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Abstract

We study the numerical approximation of sign-shifting problems of elliptic type. We
fully analyze and assess the method briefly introduced in [1]. Our method is based on
domain decomposition and optimization. Upon an extra integrability assumption on
the exact normal flux trace along the sign-changing interface, our method is proved to
be convergent as soon as, for a given loading, the PDE admits a unique solution of finite
energy. Departing from the T-coercivity approach, which relies on the use of geometrically
fitted mesh families, our method works for arbitrary (interface-compliant) mesh sequences.
Moreover, it is shown convergent for a class of problems for which T-coercivity is not
applicable. A comprehensive set of test-cases complements our analysis.

1 Introduction

We are interested in this work in the numerical approximation of elliptic interface problems
that present a sign shift. Our main motivation here is the modeling of the interface between
a classical material and a metamaterial.

Optical metamaterials are artificial micro-structured materials exhibiting effective electro-
magnetic properties that cannot be found in Nature, like an electric permittivity or/and a
magnetic permeability with negative real part(s). Optical metamaterials are genuinely dis-
persive. Among them, the so-called negative-index metamaterials (NIMs) are of particular
interest: they present over some frequency range a negative refractive index, i.e. simultane-
ously negative permittivity/permeability (we always refer to the real parts of these coeffi-
cients). The existence of such materials has been postulated in 1968 in the seminal work of
Veselago [58]. The first effective design of a device exhibiting simultaneously negative permit-
tivity/permeability was realized by Smith et al. in 2000 [56, 55]. NIMs have a tremendous
amount of potential applications, among which superlensing [51, 53, 44] or cloaking (either
using complementary media [36, 45], or via anomalous localized resonance [41, 10, 43]).

Several models exist in the literature to describe the effective properties of dispersive
optical metamaterials. One can cite for instance the Drude–Lorentz class of materials. These
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effective models can be mathematically justified by (high-contrast) homogenization, starting
from the corresponding micro-structures. Typically, optical metamaterials are composed of
small, highly conductive inclusions, which are periodically arranged within a dielectric matrix.
We mention [9, 11, 37] and the references therein for examples of such settings. For non-lossy
materials, the modeling of the interface between a classical material and a metamaterial raises
new questions concerning the well-posedness and the approximability of the resulting models,
owing to the possible (spatial) sign shift of the coefficients. For Maxwell’s equations in the
time domain, existence and uniqueness hold irrespectively of the problem data [49]. However,
the limiting amplitude principle is not always valid. We refer the reader to [18, 19] for an
analysis in the case of a plane interface, and to [17] for a numerical study including corners. In
the frequency domain, existence and uniqueness may depend on various parameters, including
the frequency, the geometry, the coefficients, or the loading [26, 52, 30, 25, 35], which can be
interpreted as a signature of the limiting amplitude principle conditional validity.

Among the different mathematical frameworks for studying the well-posedness of sign-
shifting PDEs, two are especially worth discussing in details (we refer the reader to [38, 47]
for comprehensive surveys). The first one is the T-coercivity theory, introduced by Bonnet-
Ben Dhia, Chesnel, and Ciarlet Jr. in [6, 23, 21], which is applicable to problems set within an
Hilbertian setting. For a given problem, T-coercivity theory aims at proving well-posedness in
the Fredholm sense. Whenever the problem is well-posed in the classical (Hadamard) sense,
T-coercivity is actually equivalent to the celebrated Banach–Nečas–Babuška conditions. For
sign-shifting elliptic problems, it has been shown that the contrast of the coefficients along
the sign-changing interface plays a crucial role in the well-posedness of the model, with a
super-critical value of the contrast equal to ´1. In 2D, optimal conditions have been derived,
which provide a bounded closed interval of p´8, 0q for the contrast (the so-called critical
interval, which does contain the super-critical value ´1) outside which the problem is well-
posed in the Fredholm sense. The well-posedness of critical (but non super-critical) situations
has been tackled for some given configurations in [7], where Fredholmness is recovered in an
augmented functional framework. Another interesting approach to study the well-posedness
of sign-changing PDEs has been proposed by Nguyen (cf. [42, 46] and [48], respectively in the
Helmholtz and Maxwell contexts). The idea is to introduce some loss in the negative material
(i.e. a nonzero imaginary part) and to study the behavior, as the loss tends to zero, of the
solution to the well-posed lossy system (limiting absorption principle). By means of reflection
operators, it is possible to infer conditions on the coefficients under which the limit problem
is well-posed. The advantage of such an approach is that it can deal with configurations for
which the corresponding operator is not Fredholm (including super-critical cases).

As far as numerical approximation is concerned, when dealing with sign-shifting problems,
one needs to deploy dedicated techniques in order to handle the indefiniteness of the model
at hand. Interesting yet sub-optimal first attempts include [8, 50] (cf. also [21, Section 5.1])
and [21, Section 5.2] (based on limiting absorption). The most fruitful approach so far is based
on the T-coercivity theory. T-coercivity based approximation [21, 5, 16, 34] takes advantage
of the knowledge of the bijective operator T to infer meshing rules, under which conforming
finite elements can be proved (optimally) convergent. Evidently, T-coercivity based approxi-
mation suffers from the same limitations as T-coercivity does; in particular, it can only apply
to configurations for which the problem is well-posed in the classical sense. In addition, it is
also bound to the explicit knowledge of the operator T, as well as to the use of geometrically
fitted meshes in the vicinity of the sign shift. The design of such mesh families can become
very intricate for interfaces with general shapes. Therefore, there is room for improvement in
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designing a numerical method that would be applicable, for a given loading, as soon as a solu-
tion of finite energy exists and is unique, and which would not require the use of geometrically
constrained meshes. This last criterion is particularly crucial in applications, for instance to
simulate the micro-structures of [13], for which sign-shifting cell problems with potentially
fairly general interfaces must be solved.

In this work, we fully analyze and validate the method summarily introduced in [1]. This
method constitutes an alternative path for the numerical approximation of sign-shifting PDEs.
It is based on a decomposition of the domain into signed subdomains (i.e. subdomains in which
the coefficient is sign-definite), and on a recasting of the model into a transmission problem.
The numerical method then consists in finding the discrete normal flux trace along the sign-
changing interface for which some criterion, quantifying the (interface) trace jump between
the discrete solutions in both subdomains, is minimal. A key feature of the method is to relax
at the discrete level the continuity of the solution at the interface while keeping a control on
its jump through the minimization of an augmented functional. Upon an extra integrability
assumption on the exact normal flux trace along the sign-changing interface, this method is
proved convergent as soon as the problem admits, for a given loading, a unique solution of
finite energy (in H1). In particular, the problem is not required to be Fredholm. Furthermore,
the convergence proof does not rely on any kind of geometrical constraints on the mesh family
(the only needed assumption is that the mesh cells do not cut the interface). As standard
with domain decomposition, the implementation of our method can benefit from distributed
architectures. As already mentioned in [1], the type of cost functional we consider has first been
deployed in [33, 32] in the context of optimization-based domain decomposition for classical
elliptic equations. With respect to [33, 32], the novelty in our approach essentially lies in the
numerical algorithm, in its analysis, and in its application to sign-changing PDEs. Note that,
at the time this manuscript is finalized, another related approach (based on optimal control)
has been introduced in [24], which is valid without the need for extra solution’s regularity near
the interface, thus remedying one limitation of our method (cf. Remark 6.9). Finally, note
that our approach shares some common goals with [14, 15], in that it aims at approximating
problems which are not necessarily well-posed in the classical sense.

The article is organized as follows. In Section 2 we introduce some useful functional anal-
ysis tools. In Section 3 we introduce the problem under study. In Section 4 we biefly motivate
our approach, in particular we review the limitations of T-coercivity as an approximation
method. In Section 5 we recast the continuous problem as an interface problem, and we pro-
vide a characterization of its solution on which we base our numerical algorithm. In Section 6
we introduce the numerical method, and we prove its convergence. In Section 7 we devise an
(exact) algebraic solver for the discrete optimization problem, and we provide a comprehen-
sive set of numerical experiments demonstrating the efficiency of our approach. Finally, in
Appendix A we collect some basic background on Fredholm theory, whereas in Appendix B we
prove (sharp) error estimates for the finite element solutions to nonhomogeneous mixed and
purely Neumann variable diffusion problems, that are instrumental to finely tune our method.

2 Functional analysis tools

Let D be a domain in Rd, d P t2, 3u, that is a bounded and connected Lipschitz open set of
Rd. We let Υ :“ BD denote the boundary of D. Since D is Lipschitz, a unit normal vector
field n can be defined almost everywhere along Υ, which we assume to point outward from
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D. The set Υ is further partitioned into two disjoint, relatively open Lipschitz subsets Υt and
Υf , with Υf ‰ H, such that Υ “ Υt YΥf .

For q P t1, du, we classically let L2pD;Rqq be the Hilbert space of those distributions
v :“ pv1, . . . , vqq : D Ñ Rq (whenever q “ 1, we simply write v) such that

ş

D |vpxq|
2dx is

finite. Irrespectively of q, the standard inner product and norm in L2pD;Rqq are denoted by
pv,wqD :“

ş

D vpxq¨wpxq dx and }v}0,D :“
a

pv,vqD. For m P N‹, α :“ pα1, . . . , αdq P Nd a
multi-index, and Bαv :“ pBα1

1. . .B
αd
d v1, . . . , B

α1
1. . .B

αd
d vqq : D Ñ Rq, we classically let HmpD;Rqq

be the Hilbert space of those distributions v P L2pD;Rqq such that }Bαv}0,D ă 8 for all
α P Nd with p1 ďqα1 ` . . .` αd ď m. We equip HmpD;Rqq with the following norm:

}v}2m,D :“ }v}2m´1,D ` |v|
2
m,D, |v|2m,D :“

ÿ

α1`...`αd“m

}Bαv}20,D,

with the convention that H0 ” L2. Next, for σ P p0, 1q, letting for w : D Ñ Rq,

|w|2σ,D :“

ż

D

ż

D

|wpxq ´wpyq|2

|x´ y|2σ`d
dxdy,

we classically letHσpD;Rqq be the fractional Hilbert space of those distributions v P L2pD;Rqq
such that |v|σ,D ă 8. In the same vein, for s “ m`σ withm :“ tsu P N and σ :“ s´m P p0, 1q,
we denote by HspD;Rqq the fractional Hilbert space of those distributions v P HmpD;Rqq
such that |Bαv|σ,D ă 8 for all α P Nd with α1 ` . . . ` αd “ m. Remark that this definition
coincides with the above definition of HσpD;Rqq whenever m “ 0. We equip HspD;Rqq with
the following Sobolev–Slobodeckij norm:

}v}2s,D :“ }v}2m,D ` |v|
2
s,D, |v|2s,D :“

ÿ

α1`...`αd“m

|Bαv|2σ,D.

Henceforth, for convenience, we simply write L2pDq orHspDq in place of L2pD;Rq orHspD;Rq,
and L2pDq or HspDq in place of L2pD;Rdq or HspD;Rdq. As standard, we let H1

0 pDq be the
Hilbert space, closed subset of H1pDq, obtained as the closure for the }¨}1,D-norm of C80 pDq.
We further let H´1pDq denote the topological dual of H1

0 pDq, with duality pairing x¨, ¨yD.
Endowed with the norm

}t}´1,D :“ sup
vPH1

0 pDqzt0u

xt, vyD
}v}1,D

,

H´1pDq is a (reflexive) Banach space.
Let us now turn to the definition of trace spaces, first on the whole domain boundary. We

classically let L2pΥ;Rqq be the Hilbert space of those distributions ϕ :“ pϕ1, . . . , ϕqq : Υ Ñ Rq
(whenever q “ 1, we simply write ϕ) such that

ş

Υ |ϕpxq|
2dσpxq ă 8. Irrespectively of q, the

standard inner product and norm in L2pΥ;Rqq are denoted by pϕ,ψqΥ :“
ş

Υϕpxq¨ψpxq dσpxq

and }ϕ}0,Υ :“
a

pϕ,ϕqΥ. For σ P p0, 1q, letting

|ϕ|2σ,Υ :“

ż

Υ

ż

Υ

|ϕpxq ´ϕpyq|2

|x´ y|2σ`d´1
dσpxqdσpyq,

we henceforth classically denote by HσpΥ;Rqq the fractional Hilbert space of those distribu-
tions ϕ P L2pΥ;Rqq such that |ϕ|σ,Υ ă 8. We equip HσpΥ;Rqq with the following Sobolev–
Slobodeckij norm:

}ϕ}2σ,Υ :“ }ϕ}20,Υ ` |ϕ|
2
σ,Υ.
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Next, for s P p1
2 , 1s, we let γ : HspD;Rqq Ñ Hs´ 1

2 pΥ;Rqq (whenever q “ 1, we write γ) denote
the (linear, bounded) trace operator. By definition, γpvq coincides with v|Υ whenever v is
sufficiently regular. There is cγ ą 0 such that, for all v P HspD;Rqq, there holds

}γpvq}s´ 1
2
,Υ ď cγ}v}s,D. (1)

The operator γ is also surjective, with bounded right inverse (cf. e.g. [31, Theorem 1.5.1.2]).
Henceforth, for convenience, we simply write L2pΥq orHσpΥq in place of L2pΥ;Rq orHσpΥ;Rq,
and L2pΥq or HσpΥq in place of L2pΥ;Rdq or HσpΥ;Rdq. We classically let H´

1
2 pΥq denote

the topological dual of H
1
2 pΥq, with duality pairing x¨, ¨yΥ. Endowed with the norm

}θ}´ 1
2
,Υ :“ sup

ϕPH
1
2 pΥqzt0u

xθ, ϕyΥ
}ϕ} 1

2
,Υ

,

H´
1
2 pΥq is a (reflexive) Banach space. Let

Hpdiv;Dq :“
 

θ P L2pDq | div θ P L2pDq
(

.

For any θ PHpdiv;Dq, by surjectivity of the trace operator γ : H1pDq Ñ H
1
2 pΥq, one can give

a sense to the normal trace of θ on Υ (denoted γnpθq) in H´
1
2 pΥq via the following divergence

formula: for all v P H1pDq,

xγnpθq, γpvqyΥ :“ pθ,∇vqD ` pdiv θ, vqD.

By definition, γnpθq coincides with θ|Υ¨n whenever θ is sufficiently regular.
Let us finally introduce the so-called Lions–Magenes trace space. We assume that Υt ‰ H,

so that both Υt and Υf are nonempty. The Lions–Magenes space on Υf , usually denoted
H

1{2

00 pΥfq, is formally the space of those distributions in H
1
2 pΥfq which can be extended by

zero to distributions in H
1
2 pΥq. More rigorously, letting

|ϕ|21
2
,Υf ,00

:“

ż

Υf

pϕpxqq2

ρpxq
dσpxq,

where ρpxq :“ minyPBΥf
|x ´ y| is the distance to BΥf , we define H

1{2

00 pΥfq as the fractional
Hilbert space of those distributions ϕ P H

1
2 pΥfq such that |ϕ| 1

2
,Υf ,00 ă 8. We equip H

1{2

00 pΥfq

with the following Sobolev–Slobodeckij norm:

}ϕ}21
2
,Υf ,00

:“ }ϕ}21
2
,Υf
` |ϕ|21

2
,Υf ,00

.

There holds

H
1{2

00 pΥfq “
 

ϕ P H
1
2 pΥfq | Dϕ̂ P H

1
2 pΥq s.t. ϕ̂|Υf

“ ϕ, ϕ̂|Υt
“ 0

(`

Ĺ H
1
2 pΥfq

˘

,

in such a way that, letting (the subscript “0zΥf ” in the notation below must be understood
as “zero (a.e. on Υ) except on Υf ”)

H1
0zΥf

pDq :“
 

v P H1pDq | γpvq|Υt
“ 0

(

, (2)
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we have γ
`

H1
0zΥf

pDq
˘

|Υf
“ H

1{2

00 pΥfq by surjectivity of the trace operator γ : H1pDq Ñ H
1
2 pΥq.

We letH´
1
2 pΥfq denote the topological dual ofH

1{2

00 pΥfq, with duality pairing x¨, ¨yΥf
. Endowed

with the norm

}θ}´ 1
2
,Υf

:“ sup
ϕPH

1{2
00 pΥfqzt0u

xθ, ϕyΥf

}ϕ} 1
2
,Υf ,00

,

H´
1
2 pΥfq is a (reflexive) Banach space. For any θ P Hpdiv;Dq, it is possible to give a sense

to the normal trace of θ on Υf (denoted γn,Υf
pθq) in H´

1
2 pΥfq via the following divergence

formula: for all v P H1
0zΥf

pDq,

xγn,Υf
pθq, γpvqyΥf

:“ pθ,∇vqD ` pdiv θ, vqD.

Above, we abuse the notation by writing γpvq in place of γpvq|Υf
. By definition, γn,Υf

pθq
coincides with θ|Υf

¨n whenever θ is sufficiently regular.

3 Setting of the problem

Let Ω be a domain in Rd (i.e. a bounded and connected Lipschitz open set of Rd), d P t2, 3u.
We assume that Ω is partitioned into two disjoint (nonempty) Lipschitz open subsets Ωp and
Ωn, so that Ω “ Ωp Y Ωn. As it will become clear in what follows, the subscripts ’p’ and
’n’ refer, respectively, to the positive and negative subdomains. The two subdomains Ωp and
Ωn are assumed to be connected. We further suppose that Ωp is such that BΩp X BΩ has
nonzero pd´1q-dimensional measure. We let Γ :“ intpBΩpXBΩnq denote the (relatively open)
interface between Ωp and Ωn, which is a Lipschitz pd´1q-dimensional manifold. Since Γ is
Lipschitz, one can define a (unit) normal vector field almost everywhere on Γ. On Figure 1
are depicted various admissible configurations Ω in 2D. The meaning of the classification 2M
(for mixed-mixed coupling) and MN (for mixed-Neumann coupling) will be made completely
precise in Section 5.3. The top configurations 1a are such that both BΩp X BΩ and BΩn X BΩ
have nonzero lineic measures. The bottom configuration 1b is, at the opposite, such that
|BΩnXBΩ|1 “ 0 (one even has BΩnXBΩ “ H). For the left and center configurations 1a, and
for the configuration 1b, the interface Γ is connected, whereas it is not the case for the right
configuration 1a. The left configuration 1a is referred to in the literature as the (symmetric
or nonsymmetric, depending on the position of Γ) cavity; see e.g. [21, Section 3.3]. In the
following, we will refer to the configuration 1b as the inclusion case.

Let � : Ω Ñ Rdˆd be a symmetric matrix field such that

0 ă σ5|ξ|
2 ď �pxqξ¨ξ ď σ7|ξ|

2 ă 8 for a.e. x P Ω and all ξ P Rdzt0u,

and let ρ :“ σ7{σ5 ě 1 denote its heterogeneity/anisotropy ratio in Ω. We further assume that
�α :“ �|Ωα PW1,8pΩαq (with obvious notation) for α P tp, nu. When � is isotropic, i.e. when
there is σ : Ω Ñ R satisfying 0 ă σ5 ď σ ď σ7 ă 8 such that � “ σ1d where 1d is the d ˆ d
identity matrix, we let

ν :“ ´
σn|Γ

σp|Γ
(3)

denote the coefficient contrast at the interface (the definition can be adapted to the anisotropic
case). Let s : Ω Ñ t´1,`1u be the sign function s.t. sp :“ s|Ωp

“ `1 and sn :“ s|Ωn
“ ´1.
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Ωp Ωn

Γ

ΩpΩn

Γ

Ωp Ωn

Γ

Γ

(a) Configurations 2M

Ωp Ωn

Γ

(b) Configuration MN

Figure 1: Examples of configurations Ω in 2D.

For f P H´1pΩq, we study the following anisotropic sign-shifting problem: find ũ P H1pΩq
such that

#

´div ps �∇ũq “ f in Ω,

ũ “ 0 on BΩ.
(4)

For further use, we let ũα :“ ũ|Ωα for α P tp, nu. Let us insist on the fact that � is a real-valued
coefficient. We are thus looking for real-valued solutions to Problem (4). Note that we could
also consider, up to slight adaptations of the method described in Section 6, more general
boundary conditions for Problem (4), or/and more complex geometries for the subdomains
Ωp and Ωn. We refer to Remark 6.10 for further insight on this question.

The weak form of Problem (4) writes: find ũ P H1
0 pΩq such that

apũ, vq :“ ps �∇ũ,∇vqΩ “ xf, vyΩ @v P H1
0 pΩq. (5)

4 A look into T-coercivity

4.1 Background on T-coercivity theory

For the reader not familiar with Fredholm theory, on which we are going to rely below, we
refer to Appendix A, where some fundamental definitions and results are recalled.

Let pU, }¨}q be a real-valued Hilbert space. Let U‹ denote the topological dual of U , with
duality pairing x¨, ¨y. Let b : U ˆU Ñ R be a bounded bilinear form, which is further assumed
symmetric, i.e. bpv, uq “ bpu, vq for all u, v P U . Under these assumptions, there exists a
self-adjoint operator B P LpU,U‹q such that, for all u, v P U , xBpuq, vy “ bpu, vq. For a given
f P U‹, we are interested in the following problem: find ũ P U such that

Bpũq “ f in U‹. (6)
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The target application we have in mind is Problem (5), for which (i) U :“ H1
0 pΩq with norm

}¨} :“ |¨|1,Ω and duality pairing x¨, ¨y :“ x¨, ¨yΩ, and (ii) B :“ A where the self-adjoint operator
A P LpH1

0 pΩq, H
´1pΩqq is given by

xApuq, vyΩ :“ apu, vq for all u, v P H1
0 pΩq, (7)

with (symmetric) bilinear form a defined by (5).
The T-coercivity theory [6, 23, 21] is a variational Hilbertian theory which aims at proving

the well-posedness of Problem (6) in the Fredholm sense. Let us first define this notion.

Definition 4.1 (Well-posedness in the Fredholm sense). Problem (6) is said to be well-posed
in the Fredholm sense if the operator B is Fredholm of index 0.

In the particular case of Problem (6), for which B is a self-adjoint operator, Proposition A.4
ensures that, as soon as B is Fredholm, its index is necessarily equal to zero. Proposition A.4
also provides a detailed characterization of the structure of the solutions to Problem (6).
For an equivalent characterization in the non-necessarily self-adjoint case, we refer to [40,
Theorem 2.27]. A subcase of well-posedness in the Fredholm sense is the well-posedness in the
Hadamard (or classical) sense. Problem (6) is well-posed in the Hadamard sense when it is
well-posed in the Fredholm sense and the operator B is injective, i.e. when B is an isomorphism.

Let us now give the definition of T-coercivity; cf. e.g. [21, Definition 3].

Definition 4.2 (T-coercivity). The bilinear form b is said T-coercive if there exists T P LpUq
bijective so that there is c ą 0 such that

bpu, Tpuqq ě c}u}2 @u P U. (8)

In other words, the bilinear form b is T-coercive as soon as the (bounded) bilinear form bp¨, Tp¨qq
is coercive. The link between T-coercivity and well-posedness is made explicit in the following
proposition; see e.g. [21, Theorem 1].

Proposition 4.3. Problem (6) is well-posed in the Hadamard sense if and only if the form b
is T-coercive.

T-coercivity is hence a necessary (and sufficient) condition for the well-posedness in the classical
sense. Note that T-coercivity is, however, less general than the Banach–Nečas–Babuška (inf-
sup) theory, as it is restricted to the Hilbertian setting (cf. [29, Remark 25.14]).

In practice, proving T-coercivity may be difficult. This is for instance the case for the sign-
shifting Problem (5) when considering a general interface between the positive and negative
subdomains. In this situation, what one can usually prove is a weaker result, namely weak
T-coercivity; see [5, Definition 2].

Definition 4.4 (Weak T-coercivity). The bilinear form b is said weakly T-coercive if there
exist T P LpUq bijective and C P LpUq compact so that there are c1 ą 0 and c2 P R such that

bpu, Tpuqq ě c1}u}
2 ´ c2}Cpuq}2 @u P U. (9)

The bilinear form b is hence weakly T-coercive as soon as the (bounded) bilinear form bp¨, Tp¨qq
fulfills a Gårding’s inequality [54]. When c2 ď 0, one recovers (plain) T-coercivity for the form
b. In the present symmetric case, the link between weak T-coercivity and well-posedness is
given in the following proposition; cf. [5, Lemma 1].
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Proposition 4.5. Problem (6) is well-posed in the Fredholm sense if and only if the form b
is weakly T-coercive.

For a symmetric bilinear form, weak T-coercivity is thus a necessary (and sufficient) condition
for well-posedness in the Fredholm sense.

4.2 An intrinsic limitation for sign-shifting problems

Let us consider Problem (5) for the 2D nonsymmetric cavity setting analyzed in [21, Section
3.3]. Let Ω :“ p´ζ, ζq ˆ p0, 1q for ζ, ζ ą 0 such that ζ ‰ ζ, and let Ωp :“ p´ζ, 0q ˆ p0, 1q

and Ωn :“ p0, ζq ˆ p0, 1q, in such a way that Γ “ t0u ˆ p0, 1q; cf. the left panel of Figure 1a.
The coefficient � is chosen isotropic and homogeneous in Ω, i.e. � :“ σ12 with σ any positive
real number. This corresponds to the so-called super-critical case of a (constant) contrast at
the interface of ν “ ´1. In this case, it can be readily proved that the self-adjoint operator A
defined by (7) is injective but not surjective. Equivalently, by Proposition A.5, the range of A
is not closed in H´1pΩq. As a consequence, either f P ImA and Problem (5) admits a unique
solution (which is of finite energy, i.e. in H1

0 pΩq), or f P H´1pΩqzImA and Problem (5) then
does not have a solution.

For the latter example, it is clear that the self-adjoint operator A is not Fredholm. If
it was, its index would be zero, and injectivity would necessarily imply surjectivity. Since,
for self-adjoint operators, weak T-coercivity and Fredholmness (of index 0) are equivalent
(cf. Proposition 4.5 above), we conclude that we cannot find T P LpUq such that a is weakly
T-coercive in that case. Consequently, there exist settings, for which the problem admits, for
admissible loadings only, a unique solution of finite energy, which are not covered by the T-
coercivity theory. Another example of such a setting, this time with disconnected subdomain
Ωp, is given by the cloaking device of [45].

Remark 4.6. We have focused so far on settings for which the (self-adjoint) operator is in-
jective, but not surjective. Let us point out that there exist other non-Fredholm configurations,
and thus other settings not covered by the T-coercivity theory. For example, consider again
Problem (5) for the 2D cavity setting with contrast ´1 of [21, Section 3.3], but this time with
ζ “ ζ (symmetric cavity). In this case, the operator A is such that dimpKerAq “ 8, this is
hence a non-Fredholm configuration. Note that, for some configurations, it is possible to adapt
the functional framework in order to recover Fredholmness of the problem; this is the approach
pursued in [7] for critical (but not super-critical) contrasts.

This intrinsic limitation of T-coercivity for sign-shifting problems has direct repercussions
on the scope of application of (conforming) T-coercivity based approximation for Problem (5).

4.3 T-coercivity based approximation

We make the assumption that Problem (6) is well-posed in the Fredholm sense, and that
it has a unique solution. Therefore, Problem (6) is well-posed in the Hadamard sense and,
according to Proposition 4.3, there exists T P LpUq bijective so that the form b is T-coercive
(with constant c ą 0).

Let pUhqhą0 be a countable family of finite-dimensional vector spaces satisfying Uh Ă U
for all h ą 0 in the family. The dimension of the discrete space Uh is meant to increase as h
tends to zero. In practice, Uh is a space of piecewise polynomial functions on a partition Th
(of size h) of the domain. Let us define the notion of T-conformity.
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Definition 4.7 (T-conformity). The family of discrete spaces pUhqhą0 is said T-conforming if
it is stable by T, i.e. if TpUhq Ď Uh for all h ą 0 in the family.

We consider the following conforming approximation of Problem (6): find ũh P Uh such that

bpũh, vhq “ xf, vhy @vh P Uh. (10)

The following result is adapted from [21, Corollary 1].

Proposition 4.8. Assume that pUhqhą0 is T-conforming. Then, for all h ą 0 in the family,
Problem (10) admits a unique solution ũh P Uh, and the following estimate holds true:

}ũ´ ũh} ď
~b~~T~

c
inf
vhPUh

}ũ´ vh}. (11)

In the case of the sign-shifting Problem (5), the operator T is derived from elementary
geometrical transforms (symmetries and rotations) with respect to the sign-changing inter-
face. These transforms do preserve polynomials. However, since functions in Uh are defined
piecewise on the partition Th, one has to make sure the global transform maps a cell in Ωn to
another cell in Ωp, or reciprocally. Enforcing T-conformity thus boils down to the design of
geometrically fitted mesh families. Their practical construction requires the operator T to be
known explicitly. As already pointed out, for a general interface, proving T-coercivity is usu-
ally difficult. What is often feasible, however, is to prove weak T1-coercivity, for some (other)
bijective operator T1 built as a superposition of localized elementary geometrical transforms.
The relevant notion of conformity then becomes T1-conformity, and is a local one. In other
words, the mesh constraints need only be imposed in this case in a neighborhood of the inter-
face (see [5, Definition 3]). In 2D, such weak operators T1 can be built for general polygonal
interfaces; cf. [5, Theorem 1]. In 3D, only partial results exist; in particular, the case of general
polyhedral interfaces is still open. Whenever such a weak operator T1 is available, a result like
Proposition 4.8 is valid upon a smallness assumption on h; cf. [5, Theorem 2] (in turn based
on [21, Proposition 3]).

Proposition 4.9. Consider Problem (6). Assume that the form b is weakly T1-coercive for
some bijective operator T1 P LpUq. Assume that pUhqhą0 is T1-conforming. Then, for all h ą 0
small enough in the family, Problem (10) admits a unique solution ũh P Uh, and the following
estimate holds true for some ξ ą 0:

}ũ´ ũh} ď ξ inf
vhPUh

}ũ´ vh}. (12)

In practice, for sign-shifting problems, the discrete space Uh is usually not stable by the
operator T1. The problem is not of a geometrical nature, but comes from the use of cut-off
functions to localize the different transforms in T1. As a by-product, functions in T1pUhq are
usually non-polynomial on each cell of Th. One has to introduce a new, uniformly (in h)
bounded family of operators pT1hqhą0 such that T1hpUhq Ď Uh for all h ą 0 in the family. This
family is constructed so that, for all h ą 0 small enough in the family, and for all uh P Uh,
}pT1 ´ T1hqpuhq} ď ϑh}uh} for some ϑ ą 0; cf. [5, Lemma 3]. With such an operator at hand,
a result equivalent to that of Proposition 4.9 can then be proved.
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4.4 Towards an alternative approach

For sign-shifting problems of the form (5), T-coercivity based approximation suffers from three
important shortcomings:

‚ non-Fredholm situations are not covered by T-coercivity theory, yet they may correspond
to interesting practical configurations (often super-critical), for which Problem (5) ad-
mits a unique solution of finite energy for admissible loadings;

‚ the operator T must be known explicitly in order to design geometrically fitted mesh
families, however it has not been made explicit yet for all 3D Fredholm configurations;

‚ T-conform meshing may be delicate in practice for general interfaces, especially in 3D.

In non-Fredholm situations, in order to identify whether or not the problem at hand admits
a unique solution of finite energy, one may rely on the limiting absorption theory developed
by Nguyen (cf. [42, 46] and [48], respectively in the Helmholtz and Maxwell contexts).

In this work, we aim at developing an alternative approach for the numerical approximation
of Problem (5), enjoying the following features:

a) be applicable, without any a priori restriction, as soon as Problem (5) admits, for a given
loading, a unique solution (of finite energy);

b) be applicable without any particular geometrical constraints on the mesh family (except
that the mesh cells do not cut the interface).

We will see in the next sections that the new approach introduced herein fulfills the require-
ments a) and b) above.

5 Recasting as a transmission problem

We henceforth assume that f P L2pΩq. Problem (5) then becomes: find ũ P H1
0 pΩq such that

apũ, vq “ pf, vqΩ @v P H1
0 pΩq. (13)

In this section, we recast Problem (13) into a transmission problem between the positive and
negative subdomains.

5.1 Notation

Based on the functional analysis tools from Section 2, we begin by introducing some notation.
For α P tp, nu, we let

γα : H1pΩαq Ñ H
1
2 pBΩαq

denote the usual trace operator in Ωα. We now define the space (here also, the subscript “0zΓ”
is to be understood as “zero (a.e. on BΩα) except on Γ”)

H1
0zΓpΩαq :“

!

vα P H
1pΩαq | γαpvαq|BΩαzΓ “ 0

)

.

Letting

H
1{2

00, αpΓq :“
!

ϕα P H
1
2 pΓq | D ϕ̂α P H

1
2 pBΩαq s.t. ϕ̂α |Γ “ ϕα, ϕ̂α |BΩαzΓ “ 0

)

,
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there holds γα
`

H1
0zΓpΩαq

˘

|Γ
“ H

1{2

00, αpΓq.

When BΩn “ Γ (inclusion case), then H
1{2

00, npΓq “ H
1
2 pBΩnq. We assume in what follows

that H
1{2

00,ppΓq “ H
1{2

00,npΓq, which holds true for Lipschitz interfaces Γ. We then denote this

common Lions–Magenes trace space H
1{2

00 pΓq. One can easily remark that

H
1{2

00 pΓq “
 

v|Γ :“ γppv|Ωp
q|Γ “ γnpv|Ωn

q|Γ, v P H
1
0 pΩq

(

. (14)

We denote by H´
1
2 pΓq the topological dual of H

1{2

00 pΓq, and by x¨, ¨yΓ the duality pairing
between H´

1
2 pΓq and H

1{2

00 pΓq.

5.2 Weak continuity of the flux

We state (and prove for completeness) here a classical weak continuity property for the (nor-
mal) flux at the interface. Recall the notation for the normal trace of a vector field introduced
in Section 2. For α P tp,nu, let nα be the unit normal vector field to BΩα pointing outward
from Ωα, and define, for ũ P H1

0 pΩq solution to Problem (13),

g̃α,Γ :“ γnα,Γ
`

sα�α∇ũα
˘

. (15)

Since f P L2pΩq, for α P tp,nu, the flux g̃α :“ sα�α∇ũα belongs toHpdiv; Ωαq. Consequently,
γnαpg̃αq P H

´ 1
2 pBΩαq and g̃α,Γ “ γnα,Γpg̃αq belongs to H

´ 1
2 pΓq.

Lemma 5.1 (Weak continuity of the flux). There holds g̃p,Γ “ ´g̃n,Γ in H´
1
2 pΓq.

Proof. The divergence formula in Ωα first yields

pdiv g̃α, vαqΩα ` pg̃α,∇vαqΩα “ xg̃α,Γ, γαpvαqyΓ @vα P H
1
0zΓpΩαq.

Since div g̃α “ ´f almost everywhere in Ωα, we then infer

´pf, vαqΩα ` pg̃α,∇vαqΩα “ xg̃α,Γ, γαpvαqyΓ @vα P H
1
0zΓpΩαq.

Let now v P H1
0 pΩq. Since v|Ωα P H

1
0zΓpΩαq, setting vα “ v|Ωα , there holds

´pf, vqΩα ` pg̃α,∇vqΩα “ xg̃α,Γ, v|ΓyΓ,

where we recall that the notation v|Γ stands for γppv|Ωp
q|Γ “ γnpv|Ωn

q|Γ. Summing over
α P tp, nu, and using Problem (13), then yields

xg̃p,Γ ` g̃n,Γ, v|ΓyΓ “ 0 @v P H1
0 pΩq,

which, by (14), is finally equivalent to

xg̃p,Γ ` g̃n,Γ, ϕyΓ “ 0 @ϕ P H
1{2

00 pΓq,

i.e. g̃p,Γ “ ´g̃n,Γ in H´
1
2 pΓq.

As a consequence of Lemma 5.1, for ũ P H1
0 pΩq solution to Problem (13), one can define

H´
1
2 pΓq Q g̃Γ :“ g̃p,Γ “ ´g̃n,Γ, (16)

so that g̃α,Γ “ sαg̃Γ for α P tp, nu.
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5.3 Characterization of the solution

For α P tp, nu, and for any gΓ P H
´ 1

2 pΓq, we introduce in the subdomain Ωα the problem:
find uαpgΓq P H

1
0zΓpΩαq such that

aαpuαpgΓq, vαq :“ sα p�α∇uαpgΓq,∇vαqΩα
“ pf, vαqΩα ` sα xgΓ, γαpvαqyΓ @vα P H

1
0zΓpΩαq. (17)

Recall that Ωp and Ωn are assumed connected. Problem (17) in Ωp always admits a unique
solution, since we have supposed that BΩpXBΩ has nonzero pd´1q-dimensional measure. The
same holds true in Ωn as soon as |BΩnXBΩ|d´1 ‰ 0. In the opposite (inclusion) case, BΩn “ Γ
and we then assume that gΓ satisfies xgΓ, 1yΓ “ pf, 1qΩn

to ensure that Problem (17) admits
a solution, which is unique up to an additive constant. We fix this constant by imposing that
pγn punpgΓqq , 1qΓ “ pγp puppgΓqq , 1qΓ.

At this point, we can give a sense to the classification 2M, MN introduced in Figure 1. Remark
that the boundary conditions for Problem (17) in Ωp are always mixed, whereas in Ωn they
can be mixed or purely Neumann. Configurations for which both BΩp X BΩ and BΩn X BΩ
have nonzero pd´1q-dimensional measures feature two subproblems of mixed (M) type; they
are hence denoted 2M. Configurations for which |BΩn X BΩ|d´1 “ 0 (inclusion) feature one
subproblem in Ωp of mixed (M) type, and one subproblem in Ωn of purely Neumann (N) type;
they are hence denoted MN.

Definition 5.2 (Transmission solution). For gΓ P H
´ 1

2 pΓq, we denote by upgΓq the function
defined on Ω (and not necessarily belonging to H1

0 pΩq) such that upgΓq|Ωα
:“ uαpgΓq with

uαpgΓq P H
1
0zΓpΩαq unique solution to Problem (17) in Ωα, α P tp,nu.

For a given gΓ P H
´ 1

2 pΓq, the transmission solution upgΓq belongs to H1
0 pΩq if and only if

γppuppgΓqq “ γnpunpgΓqq almost everywhere on Γ.
The following result establishes an equivalent characterization of the solution to (13).

Proposition 5.3 (Characterization of the solution to (13)). Assume that Problem (13) admits
a unique solution ũ P H1

0 pΩq. Then, this solution satisfies ũ “ upg̃Γq, where g̃Γ P H
´ 1

2 pΓq is
defined by (15)-(16). Furthermore, g̃Γ is the unique solution to the minimization problem

inf
gΓPH

´ 1
2 pΓq

}γp puppgΓqq ´ γn punpgΓqq }
2
1
2
,Γ,00. (18)

Proof. (i) Let us begin by proving that ũ “ upg̃Γq. We first check, leveraging the equivalence
between Problem (13) and Problem (4), that in the (inclusion) case when BΩn “ Γ, the
compatibility condition xg̃Γ, 1yΓ “ pf, 1qΩn

does hold, which ensures the existence of solutions
to Problem (17) in Ωn for gΓ “ g̃Γ in that case. From (17) and the fact that g̃α,Γ “ sαg̃Γ, for
α P tp, nu, we infer that

aαpuαpg̃Γq, vαq “ pf, vαqΩα ` xg̃α,Γ, γαpvαqyΓ @vα P H
1
0zΓpΩαq.

Using the definition (15) of g̃α,Γ, we then get

aαpuαpg̃Γq, vαq “ pf, vαqΩα ` xγnα,Γ
`

sα�α∇ũα
˘

, γαpvαqyΓ @vα P H
1
0zΓpΩαq,
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which yields, applying the divergence formula in Ωα, and using that f “ ´divpsα�α∇ũαq
almost everywhere in Ωα, that

aαpuαpg̃Γq ´ ũα, vαq “ 0 @vα P H
1
0zΓpΩαq.

Testing the latter identity with vα “ puαpg̃Γq ´ ũαq P H
1
0zΓpΩαq, using the uniform ellipticity

of sα�α in Ωα, and the fact that Ωα is connected, we infer that there is cα P R such that

ũα ´ uαpg̃Γq “ cα in Ωα.

In Ωp, since |BΩp X BΩ|d´1 ‰ 0, we always have cp “ 0, hence ũp “ uppg̃Γq. In Ωn, when
|BΩn X BΩ|d´1 ‰ 0, then similarly cn “ 0 and ũn “ unpg̃Γq. In the opposite (inclusion) case,
we fix the constant by imposing that pγn punpg̃Γqq , 1qΓ “ pγp puppg̃Γqq , 1qΓ, i.e.

pγn pũn ´ cnq , 1qΓ “ pγp pũpq , 1qΓ.

Since ũ P H1
0 pΩq, this eventually yields cn “ 0, and hence ũn “ unpg̃Γq as in the mixed case.

(ii) Let us now prove that g̃Γ P H
´ 1

2 pΓq is the unique solution to the minimization prob-
lem (18). We first remark that g̃Γ is indeed a solution to the problem, owing to the nonneg-
ativity of the cost functional and to the fact that γp puppg̃Γqq “ γn punpg̃Γqq in H

1{2

00 pΓq (since
upg̃Γq “ ũ P H1

0 pΩq). To show uniqueness now, we assume that there exists another minimizer
ǧΓ P H

´ 1
2 pΓq to (18). Then, one must have γp puppǧΓqq “ γn punpǧΓqq in H

1{2

00 pΓq, which means
that upǧΓq P H

1
0 pΩq. In addition, for α P tp,nu, uαpǧΓq P H

1
0zΓpΩαq solves (17) with gΓ “ ǧΓ.

Considering test functions vα P H1
0zΓpΩαq in (17) such that vα :“ v|Ωα for v P H1

0 pΩq, we
infer by summing over α P tp,nu that upǧΓq P H

1
0 pΩq is solution to Problem (13). Since

Problem (13) admits a unique solution ũ P H1
0 pΩq, we infer that upǧΓq “ ũ “ upg̃Γq. Then,

again from (17), we obtain that xǧΓ ´ g̃Γ, γαpvαqyΓ “ 0 for all vα P H1
0zΓpΩαq, α P tp,nu.

Taking α “ p or α “ n, we deduce that ǧΓ “ g̃Γ in H´
1
2 pΓq, which concludes the proof.

Remark 5.4. Note that the uniqueness of the solution to Problem (13) is not needed for the
characterization ũ “ upg̃Γq of Proposition 5.3 to hold true. The uniqueness assumption is only
needed to ensure the unique solution to the minimization problem (18).

6 The numerical method

We henceforth assume that the domain Ω, as well as the subdomains Ωp and Ωn are (Lipschitz)
polytopes.

6.1 Discrete setting and discrete subproblems

Let us first precise our definition of an admissible mesh family.

Definition 6.1 (Admissible mesh family). A mesh family pThqhą0 is admissible if (i) for
all h ą 0 in the family, Th is a matching simplicial discretization of Ω that is geometrically
compliant with the interface Γ (in the sense that there is Γh, subset of inner faces of the mesh
Th, such that Γ “

Ť

FPΓh
F ), and if (ii) pThqhą0 is shape-regular in the sense of Ciarlet [22].
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Our definition of admissibility ensures that no mesh cell can cut the interface Γ.
Let Th be a member of an admissible mesh family. The subscript h ą 0 stands for the

meshsize, i.e. the maximum diameter of all the simplices in Th. For an integer k ě 1, we
introduce the discrete space

Ukh,0 :“
!

vh P C
0
0 pΩq | vh|T P PkdpT q @T P Th

)

Ă H1
0 pΩq,

where PkdpT q is the vector space of d-variate polynomials of total degree at most k in T . For
α P tp,nu, we let T α

h denote the restriction of Th to Ωα, and we define

Uk,αh,0zΓ :“
!

vα,h P C
0pΩαq | vα,h|T P PkdpT q @T P T α

h , γαpvα,hq|BΩαzΓ “ 0
)

Ă H1
0zΓpΩαq.

We also introduce the discrete space of normal flux traces at the interface

Gk,Γh :“
!

gΓ,h P L
2pΓq | gΓ,h|F P Pkd´1pF q @F P Γh

)

, (19)

and its affine subspace Gk,Γh,N :“
!

gΓ,h P G
k,Γ
h | pgΓ,h, 1qΓ “ pf, 1qΩn

)

, where Pkd´1pF q denotes
the space of pd´1q-variate polynomials of total degree at most k on F .

For α P tp,nu, and for any gΓ P H
´ 1

2 pΓq, we introduce the following conforming finite
element approximation of Problem (17) in the subdomain Ωα: find uα,hpgΓq P U

k,α
h,0zΓ such

that
aαpuα,hpgΓq, vα,hq “ pf, vα,hqΩα ` sα xgΓ, γαpvα,hqyΓ @vα,h P U

k,α
h,0zΓ. (20)

Problem (20) always admits a unique solution in Ωp, and the same holds true in Ωn in the case
of mixed boundary conditions. In the purely Neumann case of an inclusion, in which we have
assumed that gΓ satisfies xgΓ, 1yΓ “ pf, 1qΩn

, the solution to Problem (20) in Ωn is unique up to
an additive constant. We fix the constant imposing pγn pun,hpgΓqq , 1qΓ “ pγp pup,hpgΓqq , 1qΓ.

Definition 6.2 (Discrete transmission solution). For gΓ P H
´ 1

2 pΓq, we denote by uhpgΓq the
function defined on Ω (and not necessarily belonging to Ukh,0) such that uhpgΓq|Ωα

:“ uα,hpgΓq

with uα,hpgΓq P U
k,α
h,0zΓ unique solution to Problem (20) in Ωα, α P tp, nu.

For a given gΓ P H
´ 1

2 pΓq, the discrete transmission solution uhpgΓq belongs to Ukh,0 Ă H1
0 pΩq

if and only if γppup,hpgΓqq “ γnpun,hpgΓqq almost everywhere on Γ.

6.2 Minimization procedure

We define the cost functional Jh : Gk,Γh Ñ r0,8q such that, for any gΓ,h P G
k,Γ
h ,

JhpgΓ,hq :“ }γp pup,hpgΓ,hqq ´ γn pun,hpgΓ,hqq }
2
0,Γ ` λphqσ

´2
5
}gΓ,h}

2
0,Γ, (21)

where λ : p0,8q Ñ p0,8q is a function such that lim
hÑ0

λphq “ 0. When |BΩn X BΩ|d´1 ‰ 0, we
consider the minimization problem

inf
gΓ,hPG

k,Γ
h

JhpgΓ,hq, (22)

otherwise (|BΩn X BΩ|d´1 “ 0) we consider the following variant:

inf
gΓ,hPG

k,Γ
h,N

JhpgΓ,hq. (23)
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Lemma 6.3 (Well-posedness of the minimization problems). Both minimization problems (22)
and (23) admit a unique solution.

Proof. We focus on Problem (22); Problem (23) can be treated similarly invoking that Gk,Γh,N is a
closed convex subspace of Gk,Γh . The functional Jh is continuous, and lim}gΓ,h}0,ΓÑ8

JhpgΓ,hq “

`8, hence Problem (22) admits at least one solution. Let gΓ,h P G
k,Γ
h . A straightforward

computation yields, for all ih, jh P G
k,Γ
h ,

d2JhpgΓ,hqpih, jhq “ 2
` “

γp

`

u1p,hpihq
˘

´ γn

`

u1n,hpihq
˘‰

,
“

γp

`

u1p,hpjhq
˘

´ γn

`

u1n,hpjhq
˘‰ ˘

Γ

` 2λphqσ´2
5
pih, jhqΓ,

where, for α P tp, nu, and ιΓ P L2pΓq, u1α,hpιΓq P U
k,α
h,0zΓ solves

aαpu
1
α,hpιΓq, vα,hq “ sαpιΓ, γαpvα,hqqΓ @vα,h P U

k,α
h,0zΓ. (24)

Hence, for all ih P G
k,Γ
h ,

d2JhpgΓ,hqpih, ihq “ 2 }γp

`

u1p,hpihq
˘

´ γn

`

u1n,hpihq
˘

}
2

0,Γ
` 2λphqσ´2

5
}ih}

2
0,Γ.

Therefore, the cost functional Jh is strictly convex on Gk,Γh , meaning that the minimizer to
Problem (22) is unique.

Remark 6.4 (Tikhonov regularization). The addition of the term λphqσ´2
5
}¨}

2
0,Γ in the cost

functional Jh, which plays the role of a Tikhonov regularization [57] (see also [20]), ensures the
uniqueness of the minimizer to Problems (22) and (23). Without this term, the sole existence
can be proved, as a consequence of the linear least-squares nature of Problems (22) and (23).

Mimicking, at the discrete level, the characterization of the continuous solution from
Proposition 5.3, we let g̃Γ,h P G

k,Γ
h (resp. g̃Γ,h P G

k,Γ
h,N ) denote the unique minimizer to Prob-

lem (22) (resp. (23)), and we define ũh :“ uhpg̃Γ,hq (cf. Definition 6.2) as our approximation
of the solution ũ P H1

0 pΩq to Problem (13). Remark that ũh is always well-defined, as a
consequence of the well-posedness of the subproblems (20), and of that of the optimization
problems (22) and (23). Note also that ũh does not a priori belong to Ukh,0, and thus to H1

0 pΩq.
For an algebraic realization of our method, we refer to Section 7.1 below.

Remark 6.5 (Link with T-coercivity based approximation). Assume that the bilinear form
a from Problem (13) is T-coercive for some operator T, and denote by ũc

h P U
k
h,0 Ă H1

0 pΩq
the conforming finite element approximation of ũ on a T-conform mesh Th (ũc

h is then known
to be well-defined; cf. Proposition 4.8). Nothing guarantees, as in Proposition 5.3, that it
may exist g̃Γ,h P Gk,Γh (or even in H´

1
2 pΓq) such that ũc

h “ uhpg̃Γ,hq. We hence do not
know if the solution ũh given by our approach on Th degenerates towards ũc

h when setting the
Tikhonov regularization to zero in Jh. However, in the case the minimum value of Jh without
regularization is zero, and is attained for some g̃Γ,h (whose existence is always guaranteed),
then necessarily ũh “ uhpg̃Γ,hq is equal to ũc

h P H
1
0 pΩq.
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6.3 Convergence of the method

Before proving our convergence result, we need to quantify the jump of uhpg̃Γq along the inter-
face. Recall that uhpg̃Γq is the discrete transmission solution (cf. Definition 6.2) corresponding
to the exact normal flux trace g̃Γ P H

´ 1
2 pΓq defined by (15)-(16). The following lemma relies

on several error estimates for the discrete solutions to variable elliptic problems featuring ei-
ther mixed or purely Neumann boundary conditions, which are collected in Appendix B, as
well as on the notion of dual regularity exponent (cf. Assumption B.1).

Lemma 6.6 (Bound on the interface jump of uhpg̃Γq). Let ũ P H1
0 pΩq be a solution to

Problem (13). Let m ě 0 be some exponent such that ũ|Ωα P H
1`mpΩαq for α P tp, nu, and let

τ :“ minpm, kq. Denote by εp, εn P p
1
2 , 1s the dual regularity exponents of the subproblems (17)

in Ωp and Ωn, respectively. Then, letting δ̃ :“ 2τ ` minpεp, εnq ą 0, the following estimate
holds true for some constant cj ą 0:

}γp pup,hpg̃Γqq ´ γn pun,hpg̃Γqq }0,Γ ď cj ρ h
δ̃
2

`

|ũ|1`τ,Ωp ` |ũ|1`τ,Ωn

˘

. (25)

Proof. According to Proposition 5.3 (and Remark 5.4), upg̃Γq “ ũ P H1
0 pΩq, hence there holds

γppuppg̃Γqq “ γnpunpg̃Γqq on Γ. This allows us to infer that

}γp pup,hpg̃Γqq ´ γn pun,hpg̃Γqq }0,Γ ď
ÿ

αPtp,nu

}γα puαpg̃Γq ´ uα,hpg̃Γqq }0,Γ.

To estimate the right-hand side of this inequality, we use the approximation results from
Appendix B. Note that if pThqhą0 is admissible in the sense of Definition 6.1, then the mesh
families pT α

h qhą0, α P tp,nu, are admissible in the sense of Definition B.3.
In Ωp, the subproblem (17) is always endowed with mixed boundary conditions. We thus

apply the results of Appendix B.2, with D :“ Ωp, Υf :“ Γ (hence, Υt “ BΩpzΓ), a :“ �p,
r :“ f|Ωp

, φ :“ 0, and θ :“ g̃Γ. By Remark B.10, we get

}γp puppg̃Γq ´ up,hpg̃Γqq }0,Γ ď cp ρ h
δp
2 |ũ|1`τ,Ωp , (26)

with δp :“ 2τ ` εp.
Assume that the subproblem (17) in Ωn is also endowed with mixed boundary conditions

(case |BΩnXBΩ|d´1 ‰ 0). Applying again the results of Appendix B.2, this time with D :“ Ωn,
Υf :“ Γ (hence, Υt “ BΩnzΓ), a :“ �n, r :“ ´f|Ωn

, φ :“ 0, and θ :“ g̃Γ, we get

}γn punpg̃Γq ´ un,hpg̃Γqq }0,Γ ď cn ρ h
δn
2 |ũ|1`τ,Ωn ,

with δn :“ 2τ ` εn. Recalling (26), and remarking that δ̃ “ minpδp, δnq, (25) follows easily.
Now, assume instead that the subproblem (17) in Ωn is of pure Neumann type (case

BΩn “ Γ). We then apply the results of Appendix B.3, with D :“ Ωn, Λ :“ Γ, a :“ �n,
r :“ ´f|Ωn

, and θ :“ g̃Γ. Setting D̂ :“ Ω, â :“ �, and û :“ ũ, there holds %̂ “ ρ and
κ “ |Γ|´1

d´1pγppuppg̃Γqq, 1qΓ. We let κh :“ |Γ|´1
d´1pγppup,hpg̃Γqq, 1qΓ. The Cauchy–Schwarz

inequality then yields

|Γ|
1{2

d´1|κ´ κh| ď }γppuppg̃Γq ´ up,hpg̃Γqq}0,Γ,
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hence, as a consequence of (26), the estimate (63) holds true withD1 “ Ωp, u1 “ ũp, %1 ď %̂ “ ρ,
and δ1 “ δp. Using the notation of Lemma B.13, δ̂ “ minpδ, δ1q, with δ “ δn and δ1 “ δp.
Thus, δ̂ “ δ̃, and we infer

}γn punpg̃Γq ´ un,hpg̃Γqq }0,Γ ď cn ρ h
δ̃
2

`

|ũ|1`τ,Ωp ` |ũ|1`τ,Ωn

˘

,

which, combined to (26), yields (25).

We are now ready to prove convergence for our optimization-based method. Let us just
briefly recall the principle of our approach. Our approach consists in defining an approximation
of the solution ũ P H1

0 pΩq to Problem (13) as ũh :“ uhpg̃Γ,hq, where g̃Γ,h P G
k,Γ
h (respectively

g̃Γ,h P G
k,Γ
h,N ) solves the well-posed minimization problem (22) (respectively (23)), and uhpg̃Γ,hq

is the discrete transmission solution (cf. Definition 6.2) corresponding to g̃Γ,h. The proof of
our convergence result shares ideas with that of [46, Theorem 1].

Theorem 6.7 (Convergence of the method). Suppose that Problem (13) admits a unique
solution ũ P H1

0 pΩq. Assume that g̃Γ P L
2pΓq, with g̃Γ as defined in (15)-(16). Then, choosing

λphq in (21) such that λphq “ c hδ for some c ą 0 and 0 ă δ ă δ̃, where δ̃ is the positive
number introduced in Lemma 6.6, there holds, strongly as hÑ 0:

g̃Γ,h Ñ g̃Γ in L2pΓq, ∇hũh Ñ∇ũ in L2pΩq, ũh Ñ ũ in L2pΩq, (27)

where p∇hqhą0 is the family of broken gradient operators on pThqhą0.

Proof. The proof proceeds in three steps.
(i) Weak convergence: By linearity, for α P tp,nu, we first write

uα,hpg̃Γ,hq “ uα,hpg̃Γq ` ũ
1
α,h, (28)

with Uk,αh,0zΓ Q ũ
1
α,h :“ u1α,hpg̃Γ,h ´ g̃Γq as defined in (24), i.e. solution to

p�α∇ũ1α,h,∇vα,hqΩα
“ pg̃Γ,h ´ g̃Γ, γαpvα,hqqΓ @vα,h P U

k,α
h,0zΓ. (29)

Testing (29) with ũ1α,h P U
k,α
h,0zΓ, and using the Cauchy–Schwarz inequality, yields

}∇ũ1α,h}
2

0,Ωα
ď σ´1

5
}g̃Γ,h ´ g̃Γ}0,Γ}γαpũ

1
α,hq}0,Γ

. (30)

In Ωp, starting from (30), using the trace inequality (1) (with D Ð Ωp and s “ 1), and
applying a classical Poincaré–Steklov inequality in H1

0zΓpΩpq, we infer that

}∇ũ1p,h}0,Ωp
ď cp σ

´1
5
}g̃Γ,h ´ g̃Γ}0,Γ. (31)

An equivalent inequality can also be inferred in Ωn. When |BΩn X BΩ|d´1 ‰ 0, the proof is
identical to (31). When BΩn “ Γ, the derivation is a bit less straightforward (the details are
given in Remark 6.8 below), but leads to

}∇ũ1n,h}0,Ωn
` }ũ1n,h}0,Ωn

ď cn σ
´1
5
}g̃Γ,h ´ g̃Γ}0,Γ. (32)
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Now, we leverage the fact that Jhpg̃Γ,hq ď JhpgΓ,hq for all gΓ,h P G
k,Γ
h (resp. for all gΓ,h P G

k,Γ
h,N

in the inclusion case), and we choose gΓ,h “ πkhpg̃Γq, with πkh the L2pΓq-orthogonal projector
onto Gk,Γh (remark, in the inclusion case, that there holds gΓ,h P G

k,Γ
h,N ). We first have

λphqσ´2
5
}g̃Γ,h}

2
0,Γ ď Jhpg̃Γ,hq ď Jhpπ

k
hpg̃Γqq.

Then, leveraging the orthogonality and boundedness properties of the projector, we remark
that (i) uα,hpπkhpg̃Γqq “ uα,hpg̃Γq for α P tp,nu (since pπkhpg̃Γq ´ g̃Γ, γαpvα,hqqΓ “ 0 for all
vα,h P U

k,α
h,0zΓ), and that (ii) }πkhpg̃Γq}0,Γ ď }g̃Γ}0,Γ. We thus finally infer that

σ´2
5
}g̃Γ,h}

2
0,Γ ď

}γppup,hpg̃Γqq ´ γnpun,hpg̃Γqq}
2
0,Γ

λphq
` σ´2

5
}g̃Γ}

2
0,Γ. (33)

Owing to (25), and to the fact that λphq “ c hδ with δ ă δ̃, we deduce from (33) that }g̃Γ,h}0,Γ

is uniformly bounded with respect to h. We can thus infer the existence of g̃Γ,0 P L
2pΓq

such that, along a subsequence (retaining the same notation), g̃Γ,h á g̃Γ,0 weakly in L2pΓq as
hÑ 0. From (31) and (32), together with the uniform boundedness of pg̃Γ,hqhą0 in L2pΓq, we
also infer the uniform boundedness of pũ1α,hqhą0 in H1pΩαq for α P tp, nu. Thus, by Rellich’s
theorem (and a standard limit regularity argument), there exist ũ1α P H1

0zΓpΩαq for α P tp,nu
such that, along a subsequence (retaining the same notation),

∇ũ1α,h á∇ũ1α weakly in L2pΩαq, ũ1α,h Ñ ũ1α strongly in L2pΩαq, (34)

γαpũ
1
α,hq á γαpũ

1
αq weakly in L2pΓq. (35)

(ii) Identification of the limits: From the relation Jhpg̃Γ,hq ď JhpgΓ,hq for all gΓ,h P G
k,Γ
h

(resp. for all gΓ,h P G
k,Γ
h,N in the inclusion case) applied to gΓ,h “ πkhpg̃Γq, from (25), and from

the fact that 0 ă δ ă δ̃, we infer that

}γppup,hpg̃Γ,hqq ´ γnpun,hpg̃Γ,hqq}
2
0,Γ ď }γppup,hpg̃Γqq ´ γnpun,hpg̃Γqq}

2
0,Γ

` λphqσ´2
5
}g̃Γ}

2
0,Γ ď Cρ2hδNΩpũq, (36)

where NΩpũq :“ |ũ|21`τ,Ωp
` |ũ|21`τ,Ωn

` σ´2
7
}g̃Γ}

2
0,Γ. We then deduce from (36) that

}γppup,hpg̃Γ,hqq ´ γnpun,hpg̃Γ,hqq}0,Γ Ñ 0 as hÑ 0.

Combining this result with (25) and (28), we readily get that

}γppũ
1
p,hq ´ γnpũ

1
n,hq}0,Γ

Ñ 0 as hÑ 0,

and hence, from (35), that γppũ
1
pq “ γnpũ

1
nq almost everywhere on Γ. One can then define

ũ1 P H1
0 pΩq such that ũ1

|Ωα
:“ ũ1α for α P tp, nu. Using (34), together with the weak convergence

result g̃Γ,h á g̃Γ,0 in L2pΓq, and a strongly convergent interpolant for test functions, one can
show, passing to the limit hÑ 0 in (29) (where both sides are multiplied by sα), and summing
over α P tp,nu, that ũ1 P H1

0 pΩq satisfies

apũ1, vq “ 0 @v P H1
0 pΩq.
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This implies, by uniqueness of the solution to Problem (13), that ũ1 ” 0. Also, the unique-
ness of the limit implies that the whole sequences converge in (34)-(35). By (28), and the
(strong) convergences of p∇uα,hpg̃Γqqhą0 and puα,hpg̃Γqqhą0 towards ∇ũα and ũα, respec-
tively in L2pΩαq and L2pΩαq for α P tp,nu, we have thus proved at this point that

∇hũh á∇ũ weakly in L2pΩq, ũh Ñ ũ strongly in L2pΩq.

Passing again to the limit h Ñ 0 in (29), using a strongly convergent interpolant for test
functions, and the fact that ũ1 ” 0, one obtains

pg̃Γ,0 ´ g̃Γ, γαpvαqqΓ “ 0 @vα P H
1
0zΓpΩαq.

From there, fixing α P tp,nu, since γαpH1
0zΓpΩαqq|Γ “ H

1{2

00 pΓq and H
1{2

00 pΓq is dense in L2pΓq,
we infer that g̃Γ,0 “ g̃Γ a.e. on Γ. The uniqueness of the limit implies that the whole sequence
pg̃Γ,hqhą0 converges towards g̃Γ. We have thus proved that g̃Γ,h á g̃Γ weakly in L2pΓq.

(iii) Strong convergence: Owing to the weak convergence of pg̃Γ,hqhą0 towards g̃Γ, passing
to the limit in (33) (recall that λphq “ c hδ with δ ă δ̃) yields

}g̃Γ}0,Γ ď lim
hÑ0

inf }g̃Γ,h}0,Γ ď lim
hÑ0

sup }g̃Γ,h}0,Γ ď }g̃Γ}0,Γ,

which readily implies the strong convergence of pg̃Γ,hqhą0 towards g̃Γ in L2pΓq. Now, test-
ing (29) with vα,h “ ũ1α,h and passing to the limit, owing to the strong convergence of pg̃Γ,hqhą0

towards g̃Γ and to the weak convergence (35) of pγαpũ1α,hqqhą0
(both in L2pΓq), we infer the

strong convergence of p∇ũ1α,hqhą0
to 0 in L2pΩαq, for α P tp, nu. By (28), combined with the

strong convergence of p∇uα,hpg̃Γqqhą0, this finally proves (27), and concludes the proof.

Remark 6.8 (Proof of (32), inclusion case). Combining the trace inequality (1) (with D Ð Ωn

and s “ 1) with a generalized Poincaré–Steklov inequality (cf. [28, Lemma 3.30]), and the fact
that pγnpũ

1
n,hq, 1qΓ “ pγppũ

1
p,hq, 1qΓ (owing to (28) along with the definition of the discrete

transmission solution in the inclusion case), we first infer that

}γnpũ
1
n,hq}0,Γ

ď c1

ˆ

}∇ũ1n,h}0,Ωn
` |Γ|

´ 1
2

d´1

ˇ

ˇpγnpũ
1
n,hq, 1qΓ

ˇ

ˇ

˙

ď c1

´

}∇ũ1n,h}0,Ωn
` }γppũ

1
p,hq}0,Γ

¯

.

Then, by the trace inequality (1) (with D Ð Ωp and s “ 1), a standard Poincaré–Steklov
inequality in H1

0zΓpΩpq, and (31), we obtain

}γnpũ
1
n,hq}0,Γ

ď c2

´

}∇ũ1n,h}0,Ωn
` }∇ũ1p,h}0,Ωp

¯

ď c3

´

}∇ũ1n,h}0,Ωn
` σ´1

5
}g̃Γ,h ´ g̃Γ}0,Γ

¯

.

(37)
In Ωn, starting from (30), and using (37), we thus get

}∇ũ1n,h}
2

0,Ωn
ď c3 σ

´1
5
}g̃Γ,h ´ g̃Γ}0,Γ

´

}∇ũ1n,h}0,Ωn
` σ´1

5
}g̃Γ,h ´ g̃Γ}0,Γ

¯

,

which eventually yields, by Young’s inequality, the estimate (32) on }∇ũ1n,h}0,Ωn
. The estimate

on }ũ1n,h}0,Ωn
can be obtained leveraging the same arguments.
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It is crucial to note that, upon the extra integrability assumption g̃Γ P L
2pΓq on the exact

normal flux trace, the convergence result of Theorem 6.7 is valid as soon as Problem (13) ad-
mits a unique solution for the (given) loading f P L2pΩq at hand. In particular, no assumption
is made on the invertibility of the operator A associated with the problem, as is the case for T-
coercivity based approximation. In this respect, our approach checks the requirement a) from
Section 4.4. Furthermore, the convergence result does not rely on any particular geometrical
constraints (with respect to the sign-changing interface) on the mesh family, as is the case
for T-coercivity based approximation. Our approach hence also gives a positive answer to the
requirement b) from Section 4.4.

Remark 6.9 (Integrability assumption on g̃Γ). We make the hypothesis in Theorem 6.7
that g̃Γ P L

2pΓq, which is a rather strong assumption fulfilled, e.g., when ũα P H
1`mpΩαq

for m ą 1
2 , α P tp, nu. This assumption enables us to manipulate L2pΓq-norms instead of

fractional-order ones, which is particularly convenient from both the analysis and implemen-
tation viewpoints. Let us point out that, in practice, the violation of this assumption does not
necessarily prevent our approach from being applicable. We will see in Section 7.3 that, up to a
slight adaptation of our method, numerical convergence can still be observed in cases for which
the assumption g̃Γ P L

2pΓq is not met. Let us finally point out that, at the time this manuscript
is finalized, another related approach (based on optimal control) has been introduced in [24],
which remedies this integrability limitation. The key idea therein is the use of a bulk-supported
control instead of a boundary-supported one.

Remark 6.10 (Extension of the approach). Our approach is not restricted to the config-
urations or boundary conditions for Problem (4) considered in Section 3. Under the only
assumption on Problem (4) that the Dirichlet part of BΩ has nonzero pd´1q-dimensional mea-
sure, one can actually consider arbitrary (nonhomogeneous) boundary conditions, and relax the
connectedness assumption on the two subdomains. Then, each connected part of a subdomain
sharing a Dirichlet boundary with BΩ is treated as an M domain (cf. Figure 1), whereas every
other connected part is treated as an N domain, for which the constant is fixed on a part of its
boundary that is shared with an M domain (or which can be linked to one). For general geome-
tries and boundary conditions, the method can be adapted and the analysis extended using the
general approximation properties derived in Appendix B.

7 Numerical results

For all the test-cases studied in this section, Problem (4) will be set in a polygonal domain
Ω Ă R2, and we will consider isotropic coefficients � :“ σ12, with σα “ σ|Ωα a positive (real)
constant for α P tp, nu. In this case, the contrast (3) at the interface is simply ν “ ´σn

σp
. In

all the numerical experiments, we set the multiplicative constant c ą 0 entering the definition
of λphq (cf. Theorem 6.7) to c “ 0.01. This empirical value appeared to give (among) the best
results in all the test-cases studied here.

7.1 Algebraic realization

We devise an (exact) algebraic solver for the discrete optimization Problems (22) and (23).
We let Nα, α P tp,nu, be the dimension of the discrete space Uk,αh,0zΓ, and NΓ be the dimension

of Gk,Γh . For α P tp, nu, we denote by Kα,α
h (size Nα ˆ Nα) the stiffness matrix in Uk,αh,0zΓ,
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written in the basis pψiα,hq1ďiďNα of Uk,αh,0zΓ, and by MΓ,Γ
h (size NΓ ˆ NΓ) the mass matrix

in Gk,Γh , expressed in the basis pφjΓ,hq1ďjďNΓ
of Gk,Γh . We also let TΓ,α

h (size NΓ ˆ Nα) be
the matrix representation of γαpU

k,α
h,0zΓq|Γ, expressed in the basis pφjΓ,hq1ďjďNΓ

(remark that

γαpU
k,α
h,0zΓq|Γ Ă Gk,Γh ).

To solve Problem (22), the first step is to compute, for α P tp,nu, the solutions to Prob-
lem (20) for all the basis functions of Gk,Γh . In practice, we solve the pNΓ ` 1q following
symmetric positive-definite (SPD) linear systems, of size Nα ˆNα:

Kα,α
h

´

uα,Γh uαh

¯

“

´

rTΓ,α
h s

J
MΓ,Γ
h sαFα

h

¯

, (38)

where Fα
h P RNα has i-th coordinate pf, ψiα,hqΩα . Then, for gΓ

h P RNΓ , the vector uαhpg
Γ
hq P RNα

solution to Problem (20) in Ωα is given by

uαhpg
Γ
hq “ uαh ` uα,Γh gΓ

h . (39)

Solving Problem (22) is equivalent to solving infgΓ
hPR

NΓ JhpgΓ
hq, where the quadratic functional

Jh : RNΓ Ñ r0,8q is given by

JhpgΓ
hq :“

´

TΓ,p
h up

hpg
Γ
hq ´ TΓ,n

h un
hpg

Γ
hq

¯J

MΓ,Γ
h

´

TΓ,p
h up

hpg
Γ
hq ´ TΓ,n

h un
hpg

Γ
hq

¯

` λphqσ´2
5
pgΓ
hq
JMΓ,Γ

h gΓ
h . (40)

One can easily compute

∇2Jh “ 2
´

TΓ,p
h up,Γ

h ´ TΓ,n
h un,Γ

h

¯J

MΓ,Γ
h

´

TΓ,p
h up,Γ

h ´ TΓ,n
h un,Γ

h

¯

` 2λphqσ´2
5

MΓ,Γ
h ,

so that, since Jh is quadratic, JhpgΓ
hq “

1
2pg

Γ
hq
J
“

∇2Jh
‰

gΓ
h ` pg

Γ
hq
JVΓ

h `C, where VΓ
h P RNΓ

and C P R are inferred from (40). Writing the first-order necessary (and sufficient) condition
of optimality, solving Problem (22) is finally equivalent to solving the SPD linear system, of
size NΓ ˆNΓ:

“

∇2Jh
‰

g̃Γ
h “ VΓ

h . (41)

The approximation we seek is finally given by uαhpg̃
Γ
hq (as defined in (39)), α P tp, nu.

To solve Problem (23) (inclusion case), the first step is also to compute, for α P tp, nu, the
solutions to Problem (20) for all the basis functions of Gk,Γh . In Ωp, one solves the pNΓ ` 1q
SPD linear systems (38), of size Np ˆ Np. In Ωn, the problems are of pure Neumann type.
Let us first introduce some notation. Let 1n

h P RNn be the vector such that
řNn
i“1r1

n
hsiψ

i
n,h ” 1

in Ωn. In turn, let 1Γ
h P RNΓ be the vector such that

řNΓ
j“1r1

Γ
hsjφ

j
Γ,h ” 1 on Γ. There holds

TΓ,n
h 1n

h “ 1Γ
h . Define also

M̂Γ,Γ
h :“ |Γ|´1

d´1

´

r1Γ
hs
JMΓ,Γ

h

¯J ´

r1Γ
hs
JMΓ,Γ

h

¯

.

In Ωn, one solves the following pNΓ ` 1q SPD linear systems, of size Nn ˆNn:
´

Kn,n
h ` rTΓ,n

h s
J
M̂Γ,Γ
h TΓ,n

h

¯´

un,Γ
h un

h

¯

“

´

rTΓ,n
h s

J
´

MΓ,Γ
h ´ M̂Γ,Γ

h

¯

´F̂n
h

¯

, (42)
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where F̂n
h P RNn has i-th coordinate pf, ψin,hqΩn ´ |Γ|

´1
d´1pf, 1qΩn

`

1, γnpψ
i
n,hq

˘

Γ
. Remark that

r1n
hs
JrTΓ,n

h s
J
´

MΓ,Γ
h ´ M̂Γ,Γ

h

¯

“ r0Γ
hs
J and r1n

hs
JF̂n

h “ 0.

Hence, the discrete solutions which correspond to un,Γ
h and un

h from (42) have zero mean over
Γ. We amend a posteriori their expressions in the following way:

un,Γ
h Ð un,Γ

h ` |Γ|´1
d´11

n
h

´

r1Γ
hs
JMΓ,Γ

h TΓ,p
h up,Γ

h

¯

, un
h Ð un

h ` |Γ|
´1
d´11

n
h

´

r1Γ
hs
JMΓ,Γ

h TΓ,p
h up

h

¯

.

For gΓ
h P RNΓ

N :“
!

gΓ
h P RNΓ | r1Γ

hs
JMΓ,Γ

h gΓ
h “ pf, 1qΩn

)

, and for α P tp,nu, the vector

uαhpg
Γ
hq P RNα solution to Problem (20) in Ωα finally writes

uαhpg
Γ
hq “ uαh ` uα,Γh gΓ

h . (43)

Solving Problem (23) is equivalent to solving inf
gΓ
hPR

NΓ
N

JhpgΓ
hq, which in turn is equivalent to

solving the well-posed saddle-point problem of size pNΓ`1qˆpNΓ`1q: find pg̃Γ
h , `Γq P RNΓˆR

such that
˜

∇2Jh MΓ,Γ
h 1Γ

h

r1Γ
hs
JMΓ,Γ

h 0

¸

ˆ

g̃Γ
h

`Γ

˙

“

ˆ

VΓ
h,N

pf, 1qΩn

˙

, (44)

where VΓ
h,N P RNΓ . The approximation we seek is finally given by uαhpg̃

Γ
hq (as defined in (43)),

α P tp, nu.

Remark 7.1 (Efficient implementation). Let us focus on Problem (22); similar considerations
apply to Problem (23). The bottleneck in the minimization algorithm is actually the solution
to (38) for α P tp, nu. As a matter of fact, once the hessian of Jh is computed (based on
the solutions to (38)), computing the minimizer then amounts to solving the small linear
system (41). As standard in domain decomposition, Problem (38) can be solved in parallel in
the two subdomains Ωp and Ωn. Each subproblem consists in solving a multi-rhs linear system,
for which efficient solution techniques exist (Cholesky factorization for a direct solution, or
Krylov subspace recycling for an iterative one).

7.2 Test-case 1: nonsymmetric cavity with contrast ´1

We consider the nonsymmetric cavity (cf. [21, Section 3.3]) with Ω :“ p´1, 3q ˆ p0, 1q and
Γ :“ t0u ˆ p0, 1q, so that Ωp “ p´1, 0q ˆ p0, 1q and Ωn “ p0, 3q ˆ p0, 1q. This configuration is
of type 2M. We let σp “ σn “ 1, so that ν “ ´1 (super-critical case). With such choices, the
operator A P LpH1

0 pΩq, H
´1pΩqq associated with Problem (5) is injective, but not Fredholm

(cf. Section 4.2). Since the operator is not Fredholm, the problem cannot be studied with the
T-coercivity theory, nor approximated using meshing rules inferred from the latter. However,
our approach is applicable, as soon as the solution exists (it is then unique) for a given loading.

Let us consider the exact solution ũ P H1
0 pΩq defined by

ũpx, yq :“

$

&

%

´

2px` 1q2 ´ 5px` 1q
¯

sinpπyq in Ωp,

px´ 3q sinpπyq in Ωn,
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which is associated to the loading f P L2pΩq such that

fpx, yq “

$

&

%

´

2π2px` 1q2 ´ 5π2px` 1q ´ 4
¯

sinpπyq in Ωp,

´ π2px´ 3q sinpπyq in Ωn.

Figure 2: Test-case 1. Exact solution for the nonsymmetric cavity with contrast ´1.

This exact solution is depicted on Figure 2. We have g̃Γpyq “ ´ sinpπyq on Γ, where g̃Γ is de-
fined by (15)-(16). For α P tp,nu, ũα P H1`mpΩαq for all m ě 0. For the geometry considered
here, full elliptic regularity holds true in both subdomains (cf. Remark B.2), meaning that the
dual regularity exponents εp and εn are both equal to 1. Hence, the value of the parameter δ̃
in Theorem 6.7 is δ̃ “ 2k ` 1.

We consider a structured triangulation of the domain Ω, with meshsize h “ 0.07, which is
admissible in the sense of Definition 6.1 (it is compliant with Γ), and we compare, for k “ 1
(hence δ̃ “ 3), the discrete solutions obtained with our approach (for λphq “ 0.01h2.9), and
with a direct (non-stabilized) conforming finite element (cFE) approximation of the prob-
lem. Snapshots of the solutions are depicted on Figure 3. Whereas our approach provides a
somewhat accurate solution (the relative error in L2-norm is of 5.33ˆ 10´2), which converges
monotonically to the exact one as the mesh is refined (not shown here), the cFE solution
exhibits very large spurious oscillations near the interface. This is a striking example of how
unstable can be a non-stabilized method for such an ill-posed problem.

(a) cFE solution (rescaled by a factor 1013) (b) Optimization-based solution

Figure 3: Test-case 1. Discrete solutions for the nonsymmetric cavity with contrast ´1.

7.3 Test-case 2: low-regularity solution

We consider (a slight variant of) the test-case studied in [5, Section 3]. We let Ω be the
hexagonal domain of Figure 4 (left), for which Γ “

 

pr, θq P Ω | θ “ 0 or θ “ 4π
3

(

, and Ωp, Ωn
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are respectively the top and bottom subdomains. The corresponding configuration is of type
2M. We let σp “ 1, and we tune σn so as to change the value of the contrast ν. For such a
configuration, Problem (5) is well-posed in the Hadamard sense if and only if ν R

“

´2,´1
2

‰

.

Ωp

Ωn

Γ
ΩpΩn

Γ

Figure 4: Test-cases 2 (left) and 3 (right). Geometry and mesh family member.

We consider the exact solution ũ P H1pΩq defined by ũpr, θq :“ rκΦpθq, where

Φpθq :“

$

’

’

’

&

’

’

’

%

cos
`

κpθ ´ 2π
3 q

˘

cos
`

κ2π
3

˘ in Ωp,

cos
`

κpθ ´ 5π
3 q

˘

cos
`

κπ3
˘ in Ωn,

and where κ ą 0 depends on ν in the following way: κ is the smallest positive (real) solution
to tan

`

κ2π
3

˘

“ ´ν tan
`

κπ3
˘

. The solution ũ is associated to the loading f ” 0, and to the
nonhomogeneous Dirichlet boundary datum γpũq on BΩ. Besides, we have

g̃Γprq “ ´κ r
κ´1 tan

ˆ

κ
2π

3

˙

a.e. on Γ.

The following regularity result holds true: for α P tp,nu, ũα P H1`mpΩαq for all m ă κ. We
are going to consider two values of ν outside of the critical interval, namely ν P t´10.57,´2.1u,
for which the parameter κ is respectively such that κ Ç t0.7, 0.2u. When κ « 0.7, then we
have g̃Γ P L

2pΓq, and the assumptions of Theorem 6.7 are fulfilled. At the opposite, when
κ « 0.2, the result of Theorem 6.7 is not valid (g̃Γ R L

2pΓq). For the geometry considered
here, full elliptic regularity holds true in Ωn, whereas the reentrant corner in Ωp induces a
loss of regularity of 1{4 (cf. Remark B.2). We thus have εn “ 1 and 3

4 ´ ε ă εp ă
3
4 for any

ε ą 0. Since the subproblems in Ωp and Ωn feature nonhomogeneous (Dirichlet) boundary
conditions on the part of their boundary which is shared with BΩ, one has to use the result
of Lemma B.9 in both Ωp and Ωn (and then take the min) to infer the value of the parameter
δ̃ from Theorem 6.7: a straightforward computation yields 2κ ` 1

2 ´ ε ă δ̃ ă 2κ ` 1
2 for any

ε ą 0, which is valid for all integer k ě 1 as soon as 1
2 ă κ ď 1.

We consider a family of unstructured triangulations (see Figure 4 (left)) of the domain
Ω, that is admissible in the sense of Definition 6.1, but which is not T-conforming, as op-
posed to the mesh family from [5, Figure 5 (right)]. For the latter mesh family, T-coercivity
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10´2 10´1

10´2

10´1

δ “ 1.7

(a) H1-seminorm

10´2 10´1

10´5

10´4

10´3

10´2

δ “ 1.7

(b) L2-norm

10´2 10´1

10´0.5

100

100.5

δ “ 0.9
δ “ 1.9

(c) H1-seminorm

10´2 10´1

10´2

10´1

δ “ 0.9
δ “ 1.9

(d) L2-norm

Figure 5: Test-case 2. Relative errors vs. h for ν “ ´10.57 (top) and ν “ ´2.1 (bottom).
Dotted black: cFE, Solid blue/brown: optimization-based, Solid red: hκ for H1, hκ`

1
2 for L2.

theory enables to prove the optimal convergence of cFE. At the opposite, in the present T-
nonconforming case, no theory applies. We compare, for k “ 1, the results obtained with
our approach and with cFE. We compute, for meshsizes between h “ 0.27 and h “ 0.0051,
the relative errors over Ω in (broken) H1-seminorm and in L2-norm, for ν “ ´10.57 and
ν “ ´2.1. In the following, the convergence rate of the error that one can expect with a
T-conforming approximation will be referred to as the expected convergence rate. According
to Proposition 4.8, the expected convergence rate in H1-seminorm is hκ. In L2-norm, the
expected convergence rate depends on the dual regularity exponent of the sign-changing prob-
lem (see [21, Section 3.4] for some insight on the question), as well as on the regularity of
the boundary data. We do not have a theoretical value in the present case. For ν “ ´10.57
(κ « 0.7), we choose λphq “ 0.01h1.7 (remark that δ “ 1.7 ă 1.9 ă 2κ ` 1

2), whereas for
ν “ ´2.1 (κ « 0.2) we test two different options. First, we choose the stabilization following
the rationale of Theorem 6.7, even though the latter is not applicable in this case; we let
λphq “ 0.01h0.9 (remark that δ “ 0.9 ă 2κ ` 1

2). Second, we choose λphq “ 0.01h1.9, i.e. we
decrease the magnitude of the stabilization. The heuristics behind this choice is elementary:
since g̃Γ R L

2pΓq in this case, we rescale the stabilization so as to formally embed an H´
1
2 pΓq-
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norm of g̃Γ, i.e. we multiply the original stabilization by the square of h
1
2 , yielding δ “ 1.9.

The results are collected in Figure 5. For ν “ ´10.57 (top), for both approaches, we ob-
serve the expected convergence rate in H1-seminorm. For ν “ ´2.1 (bottom), cFE presents a
completely erratic behavior. At the opposite, our approach provides monotonic convergence.
When the regularization exponent is fixed to δ “ 0.9, the method sub-converges, whereas for
δ “ 1.9, the expected convergence rate is reached in H1-seminorm.

7.4 Test-case 3: inclusion

We consider an inclusion test-case with Ω :“ p´2, 2q ˆ p´2, 2q and Ωn :“ p´1, 1q ˆ p´1, 1q;
cf. Figure 4 (right). This configuration is of type MN. We let σp “ 1, and we tune σn so as
to change the value of the contrast ν. For such a setting, Problem (5) is well-posed in the
Fredholm sense if and only if ν R

“

´3,´1
3

‰

(see [5, Theorem 1]).
Let us consider the exact solution ũ P H1

0 pΩq defined by

ũpx, yq :“

#

sinpπxq sinpπyq in Ωp,

ν´1 sinpπxq sinpπyq in Ωn,

which is associated to the loading f P L2pΩq such that fpx, yq “ 2π2 sinpπxq sinpπyq in Ω. We
have

g̃Γpx, yq “ π
`

sinpπxq p1y“1 ´ 1y“´1q ` sinpπyq p1x“1 ´ 1x“´1q
˘

a.e. on Γ.

For α P tp,nu, ũα P H1`mpΩαq for all m ě 0. For the geometry considered here, full elliptic
regularity holds true in Ωn, but the reentrant corners in Ωp induce a loss of regularity of 1{3

(cf. Remark B.2). The dual regularity exponents are thus such that εn “ 1 and 2
3´ε ă εp ă

2
3

for any ε ą 0. The parameter δ̃ from Theorem 6.7 is, in turn, such that 2k` 2
3´ε ă δ̃ ă 2k` 2

3
for any ε ą 0. We consider two values of ν, one outside of the critical interval (ν “ ´4),
and the super-critical value (ν “ ´1). For the first value of ν, we know that the operator
A P LpH1

0 pΩq, H
´1pΩqq associated with Problem (5) is Fredholm (of index 0), whereas for the

second we know that it is not (and hence T-coercivity is not applicable). For both values of ν,
we assume in the following that the operator A is injective. Numerically, we have not found
in our experiments any evidence of non-uniqueness.

We consider a family of unstructured triangulations (see Figure 4 (right)) of the domain
Ω, that is admissible in the sense of Definition 6.1, but which is not (locally) T-conforming.
For ν “ ´4, we compare, for k “ 1 and k “ 2, the results obtained with our approach and
with cFE. We compute the relative errors over Ω in (broken) H1-seminorm and L2-norm, for
meshsizes between h “ 0.70 and h “ 0.015. In H1-seminorm, according to Proposition 4.9,
the expected convergence rate (i.e. relative to a (locally) T-conforming approximation, and
for h small enough) is hk. In L2-norm, we do not have a theoretical value. We choose
λphq “ 0.01h2k` 1

2 , and we check that δ “ 2k ` 1
2 ă 2k ` 2

3 . For ν “ ´1, we perform the
same comparisons. However, in this case, no theoretical convergence rate is available, even in
H1-seminorm. All the results are collected in Figure 6. For ν “ ´4 (top), we remark that
cFE and our approach give very similar results. The expected convergence rates are reached
in H1-seminorm. In L2-norm, both approaches seem to converge with order k`1. For ν “ ´1
(bottom), we remark that cFE suffers, whereas our approach provides monotonic convergence
in both H1-seminorm and L2-norm. The convergence orders are difficult to analyze. On
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(d) L2-norm

Figure 6: Test-case 3. Relative errors vs. h for ν “ ´4 (top) and ν “ ´1 (bottom). Dotted
black: cFE (squares for k “ 1, circles for k “ 2), Solid cyan/blue: optimization-based, Solid
red: hk for H1, hk`1 for L2.

Figure 7, we have depicted the discrete solutions obtained for k “ 2 and h “ 0.054. We
observe spurious oscillations at the interface between the two subdomains for cFE, whereas
our approach provides an almost oscillation-free solution (the relative error in H1-seminorm
is more than 10 times smaller).

A Background on Fredholm theory

We collect in this appendix some classical definitions and results. We provide short proofs for
the most important of them.

For V,W real-valued Banach spaces, we let LpV,W q be the space of operators (i.e. bounded
linear maps) from V to W . When W “ V , we simply write LpV q. Let U be a real-valued
reflexive Banach space (e.g. a real-valued Hilbert space), with topological dual U‹ :“ LpU,Rq,
and duality pairing x¨, ¨y. Since U is reflexive, there exists a natural (isometric) isomorphism
between U and U‹‹, and one can identify U with its double dual. Let us recall some definitions.
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(a) cFE solution (b) Optimization-based solution

Figure 7: Test-case 3. Discrete solutions for ν “ ´1.

Definition A.1 (Adjoint operator). Let B P LpU,U‹q. The adjoint B‹ of the operator B is the
unique operator in LpU,U‹q such that, for all u, v P U , xB‹puq, vy “ xBpvq, uy. When B‹ “ B,
the operator B is said to be self-adjoint.

In what follows, for V Ă W , we classically denote by W {V the quotient of the vector space
W by the subspace V .

Definition A.2 (Fredholm operator [2, Definition 4.37]). The operator B P LpU,U‹q is said
to be Fredholm if its nullity dimpKerBq and defect dimpU‹{ImBq are both finite. Its index is
then defined as indpBq :“ dimpKerBq ´ dimpU‹{ImBq.

As a by-product of Definition A.2, any Fredholm operator B P LpU,U‹q of index 0 that is
injective is also surjective, and is an isomorphism from U to U‹.

The following lemma holds true.

Lemma A.3 ([2, Lemma 4.38]). Let B P LpU,U‹q be such that its defect dimpU‹{ImBq is
finite. Then, ImB is closed in U‹ and one has dimpU‹{ImBq “ dimpKerB‹q.

We can now state the main results.

Proposition A.4. Let B P LpU,U‹q be a self-adjoint Fredholm operator. Then, indpBq “ 0
and the following alternative holds true:

‚ either B is injective, then B is an isomorphism from U to U‹;

‚ or, letting 1 ď n :“ dimpKerBq ă 8, and KerB :“ Spantv1, . . . , vnu for functions
v1, . . . , vn P U , one has ImB “ tf P U‹ | xf, vky “ 0 @k “ 1, . . . , nu.

Proof. B being self-adjoint, B‹ “ B. Since B is Fredholm, its defect is finite and, by Lemma A.3,
dimpU‹{ImBq “ dimpKerB‹q “ dimpKerBq, which yields indpBq “ 0. Then, if B is injective,
dimpU‹{ImBq “ dimpKerBq “ 0 and B is also surjective. In the opposite case, using the relation
pImBqK “ KerB‹ (cf. e.g. [2, Theorem 2.13]), one has ImB “ ppImBqKqK “ pKerB‹qK “ pKerBqK

(recall that U is reflexive), thus since ImB is closed (by Lemma A.3), there holds

ImB “ tf P U‹ | xf, vy “ 0 @v P KerBu .
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The conclusion follows from the finiteness of the nullity of B.

Proposition A.5. Let B P LpU,U‹q be a self-adjoint injective operator. Then, the following
equivalence holds true: (i) B is surjective ô piiq ImB is closed.

Proof. piq ñ piiq is trivially true by Lemma A.3 (remark that dimpU‹{ImBq “ 0 since B is
surjective). To prove piiq ñ piq, let us assume that ImB is closed. Then, one can show that
ImB “ ImB “ ppImBqKqK “ pKerB‹qK “ pKerBqK, where we have used in the last identity that
B is self-adjoint. Since B is injective, pKerBqK “ U‹, hence ImB “ U‹ and B is surjective.

B Error estimates

We collect in this appendix some (sharp) error estimates on the finite element solutions to
variable diffusion problems, endowed with either mixed or purely Neumann nonhomogeneous
boundary conditions. These results are meant to be applied to problems of the type (20), set in
either the positive or negative subdomains of configurations Ω of type 2M or MN (cf. Figure 1).
Such estimates are instrumental to study the convergence of our method, and to finely tune the
parameter λphq in (21); cf. Sections 6.3 and 7. Since some of these results are not completely
classical, and so as to keep the exposition as self-contained as possible, we detail their proofs.

B.1 Continuous and discrete settings

Following Section 2, let D be a (Lipschitz) domain in Rd, d P t2, 3u, with boundary Υ :“ BD
such that Υ “ Υt Y Υf , with Υf ‰ H, and unit outer normal n. We make the additional
assumption that D is a polytope. Note that the boundary of D is not necessarily connected.
Each (Lipschitz) subset Υt and Υf of the boundary Υ is assumed to be the finite union of
pd´1q-dimensional polytopes. Note that Υt and Υf are not necessarily connected. In what
follows, the set Υt is meant to be the trace/Dirichlet part of the boundary, whereas the set
Υf is meant to be the flux/Neumann part.

Let a : D Ñ Rdˆd be a symmetric matrix field such that

0 ă a5|ξ|
2 ď apxqξ¨ξ ď a7|ξ|

2 ă 8 for a.e. x P D and all ξ P Rdzt0u,

and let % :“ a7{a5 ě 1 denote its heterogeneity/anisotropy ratio in D. We further assume
that a PW1,8pDq. Since D is a (Lipschitz) domain, thereby quasiconvex, this is equivalent to
assume that a is Lipschitz continuous in D. Also, since a is symmetric and uniformly elliptic,
there exists a unique symmetric and uniformly elliptic matrix field a1{2 such that a “ a1{2a1{2.

Let us consider, for t P L2pDq, the following problem (referred to as dual in the sequel),
endowed with homogeneous boundary conditions:

$

’

&

’

%

´divpa∇zq “ t in D,
z “ 0 on Υt,

a∇z¨n “ 0 on Υf .

(45)

In the purely Neumann case Υt “ H, we further assume that pt, 1qD “ 0, and we replace the
condition z “ 0 on Υt by the condition pz, 1qD “ 0. From now on, we make the following
regularity assumption.
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Assumption B.1 (Regularity of the dual solution). There is ε P p1
2 , 1s (called regularity

exponent), whose value may depend on the geometries of D, Υt and Υf , and on a, so that the
solution z to Problem (45) belongs to H1`εpDq, and satisfies the following regularity estimate:
there exists a constant cr ą 0 such that

}z}1`ε,D ď cra
´1
5
}t}0,D. (46)

Remark B.2 (Elliptic regularity). Let us discuss configurations for which the regularity as-
sumption B.1 is known to hold true. First, recall that a is Lipschitz continuous in D. Second,
recall that Problem (45) is endowed with homogeneous boundary conditions.

Let us begin by considering the purely Neumann situation Υt “ H. In that case, when
the domain D is convex, Assumption B.1 holds true with regularity exponent ε “ 1 (cf. [31,
Theorem 3.2.1.3]). When d “ 2 (so that D is a polygon), a “ a 12 for a ą 0, and the maximum
angle ω in D is such that π ă ω ă 2π (D is not convex), Assumption B.1 holds true for all
ε ă ε0 with ε0 “

π
ω (cf. [31, Theorem 4.4.3.7] and [4, Remark I.3.4]).

In the case of mixed Dirichlet-Neumann boundary conditions Υt ‰ H, the situation is
more complex. Here, we only state results in the case a “ a 1d for a ą 0. When d “ 3, D is a
rectangular cuboid, and Υf is the union of (entire) faces of D, Assumption B.1 holds true with
regularity exponent ε “ 1. When d “ 2 (so that D is a polygon), (i) if D is convex, and the
maximum angle ωdn between Υt and Υf is such that ωdn ď

π
2 , Assumption B.1 holds true with

regularity exponent ε “ 1; (ii) if one or both of the previous two assumptions is not satisfied,
and if ωdn ă π, Assumption B.1 holds true for all ε ă ε0 with ε0 “ min

´

π
ωd
, πωn

, π
2ωdn

¯

, where
ωd and ωn are, respectively, the maximum angles in D internal to Υt and to Υf (cf. [31,
Theorem 4.4.3.7] and [4, Remark I.3.6]).

Since we are going to consider finite element approximations, let us precise our definition
of an admissible mesh family.

Definition B.3 (Admissible mesh family). A mesh family pThqhą0 is admissible if (i) for
all h ą 0 in the family, Th is a matching simplicial discretization of D that is geometrically
compliant with the partition of the boundary (in the sense that Υt “

Ť

F and Υf “
Ť

F with
tF u boundary faces of Th), and if (ii) pThqhą0 is shape-regular in the sense of Ciarlet [22].

Let Th be a member of an admissible mesh family. For an integer k ě 1, we introduce the
discrete space

V k
h :“

!

vh P C
0pDq | vh|T P PkdpT q @T P Th

)

Ă H1pDq.

The usual Lagrange interpolator from C0pDq onto V k
h is denoted Ik,dh , whereas Ik,d´1

h stands
for the Lagrange interpolator (piecewise defined on each face of D) from C0pΥq onto the space

!

ϕh P C
0pΥq | ϕh|F P Pkd´1pF q @F P F

b
h

)

,

where the set Fb
h collects the boundary faces of the mesh Th. It is an easy matter to verify

that γ ˝Ik,dh “ Ik,d´1
h ˝γ on C0pDq. In order to deal with mixed Dirichlet-Neumann boundary

conditions (Υt ‰ H), we will need the space H1
0zΥf

pDq defined in (2). In the purely Neumann
case, we will instead consider the space

H1,0pDq :“
 

v P H1pDq | pv, 1qD “ 0
(

.
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From a discrete point of view, we define

V k
h,0zΥf

:“ V k
h XH

1
0zΥf

pDq and V k,0
h :“ V k

h XH
1,0pDq.

We then let Πk
h,0zΥf

: H1
0zΥf

pDq Ñ V k
h,0zΥf

and Πk,0
h : H1,0pDq Ñ V k,0

h denote the respective
a-weighted elliptic projectors onto the previous discrete spaces, i.e. the orthogonal projectors
for the inner product pv, wq ÞÑ pa∇v,∇wqD. The following approximation result holds true.

Proposition B.4 (Approximation). Let V be either H1
0zΥf

pDq or H1,0pDq and, correspond-
ingly, let Vh be either V k

h,0zΥf
or V k,0

h and Πh : V Ñ Vh be either Πk
h,0zΥf

or Πk,0
h . Let s P r0, ks.

Then, there is capp ą 0 such that, for all v P V satisfying v P H1`spDq,

}a1{2∇pv ´Πhpvqq}0,D ď cappa
1{2

7
hs|v|1`s,D. (47)

Proof. By definition of the a-weighted elliptic projection, there holds

}a1{2∇pv ´Πhpvqq}0,D “ min
vhPVh

}a1{2∇pv ´ vhq}0,D.

If s “ 0, choosing vh “ 0 directly yields }a1{2∇pv ´Πhpvqq}0,D ď a
1{2

7
|v|1,D. Now, assume that

s P pd2 ´ 1, ks. In that case, owing to the (continuous) embedding of H1`spDq into C0pDq,
one can give a sense to the Lagrange interpolate Ik,dh pvq P V k

h of v. Since Th is admissible, if
v P H1

0zΥf
pDq, Ik,dh pvq P V k

h,0zΥf
. In turn, if v P H1,0pDq, a priori Ik,dh pvq R V k,0

h , but

min
vhPV

k,0
h

}a1{2∇pv ´ vhq}0,D “ min
vhPV

k
h

}a1{2∇pv ´ vhq}0,D. (48)

Therefore, in any case, one can write }a1{2∇pv ´Πhpvqq}0,D ď a
1{2

7
}∇pv ´ Ik,dh pvqq}

0,D, and

conclude invoking standard approximation results for Ik,dh (see e.g. [28, Corollary 19.8]). When
d “ 2, the proof is complete. When d “ 3, one still has to treat the case s P p0, 1

2 s. Our proof
makes use of the quasi-interpolation operator introduced in [27] (among other candidates).
When V “ H1,0pDq, the conclusion follows from the trick (48) and from [28, Theorem 22.6]
(together with the shape-regularity of the mesh family). When V “ H1

0zΥf
pDq, one has to

use a quasi-interpolation operator which preserves the Dirichlet boundary condition. Such a
construction is performed in [27] for purely Dirichlet boundary conditions. In such a configu-
ration, the conclusion follows from [28, Theorem 22.14] (together with the shape-regularity of
the mesh family). In our partially Dirichlet case, the arguments need to be slightly adapted.
We will admit that [28, Theorem 22.14] extends, and we refer the reader to [39].

We now treat separately the mixed and purely Neumann cases.

B.2 Mixed boundary conditions

We here assume that Υt ‰ H. We study the following problem:
$

’

&

’

%

´divpa∇uq “ r in D,
u “ φ on Υt,

a∇u¨n “ θ on Υf .

(49)
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We assume that r P L2pDq, that θ belongs to H´
1
2 pΥfq (as defined in Section 2), and that

φ P H
1
2 pΥtq. Recall that Υt is Lipschitz in Υ. By Calderón’s extension theorem (guaranteeing

the existence of a bounded extension operator from H
1
2 pΥtq to H

1
2 pΥq), and the surjectivity

of the trace operator (ensuring the existence of a bounded lifting operator from H
1
2 pΥq to

H1pDq), we infer the existence of φ P H1pDq such that γpφq|Υt
“ φ and }φ}1,D ď cs}φ} 1

2
,Υt

.

The weak formulation of Problem (49) writes as follows: find u P H1pDq, u “ u0`φ, with
u0 P H

1
0zΥf

pDq such that

pa∇u0,∇vqD “ pr, vqD ` xθ, γpvqyΥf
´ pa∇φ,∇vqD @v P H1

0zΥf
pDq. (50)

We henceforth assume that the lifting φ belongs to H1`spDq for some s ą d
2 ´ 1. Note that,

since s ą d
2 ´ 1, we have φ P C0pDq.

Remark B.5 (Characterization of H
1
2
`spΥtq). Formally, a necessary and sufficient condi-

tion for the existence of a regular lifting φ P H1`spDq is that “φ P H
1
2
`spΥtq”. The space

H
1
2
`spΥq has standard meaning for s ă 1

2 , however its definition is unclear for s ě 1
2 without

further regularity on Υ. Denoting by Υj, 1 ď j ď N , the open faces of the polytopal domain
D, a necessary condition so as to ensure that φ “ γpφq|Υt

for some φ P H1`spDq is that
φ|ΥjXΥt

P H
1
2
`spΥj X Υtq for all 1 ď j ď N . Of course this condition cannot be sufficient,

and must be supplemented by some “jump” control between the faces in Υt. To obtain necessary
and sufficient conditions, one needs to finely characterize the range of the trace operator on
H1`spDq. For Lipschitz polytopes, the range of the trace operator of order n P N on HζpDq so
that ζ ą n` 1

2 has been fully characterized in [31, Theorem 1.5.2.8] (d “ 2) and [3] (d “ 3).

We consider the following conforming finite element approximation of Problem (50): find
uh P V

k
h , uh “ uh,0 ` Ik,dh pφq, with uh,0 P V k

h,0zΥf
such that

pa∇uh,0,∇vhqD “ pr, vhqD ` xθ, γpvhqyΥf
´ pa∇Ik,dh pφq,∇vhqD @vh P V

k
h,0zΥf

. (51)

Remark that there holds γpuhq “ Ik,d´1
h pφq on Υt.

Lemma B.6 (H1pDq-seminorm estimate). Assume that u P H1`mpDq, with 0 ď m ď s. Let
τ :“ minpm, kq. Then, the following estimate holds true, for some constant c ą 0:

}a1{2∇pu´ uhq}0,D ď c a
1{2

7
hτ

`

|u|1`τ,D ` |φ|1`τ,D
˘

. (52)

Proof. Since V k
h,0zΥf

Ă H1
0zΥf

pDq, the following orthogonality property holds true as a conse-
quence of (50) and (51):

pa∇pu´ uhq,∇vhqD “ 0 @vh P V
k
h,0zΥf

. (53)

From this, for any wh P V k
h such that γpwhq “ Ik,d´1

h pφq on Υt, we obtain

}a1{2∇pu´ uhq}
2

0,D “ pa∇pu´ uhq,∇pu´ whqqD ď }a
1{2∇pu´ uhq}0,D}a

1{2∇pu´ whq}0,D.

Now, choosing wh “ Πk
h,0zΥf

pu0q ` Ik,dh pφq, we get

}a1{2∇pu´ uhq}0,D ď }a
1{2∇pu0 ´Πk

h,0zΥf
pu0qq}

0,D
` }a1{2∇pφ´ Ik,dh pφqq}

0,D.
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We have u0 P H
1`mpDq and φ P H1`spDq Ă H1`mpDq. Hence, by the approximation proper-

ties of Πk
h,0zΥf

(see Proposition B.4) and Ik,dh (cf. e.g. [28, Corollary 19.8]), we infer that

}a1{2∇pu´ uhq}0,D ď c a
1{2

7
hτ

`

|u0|1`τ,D ` |φ|1`τ,D
˘

.

Since |u0|1`τ,D ď |u|1`τ,D ` |φ|1`τ,D, we obtain (52).

Remark B.7 (Case m ą d
2´1). If m ą d

2´1 (then u P C0pDq), one can choose wh “ Ik,dh puq
in the proof of Lemma B.6. Doing so, one can prove in this case that (52) holds true with
right-hand side simply proportional to |u|1`τ,D.

Lemma B.8 (L2pDq-norm estimate). Assume that u P H1`mpDq, with 0 ď m ď s. Let
τ :“ minpm, kq, χ :“ min

`

1
2 ` s, k ` 1

˘

, and η :“ minpτ ` ε, χq, where ε P p1
2 , 1s is the

regularity exponent of the dual problem. Then, there is some constant c ą 0 such that

}u´ uh}0,D ď c % hη

¨

˝|u|1`τ,D ` |φ|1`τ,D `

˜

N
ÿ

j“1

|φ|2χ,ΥjXΥt

¸1{2
˛

‚, (54)

and there holds η P rτ ` 1
2 , k ` 1s.

Proof. We resort to the Aubin–Nitsche duality argument. Recall that a P W1,8pDq (so that
a is Lipschitz continuous in D), and that the dual solution z to (45) belongs to H1`εpDq for
ε P p1

2 , 1s (by Assumption B.1). As a consequence, a∇z P HεpDq, and there is a constant
cl ą 0, which depends linearly on the Lipschitz constant of a´1

7
a, such that

}a∇z}ε,D ď cla7}∇z}ε,D. (55)

Furthermore, one can give a sense to γpa∇zq|Υt
¨n in L2pΥtq. We consider the following weak

formulation of the dual Problem (45): find z P H1
0zΥf

pDq such that

pa∇z,∇wqD ´ pγpa∇zq¨n, γpwqqΥt
“ pt, wqD @w P H1pDq,

where we have leveraged the fact that a∇z¨n “ 0 on Υf to cancel out the Neumann boundary
contribution. Testing with w “ pu´ uhq P H1pDq, remarking that γpu´ uhq “ φ´ Ik,d´1

h pφq
on Υt, and using the symmetry of a, yields

pt, pu´ uhqqD “ p∇z, a∇pu´ uhqqD ´ pγpa∇zq¨n, φ´ Ik,d´1
h pφqq

Υt
.

Since z P H1
0zΥf

pDq, using the orthogonality property (53), we infer that

pt, pu´ uhqqD “ p∇pz ´Πk
h,0zΥf

pzqq, a∇pu´ uhqqD ´ pγpa∇zq¨n, φ´ Ik,d´1
h pφqq

Υt
,

hence, letting t :“ a7pu´ uhq P L
2pDq, there holds

a7}u´ uh}
2
0,D ď }a

1{2∇pz ´Πk
h,0zΥf

pzqq}
0,D
}a1{2∇pu´ uhq}0,D

` }γpa∇zq¨n}0,Υt
}φ´ Ik,d´1

h pφq}
0,Υt

“: T1 ` T2. (56)
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Let us first estimate T1 in (56). By the approximation properties of Πk
h,0zΥf

(see Proposi-
tion B.4), the fact that |z|1`ε,D ď }z}1`ε,D, and the regularity result (46), we infer that

T1 ď cappcr%
1
2a
´ 1

2

5
hε}t}0,D}a

1{2∇pu´ uhq}0,D. (57)

Let us now estimate T2 in (56). Since ε P p1
2 , 1s, the trace theorem (1) followed by (55) yields

}γpa∇zq¨n}0,Υt
ď }γpa∇zq}0,Υ ď }γpa∇zq}ε´ 1

2
,Υ ď cγ}a∇z}ε,D ď cγcla7}∇z}ε,D.

Since }∇z}ε,D ď }z}1`ε,D, leveraging the regularity result (46), we infer that

T2 ď cγclcr%}t}0,D}φ´ Ik,d´1
h pφq}

0,Υt
. (58)

Plugging the estimates (57) and (58) into (56), recalling the definition of the function t,
and using (i) (52) for T1, and (ii) standard approximation properties for Ik,d´1

h (cf. e.g. [28,
Corollary 19.8]) together with the admissibility of the mesh and the fact that φ|ΥjXΥt

P

H
1
2
`spΥj XΥtq for all 1 ď j ď N (see Remark B.5) for T2, we infer that

}u´ uh}0,D ď c1% h
τ`ε

`

|u|1`τ,D ` |φ|1`τ,D
˘

` c2% h
χ

˜

N
ÿ

j“1

|φ|2χ,ΥjXΥt

¸1{2

,

which yields (54). To prove the upper bound on η, we just remark that τ ` ε ď k ` 1 and
χ ď k ` 1. For the lower bound, since χ´ 1

2 “ minps, k ` 1
2q and minpm, kq ď minps, k ` 1

2q,
one has χ ě τ ` 1

2 . Together with ε ą
1
2 , this yields η ě τ ` 1

2 .

Lemma B.9 (L2pΥq-norm estimate). Assume that u P H1`mpDq, with 0 ď m ď s. Let
τ :“ minpm, kq, χ :“ min

`

1
2 ` s, k ` 1

˘

, η :“ minpτ ` ε, χq, and δ :“ τ ` η, where ε P p1
2 , 1s

is the regularity exponent of the dual problem. Then, there is c ą 0 such that

}γpu´ uhq}0,Υ ď c % h
δ
2

¨

˝|u|1`τ,D ` |φ|1`τ,D `

˜

N
ÿ

j“1

|φ|2χ,ΥjXΥt

¸1{2
˛

‚, (59)

and there holds δ
2 P rτ `

1
4 , k `

1
2 s.

Proof. The estimate (59) is a consequence of the multiplicative trace inequality in H1pDq
(cf. e.g. [12, (1.6.6)]):

}γpu´ uhq}
2
0,Υ ď cmt}u´ uh}0,D}u´ uh}1,D.

Lemmas B.6 and B.8, and the fact that % ě 1 and η ą τ yield the conclusion.

Remark B.10 (Case φ “ 0). If φ “ 0 on Υt, one can choose φ “ 0 in D, hence χ “ k ` 1,
η “ τ ` ε, and the estimate (59) holds true with δ

2 “ τ ` ε
2 and right-hand side simply

proportional to |u|1`τ,D.
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B.3 Purely Neumann boundary conditions

We here assume that Υt “ H. Let Λ be a nonempty relatively open Lipschitz subset of Υ,
which is the finite union of pd´1q-dimensional polytopes, and satisfies |Λ|d´1 “ cΛ|Υ|d´1 for
some cΛ P p0, 1s (note that Λ “ Υ is allowed). For κ P R, we study the following problem:

$

’

&

’

%

´divpa∇uq “ r in D,
a∇u¨n “ θ on Υ,

pγpuq, 1qΛ “ |Λ|d´1κ.

(60)

We assume that r P L2pDq, that θ belongs to H´
1
2 pΥq (as defined in Section 2), and that

pr, 1qD ` xθ, 1yΥ “ 0, so that Problem (60) admits a (unique) solution.
The weak formulation of Problem (60) writes as follows: find u P H1pDq, u “ u0 ` ι0,

ι0 :“ κ´ |Λ|´1
d´1pγpu

0q, 1qΛ, with u
0 P H1,0pDq such that

pa∇u0,∇vqD “ pr, vqD ` xθ, γpvqyΥ @v P H1,0pDq. (61)

Let D1 be another (Lipschitz) polytopal domain in Rd, with boundary Υ1 :“ BD1, such that
D and D1 are disjoint and Λ “ intpΥ X Υ1q. We let D̂ be the polytopal set of Rd such that
D̂ :“ DYD1, and we assume that D̂ is Lipschitz. Let û P H1pD̂q (whose existence is guaranteed
by Calderón’s extension theorem) be such that the solution u P H1pDq to Problem (61) satisfies
u “ û|D, and define u1 :“ û|D1 . In the same vein, let â P L8pD̂q be a symmetric matrix field
such that a “ â|D, and define a1 :“ â|D1 (in practice, a1 satisfies analogous properties to a,
i.e. a1 is uniformly elliptic and belongs to W1,8pD1q). We denote by %1 ě 1 (resp. %̂ ě 1) the
heterogeneity/anisotropy ratio of a1 (resp. â) in D1 (resp. D̂), in such a way that maxp%, %1q ď %̂.

When Λ does not coincide with Υ (like it does when D is included inside D1), we further
assume that Th is geometrically compliant with Λ. We consider the following conforming
approximation of Problem (61): find uh P V k

h , uh “ u0
h` ι

0
h, ι

0
h :“ κh´|Λ|

´1
d´1pγpu

0
hq, 1qΛ, with

u0
h P V

k,0
h such that

pa∇u0
h,∇vhqD “ pr, vhqD ` xθ, γpvhqyΥ @vh P V

k,0
h . (62)

The real number κhp“ |Λ|´1
d´1pγpuhq, 1qΛq is a given “exterior” approximation of κ, in the sense

that it is inferred from D1 in practice. Suppose that D1 is also meshed, with same meshsize h,
in such a way that the resulting global mesh of D̂ is admissible in the sense of Definition 6.1
(with Ω Ð D̂ and Γ Ð Λ). Let m ě 0 be some exponent such that both u P H1`mpDq and
u1 P H1`mpD1q. Then, letting τ :“ minpm, kq, κh is assumed to satisfy

|Λ|
1{2

d´1|κ´ κh| ď cκ%
1h

δ1

2 |u1|1`τ,D1 , (63)

with δ1 :“ 2τ ` ε1 for some ε1 P p1
2 , 1s. Note that since û P H1pD̂q, γpuq “ γ1pu1q on Λ so

that κ “ |Λ|´1
d´1pγ

1pu1q, 1qΛ. Assume that u1 is solution to a mixed-type a1-weighted diffusion
problem in D1, with homogeneous Dirichlet boundary conditions on some non-negligible subset
of BD1zΛ, and dual regularity exponent ε1. Then, letting κh :“ |Λ|´1

d´1pγ
1pu1hq, 1qΛ with u1h P

pV k
h q
1 finite element approximation of u1 in D1, the estimate (63) follows as a simple by-product

of Remark B.10.
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Lemma B.11 (H1pDq-seminorm estimate). Assume that u P H1`mpDq, with m ě 0. Let
τ :“ minpm, kq. Then, the following estimate holds true, for some constant c ą 0:

}a1{2∇pu´ uhq}0,D ď c a
1{2

7
hτ |u|1`τ,D. (64)

Proof. Since V k,0
h Ă H1,0pDq, the following orthogonality property holds true as a consequence

of (61) and (62):
pa∇pu0 ´ u0

hq,∇vhqD “ 0 @vh P V
k,0
h . (65)

Therefore, u0
h “ Πk,0

h pu
0q. Now, since ∇pu ´ uhq “ ∇pu0 ´ u0

hq and |u0|1`τ,D “ |u|1`τ,D,
Proposition B.4 directly yields the result.

Lemma B.12 (L2pDq-norm estimate). Assume that u P H1`mpDq and u1 P H1`mpD1q, with
m ě 0. Let τ :“ minpm, kq, δ :“ 2τ ` ε where ε P p1

2 , 1s is the regularity exponent of the dual
problem in D, and δ1 :“ 2τ ` ε1 for some ε1 P p1

2 , 1s. Define δ̂ :“ minpδ, δ1q. Then, there is
some constant c ą 0 such that

}u´ uh}0,D ď c %̂ h
δ̂
2

`

|u|1`τ,D ` |u
1|1`τ,D1

˘

, (66)

and there holds δ̂
2 P pτ `

1
4 , k `

1
2 s.

Proof. Writing, for `D diameter of D,

}u´ uh}0,D ď }u
0 ´ u0

h}0,D ` `
1
2
D|Υ|

1{2

d´1|ι
0 ´ ι0h|, (67)

we first estimate |ι0 ´ ι0h|. We have

c
1
2
Λ|Υ|

1{2

d´1|ι
0 ´ ι0h| “ |Λ|

1{2

d´1|ι
0 ´ ι0h| ď |Λ|

1{2

d´1|κ´ κh| ` }γpu
0 ´ u0

hq}0,Λ.

Using the “exterior” estimate (63) on |Λ|
1{2

d´1|κ ´ κh|, the multiplicative trace inequality in
H1pDq (cf. e.g. [12, (1.6.6)]), and the fact that ∇pu0 ´ u0

hq “∇pu´ uhq, we infer

c
1
2
Λ|Υ|

1{2

d´1|ι
0 ´ ι0h| ď cκ%

1h
δ1

2 |u1|1`τ,D1

` c
1{2

mt

´

}u0 ´ u0
h}0,D ` }∇pu´ uhq}

1{2

0,D}u
0 ´ u0

h}
1{2

0,D

¯

.

Plugging this estimate into (67), and using the H1pDq-seminorm estimate (64), yields

}u´ uh}0,D ď c1

ˆ

}u0 ´ u0
h}0,D ` %

1
4h

τ
2 |u|

1{2

1`τ,D}u
0 ´ u0

h}
1{2

0,D ` %
1h

δ1

2 |u1|1`τ,D1

˙

. (68)

Now, we invoke the Aubin–Nitsche duality argument to estimate }u0 ´ u0
h}0,D. We consider

the following weak formulation of Problem (45): find z P H1,0pDq such that

pa∇z,∇wqD “ pt, wqD @w P H1,0pDq.

Choosing w “ pu0 ´ u0
hq P H

1,0pDq, we infer, by symmetry of a and orthogonality (65),

pt, pu0 ´ u0
hqqD “ p∇z, a∇pu0 ´ u0

hqqD “ p∇pz ´Πk,0
h pzqq, a∇pu

0 ´ u0
hqqD.
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Letting t :“ a7pu
0 ´ u0

hq P L
2pDq (notice that pt, 1qD “ 0), and leveraging the approximation

result of Proposition B.4, combined with the regularity result (46) and the fact that |z|1`ε,D ď
}z}1`ε,D, as well as the H

1pDq-seminorm estimate (64), we obtain

}u0 ´ u0
h}0,D ď cappcr%

1
2a
´ 1

2

5
hε}a1{2∇pu´ uhq}0,D ď c2% h

τ`ε|u|1`τ,D. (69)

The conclusion follows from (68), together with % ě 1 and maxp%, %1q ď %̂.

Lemma B.13 (L2pΥq-norm estimate). Assume that u P H1`mpDq and u1 P H1`mpD1q, with
m ě 0. Let τ :“ minpm, kq, δ :“ 2τ ` ε where ε P p1

2 , 1s is the regularity exponent of the dual
problem in D, and δ1 :“ 2τ ` ε1 for some ε1 P p1

2 , 1s. Define δ̂ :“ minpδ, δ1q. Then, there is
c ą 0 such that

}γpu´ uhq}0,Υ ď c %̂ h
δ̂
2

`

|u|1`τ,D ` |u
1|1`τ,D1

˘

, (70)

and there holds δ̂
2 P pτ `

1
4 , k `

1
2 s.

Proof. Starting from

}γpu´ uhq}0,Υ ď }γpu
0 ´ u0

hq}0,Υ ` c
´ 1

2
Λ |Λ|

1{2

d´1|ι
0 ´ ι0h|

ď p1` c
´ 1

2
Λ q}γpu0 ´ u0

hq}0,Υ ` c
´ 1

2
Λ |Λ|

1{2

d´1|κ´ κh|,

using the multiplicative trace inequality in H1pDq (cf. e.g. [12, (1.6.6)]) combined with the
fact that ∇pu0 ´ u0

hq “∇pu´ uhq, along with the “exterior” estimate (63) on |Λ|
1{2

d´1|κ´ κh|,
we get

}γpu´ uhq}0,Υ ď p1` c
´ 1

2
Λ qc

1{2

mt

´

}u0 ´ u0
h}0,D ` }∇pu´ uhq}

1{2

0,D}u
0 ´ u0

h}
1{2

0,D

¯

` c
´ 1

2
Λ cκ%

1 h
δ1

2 |u1|1`τ,D1 .

The conclusion follows from (69) and (64), as in the proof of Lemma B.12.
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