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Abstract

We study the numerical approximation of sign-shifting problems of elliptic type. We
fully analyze and assess the method briefly introduced in [1]. Our method, which is based
on domain decomposition and optimization, is proved to be convergent as soon as, for a
given loading, the continuous problem admits a unique solution of finite energy. Depart-
ing from the T-coercivity approach, which relies on the use of geometrically fitted mesh
families, our method works for arbitrary (interface-compliant) meshes and anisotropic co-
efficients. Moreover, it is shown convergent for a class of problems for which T-coercivity
is not applicable. A comprehensive set of test-cases complements our analysis.

1 Introduction

We are interested in this work in the numerical approximation of elliptic interface problems
that present a sign shift. Our main motivation is the modeling of the interface between a
classical material and a metamaterial.

Optical metamaterials are artificial micro-structured materials exhibiting effective electro-
magnetic properties that cannot be found in Nature, like an electric permittivity or/and a
magnetic permeability with negative real part(s). Optical metamaterials are genuinely dis-
persive. Among them, the so-called negative-index metamaterials (NIMs) are of particular
interest: they present over some frequency range a negative refractive index, i.e. simultane-
ously negative permittivity/permeability (we always refer to the real parts of these coeffi-
cients). The existence of such materials has been postulated in 1968 in the seminal work of
Veselago [55]. The first effective design of a device exhibiting simultaneously negative permit-
tivity /permeability was realized by Smith et al. in 2000 [53, 52]. NIMs have a tremendous
amount of potential applications, among which superlensing [48, 50, 43| or cloaking (either
using complementary media [35, 44|, or via anomalous localized resonance [40, 10, 42]).

Several models exist in the literature to describe the effective properties of dispersive
optical metamaterials. One can cite for instance the Drude-Lorentz class of materials. These
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effective models can be mathematically justified by (high-contrast) homogenization, starting
from the corresponding micro-structures. Typically, optical metamaterials are made up of
small, highly conductive inclusions, which are periodically arranged within a dielectric matrix.
We mention |9, 11, 36] and the references therein for examples of such settings. For non-lossy
materials, the modeling of the interface between a classical material and a metamaterial raises
new questions concerning the well-posedness and the approximability of the resulting models,
owing to the possible (spatial) sign shift of the coefficients. For Maxwell’s equations in the
time domain, existence and uniqueness hold irrespectively of the problem data. However, the
limiting amplitude principle is not always valid. We refer the reader to [18, 19] for an analysis
in the case of a plane interface, and to [17] for a numerical study including corners. In the
frequency domain, existence and uniqueness may depend on various parameters, including
the frequency, the geometry, the coefficients, or the loading [25, 49, 29, 24, 34], which can be
interpreted as a signature of the limiting amplitude principle conditional validity.

Among the different mathematical frameworks for studying the well-posedness of sign-
shifting elliptic PDEs, two are especially worth discussing in details (we refer the reader
to [37, 46| for comprehensive surveys). The first one is the T-coercivity theory, introduced
by Bonnet-Ben Dhia et al. [6]. The T-coercivity theory aims at proving the well-posedness
(in H') of the problem in the Fredholm sense. So far, the focus of T-coercivity has been on
isotropic coefficients, and it has been shown that the contrast of the coefficients at the sign-
changing interface plays a crucial role in the well-posedness of the model, with a super-critical
value of the contrast equal to —1. In 2D, optimal conditions have been derived which provide
a bounded closed interval of (—o0,0) for the contrast (the so-called critical interval, which
contains the super-critical value —1) outside which the problem is well-posed in the Fredholm
sense. The well-posedness of critical (but non super-critical) situations has been tackled for
some given configurations in [7]|, where Fredholmness is recovered in an augmented functional
framework. Another interesting approach to study the well-posedness of sign-changing elliptic
PDEs has been proposed by Nguyen [41, 45| in the context of Helmholtz equations. The idea
is to introduce some loss in the negative material (i.e. a nonzero imaginary part) and to study
the behavior, as the loss tends to zero, of the solution to the well-posed lossy system (limiting
absorption principle). By means of reflection operators, it is possible to derive conditions
on the coefficients under which the limit problem is well-posed. The advantage of such an
approach is twofold: first it is designed for anisotropic coefficients, and second it can deal with
configurations for which the corresponding operator is not Fredholm (including super-critical
cases). On the other hand, it is currently limited to smooth sign-shifting interfaces.

As far as numerical approximation is concerned, when dealing with sign-shifting problems,
one needs to deploy dedicated techniques in order to handle the indefiniteness of the model
at hand. Interesting yet sub-optimal first attempts include [8, 47] (cf. also |21, Section 5.1])
and |21, Section 5.2] (based on limiting absorption). The most fruitful approach so far is based
on the T-coercivity theory. T-coercivity based approximation [21, 5, 16, 33| takes advantage of
the knowledge of the bijective operator T to infer meshing rules, under which conforming finite
elements can be proved (optimally) convergent. Evidently, T-coercivity based approximation
suffers from the same limitations as T-coercivity does; in particular, it can only apply to
configurations for which the problem is well-posed in the classical sense. In addition, it is
also bound to the explicit knowledge of the operator T, as well as to the use of geometrically
fitted meshes locally to the sign-changing interface. The design of such meshes can become
very intricate for interfaces with general shapes. Therefore, there is room for improvement in
designing a numerical method that is applicable as soon as the model possesses, for a given



loading, a unique solution of finite energy, and which does not require the use of geometrically
constrained meshes. This last criterion is particularly crucial in applications, for instance to
simulate the micro-structures of [13|, for which sign-shifting cell problems with potentially
fairly general interfaces must be solved.

In this work, we fully analyze and validate the method summarily introduced in [1]. This
method constitutes an alternative path for the numerical approximation of sign-shifting PDEs.
It is based on a decomposition of the domain into signed subdomains (i.e. subdomains in which
the coefficient is sign-definite), and on a recasting of the model into a transmission problem.
The numerical method then consists in finding the discrete flux at the interface for which
some criterion, quantifying the trace jump at the interface between the discrete solutions in
both subdomains, is minimal. A key feature of the method is to relax at the discrete level
the continuity of the solution at the interface while keeping a control on its jump through the
minimization of an augmented functional. This method is proved convergent as soon as the
problem admits, for a given loading, a unique solution of finite energy (in H'). In particular,
the problem is not required to be Fredholm. Furthermore, the convergence proof does not
rely on any kind of geometrical constraints on the mesh family (the only needed assumption
is that the mesh cells do not cut the interface). As standard with domain decomposition, the
implementation of our method can benefit from parallel /distributed architectures. As already
mentioned in [1], the type of cost functional we consider has first been deployed in [32, 31] in
the context of optimization-based domain decomposition for classical elliptic equations. With
respect to [32, 31|, the novelty in our approach essentially lies in the numerical algorithm, in its
analysis, and in its application to sign-changing PDEs. Note that, at the time this manuscript
is finalized, another related approach (based on optimal control) has been introduced in 23],
which remedies one limitation of our method (cf. Remark 6.9). Finally, note that our approach
shares some common goals with [14, 15], in that it aims at approximating problems which are
not necessarily well-posed in the classical sense.

The article is organized as follows. In Section 2 we introduce some useful functional analysis
tools. In Section 3 we introduce the problem under study. In Section 4 we biefly motivate our
approach, in particular we review the limitations of T-coercivity as an approximation method.
In Section 5 we recast the continuous problem as an interface problem, and we provide a
characterization of its solution on which we base our numerical algorithm. In Section 6 we
introduce the numerical method, and we prove its convergence. In Section 7 we provide a
comprehensive set of numerical experiments and demonstrate the efficiency of our approach.
We also detail a possible algebraic realization of the method. Finally, in Appendix A we
provide some basic background on Fredholm theory, whereas in Appendix B we collect (sharp)
error estimates for the finite element solutions to nonhomogeneous mixed and purely Neumann
variable diffusion problems, which are instrumental to finely tune our method.

2 Functional analysis tools

Let D be a domain in R, d € {2,3}, that is a bounded and connected Lipschitz open set of
R?. We let T := 9D denote the boundary of D. Since D is Lipschitz, a unit normal vector
field n can be defined almost everywhere on Y, which is assumed to point outward D. The
set Y is further partitioned into two disjoint, relatively open Lipschitz subsets Ty and Y¢ with
Y¢ # ¢ such that T = YT, u Ty.

For q € {1,d}, we classically let L?(D;RY) be the Hilbert space of distributions v :=



(v1,...,v4) : D — R? (whenever ¢ = 1, we simply write v) such that {, [v(x)|*dz < o0. Irre-
spectively of g, the standard inner product and norm in L?(D;RY) are denoted by (v, w)p :=
§pv(z) w(z)dr and lvllgp = +/(v,v)p. For m € N, e := (an,...,0q) € N? a multi-
index, and 0%v := (07"..07%v1,..., 07" .05%q) : D — RY, we classically let H™(D;R?) be
the Hilbert space of distributions v € L?(D;R?) such that [|0%v]op < oo for all o € N? with
(I1<)ag+ ...+ ag <m. We equip H™(D;R?) with the following norm:

2 2 2
vl = lvlH-1p + ‘U‘gn,pa |v|3n,D = Z l0%v[5
a1+...+oag=m
with the convention that HY = L?. Next, for o € (0,1), letting for w : D — RY,
2 . lw(z) — w(y)?

we classically let H? (D;RY) be the fractional Hilbert space of distributions v € L?(D;RY) such
that |v|,p < 0. In the same vein, for s = m + ¢ with m := |s] e Nand 0 := s —m € (0, 1),
we denote by H*(D;R?) the fractional Hilbert space of distributions v € H™(D;R?) such that
|0%v|sp < 0 forall a € N? with aq 4. ..+ag = m. Remark that this definition coincides with
the above definition of H?(D;RY?) whenever m = 0. We equip H*(D;R?) with the following
Sobolev—-Slobodeckij norm:

[0l p = lolhp + 0Ep,  WEp= > [0%[p.

al+...+oag=m
Henceforth, for convenience, we simply write L?(D) or H*(D) in place of L*(D;R) or H*(D;R),
and L%*(D) or H*(D) in place of L?(D;RY) or H*(D;R?). As standard, we let H(D) be the
Hilbert space, closed subset of H!(D), obtained as the closure for the |-|1 p-norm of C§°(D).
We further let H~!(D) denote the topological dual of H}(D), with duality pairing (-, -)p.
Endowed with the norm (v

,V

[t 1p= sup P

vertonoy 1Vl

H~1(D) is a Banach space.

Let us now turn to the definition of trace spaces, first on the whole domain boundary.
We classically let L?(T;R?) be the Hilbert space of distributions ¢ := (¢1,...,¢) : T — RY
(whenever ¢ = 1, we simply write ¢) such that § |¢(z)[>do(x) < 0. Irrespectively of g, the
standard inner product and norm in L?(Y; RY) are denoted by (¢, )y := §, ¢(x)-9(x) do(x)

and [y y 1= ~/(¢; ¢)y. For o € (0,1), letting
|2

o2y = L p(z) — o(y)

O i Ao (@)do (y).

we classically denote by H?(Y;RY) the fractional Hilbert space of distributions ¢ € L?(T;RY)
such that |¢|,yr < 0. We equip H?(Y;R?) with the following Sobolev-Slobodeckij norm:
Il = lelor + lelox-

Next, for s € (3,1], we let v : H*(D;R?) — Hs_%(T;Rq) (whenever ¢ = 1, we write 7)
denote the (linear, bounded) trace operator. By definition, «(v) coincides with vy when v is
sufficiently regular. There is ¢, > 0 such that, for all v € H*(D;R?), there holds

||‘Y(’U)H57%,T < ¢&y]v]l p- (1)
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The operator = is also surjective, with bounded right inverse (cf. e.g. [30, Theorem 1.5.1.2]).
Henceforth, for convenience, we simply write H?(Y) in place of H?(T;R), and H?(Y) in
place of H(T;R%). We classically let Hfé(T) denote the topological dual of H%(T), with
duality pairing (-, ). Endowed with the norm

<97 90>T
el x'

10l-1x = sup
peH 2 (T)\{0}

N

H~2(7) is a Banach space. Let

H(div;D) := {6 € L*(D) | div@ € L*(D)}.

For any 6 € H(div;D), by surjectivity of the trace operator =, one can give a sense to the

normal trace of @ on Y (denoted 7y, (0)) in H 3 (Y) via the following divergence formula: for
all ve HY(D),

(M (0),7(v))y 1= (0, V) + (div 6, v)p.
By definition, 7,,(8) coincides with 8|y-n when @ is sufficiently regular.

Let us finally introduce the so-called Lions—Magenes trace space. We assume that Ty # OF,
so that both Ty and Y are nonempty. The Lions—Magenes space on T¢, usually denoted
HS{JQ(Tf), is formally the space of distributions in H %(Tf) which can be extended by zero to
distributions in H %(T) More rigorously, letting

N
P00 = Lf o) 27

where p(x) := mingesr, | — y| is the distance to 0T, we define HS{)Q(Tf) as the fractional
Hilbert space of distributions ¢ € H%(Tf) such that [p[1 y g9 < 0. We equip HS{)Q(Tf) with
3Tt
the following Sobolev—Slobodeckij norm:
15,00 = Il x, + 19013 v, 00
There holds
1 1 . 1 R . 1
HO{?(Tf) = {cp e H2(Y¢) | 3p e H2(T) s.t. Oy = 05 Py = 0}( c Hz (Tf)),

in such a way that, letting

Hg\ (D) := {ve H'(D) [ 4(v)pr, = 0}, (2)
we have ’Y(H(%\Tf (D))‘Tf = H5/02(Tf) by surjectivity of the trace operator v. We let H_%(Tf)
denote the topological dual of HS{?(Y}), with duality pairing (-, )y, . Endowed with the norm

<‘9’ 90>T
H9H7%7Tf = sup H||17f’
peHo (Yoo} 171500

H 2 (Y¢) is a Banach space. For any 8 € H (div; D), it is possible to give a sense to the normal
trace of @ on Y¢ (denoted v, £(0)) in H 7%(Tf) via the following divergence formula: for all
veE Hé\Tf (D),

<’7ﬂ,f(9)7'7(v)>‘rf = (07 VU)D + (div 6, U)D'

Above, we abuse the notation by writing v(v) in place of v(v)y,. By definition, vy, ¢(6)
coincides with @)y,-n when 6 is sufficiently regular.

5



3 Setting of the problem

Let Q be a domain in R? (i.e. a bounded and connected Lipschitz open set of R?), d € {2, 3}.
We assume that € is partitioned into two disjoint (nonempty) Lipschitz open subsets €, and
), so that ) = Qiquin. As it will become clear in what follows, the subscripts 'p’ and 'n’ refer,
respectively, to the positive and negative subdomains. The two subdomains €2, and ,, are
assumed to be connected. We further suppose that €2, is such that 0Q,n 02 has nonzero (d—1)-
dimensional measure. We let I' := int(0€2, N 0€2;,) denote the (open) interface between €, and
y,, which is a Lipschitz (d—1)-dimensional manifold. Since I' is Lipschitz, one can define a
(unit) normal vector field almost everywhere on I'. There holds [0Q2 N T'|4—; = 0. On Figure 1
are depicted various admissible configurations €2 in 2D. The meaning of the classification 2M
(for mixed-mixed coupling) and MN (for mixed-Neumann coupling) will be made completely
precise in Section 5.3. The top configurations la are such that both 0€, n 02 and 0€, N 002
have nonzero lineic measures. The bottom configuration 1b is, at the opposite, such that
0y N 02 = . For the left and center configurations la, and for the configuration 1b, the
interface I' is connected, whereas it is not the case for the right configuration la. The left
configuration la is referred to in the literature as the (symmetric or nonsymmetric, depending
on the position of I') cavity; see e.g. [21, Section 3.3]. In the following, we will refer to the
configuration 1b as the inclusion case.

(a) Configurations 2M

I

(b) Configuration MN
Figure 1: Examples of configurations €2 in 2D
Let :Q — R%9 be a symmetric tensor field such that
0< o€ < (2)&€ < oyl€]* <o for a.e. ¢ € Q and all £ € R%\{0},
and let p := oy/0, > 1 denote its heterogeneity /anisotropy ratio in 2. We further assume that

o= |0, € Wh*(Qq) (with obvious notation) for a € {p,n}. When is isotropic, i.e. when
there is o : 2 — R satisfying 0 < 0, < 0 < 03 < 00 such that = 0lg where 14 is the d x d




identity tensor, we let
On|l
vi= ——— (3)
Op|l
denote the coefficient contrast at the interface. Let s : Q@ — {—1,+1} be the sign function
such that s, 1= sjo, = +1 and s, 1= s)q, = —1. For f € H~1(Q), we study the following
(anisotropic) sign-shifting problem: find @ € H'(Q) such that
—div(s Va)=f in Q, )
0 on 0.

U

For further use, we also let @, := 1q, for a € {p,n}. Let us insist on the fact that 1is a
real-valued coefficient. We are thus looking for real-valued solutions to Problem (4). Note
that we could also consider, up to slight adaptations of the method described in Section 6,
more general boundary conditions for Problem (4), or/and more complex geometries for the
subdomains 2, and €2,,. We refer to Remark 6.10 for further insight on this question.

The weak form of Problem (4) writes: find @ € HZ () such that

a(t,v) := (s Va,Vo), = {(f,v)q Vv e H}(Q). (5)

4 A look into T-coercivity

4.1 Background on T-coercivity theory

For the reader not familiar with Fredholm theory on which we are going to rely below, we
refer to Appendix A, where some fundamental definitions and results are recalled.

Let U be a real-valued Hilbert space, with norm |-|. Let U* denote the topological dual
of U, with duality pairing {-,-). Let b : U x U — R be a continuous bilinear form, which is
further assumed symmetric, i.e. b(v,u) = b(u,v) for all u,v € U. Under these assumptions,
there exists a self-adjoint operator B € L(U, U*) such that, for all u,v € U, (B(u),v) = b(u,v).
For a given f € U*, we are interested in the following problem: find % € U such that

B(@) = f in U*. (6)

The target application we have in mind is Problem (5), for which (i) U := H}(Q) with norm
|| :== ||, o and duality pairing (-,-) := {:, ), and (ii) B := A where the self-adjoint operator
Ae L(HL(S), HH(Q)) is such that (A(u), v)q = a(u,v) for all u,v € H}(Q) with (symmetric)
bilinear form a defined in (5).

The T-coercivity theory [6] is a variational Hilbertian theory which aims at proving the
well-posedness of Problem (6) in the Fredholm sense. Let us thus define this notion.

Definition 4.1 (Well-posedness in the Fredholm sense). Problem (6) is said to be well-posed
in the Fredholm sense if the operator B is Fredholm of index 0.

In the particular case of Problem (6), for which B is a self-adjoint operator, Proposition A.4
ensures that, as soon as B is Fredholm, its index is necessarily equal to zero. Proposition A.4
also provides a detailed characterization of the structure of the solutions to Problem (6).
For an equivalent characterization in the non-necessarily self-adjoint case, we refer to [39,
Theorem 2.27|. A subcase of well-posedness in the Fredholm sense is the well-posedness in the



Hadamard (or classical) sense. Problem (6) is well-posed in the Hadamard sense when it is
well-posed in the Fredholm sense and the operator B is injective, i.e. when B is an isomorphism.
Let us now give the definition of T-coercivity; cf. e.g. |21, Definition 3].

Definition 4.2 (T-coercivity). The bilinear form b is said T-coercive if there exists Te L(U)
bijective so that there is ¢ > 0 such that

b(u, T(u)) = c|ul? Vu e U. (7)

In other words, the bilinear form b is T-coercive as soon as the (continuous) bilinear form
b(-,T(+)) is coercive. The link between T-coercivity and well-posedness is made explicit in the
following proposition; see e.g. [21, Theorem 1].

Proposition 4.3. Problem (6) is well-posed in the Hadamard sense if and only if the form b
18 T-coercive.

T-coercivity is hence a necessary (and sufficient) condition for well-posedness in the classical
sense. Note that T-coercivity is, however, less general than the Banach—Nec¢as—Babuska (inf-
sup) theory, as it is restricted to the Hilbertian setting (cf. [28, Remark 25.14]).

In practice, proving T-coercivity may be difficult. This is for instance the case for Prob-
lem (5) when considering a general, non-smooth interface between the positive and negative
subdomains. In this situation, what one can usually prove is a weaker result, namely weak
T-coercivity; see |5, Definition 2|.

Definition 4.4 (Weak T-coercivity). The bilinear form b is said weakly T-coercive if there
exist Te L(U) bigective and ¢ € L(U) compact so that there are ¢; > 0 and ca € R such that

b(u, T(w)) = cil|ul?* — o] c(u)|? Vu e U. (8)

The bilinear form b is hence weakly T-coercive as soon as the (continuous) bilinear form b(-, T())
fulfills a Garding’s inequality [51]. When ¢z < 0, one recovers (plain) T-coercivity for the form
b. In the present symmetric case, the link between weak T-coercivity and well-posedness is
given in the following proposition; cf. [5, Lemma 1].

Proposition 4.5. Problem (6) is well-posed in the Fredholm sense if and only if the form b
1s weakly T-coercive.

For a symmetric bilinear form, weak T-coercivity is thus a necessary (and sufficient) condition
for well-posedness in the Fredholm sense.

4.2 An intrinsic limitation for sign-shifting problems

Let us consider Problem (5) for the 2D nonsymmetric cavity setting analyzed in [21, Section
3.3]. Let Q := (=¢,¢) x (0,1) for ¢,¢ > 0 such that ¢ # ¢, and let Qp, := (—¢,0) x (0,1) and
Qn := (0,¢) x (0,1), in such a way that ' = {0} x (0,1); cf. the left panel of Figure la. The
coefficient  is chosen isotropic and homogeneous in 2, i.e. := gls with ¢ any positive real
number. This corresponds to the so-called super-critical case of a (constant) contrast at the
interface of v = —1. Then, it can be proved that the self-adjoint operator A is injective but
not surjective. More precisely, the range of A is not closed in H~1(Q) (cf. Proposition A.5).
As a consequence, either f € ImA and Problem (5) admits a unique solution (of finite energy,
i.e. in H}(Q)), or f € H~1(Q)\ImA and Problem (5) does not have a solution.



It is clear that the latter self-adjoint operator A is not Fredholm. If it was, its index would be
zero and injectivity would necessarily imply surjectivity. Since, for self-adjoint operators, weak
T-coercivity and Fredholmness (of index 0) are equivalent (cf. Proposition 4.5), we conclude
that we cannot find T € £(U) such that a is weakly T-coercive in this case. Consequently, there
exist settings, for which the problem admits a unique solution of finite energy, but only for
admissible loadings, which are not covered by T-coercivity theory. Another example of such
settings, this time with disconnected subdomain €, is given by the cloaking device of [44].

Remark 4.6. We have focused so far on settings for which the (self-adjoint) operator is in-
jective, but not surjective. Let us point out that there exist other non-Fredholm configurations,
and thus other settings not covered by the T-coercivity theory. For erxample, consider again
Problem (5) for the 2D cavity setting with contrast —1 of [21, Section 3.3/, but this time with
¢ = ( (symmetric cavity). In this case, the operator A is such that dim(Kerd) = oo, this is
hence a non-Fredholm configuration. Note that, for some configurations, it is possible to adapt
the functional framework in order to recover Fredholmness of the problem; this is the approach
pursued in [7] for critical (but non super-critical) contrasts.

This intrinsic limitation of T-coercivity for sign-shifting problems has obvious repercussions
on the scope of application of (conforming) T-coercivity based approximation for Problem (5).

4.3 T-coercivity based approximation

We make the assumption that Problem (6) is well-posed in the Fredholm sense, and that it
has a unique solution. Hence, Problem (6) is well-posed in the Hadamard sense and, according
to Proposition 4.3, there exists T € L£(U) bijective such that the form b is T-coercive (with
constant ¢ > 0).

Let (Up)p=0 be a countable family of finite-dimensional vector spaces satisfying U, < U
for all h > 0 in the family. The dimension of the discrete space Uy is meant to increase as h
tends to zero. In practice, Uy is a space of piecewise polynomial functions on a partition 7j
(of size h) of the domain. Let us define the notion of T-conformity.

Definition 4.7 (T-conformity). The family of discrete spaces (Up)p=o is said T-conforming if
it is stable by T, i.e. if T(Up) € Uy, for all h > 0 in the family.

We consider the following conforming approximation of Problem (6): find @y € Uy, such that

b(tn, vn) = {f,vn) Yup, € Uy, (9)
The following result is adapted from [21, Corollary 1].

Proposition 4.8. Assume that (Uy);- is T-conforming. Then, for all h > 0 in the family,
Problem (9) admits a unique solution uy € Uy, and the following estimate holds true:

T
[

U — U <
i anl < inf

— . (10)

In the case of Problem (5), the operator T is derived from elementary geometrical trans-
forms (symmetries and rotations) with respect to the sign-shifting interface. These transforms
do preserve polynomials. However, since functions in Uj, are defined piecewise on the partition
Th, one has to make sure the overall transform maps a cell in £2}, to another cell in €, or recip-
rocally. Enforcing T-conformity thus boils down to the design of geometrically fitted meshes.



Their practical construction requires the operator T to be known explicitly. As already pointed
out, for a general, non-smooth interface, proving T-coercivity is usually difficult. What is often
feasible, however, is to prove weak T’-coercivity, for some (other) bijective operator T built as
a superposition of localized elementary geometrical transforms. The relevant notion of con-
formity then becomes T’-conformity, and is a local one. In other words, the mesh constraints
need only be imposed in this case in a neighborhood of the interface (see [5, Definition 3|). In
2D, such weak operators T can be built for general polygonal interfaces; cf. [5, Theorem 1].
In 3D, only partial results exist; in particular, the case of general polyhedral interfaces is still
open. When such a weak operator T’ is available, a result like Proposition 4.8 is valid under
a smallness assumption on h; cf. [5, Theorem 2| (in turn based on [21, Proposition 3|).

Proposition 4.9. Assume that the form b is weakly T'-coercive for some bijective operator
T e L(U). Assume that (Uy),~, is T'-conforming. Then, for all h > 0 small enough in the
family, Problem (9) admits a unique solution uy, € Uy, and the following estimate holds true
for some £ > 0:

Ji— il < € int 17— unl. (1)

vpeUp,

In practice, for sign-shifting problems, the dicrete space U}, is usually not stable by the operator
T’. The problem is not of a geometrical nature, but comes from the use of cut-off functions to
localize the different transforms in T/. As a by-product, functions in T'(U},) are usually non-
polynomial on each cell of 7;,. One has to introduce a new, uniformly (in 4) bounded family of
operators (T}, )n~o such that T}, (Up,) < Uy, for all h > 0 in the family. This family is constructed
so that, for all h > 0 small enough in the family, and for all uy, € U, |(T' —T},)(up)| < U hfus||
for some ¥ > 0; cf. [5, Lemma 3]. With such an operator at hand, a result equivalent to that
of Proposition 4.9 can be proved.

4.4 Towards an alternative approach

For sign-shifting problems of the form (5), T-coercivity based approximation suffers from three
important shortcomings:

e non-Fredholm situations are not covered by T-coercivity theory, yet they may correspond
to interesting practical configurations (often super-critical), for which Problem (5) ad-
mits a unique solution of finite energy for admissible loadings;

e the operator T must be known explicitly in order to design geometrically fitted mesh
families, however it has not been made explicit yet for all 3D Fredholm configurations;

e T-conform meshing may be delicate in practice for general interfaces, especially in 3D.

Omne can also add to the above list the fact that T-coercivity theory is (at least presently)
restricted to the case of isotropic coefficients.

In this work, we aim at developing an alternative approach to the numerical approximation
of (the anisotropic) Problem (5), enjoying the following features:

a) to be applicable, without any a priori restriction, as soon as Problem (5) admits, for a
given loading, a unique solution (of finite energy);

b) to be applicable without any particular geometrical constraints on the mesh family (except
that the mesh cells do not cut the interface).

10



We will see in the next sections that the new method introduced in this paper fulfills the
requirements a) and b) above.

5 Recasting of Problem (4) as a transmission problem

We henceforth assume that f € L?(2). The weak formulation (5) becomes: find @ € Hg(Q)
such that
a(a,v) = (f,v)q Vv e H}(Q). (12)

In this section, we recast Problem (12) into a transmission problem between the positive and
negative subdomains.

5.1 Notation

Based on the functional analysis tools from Section 2, we begin by introducing some notation.
For a € {p,n}, we let

Yot HY(Q4) — H2 (69,

denote the usual trace operator in 2,. We now define the space

Hyp(€2a) = {vo € H' Q) | 7 (va)jpa,7 = 0}

Letting
1 1 R 1 . R
H06270¢(F) = {9004 € HQ(P) ‘ 3 Pa € H> (aQa) s.t. 9004|l" = Pa; SOO&WQQ\T = 0} s

there holds Yo (H{ 1(20)) 1 = Hgfy o (1).
When 09, = I' (inclusion case), then Héﬁn(lj) =H %((Xln). We assume in what follows
that HS{ip(I‘) = Hé{in(F), which holds true for Lipschitz interfaces I'. We then denote this

common Lions-Magenes trace space HS{? (T"). One can easily remark that
1
Hep (1) = {or == 1 (vj0,)ir = T (vj0, )i v € HY(Q)} . (13)

We denote by H 7%(F) the topological dual of H(l){f(F), and by {-,-)p the duality pairing
between H_%(F) and HS{)Q(F).

5.2 Weak continuity of the flux

We prove here a (somewhat classical) weak continuity property for the flux at the interface.
Recall the notation for the normal flux trace introduced in Section 2. For « € {p, n}, let n, be
the unit normal vector field to 0§, pointing outward €2, and define, for @ € H&(Q) solution
to Problem (12),

gox,l" ‘= TYng,I (Sa aVﬂa>- (14)

Since f € L?(Q), for a € {p,n}, g, := Sa oVia € H(div;Q,). As a consequence, yn_(g,) €
Hf%((%)a) and gor = Yn.r(g,) belongs to Hfé(f‘).

Lemma 5.1 (Weak continuity of the flux). There holds o+ = —gn,r in H_%(F).

11



Proof. The divergence formula in €, first yields

(dngaava)Qa + (gaa VUC\()Qa = <§a,l—‘77a(va)>1" V’Ua € H&\F(Qa)

Since div g, = —f almost everywhere in {2, we then infer
_(f7 Ua)Qa + <go¢7 VUQ)QQ = <§o¢,f‘77a<va)>1" vva € H&\F(Qa)

Let now v € Hg (). Since vjq, € Hé\r(ﬂa), setting va = v|q,, there holds

_(fv U)Qa + (gaa VU)Qa = <§a,F7 U\F>F7

where we recall that the notation vp stands for v, (v, )ir = MW(vje,)r- Summing over
a € {p,n}, and using Problem (12), then yields

<§p,1" + gn,l"v U|F>F =0 Vo e H[% (Q)v

which, by (13), is finally equivalent to
~ ~ 1
(Gpr + Gnrs@pp =0 VYo e Hyg (D),
i.e. Gpr = —gnr in H2(T). 0

As a consequence of Lemma 5.1, for @ € H}(2) solution to Problem (12), one can define

1

H™2(I') 2 gr := §pr = —Gnr, (15)

so that ga,F = Sagf for ac e {pvn}'

5.3 Characterization of the solution

For a € {p,n}, and for any gr € Hfé(l“), we introduce in the subdomain €2, the problem:
find us(gr) € Hé\F(Qa) such that

aa(ta(gr),va) := sa ( aVa(gr), Voa)g,
= (f, Ua)ﬂa + 50 {91 Yo (Vo) )p Y, € Hé\F(Qa). (16)

Recall that Q, and , are supposed connected. Problem (16) in €2, always admits a unique
solution, since we have assumed that 0€2, N 0§ has nonzero (d—1)-dimensional measure. The
same holds true in €2, as soon as |09, N 0Q|4—1 # 0. In the opposite (inclusion) case, 0, =T
and we then assume that gr satisfies (gr, I)p = (f,1)q,_ to ensure that the problem admits
a solution, which is unique up to an additive constant. We fix this constant by imposing
(90 (n(g0)) s - = (3 (p (1)) Dy

At this point, we can give a sense to the classification 2M,MN used in Figure 1. Remark
that the boundary conditions for Problem (16) in €2, are always mixed, whereas in €, they
can be mixed or purely Neumann. Configurations for which both 02, n d€2 and 0, n 0Q2
have nonzero (d—1)-dimensional measures feature two subproblems of mixed (M) type; they
are hence denoted 2M. Configurations for which [0Q, N 09|41 = 0 (inclusion) feature one
subproblem in €, of mixed (M) type, and one subproblem in €2,, of purely Neumann (N) type;
they are hence denoted MN.

12



Definition 5.2 (Transmission solution). For gp € H_%(F), we denote by u(gr) the function
defined on Q (and not necessarily belonging to Hg(Q)) such that u(gr)ig, = ualgr) with
uq(gr) unique solution to Problem (16) in Qq, a € {p,n}.

The following result establishes an equivalent characterization of the solution to (12).

Proposition 5.3 (Characterization of the solution to (12)). Assume that Problem (12) admits
a unique solution @ € H} (). Then, this solution satisfies & = u(gr), where gr € Hfé(lj) is
defined by (15)—(14). Furthermore, gr is the unique solution to the minimization problem
. 2
inf [ (up(gr)) — 7 (wn(r)) 00 (17)
greH 2 (T)

Proof. (i) Let us begin by proving that @ = u(gr). We first check, using Problem (4), that in
the (inclusion) case when 0Q, = T', the compatibility condition {(gr, 1)p = (f,1)q,_ does hold.
From (16) and the fact that Jor = sagr, we infer, for a € {p,n},

aa(ua(gr),va) = (f, Ua)Qa + <§a,1“a')’a(va)>p Vg € H(%\F(Qa)-
Using the definition (14) of o, we then get

aa(ua(gr),va) = (f, Ua)gza + <'Yna,F(5a aVﬂa)fYa(Ua»p Vv, € H&\F(Qa)a
which yields, by the divergence formula in €, since f = —div(sq Vi) almost everywhere
in Q,,
a0 (o (gT) — Gy Vo) =0 Y, € Hé\F(Qa).
Testing with vy = (ua(gr) — @a) € HS\F(QQ), using the uniform ellipticity of , in 4, and
the fact that €, is connected, we infer

Uo — Ua(JT) = Ca ER in Q.
In Qp, since [0, N Q41 # 0, we always have ¢, = 0, hence @, = up(gr). In Q,, when
|09y N 0Qg—1 # 0, then ¢, = 0 and @y = un(gr). In the opposite (inclusion) case, we fix the
constant by imposing (vn (un(gr)), 1) = (% (up(gr)), L)y, ie.

(’Yﬂ (Cn - an) ) 1)1" = ('713 (ﬂp) ) 1)1"‘
Since @ € H} (), this yields ¢, = 0, and hence @, = uy(gr) as in the mixed case.

(ii) Let us now prove that gr € H _%(F ) is the unique solution to the minimization prob-
lem (17). We first remark that gr is indeed a solution to the problem, owing to the non-

negativity of the cost functional and the fact that v, (up(gr)) = M (un(gr)) in HS{]Q(F) since
u(gr) = @ e HE(Q). To show uniqueness now, we assume that there exists another minimizer
Jr € Hfé(lj). Then, one must have v, (up(g1)) = M0 (un(gr)) in HS@(F), which means that
u(gr) € H}(Q). In addition, for o € {p,n}, ua(gr) € HS\F(QQ) solves (16). Considering test
functions v, € H(}\F(QQ) in (16) such that vy = vy, for v e H (), we infer by summing
over a € {p,n} that u(gr) € H(Q) is solution to Problem (12). Since Problem (12) admits
a unique solution @ € H}(Q), we infer that u(g§r) = @ = u(gr). Then, from (16) we obtain,
for a € {p,n}, that (gr — gr,Va(va))p = 0 for all v, € HS\F(QQ). Taking o = p or @ = n, we

deduce that gr = gr in H3 (T"), which concludes the proof. O]

Remark 5.4. Note that the uniqueness of the solution to Problem (12) is not needed for the
characterization 4 = u(gr) of Proposition 5.3. The uniqueness assumption is only needed to
ensure the unique solution of the minimization problem (17).
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6 The numerical method

Henceforth, we assume that the domain €2 and the subdomains €, €2, are (Lipschitz) poly-
topes.

6.1 Discrete setting and discrete subproblems

Let us first precise our definition of an admissible mesh family.

Definition 6.1 (Admissible mesh family). A mesh family (Tp,),~, ts admissible if (i) for
all h > 0 in the family, Ty is a matching simplicial discretization of Q0 that is geometrically
compliant with the interface T' (in the sense that there is 'y, subset of inner faces of the mesh
Th, such that T = Urer, F), and if (ii) (Th) - is shape-regular in the sense of Ciarlet [22].

Our definition of admissibility ensures that no mesh cell can cut the interface I'.

Let 7, be a member of an admissible mesh family. The subscript A > 0 stands for the
meshsize, i.e. the maximum diameter of all the simplices in 7. For an integer k > 1, we
introduce the discrete space

Uk = {vn € CY() | vy € BY(T) ¥T € Ty} = HY(9),

where IP’S(T) is the vector space of d-variate polynomials of total degree at most k£ in T. For
a € {p,n}, we let T, denote the restriction of 7j, to Q, and we define

Ub ) = {Ua,h € C°Qa) | vapr € PH(T) VT € Ton, Ya(Va,h) a0, \F = 0} < Hyp(Qa)-

We also introduce the discrete space of normal flux traces at the interface
Ghop = {grn € A(T) | gror € Py (F) VF € T, (18)

and its affine subspace Gl%’fqh = {gpyh € Gl%,h | (970, )y = (f, l)Qn}, where P% | (F) denotes
the space of (d—1)-variate polynomials of total degree at most k on F.

For a € {p,n}, and for any gr € H_%(F), we introduce the following conforming finite
element approximation of Problem (16) in the subdomain Q4: find u, »(g9r) € U¥, such that

aa(“a,h(QF)a ch,h) = (fv Ua,h)Qa + Sa <gF7 ’Ya(voz,h»r vva,h € Uih' (19)

Problem (19) always admits a unique solution in €, and the same holds true in €, in the case
of mixed boundary conditions. In the purely Neumann case of an inclusion, in which we assume
that the flux gr satisfies {(gr, 1)r = (f, 1), the solution to Problem (19) in €2, is unique up to
an additive constant. We fix the constant imposing (Vo (un,n(91)),1)p = (% (upn(gr)), L)

Definition 6.2 (Discrete transmission solution). For gr € H_%(F), we denote by up(gr) the
function defined on Q (and not necessarily belonging to U,{f} such that Uh(gr‘)|Qa = ua,n(gr)
with uq p(gr) unique solution to Problem (19) in Qq, o€ {p,n}.
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6.2 Minimization procedure

We define the cost functional Jj, : ka’h — [0, 0) such that, for any grj € G’Eh,

Tnlgrn) = 1 (up,n(9r,)) = T (wnp(grn) I + AR) 0, 2 lgrnlg (20)
where A : (0,00) — (0,00) is a function such that fllin% A(h) = 0. When |09, n 0Q|4—1 # 0, we

consider the minimization problem

inf  Ju(gr,n), (21)

k
gF,heG T,h

otherwise (0€2, = I') we consider the following variant:

inf Jn(gr.n)- (22)

gr,n€GL,

Lemma 6.3 (Well-posedness of the minimization problems). Both minimization problems (21)
and (22) admit a unique solution.

Proof. We focus on Problem (21); Problem (22) can be treated similarly invoking that le’;’Nh isa
closed convex subspace of G’E n- The functional Jj, is continuous, and lim, grnlo.r—w Jn(gr.n) =
+00, hence Problem (21) admits at least one solution. Let grj € G’% n- A straightforward
computation yields, for all iy, j, € G’} b

A Jn(gr,n) ins n) = 2 ([0 (w1 (in)) = (wnn(in)) ] [0 (w1 (k) = (s Gin)) ] )r
+2X(h) 0,2 (ins Jn)rs

where, for a € {p,n}, and ¢p € L*(T), up, p(ir) € Uﬁ,h solves

aa(u;7h(LF)) Ua,h) = Sa(Lfv Yo (Ua,h))F vva,h € Uih‘ (23)

; k
Hence, for all i, € GF,h’

. . . . 2 —99 -
A2 Jn(grn) (iny in) = 2| (4 (in)) = (unn(in)) o+ 20(R) o ?lin)3 -

Thus, the cost functional Jy, is strictly convex on Glﬁh, meaning that the minimizer to Prob-
lem (21) is unique. O

Remark 6.4 (Tikhonov regularization). The addition of the term A(h) Ub_2H'”(2),F in the cost
functional Jy,, which plays the role of a Tikhonov regularization [5}] (see also [20]), ensures the
uniqueness of the minimizer to Problems (21) and (22). Without this term, the sole existence
can be proved, as a consequence of the linear least-squares nature of Problems (21) and (22).

Mimicking, at the discrete level, the characterization of the continuous solution from
Proposition 5.3, we let gry € Gl%,h (resp. grpn € Gl;’f\lh) denote the unique minimizer to
Problem (21) (resp. (22)), and we define @y, := up(gr ) (cf. Definition 6.2) as our approxi-
mation of the solution @ € H}(f2) to Problem (12). Remark that @, is always well-defined, as
a consequence of the well-posedness of the subproblems (19), and of that of the optimization
problems (21) and (22). Note that 7, does not a priori belong to UF, and thus to H}(92). For
an algebraic realization of our method, we refer to Section 7.1 below.
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Remark 6.5 (Link with T-coercivity based approximation). Assume that the form a from
Problem (12) is T-coercive for some operator T, and denote by @ € UF < HE(S) the con-
forming finite element approximation of i on a T-conforming mesh Ty (4j is then known to
be well-defined; cf. Proposition J.8). Nothing guarantees, as in Proposition 5.3, that it may
erist grp, € G% . (or even in Hfé(I’)) such that uj, = up(grn). We hence do not know if the
solution up, givén by our approach on Ty degenerates towards uj, when removing the Tikhonov
reqularization from Jn. However, in the case the minimum value of Jp, without regularization
is zero, and is attained for some Grp, then @p = up(grp) is equal to @S € HE(Q).

6.3 Convergence of the method

Before proving our convergence result, we need to quantify the jump of wuy(gr) along the
interface. Recall that up(gr) is the discrete transmission solution (cf. Definition 6.2) corre-
sponding to the exact normal flux trace gr € H_%(F) defined by (14)—(15). The following
lemma, relies on several classical error estimates for the discrete solutions to variable elliptic
problems featuring either mixed or purely Neumann boundary conditions, which are recalled
in Appendix B, as well as on the notion of dual regularity exponent (cf. Assumption B.1).

Lemma 6.6 (Bound on the interface jump of wuy(gr)). Let @ € HE(Q) be a solution to

Problem (12). Let m = 0 be some exponent such that g, € H'*™(Qq) for v € {p,n}, and let
1
2 €
in Qp and Qy,, respectively. Then, letting § := 27 + min(ep, €y) > 0, the following estimate
holds true, for some constant ¢ > 0:

7 := min(m, k). Denote by €, en € (5, 1] the dual regularity exponents of the subproblems (16)

Nl

[ (upn(31)) = 9 (un,n(Gr)) o p < €ph2 (Jihrrg, + lihre,) - (24)

Proof. According to Proposition 5.3 and Remark 5.4, u(gr) = @ € H (), hence v, (up(gr)) =
" (un(gr)) on T'. This allows us to infer

I (p,(31)) = 0 (unn(G0) lor < Y5 Ve (waldr) = wan(@r)) lop-
ae{p,n}

To estimate the right-hand side of this inequality, we use the approximation results derived in
Appendix B. Note that if (73),, is admissible in the sense of Definition 6.1, then the mesh
families (7a,n)),-q; @ € {p,n}, are admissible in the sense of Definition B.3.

In Qp, the subproblem (16) is always endowed with mixed boundary conditions. We thus
apply the results of Appendix B.2, with D := Q,, Y¢ := T (hence, Ty = 0Q,\), a := ,
r:= fla,, ¢ =0, and 6 := gr. By Remark B.10, we get

i i L
e (up(g1) — up,n(Gr)) lor < cp p A2 [Al1410,, (25)

with dp 1= 27 + €.

Assume that the subproblem (16) in €, is also endowed with mixed boundary conditions
(case |02, N0 4—1 # 0). Applying again the results of Appendix B.2, this time with D := ),
Y¢:=T (hence, Ty = 0Q,\I'), a:= o, r:= —fion, ¢ =0, and 6 := gr, we get

~ ~ Sn .
I (un(gr) = unn(gr)) o < eaph=liliirgn,,
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with d, := 27 + 4. Recalling (25), and remarking that § = min(,, d,), (24) follows easily.

Now, assume that the subproblem (16) in €2, is of pure Neumann type (case 02, = I"). We
apply the results of Appendix B.3, with D := Qy, A:=T,a:= ,, r:=—fq,, and 0 := gr.
Setting D :=Q, &:= , and @ := @, there holds 4 = p and k = 7152 (v (up(gr)), 1)p. We let
k= 017 (p(upp(gr)), 1)p. The Cauchy—Schwarz inequality then yields

1 ~ ~
D132 1 = ] < v (up(@r) = up (@) o p
hence, as a consequence of (25), the estimate (62) holds true with D" = Qp,, v’ = 4, o' < 0 = p,
and ¢’ = dp. Using the notation of Lemma B.13, § = min(d,¢’), with 6 = 6, and ¢’ = Jp.
Thus, § = §, and we infer
- - . -
[0 (un (1) = unn(Gr)) o < enph? (Jai4rg, +ldli4r0,)

which, combined to (25), yields (24). O

We are now ready to prove convergence of our optimization-based method. Let us just
recall the principle of our approach. Our approach consists in defining an approximation of the
solution @ € H}(2) to Problem (12) as 4y, := up(gr.s), where grp, € Glﬁh (resp. gr,n € Gl;’fqh)
solves the well-posed minimization problem (21) (resp. (22)), and up(gr) is the discrete
transmission solution corresponding to gr .

Theorem 6.7 (Convergence of the method). Suppose that Problem (12) admits a unique
solution @ € H}(Q). Assume that gr € L*(T), with gr as defined in (14)~(15). Then, choosing
A(h) in (20) such that A(h) = ch® for some ¢ > 0 and 0 < & < 6, where § is the positive
number introduced in Lemma 6.6, there holds, strongly as h — 0:

gra — gr in L*(T), Viiy — Vi in L*(Q), ap — @ in L2(Q),  (26)
where (V,)n=o is the broken gradient operator on (Tp)p>0-

Proof. The proof proceeds in three steps.
(i) Weak convergence: By linearity, for a € {p,n}, we first write

Ua,h(F1,0) = Uah(GT) + gy s (27)
with Uih 5 1y, p, := Uy, ,(§T,n — gr) as defined in (23), i.e. solution to
( aVign Vvan)g, = (@rn —dr,%@an))y  Yvan € Ul - (28)
Testing (28) with ﬂ’ix,h eU gvh’ and using the Cauchy—Schwarz inequality, yields

| Vg, 1|

2 —1~ ~ ~
0,00 < g, IHQF,h - gFHOI‘”’yOé(u/a,h)HOI' (29>

In Q,,, starting from (29), using the trace inequality (1) (with D <« Q, and s = 1), and
applying a classical Poincaré—Steklov inequality in Hé\r(Qp), we infer

A A T T (30)
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An equivalent inequality can also be inferred in Q,. When [0, n 09|41 # 0, the proof is
identical to (30). When 09, = I, the derivation is a bit less straightforward (the details are
given in Remark 6.8 below), but leads to

0.0, <0y lgrn = grlop (31)

s8en

Wit g, + i

Now, we leverage the fact that J,(grs) < Ju(grn) forall grp € Glf“,h (resp. for all gr p, € G’?f\lh
in the inclusion case), and we choose gr 5 = Tr,"l’(g r) the L?(T')-orthogonal projection of gr onto

Gl% ,, (remark that, in the inclusion case, there holds gry, € G?Nh). Using the boundedness
and orthogonality properties of the projector, we infer

s Iolpn @0) = (uma(Gr)) o
or = A(h)

9y~ 2~ 2
0, QHQF,h + 0, QHQFHO,F' (32)

Owing to (24), and to the fact that A(h) = ¢h® with § < &, we deduce from (32) that lgralyr

is uniformly bounded with respect to h. We can thus infer the existence of gro € L?(I)
such that, up to a subsequence (retaining the same notation), gr, — gro weakly in L?(T).
From (30) and (31), together with the uniform boundedness of (Gr)n=o in L?(T'), we also
infer the uniform boundedness of (g, ;)n=0 in H'(Q,) for a € {p,n}. Thus, by Rellich’s

theorem (and a standard limit regularity argument), there exist @, € Hé\F(Qa) such that, up

to a subsequence (retaining the same notation),
Vi, ), — Vi, weakly in L*(Qy), @, — i, strongly in L*(€), (33)

Yol ) — Va(il,) weakly in L*(T). (34)

(it) Identification of the limits: From the relation J,(grs) < Jn(gr) for all gry € G’%,h

applied to gr = 7(gr) (with adaptation as above in the inclusion case), from (24), and
from the fact that 0 < § < 9, we infer that

7 (up, (F1,)) = (i (GG 1 < 170 (tp,p(G1)) = T (n (G1)) 5
+ AR o) % grlr < Cp*hNo(@),  (35)
where No(a) := Wﬁw,ﬂp + WEM,QH + Uﬁ_QHQFHg’F. We then deduce from (35) that, as h — 0,
[vp (tp,p(g,0)) = Y0 (unn(Grn)lor — 0.
Combining this result with (24) and (27), we readily get that, as h — 0,

I7p (i 1) = (i )l o = O,

and hence, from (34), that v;,(d;,) = Yu(@y) almost everywhere on I'. Passing to the limit

h — 0 in (28) (where both sides are multiplied by s, ), using (33), the weak convergence result
gr,n — gr,0, and a strongly convergent interpolant for test functions, one can show by sum
over a € {p,n} that @' € H}(Q), defined by &TQQ =@, for a € {p,n}, satisfies

a(@,v) =0 Yo e H}(Q).
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This implies, from the injectivity of Problem (12), that 4’ = 0. Also, the uniqueness of the limit
implies that the whole sequences converge in (33)—(34). By (27) and the strong convergences of
(Vua,n(gr)),-o and (ua,n(gr)),-, towards Vi, and e, respectively in L%(Q,) and L*(Q,)
for « € {p,n}, we have thus proved at this point that

Vyiy, — Vi weakly in L*(Q), @y — @ strongly in L*(Q).

Passing again to the limit in (28), using a strongly convergent interpolant for test functions,
and the fact that @' = 0, one obtains

(QF,O - §F77a(va)>r‘ =0 V?)a € H&\F(Qa)

From there, fixing a € {p, n}, since %é(Hg\F(Qa))uﬂ = HSOQ(F) and HS{)Q(F) is dense in L?(T),
we infer that gr o = gr. The uniqueness of the limit implies that the whole sequence (gr )
converges towards gr. We have thus proved that grj — gr weakly in L?(T).

(iii) Strong convergence: Passing to the limit in (32) (recall that A(h) = ¢h® with § < 0)
yields, owing to the weak convergence of (gr ) towards gr,

h>0

h>0

|o,r < Hgl“

Jgrlor < lim inf [3ral,p < lim sup |gr., o

which readily implies the strong convergence of (gr),., towards gr in L?(T"). Now, test-
ing (28) with v, p = ﬁ’a?h and passing to the limit, owing to the strong convergence of (§r ),
towards gr and to the weak convergence (34) of (ya(iy, ;) 4o We infer the strong conver-
1o towards 0 in L?(,), for a € {p,n}. By (27), combined with the strong
convergence of (Vug 4 (gr))

gence of (Vi ;)

1o this finally proves (26), and concludes the proof. O

Remark 6.8 (Proof of (31), inclusion case). Combining the trace inequality (1) (with D «— Qy
and s = 1) with a generalized Poincaré-Steklov inequality (cf. [27, Lemma 3.30]) and the fact
that (ya(ty, ) 1), = (w(ly ), 1) (owing to (27) along with the definition of the discrete
transmission solution in the inclusion case), we first infer that

_1
)l < e (198l + A0nE0. 041 ) < 1 (1980l + o))

Then, by the trace inequality (1) (with D «— Qp and s = 1), a classical Poincaré-Steklov
inequality in HS\F(QP), and (30), we obtain

+ Hva;ﬁ

00,) < (194l g + 5 lra = grlor)
(36)

()l < e2 (IWhalyg,

In Qy, starting from (29), and using (36), we thus get
Vi 2 < —1y~ o~ Vil —1)~ =
IVay iy, <csoy lgrn—grlor (IVunnlyq, + 0, 19rn —drlor),

which eventually yields, by Young’s inequality, the estimate (31) on ||V11’n’h|\07ﬂn. The estimate

on Hﬂ;hHO q. can be obtained leveraging the same arguments.
) 8
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It is crucial to note that the convergence result of Theorem 6.7 is valid as soon as Prob-
lem (12) admits a unique solution for the loading f € L?(Q) at hand. In particular, nothing
needs to be assumed on the invertibility of the operator A associated with the problem, as
it is the case for T-coercivity based approximation. In this respect, our approach checks the
requirement a) from Section 4.4. Furthermore, the convergence result does not rely on any
particular geometrical constraint (with respect to the interface) to be imposed to mesh fam-
ilies, as it is the case for T-coercivity based approximation. Our approach hence also gives a
positive answer to the requirement b) from Section 4.4.

Remark 6.9 (Regularity assumption on gr). We make the hypothesis in Theorem 6.7 that
gr € L*('), which is a rather strong assumption, that is fulfilled, e.g., when i, € H*™(Qy)
for m > %, a € {p,n}. This assumption enables us to manipulate L?(T)-norms instead of
fractional-order ones, which is particularly convenient from both the implementation and theo-
retical viewpoints. Let us point out that, in practice, this assumption does not seem necessary
for our approach to be applicable. We will see in Section 7.3 that numerical convergence can
still be observed, up to a slight adaptation of our method, in cases for which the assumption
gr € L*(T) is violated. We finally point out that, at the time this manuscript is finalized,
another related approach (based on optimal control) has been introduced in [23], which reme-
dies this limitation. The key idea therein is the use of a bulk-supported control instead of a
boundary-supported one.

Remark 6.10 (Extension of the approach). Our approach is not restricted to the configu-
rations or the boundary conditions for Problem (4) considered in Section 3. Under the only
assumption on Problem (4) that the Dirichlet part of 02 has nonzero (d—1)-dimensional mea-
sure, one can actually consider arbitrary (nonhomogeneous) boundary conditions, and relax the
connectedness assumption on the two subdomains. Then, each connected part of a subdomain
sharing a Dirichlet boundary with 0$) is treated as an M domain (cf. Figure 1), whereas every
other connected part is treated as an N domain, for which the constant is fixed on a part of its
boundary that is shared with an M domain (or which can be linked to one). For general geome-
tries and boundary conditions, the method can be adapted and the analysis extended using the
general approximation properties derived in Appendix B.

7 Numerical results

For all the test-cases collected in this section, Problem (4) will be set in a polygonal domain

Q < R?, and we will consider an isotropic coefficient := oly, with o, = 0|0, & positive
(real) constant for o € {p,n}. In this case, the contrast (3) at the interface is simply v = o

7.1 Algebraic realization

We start by describing a possible algebraic realization for Problems (21) and (22). We let N,
a € {p,n}, be the dimension of the discrete space Uih, and N1 be the dimension of G’%,h' For
a € {p,n}, we denote by K" (size N x Ny ) the stiffness matrix in Ug,h’ written in the basis
(¥! 1 )1<i<n, of UF, . and by Mg’r (size Nr x Nr) the mass matrix in G& , | expressed in the
basis (d){;,h)lgjgNF of GkF,h' We also let ’]I'}I:’a (size Nr x Ng) be the matrix representation of

%(U(ﬂf,h)w, expressed in the basis (qur pi<j<Np (remark that 7a(U§7h)‘p c Gl%,h)'
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To solve Problem (21), the first step is to compute, for « € {p,n}, the solutions to Prob-
lem (19) for all the basis functions of G% 5 In practice, we solve the (Np + 1) following
symmetric positive-definite (SPD) linear systems of size N, X Ng:

a,o a, a\ P
K (th | uh> = ([T}} ] M| saFg), (37)

where F¢ € RNe has i-th coordinate (f, ¢é{7h)ga. Then, for g} € RV, the vector u?(gl) € RVe
solution to Problem (19) in €2, is given by

I
wji(gh) = uh + Uy g (38)
Solving Problem (21) is equivalent to solving inf gl eRNT Jn(gl), where the quadratic functional

Jn : RV — [0, 0) is given by

Tileh) = (ThPulel) — Th i (el)) My (ThPup(eh) — T “u}%(gh))
+ ARy 2 (gh) ™, gl (39)

One can easily compute
.
V27, = 2Tyt = T T) Mt (TP - T )+ 2a (ko 2T

so that, since Jj, is quadratic, J,(gh) = 2(gl) T[V2Th] gl + (g5) TV + C, where VI e R
and C € R are inferred from (39). ertlng the first-order necessary condition of optimality,
solving Problem (21) finally consists in solving the SPD linear system, of size Ny x Nr:

[V2Th] &) = V- (40)

The seeked solution is finally u$(g}), a € {p,n}, as given by (38).
To solve Problem (22) (inclusion case), the first step is also to compute, for a € {p, n}, the
solutions to Problem (19) for all the basis functions of G& ,. In §,, one solves the (Np + 1)

SPD linear systems (37), of size N, x Np. In €2y, the problems are of pure Neumann type. Let
us first introduce some notations. Let 1% € R™¥» be the vector such that Zf\i“l [12]i1/)f1,h =1

in Q. In turn, let 1} € R be the vector such that Zé\gl[l}:]jqﬁ% , = 1 on I'. There holds
T} "1} = 1. Define also

BT = ([ M) ([ M)
In €, one solves the following (Nr + 1) SPD linear systems, of size N, x Ny:
(™ [y W) (et [wp) = () (v vt [ -F), ()
where F;‘L e R has i-th coordinate (f, ;,h)Qn — T2 (F Do, (1,%1(77[1;7,1))1,. Remark that

n nq ! s i n1T fn
[Tt (M - NGT) = [0)T and [13]7F; o,
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Hence, the discrete solutions corresponding to UZ’F and uj from (41) have zero mean over I'.
We amend a posteriori their expressions in the following way:

_ T _ T
apt et e (M TP e e g i 1 ([ v T P )

For gl € Ry := {gg e RN | [IE]TME’FgE = (f, 1)Qn}, and « € {p,n}, the vector u?(gl) e

RMe solution to Problem (19) in €, is finally given by
ui(gh) = ufl + Uy g (42)

Solving Problem (22) is equivalent to solving inng‘ERNF Jn(gh), i.e. it consists in solving the
h N

well-posed saddle-point problem of size (Np + 1) x (Np +1): find (g}, fr) € RV x R such that

Tar ) ()< (61
= 43
([1£]TM1}:’F 0 EF (f, 1)Qn ) ( )

where V,E’N € RVr. The seeked solution is finally u$(g}), a € {p,n}, as given by (42).

Remark 7.1 (Efficient implementation). Let us focus on Problem (21); similar considera-
tions apply to Problem (22). The bottleneck in the solution to (21) is actually the solution
to (37) for a € {p,n}. As a matter of fact, once the hessian of Jp, is computed (based on the
solutions to (37)), solving the minimization problem then amounts to solving the small linear
system (40). As standard in domain decomposition, Problem (37) can be solved in parallel in
the two subdomains €, and §2,. Each subproblem consists in solving a multi-rhs linear sys-
tem, for which efficient solution techniques exist (Cholesky factorization for a direct solution,
or Krylov subspace recycling for an iterative one).

7.2 Test-case 1: nonsymmetric cavity with contrast —1

We consider the nonsymmetric cavity (cf. [21, Section 3.3]) with © := (—1,3) x (0,1) and I" :=
{0} x (0,1), so that Q, = (—=1,0) x (0,1) and €, = (0,3) x (0,1). This configuration is of type
2M. We let o, = 0, = 1, so that v = —1 (super-critical case). With such choices, the operator
A e L(H}(Q),H1(Q)) from Problem (5) is injective, but not Fredholm (cf. Section 4.2).
Since the operator is not Fredholm, the problem cannot be studied with T-coercivity theory,
nor approximated using meshing rules inferred from the latter. However, our approach is
applicable, and so as soon as the solution exists (it is then unique) for a given loading.
Let us consider the exact solution @ € H}(2) defined by

i, y) = (2(56 +1)% =5z + 1)) sin(my) in Q,
(x — 3) sin(my) in Q.

which is associated to the loading f € L?(£2) such that

Fny) = (27r2(1: + 1)2 _ 572@ +1)— 4) sin(7y) in Q,
’ — 7%(x — 3) sin(my) in Q.

22



-3 -2.5 -2 -1.5 -1 -0.5 4]

Figure 2: Test-case 1: exact solution for the nonsymmetric cavity with contrast —1

The exact solution is depicted on Figure 2. We have gr(y) = —sin(ny) on I', where gr is
defined by (14)-(15). For a € {p,n}, @i, € H*™(Q,) for any m > 0. For the geometry con-
sidered here, full elliptic regularity holds true in both subdomains (cf. Remark B.2), meaning
that the dual regularity exponents e, and e, are both equal to 1. Hence, the value of the
parameter $ in Theorem 6.7 is § = 2k + 1.

We consider a structured triangulation of the domain €2, with meshsize h = 0.07, which is
admissible in the sense of Definition 6.1 (it is compliant with I'), and we compare, for k = 1
(hence & = 3), the discrete solutions obtained with our approach (for A(h) = 0.01 h>9), and
with a direct (non-stabilized) conforming finite element (cFE) approximation of the prob-
lem. Snapshots of the solutions are depicted on Figure 3. Whereas our approach provides a
somewhat accurate solution (the relative error in L2-norm is of 5.33 x 1072), which converges
monotonically to the exact one as the mesh is refined (not shown here), the ¢cFE solution
exhibits very large spurious oscillations near the interface. This is a striking example of how
unstable can be a non-stabilized method for such an ill-posed problem.

\

3 25 2 15 1 05 [

(a) cFE solution (rescaled by a factor 10'?) (b) Optimization-based solution

Figure 3: Test-case 1: discrete solutions for the nonsymmetric cavity with contrast —1

7.3 'Test-case 2: low-regularity solution

We consider (a slight variant of) the test-case studied in [5, Section 3]. We let 2 be the
hexagonal domain of Figure 4 (left), for which T' = {(r,6) e Q[ =0 or § = %’r}, and €, Oy
are respectively the top and bottom subdomains. The corresponding configuration is of type
2M. We let o, = 1, and we tune o, so as to change the value of the contrast v. For such a
configuration, Problem (5) is well-posed in the Hadamard sense if and only if v ¢ [-2, —%]
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Figure 4: Test-cases 2 (left) and 3 (right): geometry and mesh family member

We consider the exact solution @ € H'(Q) defined by (r, §) := r*®(0), where

cos (k(0 — 2F))

( 7 in Qp,
B(0) = cos (k 357r
cos (5(0 — ?)) 0 Q
cos (/{%) w

and where x > 0 depends on v in the following way: & is the smallest positive (real) solution to

tan (/i%“) = —vtan (n%) The solution @ is associated to the loading f = 0, and to the nonho-
mogeneous Dirichlet boundary data (i) on 0. Besides, we have gr(r) = —kx " ! tan (n%ﬂ)

on I'. The following regularity result holds true: for a € {p,n}, @, € H*™(Q,) for all
m < k. We are going to consider two values of v outside of the critical interval, namely
v € {—10.57,—2.1}, for which the parameter « is respectively such that x g {0.7,0.2}. When
k ~ 0.7, then we have §gr € L?(I'), and the assumptions of Theorem 6.7 are fulfilled. At the
opposite, when x ~ 0.2, the result of Theorem 6.7 is not valid (§r ¢ L?(T)). For the geometry
considered here, full elliptic regularity holds true in 2,, whereas the reentrant corner in €2,
induces a loss of regularity of 1/4 (cf. Remark B.2). We thus have e, = 1 and 3 —¢ < ¢, < 2 for
all € > 0. Since the subproblems in €, and €, feature nonhomogeneous (Dirichlet) boundary
conditions on the part of their boundary which is shared with 02, one has to use the result
of Lemma B.9 in both €2, and €2, (and then take the min) to infer the value of the parameter
6 from Theorem 6.7: a straightforward computation yields 2k + % —e<0 <2+ % for all
€ > 0, which is valid for any integer k > 1 as soon as % <k <1

We consider a family of unstructured triangulations (see Figure 4 (left)) of the domain 2,
that is admissible in the sense of Definition 6.1, but which is not T-conforming, as opposed
to the mesh family from [5, Figure 5 (right)]. For the latter mesh family, T-coercivity theory
enables to prove the optimal convergence of cFE. At the opposite, in our T-nonconforming case,
no theory applies. We compare, for k = 1, the results obtained with our approach and with
cFE. We compute, for meshsizes between h = 0.27 and h = 0.0051, the relative errors over €2 in
H'-seminorm and in L?-norm, for v = —10.57 and v = —2.1. In the following, the convergence
rate of the error that one can expect with a T-conforming approximation will be referred to
as the expected convergence rate. According to Proposition 4.8, the expected convergence
rate in H'-seminorm is A”®. In L?-norm, the expected convergence rate depends on the dual
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regularity exponent of the sign-changing problem (see |21, Section 3.4| for some insight on the
question), as well as on the regularity of the boundary data. We do not have a theoretical
value in the present case, but we conjecture (based on an application of Lemma B.8 in each
subdomain) Bt convergence. For v = —10.57 (k ~ 0.7), we choose A\(h) = 0.01 A'7 (remark
that § = 1.7 < 1.9 < 2k+3), whereas for v = —2.1 (r ~ 0.2) we test two different possibilities.
First, we choose the stabilization following the rationale of Theorem 6.7, even though the latter
is not applicable in this case; we let A(h) = 0.01 h%Y (remark that § = 0.9 < 2k + 3). Second,
we choose A(h) = 0.01 A9, i.e. we decrease the magnitude of the stabilization. The heuristics
behind this choice is elementary: since gr ¢ L?(T') in this case, we rescale the stabilization so
as to formally embed an H -3 (T')-norm of gr, i.e. we multiply the original stabilization by the
square of h%, yielding 6 = 1.9. The results are collected in Figure 5. For v = —10.57 (top), for
both approaches, we observe the expected convergence rate in H'-seminorm. For v = —2.1
(bottom), cFE presents a completely erratic behavior. At the opposite, our approach provides
monotonic convergence. When the regularization exponent is fixed to § = 0.9, the method
sub-converges, whereas for § = 1.9, the expected convergence rate is reached in H'-seminorm.

S e S e
1071 - E 1072 E E
f |0y
1074 E
1072 | g i ]
i ] 1075 F E
L | 1076 E
(a) H'-seminorm
T T T T T T E E|
100.5 = : - E E
107t E E
100 1 i |
10721 E
10702 . f |
L 1 1073 ; 75
1072 10t
(c) H'-seminorm
Figure 5: Test-case 2: relative errors vs. h for v = —10.57 (top) and v = —2.1 (bottom).

Dotted black: cFE, Solid blue/brown: optimization-based, Solid red: h* for H', h**1 for L2.
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7.4 Test-case 3: inclusion

We consider an inclusion test-case with  := (—2,2) x (—2,2) and €, = (—1,1) x (=1,1);
cf. Figure 4 (right). This configuration is of type MN. We let o, = 1, and we tune o, so as
to change the value of the contrast v. For such a setting, Problem (5) is well-posed in the
Fredholm sense if and only if v ¢ [—3, —%] (see [5, Theorem 1]).

Let us consider the exact solution % € HE(2) defined by

v~ Lsin(wz) sin(7y) in Qp,

B { sin(mz) sin(my) in Qp,
u(z,y) =

which is associated to the loading f € L?(Q) such that f(z,y) = 27%sin(rz)sin(7y) in Q.
We have gr(z,y) = 7 (sin(rz) (1y=1 — 1y——1) + sin(my) (1g=1 — 1z——1)) on I'. For o € {p, n},
Tl € H'™(Qy,) for any m > 0. For the geometry considered here, full elliptic regularity holds
true in €y, but the reentrant corners in €, induce a loss of regularity of /3 (cf. Remark B.2).
The dual regularity exponents are thus such that e, = 1 and % —e<egp < % for all € > 0. The
parameter 6 from Theorem 6.7 is, in turn, such that 2k + % —e<d<2k+ % for all e > 0. We
consider two values of v, one outside of the critical interval (v = —4), and the super-critical
value (v = —1). For the first value of v, we know that the operator A € L(Hg(Q), H1(Q))
from Problem (5) is Fredholm (of index 0), whereas for the second we know that it is not (and
hence T-coercivity is not applicable). For both values of v, we assume in the following that
the operator A is injective. Numerically, we have not found any evidence of non-uniqueness.

We consider the family of unstructured triangulations of © depicted on Figure 4 (right).
This family is admissible in the sense of Definition 6.1, but is not (locally) T-conforming.
For v = —4, we compare, for K = 1 and k = 2, the results obtained with our approach
and with cFE. We compute the relative errors over Q in H'-seminorm and L?-norm, for
meshsizes between h = 0.70 and h = 0.015. In H'-seminorm, according to Proposition 4.9,
the expected convergence rate (i.e. relative to a locally T-conforming approximation, and for
h small enough) is h¥. In L?-norm, we do not have a theoretical value, but we conjecture
(based on an application of Lemma B.8 in each subdomain) hE+3 convergence. We choose
A(h) = 0.01 h2k+%, and we check that 6 = 2k + % < 2k + % For v = —1, we perform the
same comparisons. However, in this case, no theoretical convergence rate is available, even in
H'-seminorm. All the results are collected in Figure 6. For v = —4 (top), we remark that
cFE and our approach give very similar results; the expected convergence rates are reached
in Hl-seminorm. In L2-norm, both approaches seem to converge with order k + 1 (higher
than expected). For v = —1 (bottom), we remark that cFE suffers, whereas our approach
provides monotonic convergence in both H'-seminorm and L?-norm. The convergence orders
are difficult to analyze. On Figure 7, we have depicted the discrete solutions obtained for k = 2
and h = 0.054. We observe spurious oscillations at the interface between the two subdomains
for cFE, whereas our approach provides an oscillation-robust solution (the relative error in
H'-seminorm is more than 10 times smaller).

A Background on Fredholm theory

We collect in this appendix some classical definitions and results. We provide short proofs for
the most important of them.
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Figure 6: Test-case 3: relative errors vs. h for v = —4 (top) and v = —1 (bottom). Dotted
black: cFE (squares for k = 1, circles for k = 2), Solid cyan/blue: optimization-based, Solid
red: h* for H', hF*1 for L2,

For V, W real-valued Banach spaces, we let £L(V, W) be the space of bounded linear oper-
ators from V to W. When W = V| we simply write £(V). Let U be a real-valued reflexive
Banach space (e.g. a real-valued Hilbert space), with topological dual U* := L(U,R), and du-
ality pairing (-, -). Since U is reflexive, there exists a natural (isometric) isomorphism between
U and U**, and one can identify U with its double dual. Let us recall some definitions.

Definition A.1 (Adjoint operator). Let Be L(U,U*). The adjoint B* of the operator B is the
unique operator in L(U,U*) such that, for all u,v € U, {(B*(u),v) = (B(v),u). When B* = B,
the operator B is said to be self-adjoint.

In what follows, for V' < W, we denote by W /V the quotient of the vector space W by the
subspace V.

Definition A.2 (Fredholm operator |2, Definition 4.37]). The operator Be L(U,U*) is said
to be Fredholm if its nullity dim(KerB) and defect dim(U*/ImB) are both finite. Its index is
then defined as ind(B) := dim(KerB) — dim(U*/ImB).
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Figure 7: Test-case 3: discrete solutions for v = —1

As a by-product of Definition A.2, any Fredholm operator B € L(U,U*) of index 0 that is
injective is also surjective and is an isomorphism from U to U*.

The following lemma holds true.

Lemma A.3 (|2, Lemma 4.38|). Let B € L(U,U*) be such that its defect dim(U*/ImB) is
finite. Then, ImB is closed in U* and one has dim(U*/ImB) = dim(KerB").

We can now state the main results.

Proposition A.4. Let Be L(U,U*) be a self-adjoint Fredholm operator. Then, ind(B) = 0
and the following alternative holds true:

o cither B is injective, then B is an isomorphism from U to U*;

e or, letting 1 < n := dim(KerB) < o, and KerB := Span{vi,...,v,} for functions
Viy...,o, €U, one hasImB={f e U* | {f,ury=0Vk =1,...,n}.

Proof. B being self-adjoint, B* = B. Since B is Fredholm, its defect is finite and, by Lemma A.3,
dim(U*/ImB) = dim(KerB*) = dim(KerB), which yields ind(B) = 0. Then, if B is injective,
dim(U*/ImB) = dim(KerB) = 0 and B is also surjective. In the opposite case, using the relation
(ImB)' = KerB* (cf. e.g. [2, Theorem 2.13]), one has ImB = ((ImB)*)+ = (KerB*)*+ = (KerB)*
(recall that U is reflexive), thus since ImB is closed (by Lemma A.3), there holds

ImB={feU”|{f,v)=0VYveKerB}.

The conclusion follows from the finiteness of the nullity of B. O

Proposition A.5. Let Be L(U,U*) be a self-adjoint injective operator. Then, the following
equivalence holds true: (i) B is surjective < (ii) ImB is closed.

Proof. (i) = (i) is trivially true by Lemma A.3 (remark that dim(U*/ImB) = 0 since B is
surjective). To prove (ii) = (i), let us assume that ImB is closed. Then, one can show that
ImB = ImB = ((ImB)*)+ = (KerB*)+ = (KerB)", where we have used that B is self-adjoint in
the last identity. Since B is injective, (KerB)l = U™, hence ImB = U™ and B is surjective. [
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B Error estimates

We collect in this appendix some error estimates for the finite element solution to variable
diffusion problems, endowed with either mixed or purely Neumann nonhomogeneous boundary
conditions. These results are meant to be applied to problems of type (19), set in the positive
or negative subdomain of configurations € of type 2M or MN (cf. Figure 1). Such estimates
are instrumental to study the convergence of our method, and to finely tune the parameter
A(h) in (20); cf. Sections 6.3 and 7. Should some of these results be quite classical we detail
their proofs, both to keep the exposition as self-contained as possible, and because we aim at
deriving the sharpest possible bounds.

B.1 Continuous and discrete settings

Following Section 2, let D be a (Lipschitz) domain in R, d € {2, 3}, with boundary Y := D
such that T = Y; u Y¢ with Ty # &, and unit outer normal n. We make the additional
assumption that D is a polytope. Note that the boundary of D is not necessarily connected.
Each (Lipschitz) subset Ty and Ty of the boundary T is assumed to be the finite union of
(d—1)-dimensional polytopes. Note that Ty and T are not necessarily connected. In what
follows, the set Ty is meant to be the trace/Dirichlet part of the boundary, whereas the set
T is meant to be the flux/Neumann part.
Let a: D — R%*? bhe a symmetric tensor field such that

0 < aéf” <a(@)é-€ < ayl€]* <o for a.e. & € D and all £ € R%\{0},

and let o := ay/a, > 1 denote its heterogeneity/anisotropy ratio in D. We further assume
that a € Wh®(D). Since D is a (Lipschitz) domain, thus D is quasiconvex and bounded, this
is equivalent to assume that a is Lipschitz continuous in D. Also, since a is symmetric and
uniformly elliptic, there is a unique symmetric and uniformly elliptic tensor field a2 such that
a=a’a’~.

Let us consider, for ¢t € L?(D), the following problem (referred to as dual in the sequel),
endowed with homogeneous boundary conditions:

—div(aVz) =t in D,
z2=0 on Yy, (44)
aVzn =20 on Yi.

In the purely Neumann case Ty = (J, we further assume that (¢,1)p = 0, and we replace the
condition z = 0 on Y by (2,1)p = 0. Henceforth, we make the following assumption.

Assumption B.1 (Regularity of the dual solution). There is € € (3,1] (called regularity
exponent ), whose value may depend on the geometries of D, Ty and T, and on @, so that the
solution z to Problem (44) belongs to H'*¢(D), and satisfies the following reqularity estimate:
there exists a constant ¢, > 0 such that

[l sep < eyt p- (45)

Remark B.2 (Elliptic regularity). Let us discuss configurations for which the regularity as-
sumption B.1 holds true. First, recall that a is Lipschitz continuous in D. Second, recall that
Problem (44) is endowed with homogeneous boundary conditions.
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Let us begin by considering the purely Neumann case Yy = . In that case, when the
domain D is conver, Assumption B.1 holds true with regularity exponent ¢ = 1 (cf. [50,
Theorem 3.2.1.3]). When d = 2 (so that D is a polygon), a = als for a > 0, and the
mazximum angle w in D is such that m < w < 2w (D is not convex), Assumption B.1 holds
true for all € < eg with eg = = (cf. [30, Theorem 4.4.3.7] and [4, Remark 1.3.4]).

In the case of mized Dirichlet-Neumann boundary conditions Yy # &, the situation is
more complex. Here, we only state results in the case a = aly fora > 0. Whend =3, D is a
rectangular cuboid, and Yy is the union of (entire) faces of D, Assumption B.1 holds true with
reqularity exponent ¢ = 1. When d = 2 (so that D is a polygon), (i) if D is convezx, and the
mazimum angle way between Yy and V¢ is such that wa, < 5, Assumption B.1 holds true with
reqularity exponent € = 1; (ii) if one or both of the previous two assumptions is not satisfied,

T T s
wq’ wn’ 2wgn

and if wan < w, Assumption B.1 holds true for all ¢ < g9 with &g = min ( ), where

wq and wy are, respectively, the maximum angles in D internal to Yy and to Y¢ (cf. [30,
Theorem 4.4.3.7] and [{, Remark I1.3.6]).

Since we are going to consider finite element approximations, let us precise our definition
of an admissible mesh family.

Definition B.3 (Admissible mesh family). A mesh family (%4),-, s admissible if (i) for
all h > 0 in the family, Ty is a matching simplicial discretization of D that is geometrically
compliant with the partition of the boundary (in the sense that Yy = |JF and Ty = | J F with
{F} boundary faces of Tp,), and if (i) (Th)}~ is shape-regular in the sense of Ciarlet [22].

Let ¥ be a member of an admissible mesh family. For an integer k > 1, we introduce the
discrete space

V= {vh e CO(D) | vpyr € PE(T) VT € zh} c H(D).

The usual Lagrange interpolator from C°(D) onto th is denoted Ik’d, whereas I,lf’d_l stands
for the Lagrange interpolator (piecewise defined on each face of D) from C°(Y) onto the space

{n e CO0) | puyr e Phy (F) ¥F e Fi

where the set .7-"}? collects the boundary faces of the mesh Tj. It is an easy matter to verify

that oI{f’d = I}]f’dfl oy on C°(D). In order to deal with mixed Dirichlet-Neumann boundary

conditions (T # ¢J), we will need the space Hé\Tf (D) defined in (2). In the purely Neumann
case, we will instead consider the space

HYY(D):={ve H'(D) | (v,1)p = 0}.

From a discrete viewpoint, we define Volfh =VFn Hé\Tf (D) and th,o = V¥ n HYO(D). We

then let IIf , - H&\Tf (D) — Vi, and Hz’o : HYO(D) — V:’O denote the respective a-weighted

elliptic projections onto the previous discrete spaces, i.e. the orthogonal projectors for the
inner product (v, w) — (aVv, Vw)p. The following approximation result holds true.
Proposition B.4 (Approximation). Let V' be either Hé\Tf (D) or HY(D) and, correspond-
ingly, let Vj, be either Vokh or th,o and Iy, : V. — V}, be either ngh or HZ’O. Let s € [0, k].
Then, there is co > 0 such that, for allv eV satisfying v e H'*3(D),

|89 (v = ()l p < ot} B o]+ (46)
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Proof. By definition of the a-weighted elliptic projection, there holds

|29 (0~ T1(0))lo.p = min |2V (0~ ) o p.
”L)hGVh

If s = 0, choosing v, = 0 directly yields |a7*V (v — p(v)llop < a;/2|v]1,p. Now, assume
that s € (¢ — 1,k]. In that case, owing to the (continuous) embedding of H'**(D) into

C%(D), one can resort to the Lagrange interpolate I,]f’d(v) € V¥ of v. Indeed, if v e HS\Tf(D),
I}lf’d(v) € Volfh' If ve HYO(D), I}lf’d(v) ¢ V}f’o a priori but
min_ 2%V (v — vg)yp = min 2%V (v~ va)], p. (47)
vpEV)” vREV)

In any case, one can thus write |22V (v — I, (v)) ] g.p < a;/2||V(v - Iﬁ’d(v)) and conclude

lo.p
invoking standard approximation results for I,]f’d (see e.g. |27, Corollary 19.8]). When d = 2,
the proof is complete. When d = 3, one still has to treat the case s € (0, %] Our proof makes
use of the quasi-interpolation operator introduced in [26] (among other candidates). When
V = H%(D), the conclusion follows from the trick (47) and from [27, Theorem 22.6] (together
with the shape-regularity of the mesh family). When V = Hé\rf (D), one has to use a quasi-
interpolation operator which preserves the Dirichlet boundary condition. Such a construction
is performed in [26] for purely Dirichlet boundary conditions. In such a configuration, the
conclusion follows from [27, Theorem 22.14| (together with the shape-regularity of the mesh
family). In our partially Dirichlet case, the arguments need to be slightly adapted. We will
admit that the result from [27, Theorem 22.14] extends, and we refer the reader to [38]. [

We now treat separately the mixed and the purely Neumann cases.

B.2 Mixed boundary conditions
We here assume that T # . We study the following problem:

—div(aVu) =7 in D,
u=q¢ on Y¢, (48)
aVun =20 on Y.

We assume that 7 € L2(D), that 6 belongs to H_%<Tf) (as defined in Section 2), and that
pe H > (Tt). Recall that Yy is Lipschitz in Y. By Calderén’s extension theorem (guaranteeing
the existence of a bounded extension operator from H %(Tt) to H2 (Y)) and the surjectivity
of the trace operator (ensuring the existence of a bounded lifting operator from H %(T) to
H'(D)), we infer the existence of ¢ € H'(D) such that v(¢)y, = ¢ and H$H1,D < CSHd)H%,Tt'

The weak formulation of Problem (48) writes: find u € H'(D), u = ug + ¢, with ug €

H é\Tf (D) such that

(@Vug, Vo)p = (r,v)p +€0,7(v))y, — (aVe, Vu)p Vv e HS\Tf (D). (49)

We henceforth assume that the lifting ¢ belongs to H!™$(D) for some s > % — 1. Note that,
since s > % — 1, we have ¢ € C°(D).
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Remark B.5 (Characterization of H%Jrs(Tt)). Formally, a necessary and sufficient condition

for the existence of a regular lifting ¢ € H'*5(D) is that “¢ € H%J’S(Tt) 7. The space H%JFS(T)

has standard meaning for s < %, however its definition is unclear for s = % without further

regularity on Y. Denoting by YT;, 1 < j < N, the open faces of the polytopal domain D, a
necessary condition so as to ensure that ¢ = v(¢)|y, for some ¢ € H'*$(D) is that Pir;ar, €

H%“(Tj N Ty) for all 1 < 5 < N. Of course this condition cannot be sufficient, and must
be supplemented by some “jump” control between faces. To obtain necessary and sufficient
conditions, one needs to finely characterize the range of the trace operator on H'*$(D). For
Lipschitz polytopes, the range of the trace operator of order n € N on HS(D) such that ¢ > n+%

has been fully characterized in [30, Theorem 1.5.2.8] (d =2) and in [3] (d =3).

We consider the following conforming finite element approximation of Problem (49): find
up, € V}f, up = ug,p + I]If’d@), with ug j, € Vokh such that

(@Vugn, Vup)p = (r,vn)p + <0, v(vn))y, — @VZy'($),Vun),  Von e VE,. (50)

Remark that there holds v(up) = I;f’d_l(@ on Y.

Lemma B.6 (H!(D)-seminorm estimate). Assume that u € H**™(D), with 0 < m < s. Let
7 :=min(m, k). Then, the following estimate holds true, for some constant ¢ > 0:

|a"2 ¥ (u — un)lop < Ca;hhT (luli+r0 + [9l147D) - (51)

Proof. Since Vokh c H&\Tf (D), the following orthogonality property holds true as a conse-
quence of (49) and (50):

(aV(u —up), Vop)p =0 Yoy, € Volfh. (52)
From this, we obtain, for any wy, € Vi such that v(wy,) = I,]f’d_l(qﬁ) on Ty,
2%V (u = un) o = @V (=), V1 = wn))p, < 279 (1 = un)l pla"* 9 (1 = wn)g
Now, choosing wy, = H]&h(uo) + I}’f’d@), we get
[272% (u = un) g p < 272V (uo = 115 1, (o))l + 127V (@ = T, (@) -

We have ug € H'*™(D) and ¢ € H'*5(D) ¢ H'*™(D). Hence, by the approximation proper-
ties of II§ , (see Proposition B.4) and I,’f’d (cf. e.g. [27, Corollary 19.8]), we infer

N _
8% (u = un)llo.p < cay*h™ (luoh+r,0 + [6l147,D) -
Since |upl14rp < |[u|14+.D + |@|14+7.D, We obtain (51). O

Remark B.7 (Case m > %— 1. If m > %— 1 (thenu e CY(D)), one can choose wy, = I}]f’d(u)
in the proof of Lemma B.0. Doing so, one can prove in this case that (51) holds true with
right-hand side simply proportional to |ul14+p.
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Lemma B.8 (L?(D)-norm estimate). Assume that u € H'™™ (D), with 0 < m < s. Let
T := min(m, k), x := min (3 +s,k+1), and n := min(r + ¢,X), where ¢ € (3,1] is the
reqularity exponent of the dual problem. Then, there is some constant ¢ > 0 such that

N Y2
lu —unlgp < coh™ | |uli+rp + [Bl14-D + (Z |¢|i,rjmn> , (53)
=1

and there holds n € [T + 4,k +1].

Proof. We resort to the Aubin—Nitsche duality argument. Recall that a is Lipschitz continuous
in D, and that the dual solution z to (44) belongs to H'*¢(D) for € € (3,1] by Assumption B.1.
As a consequence, aVz € H®(D), and there is a constant ¢ > 0, which depends linearly on
the Lipschitz constant of ay la, such that

[avz]. p < cas| Vz| p. (54)

Furthermore, one can give a sense to y(aVz)-n in L?(T). We consider the following weak

formulation of the dual Problem (44): find z € Hé\Y (D) such that

(aVz, Vw)p — (’y(aVz)-n,fy(w))Tt = (t,w)p Yw e Hl(D),

where we have leveraged the fact that aVz-n = 0 on Tt to cancel out the Neumann boundary
contribution. Testing with w = (u — uy,) € H(D), remarking that v(u — up) = ¢ — I;f’d_l(qb)
on Y¢, and using the symmetry of a, yields

(t, (w = un))p = (V2,8V (u—up))p — (v(aV2)n, ¢ = T, (6))y,

t

Since z € H&\Tf(D)’ using the orthogonality property (52), we infer

(t, (uw—un))p = (V(z = II§ ,(2)),aV (u — up)), — (v(aVz)m, 6 — 97 (9))y

hence, choosing ¢ = ag(u — up,) € L*(D), there holds

t,

aglu—unll§ p < 872V (2 = 05 1, (2) g p 1272V (1 = wn) o
+ 1v(@ve)nfor, |6 = T (@), = T1+ T (55)

Let us first estimate T7 in (55). By the approximation properties of H ;, (see Proposition B.4),
the fact that |z[14c,p < [2[l; . p, and the regularity result (45), we 1nfer

_1
T) < cacroa, 2 h° 29 (u — up) g p- (56)

Let us now estimate T in (55). Since € € (3, 1], the trace theorem (1) followed by (54) yields

27

Iv@vz)nlor, < V@V2)lor < [V(@V2)|_1x < 2V p < ey V2], p-

Since [Vz||. p < [2]1, . p, leveraging the regularity result (45), we infer

k,d—1
T <C'yClCrQHt”0’DH¢ 7, (¢ )HO,T{
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Plugging the estimates (56) and (57) into (55), recalling the definition of the function ¢,
and using (i) (51) for T;, and (ii) standard approximation properties for I;f’dil (cf. e.g. |27,
Corollary 19.8]) together with the admissibility of the mesh and the fact that Ppr,nr, €

H%+S<Tj N Y¢) for all 1 < j < N (see Remark B.5) for T, we infer

N 12
lu — UhHo,D SYG1Y hTte (|U\1+T,D + |¢>|1+T,D) + cop hX (Z |¢|ixjmn> )
j=1

which yields (53). To prove the upper bound on 7, we just remark that 7+ & < k + 1 and
X < k + 1. For the lower bound, since y — 1 = min(s, k + ) and min(m, k) < min(s, k + 1),
one has y = 7+ % Together with & > %, this yields n > 7 + % O

Lemma B.9 (L?(Y)-norm estimate). Assume that u € H'™™(D), with 0 < m < s. Let
7 = min(m, k), x := min (% +s,k+ 1), n = min(7 + €, ), and 0 := T + 1, where € € (%, 1]
1s the regqularity exponent of the dual problem. Then, there is ¢ > 0 such that

N 12
5 _
Iv(w—up)or < coh? | [ulitrp + [Pl14rD + (2 |¢\i,rjmn> ) (58)
j=1

and there holds § € [t + 3,k + 3].
Proof. The estimate (58) is a consequence of the multiplicative trace inequality in H'(D)
(cf. e.g. [12, (1.6.6)]):
2
Iy (w = un)gy < emilu—vnloplu —unly p-
Lemmas B.6 and B.8, and the fact that o > 1 and n > 7 yield the conclusion. O

Remark B.10 (Case ¢ = 0). If ¢ = 0 on Yy, one can choose ¢ = 0 in D, hence x = k + 1,
n =T +¢e, and the estimate (58) holds with % = 7+ 5 and right-hand side simply proportional
tO |u|1+77D'

B.3 Purely Neumann boundary conditions

We here assume that Ty = J. Let A be a nonempty relatively open Lipschitz subset of T,
which is the finite union of (d—1)-dimensional polytopes, and satisfies |A|q—1 = ca|Y|4—1 for
some cp € (0,1] (note that A = T is allowed). For k € R, we study the following problem:

—div(aVu) =r in D,
aVun =0 onT, (59)
(v(u), 1) = [Alg—15.
We assume that r € L?(D), that 6 belongs to Hfé(’f) (as defined in Section 2), and that
(r,1)p + (0, 1)y = 0, so that Problem (59) admits a unique solution.

The weak formulation of Problem (59) writes as follows: find v € HY(D), u = u® + .2,
0=k — A7 (v(u0), 1), with u® € H1O(D) such that

@vu®, Vo), = (r,v)p + 0, 7(v)y Yve HYO(D). (60)
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Let D' be another (Lipschitz) polytopal domain in R? such that D and D’ are disjoint and

A =int(dD' N T). We let D be the polytopal set of R? such that D:=Du D', and we assume
that D is Lipschitz. We henceforth assume that the solution v € H*(D) to Problem (60) is
such that u = @p for some function @ € H* (D), and we also let u/ := tjpr. In the same vein,
we suppose that a = &p witha e ILOO(@) (in practice, & is a symmetric field such that a’ := &
satisfies analogous properties to a, i.e. @ is uniformly elliptic and belongs to W1®(D’)). We
denote by ¢’ = 1 (resp. ¢ > 1) the heterogeneity/anisotropy ratio of &' (resp. &) in D’ (resp. 25),
in such a way that max(p, ¢’) < 0.

When A does not coincide with T (like it does when D is included inside D’), we further
assume that ¥; is geometrically compliant with A. We consider the following conforming
approximation of Problem (60): find up, € V¥, up, = uf) +19, 09 1= rp, — [A] 1 (v(u)), 1),, with
u% € V}f’o such that

@vuy, Vop)p = (r,on)p + @, v(wn))y Vo e V0 (61)

The real number xy, = |A|;, (v(us), 1), is a given exterior approximation of &, in the sense
that it is inferred from D’ in practice. Suppose that D’ is also meshed, with same meshsize h,
in such a way that the resulting global mesh on D is admissible in the sense of Definition 6.1
(with @ < D and T « A). Let m > 0 be some exponent such that both u € H'+™(D) and
u' € H'T™(D’). Then, letting 7 := min(m, k), kj, is assumed to satisfy

1 o
ALY |k = kn) < cxdh® W]y, (62)

with ¢’ := 27 +¢’ for some ¢’ € (3, 1]. Note that, since @ € H'(D) by assumption, v(u) = v/ (u)
on A so that x = |A[;,(7/(«),1),. Assume that u is solution to a mixed-type a’-weighted
diffusion problem in D’, with homogeneous Dirichlet boundary condition on some subset of
0D"\A, and dual regularity exponent . Then, letting rp, := |A|;',(7/(u},), 1), with u), € (th)/
finite element approximation of u’ in D', the estimate (62) follows as a simple by-product of
Remark B.10.

Lemma B.11 (H!(D)-seminorm estimate). Assume that uw € H™™ (D), with m > 0. Let
7 :=min(m, k). Then, the following estimate holds true, for some constant ¢ > 0:

18729 (u — up) g p < caf*h7|ul14r. (63)

Proof. Since th,() c H'9(D), the following orthogonality property holds true as a consequence
of (60) and (61):

@v(u’ —ul), Vup)p =0 Yoy, € th,o. (64)
Therefore, u) = Hi’o(uo). Now, since V(u — up) = V(u —u?) and |ugli+rp = |uli+rD,
Proposition B.4 directly yields the result. O

Lemma B.12 (L?(D)-norm estimate). Assume that u € H'*™(D) and v’ € H'*™(D'), with

m > 0. Let 7 := min(m, k), § := 27 + & where e € (%, 1] is the regularity exponent of the dual
problem in D, and §' := 27 + €' for some € € (3,1]. Define 6 := min(6,8"). Then, there is

some constant ¢ > 0 such that

I
2

lu—unlop < cohz (|uhirp + [0 ]1170r) (65)

and there holds g e(r+1.k+ 3]
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Proof. Writing, for ¢p the diameter of D,

1 1
uj O,D+£%|T|d/il|bo_L9z ) (66)

lu Uh”oD Hu

we first estimate | —.9|. We have
1 1 1 1
CAITLE e = = AL 1 = Q1 < IALE 1 = mnl + (0 = ) .
Using the exterior estimate (62) on |A\;/i1 |k — kp|, the multiplicative trace inequality in H*(D)
(cf. e.g. [12, (1.6.6)]), and the fact that V(u® — u)) = V(u — up), we infer
CA‘T‘ 0 =gl < Cn9h2|u\1+rb’
1/2 1/2
+em (14 = uflop + 19 (w = un) IS0 — whlg’p ) -
Plugging this estimate into (66), and using the H'(D)-seminorm estimate (63), yields

1. T 1
lu = unlop <1 (\UO —ufllop + 05hE[ul{?, plu — uf | + O'h o !1+TD/> (67)

Now, we invoke the Aubin-Nitsche duality argument to estimate |[u® —u)||, .- We consider
the following weak formulation of Problem (44): find z € H%(D) such that

(aVz, Vw)p = (t,w)p Yw e HYO(D).

Choosing w = (u® —ul) € H0(D), we infer, by symmetry of a and orthogonality (64),
k7
(t, (W’ = up))p = (V=z,aV(u’ —uf))p = (V(z ~11;(2)),aV (u” — uf))p,.

Choosing ¢t = az(u® —u)) € L*(D) (notice that (¢,1)p = 0), and leveraging the approximation
result of Proposition B.4, combined with the regularity result (45) and the fact that |z|11.p <
|zl ¢ ps as well as the H'(D)-seminorm estimate (63), we obtain

[u® = o p < cacro®a, bV (u - un)lop < c20h™F|ul14rp. (68)
The conclusion follows from (67), together with ¢ > 1 and max(p, ¢’) < 0. O

Lemma B.13 (L?(Y)-norm estimate). Assume that v € H'*™(D) and v’ € H'*™(D'), with
m > 0. Let 7 := min(m, k), § := 27 + & where e € (%, 1] is the regularity exponent of the dual
problem in D, and §' := 27 + ' for some € € (3,1]. Define 6 := min(6,8"). Then, there is
¢ > 0 such that

~

B
Iv(w = un)llor < coh2 (Julisrp + [W/14rpr) | (69)
and there holds g €(r+1.k+ 3]

Proof. Starting from

Iy = un)lor < Iy(u® = up)loy + ey A2 10— )

_1 1
<O+QRM%W—U%MT+%ﬂMﬁﬂ%—m,
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we get, using the multiplicative trace inequality in H'(D) (cf. e.g. [12, (1.6.6)]) combined with
the fact that V(u® —u)) = V(u—uy), along with the exterior estimate (62) on |A|;/i1|n —Kpl,
-1 1 1/2
(= un)lor < (1+ e e (16 = whlop + 1V (0 = wn) [ pllu® — whlo )

_1 5!
! 15,/
+CA2CHQ h2|u|1+7—7'D/.

The conclusion follows from (68) and (63), as in the proof of Lemma B.12. O
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