } 0,Γ }γ α pũ 1 α,h q} 0,Γ . (30) 
In Ω p , starting from (30), using the trace inequality (1) (with D Ð Ω p and s " 1), and applying a classical Poincaré-Steklov inequality in H 1 0zΓ pΩ p q, we infer that

}∇ũ 1 p,h } 0,Ωp ď c p σ ´1 5 }g Γ,h ´g Γ } 0,Γ . (31) 
An equivalent inequality can also be inferred in Ω n . When |BΩ n X BΩ| d´1 ‰ 0, the proof is identical to [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]. When BΩ n " Γ, the derivation is a bit less straightforward (the details are given in Remark 6.8 below), but leads to

}∇ũ 1 n,h } 0,Ωn `}ũ 1 n,h } 0,Ωn ď c n σ ´1 5 }g Γ,h ´g Γ } 0,Γ . (32) 
Now, we leverage the fact that J h pg Γ,h q ď J h pg Γ,h q for all g Γ,h P G k,Γ h (resp. for all g Γ,h P G k,Γ h,N in the inclusion case), and we choose g Γ,h " π k h pg Γ q, with π k h the L 2 pΓq-orthogonal projector onto G k,Γ h (remark, in the inclusion case, that there holds g Γ,h P G k,Γ h,N ). We first have

λphqσ ´2 5 }g Γ,h } 2 0,Γ ď J h pg Γ,h q ď J h pπ k h pg Γ qq.
Then, leveraging the orthogonality and boundedness properties of the projector, we remark that (i) u α,h pπ k h pg Γ qq " u α,h pg Γ q for α P tp, nu (since pπ k h pg Γ q ´g Γ , γ α pv α,h qq Γ " 0 for all v α,h P U k,α h,0zΓ ), and that (ii) }π k h pg Γ q} 0,Γ ď }g Γ } 0,Γ . We thus finally infer that

σ ´2 5 }g Γ,h } 2 0,Γ ď }γ p pu p,h pg Γ qq ´γn pu n,h pg Γ qq} 2 0,Γ λphq `σ´2 5 }g Γ } 2 0,Γ . (33) 
Owing to [START_REF] Cocquet | On the existence and uniqueness of a solution for some frequency-dependent partial differential equations coming from the modeling of metamaterials[END_REF], and to the fact that λphq " c h δ with δ ă δ, we deduce from (33) that }g Γ,h } 0,Γ is uniformly bounded with respect to h. We can thus infer the existence of g Γ,0 P L 2 pΓq such that, along a subsequence (retaining the same notation), g Γ,h á g Γ,0 weakly in L 2 pΓq as h Ñ 0. From ( 31) and ( 32), together with the uniform boundedness of pg Γ,h q hą0 in L 2 pΓq, we also infer the uniform boundedness of pũ 1 α,h q hą0 in H 1 pΩ α q for α P tp, nu. Thus, by Rellich's theorem (and a standard limit regularity argument), there exist ũ1 α P H 1 0zΓ pΩ α q for α P tp, nu such that, along a subsequence (retaining the same notation),

∇ũ 1 α,h á ∇ũ 1 α weakly in L 2 pΩ α q, ũ1 α,h Ñ ũ1 α strongly in L 2 pΩ α q, (34) 
γ α pũ 1 α,h q á γ α pũ 1 α q weakly in L 2 pΓq.

(ii) Identification of the limits: From the relation J h pg Γ,h q ď J h pg Γ,h q for all g Γ,h P G k,Γ h (resp. for all g Γ,h P G k,Γ h,N in the inclusion case) applied to g Γ,h " π k h pg Γ q, from (25), and from the fact that 0 ă δ ă δ, we infer that }γ p pu p,h pg Γ,h qq ´γn pu n,h pg Γ,h qq} 2 0,Γ ď }γ p pu p,h pg Γ qq ´γn pu n,h pg Γ qq} 2 0,Γ

`λphq σ ´2 5 }g Γ } 2 0,Γ ď Cρ 2 h δ N Ω pũq, (36) 
where N Ω pũq :" |ũ| 2 1`τ,Ωp `|ũ| 2 1`τ,Ωn `σ´2 7 }g Γ } 2 0,Γ . We then deduce from (36) that }γ p pu p,h pg Γ,h qq ´γn pu n,h pg Γ,h qq} 0,Γ Ñ 0 as h Ñ 0.

Combining this result with ( 25) and ( 28), we readily get that }γ p pũ 1 p,h q ´γn pũ 1 n,h q} 0,Γ Ñ 0 as h Ñ 0, and hence, from [START_REF] Hazard | Spectral analysis of polygonal cavities containing a negative-index material[END_REF], that γ p pũ 1 p q " γ n pũ 1 n q almost everywhere on Γ. One can then define ũ1 P H 1 0 pΩq such that ũ1 |Ωα :" ũ1 α for α P tp, nu. Using (34), together with the weak convergence result g Γ,h á g Γ,0 in L 2 pΓq, and a strongly convergent interpolant for test functions, one can show, passing to the limit h Ñ 0 in (29) (where both sides are multiplied by s α ), and summing over α P tp, nu, that ũ1 P H 1 0 pΩq satisfies apũ 1 , vq " 0 @v P H 1 0 pΩq.

This implies, by uniqueness of the solution to Problem [START_REF] Bunoiu | Homogenization of materials with sign changing coefficients[END_REF], that ũ1 " 0. Also, the uniqueness of the limit implies that the whole sequences converge in ( 34)- [START_REF] Hazard | Spectral analysis of polygonal cavities containing a negative-index material[END_REF]. By [START_REF] Ern | Finite Elements I: Approximation and interpolation[END_REF], and the (strong) convergences of p∇u α,h pg Γ qq hą0 and pu α,h pg Γ qq hą0 towards ∇ũ α and ũα , respectively in L 2 pΩ α q and L 2 pΩ α q for α P tp, nu, we have thus proved at this point that ∇ h ũh á ∇ũ weakly in L 2 pΩq, ũh Ñ ũ strongly in L 2 pΩq.

Passing again to the limit h Ñ 0 in (29), using a strongly convergent interpolant for test functions, and the fact that ũ1 " 0, one obtains pg Γ,0 ´g Γ , γ α pv α qq Γ " 0 @v α P H 1 0zΓ pΩ α q.

From there, fixing α P tp, nu, since γ α pH 1 0zΓ pΩ α qq |Γ " H

1 {2
00 pΓq and H

1 {2
00 pΓq is dense in L 2 pΓq, we infer that g Γ,0 " g Γ a.e. on Γ. The uniqueness of the limit implies that the whole sequence pg Γ,h q hą0 converges towards g Γ . We have thus proved that g Γ,h á g Γ weakly in L 2 pΓq.

(iii) Strong convergence: Owing to the weak convergence of pg Γ,h q hą0 towards g Γ , passing to the limit in [START_REF] Gunzburger | An optimization-based domain decomposition method for partial differential equations[END_REF] (recall that λphq " c h δ with δ ă δ) yields

}g Γ } 0,Γ ď lim hÑ0 inf }g Γ,h } 0,Γ ď lim hÑ0 sup }g Γ,h } 0,Γ ď }g Γ } 0,Γ ,
which readily implies the strong convergence of pg Γ,h q hą0 towards g Γ in L 2 pΓq. Now, testing (29) with v α,h " ũ1 α,h and passing to the limit, owing to the strong convergence of pg Γ,h q hą0 towards g Γ and to the weak convergence [START_REF] Hazard | Spectral analysis of polygonal cavities containing a negative-index material[END_REF] of pγ α pũ 1 α,h qq hą0 (both in L 2 pΓq), we infer the strong convergence of p∇ũ 1 α,h q hą0 to 0 in L 2 pΩ α q, for α P tp, nu. By (28), combined with the strong convergence of p∇u α,h pg Γ qq hą0 , this finally proves [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF], and concludes the proof. Remark 6.8 (Proof of (32), inclusion case). Combining the trace inequality (1) (with D Ð Ω n and s " 1) with a generalized Poincaré-Steklov inequality (cf. [28, Lemma 3.30]), and the fact that pγ n pũ 1 n,h q, 1q Γ " pγ p pũ 1 p,h q, 1q Γ (owing to [START_REF] Ern | Finite Elements I: Approximation and interpolation[END_REF] along with the definition of the discrete transmission solution in the inclusion case), we first infer that

}γ n pũ 1 n,h q} 0,Γ ď c 1 ˆ}∇ũ 1 n,h } 0,Ωn `|Γ| ´1 2 d´1 ˇˇpγ n pũ 1 n,h q, 1q Γ ˇˇ˙ď c 1 ´}∇ũ 1 n,h } 0,Ωn `}γ p pũ 1 p,h q} 0,Γ ¯.
Then, by the trace inequality (1) (with D Ð Ω p and s " 1), a standard Poincaré-Steklov inequality in H 1 0zΓ pΩ p q, and (31), we obtain

}γ n pũ 1 n,h q} 0,Γ ď c 2 ´}∇ũ 1 n,h } 0,Ωn `}∇ũ 1 p,h } 0,Ωp ¯ď c 3 ´}∇ũ 1 n,h } 0,Ωn `σ´1 5 }g Γ,h ´g Γ } 0,Γ ¯. ( 37 
)
In Ω n , starting from (30), and using (37), we thus get

}∇ũ 1 n,h } 2 0,Ωn ď c 3 σ ´1 5 }g Γ,h ´g Γ } 0,Γ ´}∇ũ 1 n,h } 0,Ωn `σ´1 5 }g Γ,h ´g Γ } 0,Γ ¯,
which eventually yields, by Young's inequality, the estimate (32) on }∇ũ 1 n,h } 0,Ωn . The estimate on }ũ 1 n,h } 0,Ωn can be obtained leveraging the same arguments.

It is crucial to note that, upon the extra integrability assumption g Γ P L 2 pΓq on the exact normal flux trace, the convergence result of Theorem 6.7 is valid as soon as Problem ( 13) admits a unique solution for the (given) loading f P L 2 pΩq at hand. In particular, no assumption is made on the invertibility of the operator A associated with the problem, as is the case for Tcoercivity based approximation. In this respect, our approach checks the requirement a) from Section 4.4. Furthermore, the convergence result does not rely on any particular geometrical constraints (with respect to the sign-changing interface) on the mesh family, as is the case for T-coercivity based approximation. Our approach hence also gives a positive answer to the requirement b) from Section 4.4. Remark 6.9 (Integrability assumption on g Γ ). We make the hypothesis in Theorem 6.7 that g Γ P L 2 pΓq, which is a rather strong assumption fulfilled, e.g., when ũα P H 1`m pΩ α q for m ą 1 2 , α P tp, nu. This assumption enables us to manipulate L 2 pΓq-norms instead of fractional-order ones, which is particularly convenient from both the analysis and implementation viewpoints. Let us point out that, in practice, the violation of this assumption does not necessarily prevent our approach from being applicable. We will see in Section 7.3 that, up to a slight adaptation of our method, numerical convergence can still be observed in cases for which the assumption g Γ P L 2 pΓq is not met. Let us finally point out that, at the time this manuscript is finalized, another related approach (based on optimal control) has been introduced in [START_REF] Ciarlet | An optimal control-based numerical method for scalar transmission problems with sign-changing coefficients[END_REF], which remedies this integrability limitation. The key idea therein is the use of a bulk-supported control instead of a boundary-supported one. Remark 6.10 (Extension of the approach). Our approach is not restricted to the configurations or boundary conditions for Problem (4) considered in Section 3. Under the only assumption on Problem (4) that the Dirichlet part of BΩ has nonzero pd´1q-dimensional measure, one can actually consider arbitrary (nonhomogeneous) boundary conditions, and relax the connectedness assumption on the two subdomains. Then, each connected part of a subdomain sharing a Dirichlet boundary with BΩ is treated as an M domain (cf. Figure 1), whereas every other connected part is treated as an N domain, for which the constant is fixed on a part of its boundary that is shared with an M domain (or which can be linked to one). For general geometries and boundary conditions, the method can be adapted and the analysis extended using the general approximation properties derived in Appendix B.

Numerical results

For all the test-cases studied in this section, Problem (4) will be set in a polygonal domain Ω Ă R 2 , and we will consider isotropic coefficients σ :" σ1 2 , with σ α " σ |Ωα a positive (real) constant for α P tp, nu. In this case, the contrast (3) at the interface is simply ν " ´σn σp . In all the numerical experiments, we set the multiplicative constant c ą 0 entering the definition of λphq (cf. Theorem 6.7) to c " 0.01. This empirical value appeared to give (among) the best results in all the test-cases studied here.

Algebraic realization

We devise an (exact) algebraic solver for the discrete optimization Problems ( 22) and [START_REF] Ciarlet | T-coercivity: application to the discretization of Helmholtz-like problems[END_REF]. We let N α , α P tp, nu, be the dimension of the discrete space U k,α h,0zΓ , and N Γ be the dimension of G k,Γ h . For α P tp, nu, we denote by K α,α h (size N α ˆNα ) the stiffness matrix in U k,α h,0zΓ , written in the basis pψ i α,h q 1ďiďNα of U k,α h,0zΓ , and by M Γ,Γ h (size N Γ ˆNΓ ) the mass matrix in G k,Γ h , expressed in the basis pφ j Γ,h q 1ďjďN Γ of G k,Γ h . We also let T Γ,α h (size N Γ ˆNα ) be the matrix representation of γ α pU k,α h,0zΓ q |Γ , expressed in the basis pφ j Γ,h q 1ďjďN Γ (remark that γ α pU k,α h,0zΓ q |Γ Ă G k,Γ h ). To solve Problem [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF], the first step is to compute, for α P tp, nu, the solutions to Problem [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF] for all the basis functions of G k,Γ h . In practice, we solve the pN Γ `1q following symmetric positive-definite (SPD) linear systems, of size N α ˆNα :

K α,α h ´uα,Γ h u α h ¯" ´rT Γ,α h s J M Γ,Γ h s α F α h ¯, (38) 
where F α h P R Nα has i-th coordinate pf, ψ i α,h q Ωα . Then, for g Γ h P R N Γ , the vector u α h pg Γ h q P R Nα solution to Problem [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF] in Ω α is given by

u α h pg Γ h q " u α h `uα,Γ h g Γ h . ( 39 
)
Solving Problem ( 22) is equivalent to solving inf g Γ h PR N Γ J h pg Γ h q, where the quadratic functional J h : R N Γ Ñ r0, 8q is given by

J h pg Γ h q :" ´TΓ,p h u p h pg Γ h q ´TΓ,n h u n h pg Γ h q ¯JM Γ,Γ h ´TΓ,p h u p h pg Γ h q ´TΓ,n h u n h pg Γ h q λphqσ ´2 5 pg Γ h q J M Γ,Γ h g Γ h . ( 40 
)
One can easily compute

∇ 2 J h " 2 ´TΓ,p h u p,Γ h ´TΓ,n h u n,Γ h ¯JM Γ,Γ h ´TΓ,p h u p,Γ h ´TΓ,n h u n,Γ h ¯`2λphqσ ´2 5 M Γ,Γ h , so that, since J h is quadratic, J h pg Γ h q " 1 2 pg Γ h q J " ∇ 2 J h ‰ g Γ h `pg Γ h q J V Γ h `C
, where V Γ h P R N Γ and C P R are inferred from [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF]. Writing the first-order necessary (and sufficient) condition of optimality, solving Problem ( 22) is finally equivalent to solving the SPD linear system, of size N Γ ˆNΓ :

" ∇ 2 J h ‰ gΓ h " V Γ h . (41) 
The approximation we seek is finally given by u α h pg Γ h q (as defined in ( 39)), α P tp, nu. To solve Problem (23) (inclusion case), the first step is also to compute, for α P tp, nu, the solutions to Problem [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF] for all the basis functions of G k,Γ h . In Ω p , one solves the pN Γ `1q SPD linear systems [START_REF] Li | A literature survey of mathematical study of metamaterials[END_REF], of size N p ˆNp . In Ω n , the problems are of pure Neumann type. Let us first introduce some notation. Let 1 n h P R Nn be the vector such that

ř Nn i"1 r1 n h s i ψ i n,h " 1 in Ω n . In turn, let 1 Γ h P R N Γ be the vector such that ř N Γ j"1 r1 Γ h s j φ j Γ,h " 1 on Γ. There holds T Γ,n h 1 n h " 1 Γ h . Define also MΓ,Γ h :" |Γ| ´1 d´1 ´r1 Γ h s J M Γ,Γ h ¯J ´r1 Γ h s J M Γ,Γ h ¯.
In Ω n , one solves the following pN Γ `1q SPD linear systems, of size N n ˆNn :

´Kn,n h `rT Γ,n h s J MΓ,Γ h T Γ,n h ¯´u n,Γ h u n h ¯" ´rT Γ,n h s J ´MΓ,Γ h ´M Γ,Γ h ¯´F n h ¯, (42) 
where Fn h P R Nn has i-th coordinate pf, ψ i n,h q Ωn ´|Γ| ´1 d´1 pf, 1q Ωn `1, γ n pψ i n,h q ˘Γ. Remark that

r1 n h s J rT Γ,n h s J ´MΓ,Γ h ´M Γ,Γ h ¯" r0 Γ h s J and r1 n h s J Fn h " 0.
Hence, the discrete solutions which correspond to u n,Γ h and u n h from ( 42) have zero mean over Γ. We amend a posteriori their expressions in the following way:

u n,Γ h Ð u n,Γ h `|Γ| ´1 d´1 1 n h ´r1 Γ h s J M Γ,Γ h T Γ,p h u p,Γ h ¯, u n h Ð u n h `|Γ| ´1 d´1 1 n h ´r1 Γ h s J M Γ,Γ h T Γ,p h u p h ¯.
For

g Γ h P R N Γ N :" ! g Γ h P R N Γ | r1 Γ h s J M Γ,Γ h g Γ h " pf, 1q Ωn )
, and for α P tp, nu, the vector u α h pg Γ h q P R Nα solution to Problem [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF] in Ω α finally writes

u α h pg Γ h q " u α h `uα,Γ h g Γ h . ( 43 
)
Solving Problem ( 23) is equivalent to solving inf g Γ h PR

N Γ N J h pg Γ h q, which in turn is equivalent to solving the well-posed saddle-point problem of size pN Γ `1qˆpN Γ `1q:

find pg Γ h , Γ q P R N Γ ˆR such that ˜∇2 J h M Γ,Γ h 1 Γ h r1 Γ h s J M Γ,Γ h 0 ¸ˆg Γ h Γ ˙" ˆVΓ h,N pf, 1q Ωn ˙, (44) 
where V Γ h,N P R N Γ . The approximation we seek is finally given by u α h pg Γ h q (as defined in ( 43)), α P tp, nu. [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]; similar considerations apply to Problem [START_REF] Ciarlet | T-coercivity: application to the discretization of Helmholtz-like problems[END_REF]. The bottleneck in the minimization algorithm is actually the solution to (38) for α P tp, nu. As a matter of fact, once the hessian of J h is computed (based on the solutions to (38)), computing the minimizer then amounts to solving the small linear system [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF]. As standard in domain decomposition, Problem (38) can be solved in parallel in the two subdomains Ω p and Ω n . Each subproblem consists in solving a multi-rhs linear system, for which efficient solution techniques exist (Cholesky factorization for a direct solution, or Krylov subspace recycling for an iterative one).

Remark 7.1 (Efficient implementation). Let us focus on Problem

Test-case 1: nonsymmetric cavity with contrast ´1

We consider the nonsymmetric cavity (cf. [21, Section 3.3]) with Ω :" p´1, 3q ˆp0, 1q and Γ :" t0u ˆp0, 1q, so that Ω p " p´1, 0q ˆp0, 1q and Ω n " p0, 3q ˆp0, 1q. This configuration is of type 2M. We let σ p " σ n " 1, so that ν " ´1 (super-critical case). With such choices, the operator A P LpH 1 0 pΩq, H ´1pΩqq associated with Problem ( 5) is injective, but not Fredholm (cf. Section 4.2). Since the operator is not Fredholm, the problem cannot be studied with the T-coercivity theory, nor approximated using meshing rules inferred from the latter. However, our approach is applicable, as soon as the solution exists (it is then unique) for a given loading.

Let us consider the exact solution ũ P H 1 0 pΩq defined by ũpx, yq :"

$ & % ´2px `1q 2 ´5px `1q ¯sinpπyq in Ω p , px ´3q sinpπyq in Ω n ,
which is associated to the loading f P L 2 pΩq such that This exact solution is depicted on Figure 2. We have g Γ pyq " ´sinpπyq on Γ, where g Γ is defined by ( 15)-( 16). For α P tp, nu, ũα P H 1`m pΩ α q for all m ě 0. For the geometry considered here, full elliptic regularity holds true in both subdomains (cf. Remark B.2), meaning that the dual regularity exponents ε p and ε n are both equal to 1. Hence, the value of the parameter δ in Theorem 6.7 is δ " 2k `1.

f px, yq " $ & % ´2π 2 px `1q 2 ´5π 2 px `1q ´4¯s inpπyq in Ω p , ´π2 px ´3q sinpπyq in Ω n .
We consider a structured triangulation of the domain Ω, with meshsize h " 0.07, which is admissible in the sense of Definition 6.1 (it is compliant with Γ), and we compare, for k " 1 (hence δ " 3), the discrete solutions obtained with our approach (for λphq " 0.01 h 2.9 ), and with a direct (non-stabilized) conforming finite element (cFE) approximation of the problem. Snapshots of the solutions are depicted on Figure 3. Whereas our approach provides a somewhat accurate solution (the relative error in L 2 -norm is of 5.33 ˆ10 ´2), which converges monotonically to the exact one as the mesh is refined (not shown here), the cFE solution exhibits very large spurious oscillations near the interface. This is a striking example of how unstable can be a non-stabilized method for such an ill-posed problem. 

Test-case 2: low-regularity solution

We consider (a slight variant of) the test-case studied in [5, Section 3]. We let Ω be the hexagonal domain of Figure 4 (left), for which Γ " pr, θq P Ω | θ " 0 or θ " 4π 3 ( , and Ω p , Ω n are respectively the top and bottom subdomains. The corresponding configuration is of type 2M. We let σ p " 1, and we tune σ n so as to change the value of the contrast ν. For such a configuration, Problem ( 5) is well-posed in the Hadamard sense if and only if ν R " ´2, ´1 2 ‰ .

Ω p Ω n Γ Ω p Ω n Γ Figure 4:
Test-cases 2 (left) and 3 (right). Geometry and mesh family member.

We consider the exact solution ũ P H 1 pΩq defined by ũpr, θq :" r κ Φpθq, where

Φpθq :" $ ' ' ' & ' ' ' % cos `κpθ ´2π 3 q cos `κ 2π 3 ˘in Ω p , cos `κpθ ´5π 3 q cos `κ π 3 ˘in Ω n ,
and where κ ą 0 depends on ν in the following way: κ is the smallest positive (real) solution to tan `κ 2π 3 ˘" ´ν tan `κ π 3 ˘. The solution ũ is associated to the loading f " 0, and to the nonhomogeneous Dirichlet boundary datum γpũq on BΩ. Besides, we have g Γ prq " ´κ r κ´1 tan ˆκ 2π 3 ˙a.e. on Γ.

The following regularity result holds true: for α P tp, nu, ũα P H 1`m pΩ α q for all m ă κ. We are going to consider two values of ν outside of the critical interval, namely ν P t´10.57, ´2.1u, for which the parameter κ is respectively such that κ Ç t0.7, 0.2u. When κ « 0.7, then we have g Γ P L 2 pΓq, and the assumptions of Theorem 6.7 are fulfilled. At the opposite, when κ « 0.2, the result of Theorem 6.7 is not valid (g Γ R L 2 pΓq). For the geometry considered here, full elliptic regularity holds true in Ω n , whereas the reentrant corner in Ω p induces a loss of regularity of 1 {4 (cf. Remark B.2). We thus have ε n " 1 and 3 4 ´ ă ε p ă 3 4 for any ą 0. Since the subproblems in Ω p and Ω n feature nonhomogeneous (Dirichlet) boundary conditions on the part of their boundary which is shared with BΩ, one has to use the result of Lemma B.9 in both Ω p and Ω n (and then take the min) to infer the value of the parameter δ from Theorem 6.7: a straightforward computation yields 2κ `1 2 ´ ă δ ă 2κ `1 2 for any ą 0, which is valid for all integer k ě 1 as soon as 1 2 ă κ ď 1. We consider a family of unstructured triangulations (see Figure 4 (left)) of the domain Ω, that is admissible in the sense of Definition 6.1, but which is not T-conforming, as opposed to the mesh family from [5, Figure 5 δ " 0.9 δ " 1.9

(c) H 1 -seminorm 10 ´2 10 ´1 10 ´2 10 ´1
δ " 0.9 δ " 1.9 

(d) L 2 -norm
h κ for H 1 , h κ`1 2 for L 2 .
theory enables to prove the optimal convergence of cFE. At the opposite, in the present Tnonconforming case, no theory applies. We compare, for k " 1, the results obtained with our approach and with cFE. We compute, for meshsizes between h " 0.27 and h " 0.0051, the relative errors over Ω in (broken) H 1 -seminorm and in L 2 -norm, for ν " ´10.57 and ν " ´2.1. In the following, the convergence rate of the error that one can expect with a T-conforming approximation will be referred to as the expected convergence rate. According to Proposition 4.8, the expected convergence rate in H 1 -seminorm is h κ . In L 2 -norm, the expected convergence rate depends on the dual regularity exponent of the sign-changing problem (see [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF]Section 3.4] for some insight on the question), as well as on the regularity of the boundary data. We do not have a theoretical value in the present case. For ν " ´10.57 (κ « 0.7), we choose λphq " 0.01 h 1.7 (remark that δ " 1.7 ă 1.9 ă 2κ `1 2 ), whereas for ν " ´2.1 (κ « 0.2) we test two different options. First, we choose the stabilization following the rationale of Theorem 6.7, even though the latter is not applicable in this case; we let λphq " 0.01 h 0.9 (remark that δ " 0.9 ă 2κ `1 2 ). Second, we choose λphq " 0.01 h 1.9 , i.e. we decrease the magnitude of the stabilization. The heuristics behind this choice is elementary: since g Γ R L 2 pΓq in this case, we rescale the stabilization so as to formally embed an H ´1 2 pΓq-norm of g Γ , i.e. we multiply the original stabilization by the square of h 1 2 , yielding δ " 1.9. The results are collected in Figure 5. For ν " ´10.57 (top), for both approaches, we observe the expected convergence rate in H 1 -seminorm. For ν " ´2.1 (bottom), cFE presents a completely erratic behavior. At the opposite, our approach provides monotonic convergence. When the regularization exponent is fixed to δ " 0.9, the method sub-converges, whereas for δ " 1.9, the expected convergence rate is reached in H 1 -seminorm.

Test-case 3: inclusion

We consider an inclusion test-case with Ω :" p´2, 2q ˆp´2, 2q and Ω n :" p´1, 1q ˆp´1, 1q; cf. Figure 4 (right). This configuration is of type MN. We let σ p " 1, and we tune σ n so as to change the value of the contrast ν. For such a setting, Problem ( 5) is well-posed in the Fredholm sense if and only if ν R " ´3, ´1 3 ‰ (see [START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF]Theorem 1]). Let us consider the exact solution ũ P H 1 0 pΩq defined by ũpx, yq :"

# sinpπxq sinpπyq in Ω p , ν ´1 sinpπxq sinpπyq in Ω n ,
which is associated to the loading f P L 2 pΩq such that f px, yq " 2π 2 sinpπxq sinpπyq in Ω. We have g Γ px, yq " π `sinpπxq p1 y"1 ´1y"´1 q `sinpπyq p1 x"1 ´1x"´1 q ˘a.e. on Γ.

For α P tp, nu, ũα P H 1`m pΩ α q for all m ě 0. For the geometry considered here, full elliptic regularity holds true in Ω n , but the reentrant corners in Ω p induce a loss of regularity of 1 {3 (cf. Remark B.2). The dual regularity exponents are thus such that ε n " 1 and 2 3 ´ ă ε p ă 2 3

for any ą 0. The parameter δ from Theorem 6.7 is, in turn, such that 2k `2 3 ´ ă δ ă 2k `2 3 for any ą 0. We consider two values of ν, one outside of the critical interval (ν " ´4), and the super-critical value (ν " ´1). For the first value of ν, we know that the operator A P LpH 1 0 pΩq, H ´1pΩqq associated with Problem ( 5) is Fredholm (of index 0), whereas for the second we know that it is not (and hence T-coercivity is not applicable). For both values of ν, we assume in the following that the operator A is injective. Numerically, we have not found in our experiments any evidence of non-uniqueness.

We consider a family of unstructured triangulations (see Figure 4 (right)) of the domain Ω, that is admissible in the sense of Definition 6.1, but which is not (locally) T-conforming. For ν " ´4, we compare, for k " 1 and k " 2, the results obtained with our approach and with cFE. We compute the relative errors over Ω in (broken) H 1 -seminorm and L 2 -norm, for meshsizes between h " 0.70 and h " 0.015. In H 1 -seminorm, according to Proposition 4.9, the expected convergence rate (i.e. relative to a (locally) T-conforming approximation, and for h small enough) is h k . In L 2 -norm, we do not have a theoretical value. We choose λphq " 0.01 h 2k`1 2 , and we check that δ " 2k `1 2 ă 2k `2 3 . For ν " ´1, we perform the same comparisons. However, in this case, no theoretical convergence rate is available, even in H 1 -seminorm. All the results are collected in Figure 6. For ν " ´4 (top), we remark that cFE and our approach give very similar results. The expected convergence rates are reached in H 1 -seminorm. In L 2 -norm, both approaches seem to converge with order k `1. For ν " ´1 (bottom), we remark that cFE suffers, whereas our approach provides monotonic convergence in both H 1 -seminorm and L 2 -norm. The convergence orders are difficult to analyze. On 

h k for H 1 , h k`1 for L 2 .
Figure 7, we have depicted the discrete solutions obtained for k " 2 and h " 0.054. We observe spurious oscillations at the interface between the two subdomains for cFE, whereas our approach provides an almost oscillation-free solution (the relative error in H 1 -seminorm is more than 10 times smaller).

A Background on Fredholm theory

We collect in this appendix some classical definitions and results. We provide short proofs for the most important of them. For V, W real-valued Banach spaces, we let LpV, W q be the space of operators (i.e. bounded linear maps) from V to W . When W " V , we simply write LpV q. Let U be a real-valued reflexive Banach space (e.g. a real-valued Hilbert space), with topological dual U ‹ :" LpU, Rq, and duality pairing x¨, ¨y. Since U is reflexive, there exists a natural (isometric) isomorphism between U and U ‹‹ , and one can identify U with its double dual. Let us recall some definitions. In what follows, for V Ă W , we classically denote by W {V the quotient of the vector space W by the subspace V . Definition A.2 (Fredholm operator [START_REF] Abramovich | An invitation to operator theory[END_REF]Definition 4.37]). The operator B P LpU, U ‹ q is said to be Fredholm if its nullity dimpKerBq and defect dimpU ‹ {ImBq are both finite. Its index is then defined as indpBq :" dimpKerBq ´dimpU ‹ {ImBq.

As a by-product of Definition A.2, any Fredholm operator B P LpU, U ‹ q of index 0 that is injective is also surjective, and is an isomorphism from U to U ‹ .

The following lemma holds true. Lemma 4.38]). Let B P LpU, U ‹ q be such that its defect dimpU ‹ {ImBq is finite. Then, ImB is closed in U ‹ and one has dimpU ‹ {ImBq " dimpKerB ‹ q.

Lemma A.3 ([2,
We can now state the main results.

Proposition A.4. Let B P LpU, U ‹ q be a self-adjoint Fredholm operator. Then, indpBq " 0 and the following alternative holds true:

' either B is injective, then B is an isomorphism from U to U ‹ ;
' or, letting 1 ď n :" dimpKerBq ă 8, and KerB :" Spantv 1 , . . . , v n u for functions v 1 , . . . , v n P U , one has ImB " tf P U ‹ | xf, v k y " 0 @k " 1, . . . , nu.

Proof. B being self-adjoint, B ‹ " B. Since B is Fredholm, its defect is finite and, by Lemma A.3, dimpU ‹ {ImBq " dimpKerB ‹ q " dimpKerBq, which yields indpBq " 0. Then, if B is injective, dimpU ‹ {ImBq " dimpKerBq " 0 and B is also surjective. In the opposite case, using the relation pImBq K " KerB ‹ (cf. e.g. [2, Theorem 2.13]), one has ImB " ppImBq K q K " pKerB ‹ q K " pKerBq K (recall that U is reflexive), thus since ImB is closed (by Lemma A.3), there holds

ImB " tf P U ‹ | xf, vy " 0 @v P KerBu .

Assumption B.1 (Regularity of the dual solution)

. There is ε P p 1 2 , 1s (called regularity exponent), whose value may depend on the geometries of D, Υ t and Υ f , and on a, so that the solution z to Problem [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] belongs to H 1`ε pDq, and satisfies the following regularity estimate: there exists a constant c r ą 0 such that }z} 1`ε,D ď c r a ´1 5 }t} 0,D . ). When d " 2 (so that D is a polygon), a " a 1 2 for a ą 0, and the maximum angle ω in D is such that π ă ω ă 2π (D is not convex), Assumption B.1 holds true for all ε ă ε 0 with ε 0 " π ω (cf. [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Theorem 4.4.3.7] and [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF]Remark I.3.4]). In the case of mixed Dirichlet-Neumann boundary conditions Υ t ‰ H, the situation is more complex. Here, we only state results in the case a " a 1 d for a ą 0. When d " 3, D is a rectangular cuboid, and Υ f is the union of (entire) faces of D, Assumption B.1 holds true with regularity exponent ε " 1. When d " 2 (so that D is a polygon), (i) if D is convex, and the maximum angle ω dn between Υ t and Υ f is such that ω dn ď π 2 , Assumption B.1 holds true with regularity exponent ε " 1; (ii) if one or both of the previous two assumptions is not satisfied, and if ω dn ă π, Assumption B.1 holds true for all ε ă ε 0 with ε 0 " min ´π ω d , π ωn , π 2ω dn ¯, where ω d and ω n are, respectively, the maximum angles in D internal to Υ t and to Υ f (cf. [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Theorem 4.4.3.7] and [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF]Remark I.3.6]).

Since we are going to consider finite element approximations, let us precise our definition of an admissible mesh family.

Definition B.3 (Admissible mesh family).

A mesh family pT h q hą0 is admissible if (i) for all h ą 0 in the family, T h is a matching simplicial discretization of D that is geometrically compliant with the partition of the boundary (in the sense that Υ t " Ť F and Υ f " Ť F with tF u boundary faces of T h ), and if (ii) pT h q hą0 is shape-regular in the sense of Ciarlet [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF].

Let T h be a member of an admissible mesh family. For an integer k ě 1, we introduce the discrete space V k h :"

! v h P C 0 pDq | v h|T P P k d pT q @T P T h ) Ă H 1 pDq. The usual Lagrange interpolator from C 0 pDq onto V k h is denoted I k,d h , whereas I k,d´1
h stands for the Lagrange interpolator (piecewise defined on each face of D) from C 0 pΥq onto the space

! ϕ h P C 0 pΥq | ϕ h|F P P k d´1 pF q @F P F b h ) ,
where the set F b h collects the boundary faces of the mesh T h . It is an easy matter to verify that γ ˝Ik,d h " I k,d´1 h ˝γ on C 0 pDq. In order to deal with mixed Dirichlet-Neumann boundary conditions (Υ t ‰ H), we will need the space H 1 0zΥ f pDq defined in (2). In the purely Neumann case, we will instead consider the space H 1,0 pDq :" v P H 1 pDq | pv, 1q D " 0 ( .

From a discrete point of view, we define

V k h,0zΥ f :" V k h X H 1 0zΥ f pDq and V k,0 h :" V k h X H 1,0 pDq. We then let Π k h,0zΥ f : H 1 0zΥ f pDq Ñ V k h,0zΥ f and Π k,0 h : H 1,0 pDq Ñ V k,0 h
denote the respective a-weighted elliptic projectors onto the previous discrete spaces, i.e. the orthogonal projectors for the inner product pv, wq Þ Ñ pa∇v, ∇wq D . The following approximation result holds true.

Proposition B.4 (Approximation). Let V be either H 1 0zΥ f pDq or H 1,0 pDq and, correspondingly, let V h be either V k h,0zΥ f or V k,0 h and Π h : V Ñ V h be either Π k h,0zΥ f or Π k,0 h . Let s P r0, ks. Then, there is c app ą 0 such that, for all v P V satisfying v P H 1`s pDq,

}a 1 {2 ∇pv ´Πh pvqq} 0,D ď c app a 1 {2 7 h s |v| 1`s,D . (47) 
Proof. By definition of the a-weighted elliptic projection, there holds

}a 1 {2 ∇pv ´Πh pvqq} 0,D " min v h PV h }a 1 {2 ∇pv ´vh q} 0,D . If s " 0, choosing v h " 0 directly yields }a 1 {2 ∇pv ´Πh pvqq} 0,D ď a 1 {2
7 |v| 1,D . Now, assume that s P p d 2 ´1, ks. In that case, owing to the (continuous) embedding of H 1`s pDq into C 0 pDq, one can give a sense to the Lagrange interpolate

I k,d h pvq P V k h of v. Since T h is admissible, if v P H 1 0zΥ f pDq, I k,d h pvq P V k h,0zΥ f . In turn, if v P H 1,0 pDq, a priori I k,d h pvq R V k,0 h , but min v h PV k,0 h }a 1 {2 ∇pv ´vh q} 0,D " min v h PV k h }a 1 {2 ∇pv ´vh q} 0,D . (48) 
Therefore, in any case, one can write }a 1 {2 ∇pv ´Πh pvqq} 0,D ď a 1 {2 7 }∇pv ´Ik,d h pvqq} 0,D , and conclude invoking standard approximation results for I k,d h (see e.g. [START_REF] Ern | Finite Elements I: Approximation and interpolation[END_REF]Corollary 19.8]). When d " 2, the proof is complete. When d " 3, one still has to treat the case s P p0, 1 2 s. Our proof makes use of the quasi-interpolation operator introduced in [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] (among other candidates). When V " H 1,0 pDq, the conclusion follows from the trick [START_REF] Nguyen | Limiting absorption principle and well-posedness for the time-harmonic Maxwell equations with anisotropic sign-changing coefficients[END_REF] and from [START_REF] Ern | Finite Elements I: Approximation and interpolation[END_REF]Theorem 22.6] (together with the shape-regularity of the mesh family). When V " H 1 0zΥ f pDq, one has to use a quasi-interpolation operator which preserves the Dirichlet boundary condition. Such a construction is performed in [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] for purely Dirichlet boundary conditions. In such a configuration, the conclusion follows from [START_REF] Ern | Finite Elements I: Approximation and interpolation[END_REF]Theorem 22.14] (together with the shape-regularity of the mesh family). In our partially Dirichlet case, the arguments need to be slightly adapted. We will admit that [START_REF] Ern | Finite Elements I: Approximation and interpolation[END_REF]Theorem 22.14] extends, and we refer the reader to [START_REF] Licht | Smoothed projections and mixed boundary conditions[END_REF].

We now treat separately the mixed and purely Neumann cases.

B.2 Mixed boundary conditions

We here assume that Υ t ‰ H. We study the following problem:

$ ' & ' % ´divpa∇uq " r in D, u " φ on Υ t , a∇u¨n " θ on Υ f . (49) 
We assume that r P L 2 pDq, that θ belongs to H ´1 2 pΥ f q (as defined in Section 2), and that φ P H 1 2 pΥ t q. Recall that Υ t is Lipschitz in Υ. By Calderón's extension theorem (guaranteeing the existence of a bounded extension operator from H 1 2 pΥ t q to H 1 2 pΥq), and the surjectivity of the trace operator (ensuring the existence of a bounded lifting operator from H 1 2 pΥq to H 1 pDq), we infer the existence of φ P H 1 pDq such that γpφq |Υt " φ and }φ} 1,D ď c s }φ} 1 2 ,Υt . The weak formulation of Problem (49) writes as follows: find u P H 1 pDq, u " u 0 `φ, with

u 0 P H 1 0zΥ f pDq such that pa∇u 0 , ∇vq D " pr, vq D `xθ, γpvqy Υ f ´pa∇φ, ∇vq D @v P H 1 0zΥ f pDq. (50) 
We henceforth assume that the lifting φ belongs to H 1`s pDq for some s ą d 2 ´1. Note that, since s ą d 2 ´1, we have φ P C 0 pDq.

Remark B.5 (Characterization of H 1 2 `spΥ t q). Formally, a necessary and sufficient condition for the existence of a regular lifting φ P H 1`s pDq is that "φ P H 1 2 `spΥ t q". The space H 1 2 `spΥq has standard meaning for s ă 1 2 , however its definition is unclear for s ě 1 2 without further regularity on Υ. Denoting by Υ j , 1 ď j ď N , the open faces of the polytopal domain D, a necessary condition so as to ensure that φ " γpφq |Υt for some φ P H 1`s pDq is that φ |Υ j XΥt P H 1 2 `spΥ j X Υ t q for all 1 ď j ď N . Of course this condition cannot be sufficient, and must be supplemented by some "jump" control between the faces in Υ t . To obtain necessary and sufficient conditions, one needs to finely characterize the range of the trace operator on H 1`s pDq. For Lipschitz polytopes, the range of the trace operator of order n P N on H ζ pDq so that ζ ą n `1 2 has been fully characterized in [31, Theorem 1.5.2.8] (d " 2) and [START_REF] Bernardi | Compatibilité de traces aux arêtes et coins d'un polyèdre[END_REF] (d " 3).

We consider the following conforming finite element approximation of Problem (50): find

u h P V k h , u h " u h,0 `Ik,d h pφq, with u h,0 P V k h,0zΥ f such that pa∇u h,0 , ∇v h q D " pr, v h q D `xθ, γpv h qy Υ f ´pa∇I k,d h pφq, ∇v h q D @v h P V k h,0zΥ f . (51) 
Remark that there holds γpu h q " I k,d´1 h pφq on Υ t .

Lemma B.6 (H 1 pDq-seminorm estimate). Assume that u P H 1`m pDq, with 0 ď m ď s. Let τ :" minpm, kq. Then, the following estimate holds true, for some constant c ą 0:

}a 1 {2 ∇pu ´uh q} 0,D ď c a 1 {2 7 h τ `|u| 1`τ,D `|φ| 1`τ,D ˘. (52) 
Proof. Since V k h,0zΥ f Ă H 1 0zΥ f pDq, the following orthogonality property holds true as a consequence of ( 50) and ( 51):

pa∇pu ´uh q, ∇v h q D " 0 @v h P V k h,0zΥ f . (53) 
From this, for any w h P V k h such that γpw h q " I k,d´1 h pφq on Υ t , we obtain }a 1 {2 ∇pu ´uh q} 2 0,D " pa∇pu ´uh q, ∇pu ´wh qq D ď }a 1 {2 ∇pu ´uh q} 0,D }a 1 {2 ∇pu ´wh q} 0,D . Now, choosing w h " Π k h,0zΥ f pu 0 q `Ik,d h pφq, we get

}a 1 {2 ∇pu ´uh q} 0,D ď }a 1 {2 ∇pu 0 ´Πk h,0zΥ f pu 0 qq} 0,D `}a 1 {2 ∇pφ ´Ik,d h pφqq} 0,D .
We have u 0 P H 1`m pDq and φ P H ). If m ą d 2 ´1 (then u P C 0 pDq), one can choose w h " I k,d h puq in the proof of Lemma B.6. Doing so, one can prove in this case that (52) holds true with right-hand side simply proportional to |u| 1`τ,D .

Lemma B.8 (L 2 pDq-norm estimate). Assume that u P H 1`m pDq, with 0 ď m ď s. Let τ :" minpm, kq, χ :" min `1 2 `s, k `1˘, and η :" minpτ `ε, χq, where ε P p 1 2 , 1s is the regularity exponent of the dual problem. Then, there is some constant c ą 0 such that }u ´uh } 0,D ď c h η ¨|u| 1`τ,D `|φ| 1`τ,D `˜N ÿ j"1

|φ| 2 χ,Υ j XΥt ¸1{2 ', (54) 
and there holds η P rτ `1 2 , k `1s.

Proof. We resort to the Aubin-Nitsche duality argument. Recall that a P W 1,8 pDq (so that a is Lipschitz continuous in D), and that the dual solution z to [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] belongs to H 1`ε pDq for ε P p 1 2 , 1s (by Assumption B.1). As a consequence, a∇z P H ε pDq, and there is a constant c l ą 0, which depends linearly on the Lipschitz constant of a ´1 7 a, such that }a∇z} ε,D ď c l a 7 }∇z} ε,D .

Furthermore, one can give a sense to γpa∇zq |Υt ¨n in L 2 pΥ t q. We consider the following weak formulation of the dual Problem (45): find z P H 1 0zΥ f pDq such that pa∇z, ∇wq D ´pγpa∇zq¨n, γpwqq Υt " pt, wq D @w P H 1 pDq, where we have leveraged the fact that a∇z¨n " 0 on Υ f to cancel out the Neumann boundary contribution. Testing with w " pu ´uh q P H 1 pDq, remarking that γpu ´uh q " φ ´Ik,d´1 h pφq on Υ t , and using the symmetry of a, yields pt, pu ´uh qq D " p∇z, a∇pu ´uh qq D ´pγpa∇zq¨n, φ ´Ik,d´1 h pφqq Υt .

Since z P H 1 0zΥ f pDq, using the orthogonality property (53), we infer that pt, pu ´uh qq D " p∇pz ´Πk h,0zΥ f pzqq, a∇pu ´uh qq D ´pγpa∇zq¨n, φ ´Ik,d´1 h pφqq Υt , hence, letting t :" a 7 pu ´uh q P L 2 pDq, there holds Let us first estimate T 1 in [START_REF] Smith | Composite medium with simultaneously negative permeability and permittivity[END_REF]. By the approximation properties of Π k h,0zΥ f (see Proposition B.4), the fact that |z| 1`ε,D ď }z} 1`ε,D , and the regularity result [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with signchanging coefficients[END_REF], we infer that T 1 ď c app c r 1 2 a ´1 2 5 h ε }t} 0,D }a 1 {2 ∇pu ´uh q} 0,D .

Let us now estimate T 2 in (56). Since ε P p 1 2 , 1s, the trace theorem (1) followed by (55) yields }γpa∇zq¨n} 0,Υt ď }γpa∇zq} 0,Υ ď }γpa∇zq} ε´1 2 ,Υ ď c γ }a∇z} ε,D ď c γ c l a 7 }∇z} ε,D .

Since }∇z} ε,D ď }z} 1`ε,D , leveraging the regularity result [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with signchanging coefficients[END_REF], we infer that T 2 ď c γ c l c r }t} 0,D }φ ´Ik,d´1

h pφq} 0,Υt . (58) 
Plugging the estimates ( 57) and ( 58) into [START_REF] Smith | Composite medium with simultaneously negative permeability and permittivity[END_REF], recalling the definition of the function t, and using (i) (52) for T 1 , and (ii) standard approximation properties for I k,d´1 h (cf. e.g. [START_REF] Ern | Finite Elements I: Approximation and interpolation[END_REF]Corollary 19.8]) together with the admissibility of the mesh and the fact that φ |Υ j XΥt P H 1 2 `spΥ j X Υ t q for all 1 ď j ď N (see Remark B.5) for T 2 , we infer that

}u ´uh } 0,D ď c 1 h τ `ε `|u| 1`τ,D `|φ| 1`τ,D ˘`c 2 h χ ˜N ÿ j"1 |φ| 2 χ,Υ j XΥt ¸1{2 ,
which yields [START_REF] Schatz | An observation concerning Ritz-Galerkin methods with indefinite bilinear forms[END_REF]. To prove the upper bound on η, we just remark that τ `ε ď k `1 and χ ď k `1. For the lower bound, since χ ´1 2 " minps, k `1 2 q and minpm, kq ď minps, k `1 2 q, one has χ ě τ `1 2 . Together with ε ą 1 2 , this yields η ě τ `1 2 .

Lemma B.9 (L 2 pΥq-norm estimate). Assume that u P H 1`m pDq, with 0 ď m ď s. Let τ :" minpm, kq, χ :" min `1 2 `s, k `1˘, η :" minpτ `ε, χq, and δ :" τ `η, where ε P p 1 2 , 1s is the regularity exponent of the dual problem. Then, there is c ą 0 such that }γpu ´uh q} 0,Υ ď c h Remark B.10 (Case φ " 0). If φ " 0 on Υ t , one can choose φ " 0 in D, hence χ " k `1, η " τ `ε, and the estimate (59) holds true with δ 2 " τ `ε 2 and right-hand side simply proportional to |u| 1`τ,D .

Lemma B.11 (H 1 pDq-seminorm estimate). Assume that u P H 1`m pDq, with m ě 0. Let τ :" minpm, kq. Then, the following estimate holds true, for some constant c ą 0: 

Proof. Since V k,0 h Ă H 1,0 pDq, the following orthogonality property holds true as a consequence of (61) and (62): pa∇pu 0 ´u0 h q, ∇v h q D " 0 @v h P V k,0 h .

Therefore, u 0 h " Π k,0 h pu 0 q. Now, since ∇pu ´uh q " ∇pu 0 ´u0 h q and |u 0 | 1`τ,D " |u| 1`τ,D , Proposition B.4 directly yields the result. Lemma B.12 (L 2 pDq-norm estimate). Assume that u P H 1`m pDq and u 1 P H 1`m pD 1 q, with m ě 0. Let τ :" minpm, kq, δ :" 2τ `ε where ε P p 1 2 , 1s is the regularity exponent of the dual problem in D, and δ 1 :" 2τ `ε1 for some ε 1 P p 1 2 , 1s. Define δ :" minpδ, δ 1 q. Then, there is some constant c ą 0 such that

}u ´uh } 0,D ď c ˆ h δ 2 `|u| 1`τ,D `|u 1 | 1`τ,D 1 ˘, (66) 
and there holds δ 2 P pτ `1 4 , k `1 2 s. Proof. Writing, for D diameter of D, }u ´uh } 0,D ď }u 0 ´u0 h } 0,D `

1 2 D |Υ| 1 {2 d´1 |ι 0 ´ι0 h |, (67) 
we first estimate |ι 0 ´ι0 h |. We have

c 1 2 Λ |Υ| 1 {2 d´1 |ι 0 ´ι0 h | " |Λ| 1 {2 d´1 |ι 0 ´ι0 h | ď |Λ| 1 {2
d´1 |κ ´κh | `}γpu 0 ´u0 h q} 0,Λ .

Using the "exterior" estimate (63) on |Λ|

1 {2
d´1 |κ ´κh |, the multiplicative trace inequality in H 1 pDq (cf. e.g. [12, (1.6.6)]), and the fact that ∇pu 0 ´u0 h q " ∇pu ´uh q, we infer

c 1 2 Λ |Υ| 1 {2 d´1 |ι 0 ´ι0 h | ď c κ 1 h δ 1 2 |u 1 | 1`τ,D 1 `c1 {2 mt ´}u 0 ´u0 h } 0,D `}∇pu ´uh q} 1 {2 0,D }u 0 ´u0 h } 1 {2 0,D ¯.
Plugging this estimate into (67), and using the H 1 pDq-seminorm estimate (64), yields }u ´uh } 0,D ď c 1 ˆ}u 0 ´u0 h } 0,D `

1 4 h τ 2 |u| 1 {2 1`τ,D }u 0 ´u0 h } 1 {2 0,D ` 1 h δ 1 2 |u 1 | 1`τ,D 1 ˙. (68) 
Now, we invoke the Aubin-Nitsche duality argument to estimate }u 0 ´u0 h } 0,D . We consider the following weak formulation of Problem (45): find z P H 1,0 pDq such that pa∇z, ∇wq D " pt, wq D @w P H 1,0 pDq.

Choosing w " pu 0 ´u0 h q P H 1,0 pDq, we infer, by symmetry of a and orthogonality (65), pt, pu 0 ´u0 h qq D " p∇z, a∇pu 0 ´u0 h qq D " p∇pz ´Πk,0 h pzqq, a∇pu 0 ´u0 h qq D .

Letting t :" a 7 pu 0 ´u0 h q P L 2 pDq (notice that pt, 1q D " 0), and leveraging the approximation result of Proposition B.4, combined with the regularity result [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with signchanging coefficients[END_REF] and the fact that |z| 1`ε,D ď }z} 1`ε,D , as well as the H 1 pDq-seminorm estimate (64), we obtain }u 0 ´u0 h } 0,D ď c app c r 

The conclusion follows from (68), together with ě 1 and maxp , 1 q ď ˆ .

Lemma B.13 (L 2 pΥq-norm estimate). Assume that u P H 1`m pDq and u 1 P H 1`m pD 1 q, with m ě 0. Let τ :" minpm, kq, δ :" 2τ `ε where ε P p 1 2 , 1s is the regularity exponent of the dual problem in D, and δ 1 :" 2τ `ε1 for some ε 1 P p 1 2 , 1s. Define δ :" minpδ, δ 1 q. Then, there is c ą 0 such that }γpu ´uh q} 0,Υ ď c ˆ h δ 2 `|u| 1`τ,D `|u

1 | 1`τ,D 1 ˘, (70) 
and there holds δ 2 P pτ `1 4 , k `1 2 s.

Proof. Starting from }γpu ´uh q} 0,Υ ď }γpu 0 ´u0 h q} 0,Υ `c´1 2 Λ |Λ|

1 {2 d´1 |ι 0 ´ι0 h | ď p1 `c´1 2 Λ q}γpu 0 ´u0 h q} 0,Υ `c´1 2 Λ |Λ| 1 {2
d´1 |κ ´κh |, using the multiplicative trace inequality in H 1 pDq (cf. e.g. [12, (1.6.6)]) combined with the fact that ∇pu 0 ´u0 h q " ∇pu ´uh q, along with the "exterior" estimate (63) on |Λ| The conclusion follows from (69) and (64), as in the proof of Lemma B.12.
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 2 Figure 2: Test-case 1. Exact solution for the nonsymmetric cavity with contrast ´1.
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 3 Figure 3: Test-case 1. Discrete solutions for the nonsymmetric cavity with contrast ´1.
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 5 Figure 5: Test-case 2. Relative errors vs. h for ν " ´10.57 (top) and ν " ´2.1 (bottom). Dotted black: cFE, Solid blue/brown: optimization-based, Solid red: h κ for H 1 , h κ`1 2 for L 2 .
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 6 Figure 6: Test-case 3. Relative errors vs. h for ν " ´4 (top) and ν " ´1 (bottom). Dotted black: cFE (squares for k " 1, circles for k " 2), Solid cyan/blue: optimization-based, Solid red: h k for H 1 , h k`1 for L 2 .
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 7 Figure 7: Test-case 3. Discrete solutions for ν " ´1.
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δ 2 and there holds δ 2 P

 22 ¨|u| 1`τ,D `|φ| 1`τ,D `˜N ÿ rτ `1 4 , k `1 2 s.Proof. The estimate (59) is a consequence of the multiplicative trace inequality in H 1 pDq (cf. e.g. [12, (1.6.6)]):}γpu ´uh q} 2 0,Υ ď c mt }u ´uh } 0,D }u ´uh } 1,D .Lemmas B.6 and B.8, and the fact that ě 1 and η ą τ yield the conclusion.

}a 1 {2 1 {2 7 h

 117 ∇pu ´uh q} 0,D ď c a τ |u| 1`τ,D .

1 2 a ´1 2 5 h ε }a 1 {2

 11 ∇pu ´uh q} 0,D ď c 2 h τ `ε|u| 1`τ,D .

2 Λ c κ 1 h δ 1 2

 21 |u 1 | 1`τ,D 1 .

  5, Lemma 1].

	Proposition 4.5. Problem (6) is well-posed in the Fredholm sense if and only if the form b
	is weakly T-coercive.
	For a symmetric bilinear form, weak T-coercivity is thus a necessary (and sufficient) condition
	for well-posedness in the Fredholm sense.
	4.2 An intrinsic limitation for sign-shifting problems
	Let us consider Problem (5) for the 2D nonsymmetric cavity setting analyzed in [21, Section
	3.3]. Let Ω :" p´ζ, ζq ˆp0, 1q for ζ, ζ ą 0 such that ζ ‰ ζ, and let Ω p :" p´ζ, 0q ˆp0, 1q

)

  Remark B.2 (Elliptic regularity). Let us discuss configurations for which the regularity assumption B.1 is known to hold true. First, recall that a is Lipschitz continuous in D. Second, recall that Problem (45) is endowed with homogeneous boundary conditions.Let us begin by considering the purely Neumann situation Υ t " H. In that case, when the domain D is convex, Assumption B.1 holds true with regularity exponent ε " 1 (cf.[START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] Theorem 3.2.1.3]

  1`s pDq Ă H 1`m pDq. Hence, by the approximation properties of Π k h,0zΥ f (see Proposition B.4) and I k,d h (cf. e.g. [28, Corollary 19.8]), we infer that }a 1 {2 ∇pu ´uh q} 0,D ď c a Since |u 0 | 1`τ,D ď |u| 1`τ,D `|φ| 1`τ,D , we obtain (52).

	1 {2 7 h τ `|u 0 | 1`τ,D `|φ| 1`τ,D	˘.
	Remark B.7 (Case m ą d 2 ´1	

The conclusion follows from the finiteness of the nullity of B.

Proposition A.5. Let B P LpU, U ‹ q be a self-adjoint injective operator. Then, the following equivalence holds true: (i) B is surjective ô piiq ImB is closed.

Proof. piq ñ piiq is trivially true by Lemma A.3 (remark that dimpU ‹ {ImBq " 0 since B is surjective). To prove piiq ñ piq, let us assume that ImB is closed. Then, one can show that ImB " ImB " ppImBq K q K " pKerB ‹ q K " pKerBq K , where we have used in the last identity that B is self-adjoint. Since B is injective, pKerBq K " U ‹ , hence ImB " U ‹ and B is surjective.

B Error estimates

We collect in this appendix some (sharp) error estimates on the finite element solutions to variable diffusion problems, endowed with either mixed or purely Neumann nonhomogeneous boundary conditions. These results are meant to be applied to problems of the type [START_REF] Cheng | One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization[END_REF], set in either the positive or negative subdomains of configurations Ω of type 2M or MN (cf. Figure 1). Such estimates are instrumental to study the convergence of our method, and to finely tune the parameter λphq in (21); cf. Sections 6.3 and 7. Since some of these results are not completely classical, and so as to keep the exposition as self-contained as possible, we detail their proofs.

B.1 Continuous and discrete settings

Following Section 2, let D be a (Lipschitz) domain in R d , d P t2, 3u, with boundary Υ :" BD such that Υ " Υ t Y Υ f , with Υ f ‰ H, and unit outer normal n. We make the additional assumption that D is a polytope. Note that the boundary of D is not necessarily connected. Each (Lipschitz) subset Υ t and Υ f of the boundary Υ is assumed to be the finite union of pd´1q-dimensional polytopes. Note that Υ t and Υ f are not necessarily connected. In what follows, the set Υ t is meant to be the trace/Dirichlet part of the boundary, whereas the set Υ f is meant to be the flux/Neumann part.

Let a : D Ñ R dˆd be a symmetric matrix field such that 0 ă a 5 |ξ| 2 ď apxqξ¨ξ ď a 7 |ξ| 2 ă 8 for a.e. x P D and all ξ P R d zt0u, and let :" a 7 {a 5 ě 1 denote its heterogeneity/anisotropy ratio in D. We further assume that a P W 1,8 pDq. Since D is a (Lipschitz) domain, thereby quasiconvex, this is equivalent to assume that a is Lipschitz continuous in D. Also, since a is symmetric and uniformly elliptic, there exists a unique symmetric and uniformly elliptic matrix field a 1 {2 such that a " a 1 {2 a 1 {2 . Let us consider, for t P L 2 pDq, the following problem (referred to as dual in the sequel), endowed with homogeneous boundary conditions:

In the purely Neumann case Υ t " H, we further assume that pt, 1q D " 0, and we replace the condition z " 0 on Υ t by the condition pz, 1q D " 0. From now on, we make the following regularity assumption.

B.3 Purely Neumann boundary conditions

We here assume that Υ t " H. Let Λ be a nonempty relatively open Lipschitz subset of Υ, which is the finite union of pd´1q-dimensional polytopes, and satisfies |Λ| d´1 " c Λ |Υ| d´1 for some c Λ P p0, 1s (note that Λ " Υ is allowed). For κ P R, we study the following problem:

We assume that r P L 2 pDq, that θ belongs to H ´1 2 pΥq (as defined in Section 2), and that pr, 1q D `xθ, 1y Υ " 0, so that Problem (60) admits a (unique) solution.

The weak formulation of Problem (60) writes as follows: find u P H 1 pDq, u " u 0 `ι0 , ι 0 :" κ ´|Λ| ´1 d´1 pγpu 0 q, 1q Λ , with u 0 P H 1,0 pDq such that pa∇u 0 , ∇vq D " pr, vq D `xθ, γpvqy Υ @v P H 1,0 pDq.

Let D 1 be another (Lipschitz) polytopal domain in R d , with boundary Υ 1 :" BD 1 , such that D and D 1 are disjoint and Λ " intpΥ X Υ 1 q. We let D be the polytopal set of R d such that D :" DYD 1 , and we assume that D is Lipschitz. Let û P H 1 p Dq (whose existence is guaranteed by Calderón's extension theorem) be such that the solution u P H 1 pDq to Problem (61) satisfies u " û|D , and define u 1 :" û|D 1 . In the same vein, let â P L 8 p Dq be a symmetric matrix field such that a " â|D , and define a 1 :" â|D 1 (in practice, a 1 satisfies analogous properties to a, i.e. a 1 is uniformly elliptic and belongs to W 1,8 pD 1 q). We denote by 1 ě 1 (resp. ˆ ě 1) the heterogeneity/anisotropy ratio of a 1 (resp. â) in D 1 (resp. D), in such a way that maxp , 1 q ď ˆ . When Λ does not coincide with Υ (like it does when D is included inside D 1 ), we further assume that T h is geometrically compliant with Λ. We consider the following conforming approximation of Problem (61): find

The real number κ h p" |Λ| ´1 d´1 pγpu h q, 1q Λ q is a given "exterior" approximation of κ, in the sense that it is inferred from D 1 in practice. Suppose that D 1 is also meshed, with same meshsize h, in such a way that the resulting global mesh of D is admissible in the sense of Definition 6.1 (with Ω Ð D and Γ Ð Λ). Let m ě 0 be some exponent such that both u P H 1`m pDq and u 1 P H 1`m pD 1 q. Then, letting τ :" minpm, kq, κ h is assumed to satisfy

with δ 1 :" 2τ `ε1 for some ε 1 P p 1 2 , 1s. Note that since û P H 1 p Dq, γpuq " γ 1 pu 1 q on Λ so that κ " |Λ| ´1 d´1 pγ 1 pu 1 q, 1q Λ . Assume that u 1 is solution to a mixed-type a 1 -weighted diffusion problem in D 1 , with homogeneous Dirichlet boundary conditions on some non-negligible subset of BD 1 zΛ, and dual regularity exponent ε 1 . Then, letting κ h :" |Λ| ´1 d´1 pγ 1 pu 1 h q, 1q Λ with u 1 h P pV k h q 1 finite element approximation of u 1 in D 1 , the estimate (63) follows as a simple by-product of Remark B.10.