N
N

N

HAL

open science

Event-based neural learning for quadrotor control
Esteban Carvalho, Pierre Susbielle, Nicolas Marchand, Ahmad Hably, Jilles

Dibangoye

» To cite this version:

Esteban Carvalho, Pierre Susbielle, Nicolas Marchand, Ahmad Hably, Jilles Dibangoye. Event-based
neural learning for quadrotor control. Autonomous Robots, 2023, 47 (December), pp.1213-1228.

10.1007/s10514-023-10115-7 . hal-04140469

HAL Id: hal-04140469
https://hal.science/hal-04140469v1

Submitted on 25 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04140469v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Event-based Neural Learning for Quadrotor Control

Estéban Carvalho'?*, Pierre Susbielle!', Nicolas Marchand', Ahmad Hably!
and Jilles S. Dibangoye?

" Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, F-38000, Grenoble, France.
2Univ. Lyon, INSA Lyon, CITI, F-69621, Villeurbanne, France.

*Corresponding author(s). E-mail(s): esteban.carvalho.ec@gmail.com;
Contributing authors: pierre.susbielle@grenoble-inp.fr; nicolas.marchand@grenoble-inp.fr;
ahmad.hably@grenoble-inp.fr; jilles.dibangoye@inria.fr;

Abstract

The design of a simple and adaptive flight controller is a real challenge in aerial robotics. A simple
flight controller often generates a poor flight tracking performance. Furthermore, adaptive algorithms
might be costly in time and resources or deep learning based methods may cause instability problems,
for instance in presence of disturbances. In this paper, we propose an event-based neural learning
control strategy that combines the use of a standard cascaded flight controller enhanced by a deep
neural network that learns the disturbances in order to improve the tracking performance. The strat-
egy relies on two events: one allowing the improvement of tracking errors and the second to ensure
closed-loop system stability. After a validation of the proposed strategy in a ROS/Gazebo simulation
environment, its effectiveness is confirmed in real experiments in the presence of wind disturbance.

Keywords: Quadrotor, event-based control, trajectory tracking, deep neural network, online learning.

1 Introduction

Designing efficient and reactive autopilots for
Unmanned Aerial Vehicles (UAVs) is still an
active research trend. This is due to the increas-
ing number of applications becoming imaginable
due to the quadrotor’s small size and flight abil-
ities. To mention few of these various applica-
tions, we can cite: industrial surveillance (Silano
et al, 2021), infrastructure inspections (Gu et al,
2020), cinematography (Torres-Gonzdlez et al,
2017), merchandise transport (Schneider, 2020) or
aerial manipulation (Kim et al, 2013). Through
these applications, quadrotors have proven their
efficiency but are still very often supervised by
an experienced pilot. This is because of the
highly nonlinear dynamics of UAVs (Bangura

and Mahony, 2012), as well as the various dis-
turbances, such as wind gusts or the presence
of suspended payload, that standard autopilot
controllers can hardly handle. These challenges
require the implementation of more efficient and
more reliable autopilot algorithms than the exist-
ing ones. Advanced control techniques have been
developed over the last years in order to push
the capabilities of quadrotors to their limits.
As a result, the following techniques have been
employed: adaptive control (Dydek et al, 2013),
Model Predictive Control (MPC) (Bangura and
Mahony, 2014), event-based control (Durand et al,
2018), or the use of disturbance estimators along
the lines of (Castillo et al, 2019; Wang and Shir-
inzadeh, 2015). Furthermore, to better improve
controllers, we have seen the emergence of the

2 Event-based Neural Learning for Quadrotor Control

Re — Learning

Performance

Data collection

N

Deep Neural Network

000

L Cascaded Linear Controller

000000
000000
==

Switch Stability Check

Criterion

I Check
Cascaded Linear Controller
+
DNN Correction

New data collection

Criterion

Fig. 1 Proposed event-based neural learning control strategy. At starting, an initial cascaded linear controller is used. It
is enhanced with DNN learning after data collection. Two criteria are used to ensure stability and flight performance of the
enhanced controller. If stability is faulty, the control is switch to the initial controller.

use of artificial intelligence (AI) in robotics (Anh
et al, 2018). That is, data-driven methods mixed
with control algorithms have been developed to
perform such tasks and further improve flight
tracking performance of quadrotors. Indeed, the
use of Al is no longer limited to image and video
processing and it is increasingly used for modeling
and control purposes. In our previous work (Car-
valho et al, 2022), we combined a Deep Neural
Network (DNN) with a cascaded linear controller
to correct the flight tracking errors, to fit the
initially desired linear behavior and to overcome
disturbances. In (Shi et al, 2019), the ground effect
disturbance is entirely learned using DNNs and is
then compensated with the control. In (Torrente
et al, 2021), Gaussian processes are used to model
high speed disturbances and are combined with
MPC to achieve high precision tracking. Others
approaches focus on highly trendy Reinforcement
Learning (RL) to replace standard controllers. In
particular, one can mention works of (Hwangbo
et al, 2017; Lambert et al, 2019; Pi et al, 2020).
The problem with this type of Al-based
approaches is that they require a huge amount
of data to train a model. These methods may
also experience a lot of trials and errors to
efficiently learn a model. The data collection
must be carefully operated so that it contains
enough information to correctly learn the model.
These exploration phases, sometimes done ran-
domly (Sutton and Barto, 2018), can be critical
for real-world applications including autonomous
navigation in robotic systems. This is known as

the exploration—exploitation dilemma. The explo-
ration phase is very critical for a controller, as
the quadrotor is not allowed to crash in real test.
Thus, it is difficult to efficiently learn safe actions.
Such approaches require the development of algo-
rithms that safely explore the environment (Bura
et al, 2021; Koller et al, 2019). In simulation, one
needs first to explore a lot of possibilities and,
then, to transfer the learning from simulation to
experimentation (Zhao et al, 2020a). Such a task
is not obvious and can become tedious when the
model and the environment used in simulation
differs from the reality. Finally, Al-based meth-
ods present the big issue of having the learning
process, very often, done offline, due to the large
amount of data required.

The emergence of data-driven approaches have
consequently resulted in increasing-complex algo-
rithms. As a result, proposed controllers became
very specific to a type of application or work only
for a specific quadrotors. They sometimes require
a lot of tuning before achieving real flights. Thus,
the test and implementation of new controllers,
require a lot of time and effort before obtaining
satisfactory results. For this reason, many indus-
trial applications still use classical PID structures
(Ang et al, 2005).

In order to solve these aforementioned prob-
lems we propose an event-based neural learning
control strategy, which consists of a plug-and-
play learning algorithm mixed with a standard
cascaded controller. The latter is an improvement
of our previously established work (Carvalho

Event-based Neural Learning for Quadrotor Control 3

et al, 2022). It is based on cascaded controller,
here a PD for position control, which allows to
rely on the cascaded architecture present in most
open-source and industrial quadrotors. It allows
a fast and easy initial tuning of the quadrotor
flight controller. Once the traditional tuning step
is done, the proposed controller automatically
learns the corrections to be made to overcome
the effects of model errors or disturbances. This
approach avoids the tuning process of observers
or other filter design to achieve good flight per-
formance. Our approach is based on a succession
of data collection, learning and correction phases.
The correction is done using a deep neural net-
work. Two criteria are implemented to ensure
stability and tracking performance. The first
one, the stability criterion, is based on Lyapunov
stability theory and ensures that the DNN is
not destabilizing the closed-loop system. The
event related to the crossing of the threshold on
this criterion, switches to the initial controller.
The second one, the event based on a tracking
performance criterion, proposes updates to the
DNN to continuously improve the tracking. The
overall scheme is a plug-and-play algorithm using
standard cascaded controllers for quadrotors.
The proposed event-based neural learning control
methodology is summarized in Fig. 1. Note that
coupling event-based strategies with neural learn-
ing has shown its efficiency (Zhao et al, 2020b).

Main contributions. In contrast to prior
research, in this paper:

® We propose an event-based neural learning con-
trol strategy to overcome both residual dynam-
ics and external disturbances,

® We guarantee both stability and tracking using
two criteria in order to learn or re-learn a DNN.

The paper is organized as follows. The pre-
liminaries, in section 2, introduces the quadrotor
dynamics and the models used for control purpose.
It also presents the initial cascaded control archi-
tecture at the basis of the proposed controller.
Section 3 states the problem and objectives of
this work. The proposed event-based neural learn-
ing control strategy is consequently presented in
section 4. Section 5 presents the neural archi-
tecture used to model and estimate the error
dynamics including residual dynamics and distur-
bances, used in the DNN-based controller. The

validation of the proposed strategy is first per-
formed via simulations and then tested in real
experiments in section 6. Finally, a conclusion is
given in section 7.

2 Preliminaries

In this section, a quadrotor nonlinear dynamical
model is introduced. A first nonlinear model is
proposed including unknown disturbances. Then,
a linear model and the linear cascaded control
used to pilot it is derived. Finally, a reformula-
tion of the nonlinear model is introduced using the
linear model. It will be used for the event-based
neural learning control strategy.

2.1 Rigid-body dynamics

A quadrotor is made up of four rotors attached
on a rigid cross-shaped frame. Motions in space
are performed by differential control of each motor
speed in a synchronized way.

Let {I} be the inertial frame described by its
unit vectors {i1,4s,i3} and {B} represents the
frame attached to the rigid body, described by
its unit vectors {b_i, b_é, b_;;} The orientation of the
quadrotor {B} in {I} can be described by a rota-
tion matrix R € SO(3) . Using the Z-Y-X Euler
formalism (see Fig. 2), the rotation matrix R is
given by:

R:= R.(¢)Ry(0) R.()

COCyp S$pSHCy — CHSyp CpSeCy + S¢Sy (1)
R = |coSy 54565y + CpCy CySeSy — SpCy
—Sp SpCh CpCo

where c. := cos(+) and s. := sin(-).

Intermediate frames

Inertial frame

Body — fixed frame

Fig. 2 Frames representation with Tait-Bryan angles. The
inertial frame {I} (left), intermediate frames (middle) and
the body fixed frame {B} (right).

4 Event-based Neural Learning for Quadrotor Control

The quadrotor center-of-mass position is
denoted by ¢ := [z, y, 2|1 € {I}. Its linear
velocity, given in {I},is v = [v,, vy, v.]T. Euler
angles vector is ¢ := [¢, 0, ¥]T, whose elements
correspond to roll, pitch, and yaw angles, respec-
tively. Vector Q := [p, ¢, r]T denotes the angular
velocity expressed in the body frame {B}. Q* is a
skew-symmetric matrix associated to Q2 verifying,
for all M in M3(R), M x Q = MQ*, where x
denotes for the cross-product.

Let m be the total mass of the quadrotor and
J be the inertia matrix expressed in the body
fixed frame {B}. Thrust force value T is the total
thrust generated by the four rotors and vector T’
represents the corresponding torques generated.
The unmodeled and unknown dynamics of linear
(translation) and angular (rotation) accelerations
are, respectively, , € R and §, € R3, they are
usually called residual dynamics. These dynam-
ics include: gyroscopic effects, battery discharge,
ground effects, blade flapping, etc. As a result,
the quadrotor rigid-body dynamics, governed by
Newton-Euler equations (Mahony et al, 2012), are:

§=v, (2a)
mo = —mgfg + RTbs + Ot (2b)
R = RQX, (2¢)
JO=—-QXJQ+T +6,. (2d)

For experimental purposes, we suppose that the
angular rate controller is implemented and has a
high convergence speed. As we are interested in
conventional flight scenarios, acrobatic trajecto-
ries, such as doing barrel roll, are excluded. Thus,
using Euler angles formalism is not a problem
for the considered application. By making the-
ses assumptions, one can consider the following
system of equations:

{=v, (3a)
mo = —mgfg + RTZ;;J, + 0y, (3b)
{=wWQ, (3¢)

where W refers to the Wronskian matrix given by:

1 S¢t9 C¢t9
W = 0 Co —S¢ . (4)
0 sg/co cy/co

Next, this model will be used to derive a linear
model needed for control design.

2.2 Quadrotor linear model

The control strategy presented in this paper is
based on a cascaded linear architecture. The linear
model is obtained at hover conditions.

State and command vectors are respec-

tively given by: X := [gT, vl (T]T and
U = [T,07]" . Let 05 := [0, 0, 0] and &
be a given position point, the equilibrium state

T
[fz) 03 s 03]
command vector is

vector is denoted by X., =
and the equilibrium
Uy = [mg , Og]T, which prevents the quadrotor
from falling due to its weight.

Defining variation variables as X =X — Xeq
andU = U— U.q and assuming that ¢; is negligi-
ble, in the first instance, the following linear model
is obtained using a first order Taylor expansion:

. 03 Is 03 | _ Os4| _
X = 0503 Ays| X+ | B2 | U,

05 05 0 Bs (5)
X = AX + BU,

where 03 refers to the square null matrix of order
3, I3 is the identity matrix of order 3, O34 is the
null matrix composed of 3 lines and 4 columns,
finally, Az 3, B2 and Bs are given by:

0 g0 0 000
Asyz=|-g 00| ,Bo=| 0 000],
000 m=1000
0100
Bs;=10010].
0001

The quadrotor linear model in eq. (5) is used to
design a PD controller in next section 2.3. It will
be enhanced with our event-based neural learning
control strategy, presented in section 4.2.

2.3 Piloting the linear system

In this section, we describe the control archi-
tecture at the basis of the event-based neural
learning control strategy. It is based on a linear
cascaded architecture to achieve position, velocity
and attitude control.

Event-based Neural Learning for Quadrotor Control 5

The proposed control architecture is composed
of two linear cascaded controllers. The first one,
defining the inner loop, is the attitude controller,
which allows to stabilize the orientation of the
quadrotor, (, to the desired angles. The second
one, defining the outer loop, allows to reach the
desired positions and speeds references, providing
thrust and desired angles to the inner loop.

Attitude control:

To design the attitude control law, we use the
linear model from (5): ¢ = Q. Considering that Q
is the command input, we can directly choose it
as:

Q:_KC (C_Cref)a (6)
where K¢ is the gain to obtain the desired closed-
loop behavior and (r.y is the attitude target
coming from the position and speed controller,
explained in the sequel.

The gain K¢ is obtained through a linear
quadratic regulation synthesis (LQR) which min-
imizes the quadratic cost expressed as follows:

+oo
Jw—lé (€7 (6) Qe C(t) + QT(t) Re Qdt, (7)

where Q¢ and R, are weighting matrices to be
tuned to meet the desired tracking performance
on attitude loop.

Position & wvelocity control:

The position and velocity control is denoted by
ue = [qg, 0, T]”. We can extract the position and
velocity sub-model from (5) and write:

£ =1,

0 g O
=90 0 |uc= Bun.
0 0m™?!

(8)

(4R
I

We now use the vector n = [77{7 772T] " to define the

errors 1 1y = E—Epepand g = 1y = E—Epep =
¥ — Urey, then (8) can be expressed as follows:

. 03 I3 03 _ p—1z
i= ot o]+ || e - Bt @

[02 2] and

B = [%‘C} Next, we introduce the following

For the following, we let A =

control law:
uf = — Kyn+ B ey, (10)

where K, is a gain to be tuned to get desired
behavior in position and velocity tracking. This
parameter design procedure is explained in section
4.2 and given by eq. (21).

2.4 Rewriting the nonlinear model

The model used for the event-based neural learn-
ing control strategy is a nonlinear model of the
form given in eq. (11). It is obtained from (3)
using the previously presented linear model in
eq. (5). This model is subject to an additive error
dynamic term, ¢§;, which affects the dynamics.
Such a term includes the residual dynamics, the
linearized dynamics and external disturbances.
The nonlinear dynamics of the quadrotor is given
by:

i = An+ B(u¢ — B "y + B '6). (11

It must be noted that now ¢; includes not
only residual dynamics but also nonlinearities of
the quadrotor system described in eq. (3).

3 Problem formulation

The aim of this work is to pilot the system given in
eq. (11) under internal and external disturbances.
For that, one proposes to rely on an initial cas-
caded controller which is easy to implement and
tune using linear control tools, as presented in
section 2.3. The ideal behavior given by 7;;,,, solu-
tion of n = Z—EKnn, corresponds to the desired
tracking performance we want to obtain under
disturbances. As the control is based on a linear
controller, when testing it, it will not behave as
intended due to the simplicity of the control. To
automatically correct the trajectory tracking, we
propose our event-based neural learning control
strategy. It aims at minimizing the tracking error
between:

ngi(n | M0in — 77(“()”2 (12)

By minimizing (12), one reduces errors between
the obtained behavior and the desired behavior.
To achieve it, a deep neural network is used to

6 Event-based Neural Learning for Quadrotor Control

learn that error, ;. The controller is then updated
using a DNN-based corrective term. This term
aims at compensating ¢; in the command. It will
be iteratively learned using the proposed strat-
egy. In addition, as the closed-loop stability will
depend on that neural term, the strategy will eval-
uate the stability in the Lyapunov sense and adapt
the control if needed.

4 The proposed event-based
neural control strategy

In this section, we describe the event-based neural
learning control strategy used to track a reference
trajectory under internal and external distur-
bances. It is based on a cascaded architecture
to achieve position, velocity and attitude control.
The linear controller at the basis of the strategy
has been introduced in the preliminaries section
2.3. It is improved using an iteratively learned
DNN corrective term to achieve satisfactory track-
ing. The DNN-based controller is presented in
section 4.1. Afterwards, the event-based neural
learning control strategy to ensure stability and
tracking performance is exposed in 4.2. This strat-
egy triggers a new learning when tracking errors
become too large: the first event, defining the cri-
terion named performance criterion. It switches
controller if the DNN destabilizes the quadro-
tor. The second event is based on the value of a
Lyapunov function, it is named stability criterion.

4.1 DNN-based controller

To derive the DNN-based controller, one relies on
the nonlinear model given by eq. (11). This model
is divided in two parts, a linear and a nonlinear
one. The nonlinear part is ruled by §; term. One
proposes to get an estimate 5,{“ using a deep neural
network. For the following sections, the super-
script k denotes for the k-th learning of the neural
network, meaning the k-th update of the DNN.
Note that the (k+1)-th network has the same deep
neural network structure as the k-th one, but it is
re-learned using the newly created database. This
means that weights and biases that compose the
DNN are updated after each learning procedure,
to get a better estimate. The learning strategy
is given in section 4.2 and the DNN learning is
explained in section 5. Let’s assume now we have
an estimate 5,{‘3 .

The proposed DNN-based controller is accord-
ingly divided into two parts, namely:

u¢ = uf + Aulg, (13)

where u{ is the linear controller in (10) and Au’c€
is the feed-forward correction term based on the
k-th learned neural network.

We can express the closed-loop of (11) using
the chosen command (13):

= (A-BK,)n + B(Auf + B{'6,).
N————’

14
Closed-loop linear ()

> Dynamic to cancel
dynamics

The closed-loop dynamics (14) is the sum of two
terms. The first one describes the desired linear
behavior. It is fully controlled using previously
derived linear controller. The second one is a
nonlinear term to be cancelled. If the term van-
ishes, the closed-loop dynamics tends towards the
desired linear behavior.

The cancellation of the second term involves
solving an optimization problem (15):

2
min HAu’g +Bgl(stH . (15)
AuC

However, the d; term is unknown, one can replace
it by its estimate from the DNN:

e

. 1z

glggl HAUIZ + B, ok (xy)
The minimization problem (16) is a nonlinear
problem since x; = f(u¢) = f(uf + Au’g). The
input x; depends on Aulg which depends on S,’f
Solving such nonlinear, non convex, minimization
problem can be very time consuming and may
present several minima. The proposed solution
consists in feeding the neural estimate with only
the linear control input. It corresponds to replace
u¢ by uf in the DNN input in eq. (16). Removing
the correction term from the DNN input allows to
directly deduce the solution:

Auf = —Bg of (uf). (17)

As B ! matrix is fully known, the correction to be
applied to thrust 7" and ¢,y and 8,.5 angles ref-
erences from LQR can be quickly computed. The

Event-based Neural Learning for Quadrotor Control 7

cascaded architecture proposed is summarized in
Fig. 3.

Here, the correction is only computed for
position and velocity loop. The attitude loop cor-
responds to frame rotations and does not present
disturbance to be estimated.

Now, as the control is completely defined, we
will present the event-based strategy to learn or
re-learn 55, according to stability and performance
criteria.

4.2 The event-based neural learning
strategy

The DNN-based control term given in eq. (13)
depends on the estimate of 3{“ Hence, stability
and performance of trajectory tracking rely on
this estimation. This estimate will be refined fre-
quently using small sets of collected data during
the flight. As sets are small and do not nec-
essarily contain enough data, for a good global
approximation, an update of this term must be
frequently performed using different criteria. As
the DNN learning process is done automatically
using a limited amount of data, the quadrotor
cannot behave as expected. Two main events are
expected, defining two criteria:

e Stability criterion: if the estimate 6F is not
sufficiently accurate, stability might be com-
promised. One needs to first detect this critical
situation using the stability criterion. Then, we
propose to immediately switch to the initial
linear controller, which does not involve the
correction term, namely, Au’g = 01" After that,
a new data collection procedure is done to
estimate a new and more accurate DNN. The
design of the stability criterion is explained in
sub-section 4.2.1.

® Performance criterion: the predictions of the
DNN cannot be as accurate as expected without
causing any instability issues, for instance static
errors. The proposed solution is to re-learn 5f
getting a new estimate: 55“ then one applies
correction term Auf“ = —Bc_lgfﬂ(uZ).
The performance criterion is explained in sub-
sectiond.2.2.

The scheme of our event-based neural learn-
ing control approach is also summarized in Fig. 3

and its methodology in Fig. 1. In the following,
detailed explanations on each criterion, stability
and tracking performance, are given.

4.2.1 Stability criterion

In order to establish stability-based switching cri-
terion, it is needed to evaluate the closed-loop
stability of the quadrotor. For this purpose, we
have decided to use Lyapunov’s stability defini-
tion. We consider the system given by eq. (11).
Let the Lyapunov function be:

V=" Py, (18)

where P is the solution of the Riccati equation
(19):

A"P+PA-2PBB"P=-aP, (19)
or, equivalently by (20),
- a\T -« R
(4+351) P+P(A+3I)-2PBB"P=0.
(20)
Let K, be given by:
K,=B'P, (21)
and take the command as:
u¢ = ug + AuéC =-K,n+ Bc_lf)ref + Au’g. (22)
Substituting (22) in (11), we obtain:
= An+ B(—Kyn+ Auf + B¢ '6,). (23)

Using (17) and defining ¢, := & — 0F, it follows
from (23) that:

W= (A—BK,n+BB. e, (24)

Hence, the time derivative of the Lyapunov func-
tion is then given by:

V(t) =i Py + 0" P, (25)

=t (A- BK,)"P+ P(A - BK,))n

+2n" PBB; e, (26)

V(t) = —aV+ 20" PBB 'z, (27)

8 Event-based Neural Learning for Quadrotor Control

Orer

Desired Positions|
Desired Speeds

o

TraieCto_ry Position and Velocity Controller Attitude Controller X4 Linear Model

Generation desired dynamics Dy

Desired yaw v X = Ax + Bu -
ref|

Desired

| Accelerations ¢ref Flying X4

nonlinear dynamics

<

X
. %‘]

Event — based Neural Learning Strategy

——
Deep Neural Network
/9 Predict
"L
8‘ é é ® Collected data
'°*°\E Train (XK Yi) -
Vi =6t
Re-Train Trigger

Switch

~
Criteria: Stability and Performances

t
z, = f (@) = Mm@l

&y = 6F — &k

Fig. 3 The event-based neural learning control strategy.

Let Pz denote the square matrix such that
P2P3 = P. Note that since the system is con-
trollable, P is symmetric positive definite and,
therefore, P 2 always exists and can be chosen to
be also symmetric positive definite. Let w := pP3 n.
Then (27) becomes:

V= —awlw+ QwTP%BBC_IE,], (28)
—a[[w]|* + 2 (PEBB) Jwll [ley |- (29)

IN

Therefore, as long as ¢, is sufficiently small,
the Lyapunov function will be decreasing. More
precisely, since |w| = V/V, if:

VY. (30)
2Amax (P2 BB Y)

llenll <

then V will be strictly decreasing. We can define
a threshold variable as:

Em = e v A2 G Y
2Amax(PEBB;Y)

Then, if we get this matching condition:
leqll — em 2 0, (32)

the algorithm switches the controller to the initial
one given in eq. (10) since the defined Lyapunov

function (18) is not guaranteed to decrease any-
more. In practice, switching controller is done by
applying AuéC = 01" Then, a new data collection is
performed with this linear controller. Once enough
data is collected, a new DNN is learned and next
applied using eq. (17). This event is based on the
evolution of ||&,||, which is computed thanks to
the output of the DNN and the acceleration value
obtained from the IMU. The value of ¢, is then
restarted until the stability criterion is triggered
again if the new DNN triggers again the crite-
rion, meaning stability in the sense of Lyaupunov
cannot be guaranteed.

4.2.2 Performance criterion

It is possible that some errors, generated by an
inaccurate estimation of Sf , are not affecting the
quadrotor’s closed-loop stability. A second crite-
rion must be defined to handle this case. Indeed,
the first criterion given in section 4.2.1 may not
be triggered while the tracking performance is
not satisfactory. For instance, in the presence of
a static error that is not corrected by the neural
network, the output of the DNN is constant and
not triggering the stability threshold. Then, the
quadrotor will continue to fly with a bad track-
ing performance. To overcome this problem, it is
proposed to use a tracking performance criterion

Event-based Neural Learning for Quadrotor Control 9

based on the cumulative error to the linear model:

t

So(t) = [ln(r) = min(™)|*dr. (33)

ts

Then a new learning is triggered when:
X,(t) > o, (34)

where ¥, is a threshold experimentally chosen so
as to trigger a new learning when there is enough
error to be corrected. This criterion is coupled
with the fact that sufficient data must also be col-
lected. To prevent catastrophic forgetting (Robins,
1995), meaning the complete forgetting of previ-
ously learned tasks, a small part of the previously
build data base is kept and injected in the new one.
That procedure is called Rehearsal. Moreover, the
learning rate can be decreased using a multiplying
factor at each new re-learning event.

In the next section, we present how §; is esti-
mated using a deep neural network and we give
some insights on its learning procedure.

5 Error dynamics learning

This section presents the proposed structure for
the neural estimation of §;. It corresponds to an
acceleration error term between the real quadrotor
dynamics and the desired linear dynamics. It is
given by eq. (5) and by isolating it we obtain:

5 =0 — (Ag,3C + Bal). (35)

Based on which, we propose to get an estimate,
denoted by St, using a deep neural network. They
are powerful nonlinear estimators (Hornik et al,
1989). The universal approximation theorem and
its extension to deep feedforward networks, guar-
antee that one can approximate any continuous
functions using a DNN. Then, the error dynamics
in (35) can be approximated using a DNN.

In this paper, we use a DNN to estimate the
acceleration error term. This choice comes from
the fact that, one wants to learn not only unmod-
eled dynamics but also disturbances, such as wind
gusts for instance. As a result, a more complex
network would better model all these dynamics.
According to the nature of this estimation prob-
lem, here a regression of temporal data and the use

of this kind of networks is well suited (Goodfellow
et al, 2016).

The proposed DNN is composed of fully-
connected layers (see Fig. 4). The rectified linear
unit (ReLU) is used as activation function for all
hidden layers and is denoted as h. It is defined
element-wise by h(-) := maz(-,0).

First, let’s define weights and biases used to
build the DNN: A; € RMNw#% Ay ¢ RNulNu,
A3 € RNuw3 B; € RN“7 Bs € RNuw and B3 € R3.
Where N, is the number of units per layer, #A
denotes the cardinal of A and x; denotes the neural
network input.

Let x; be the input vector of the DNN. The
expression of the proposed deep neural network is
then given by:

8t(Xt) = A3Th(A2Th(A1Xt + B]) + Bz) + Bg. (36)

The number of layers is set to N; = 2 and the
number of units per layer is set to N, = 32. A
quick ablation study showed that it is enough to
correctly model the error dynamics and to perform
real-time computation.

Input

o . N HL1 HL2

<0 . o o Output

. © e o
® 0 0 o

S — i : @
@ © 0 o
e O O

T /
o O O

Upatt . , g

Inp;:n\;e;:tor Fully Connected Layers

Fig. 4 Deep neural structure used to learn §;. Is is a feed-
forward DNN composed of N; hidden layers of N, units,
using ReLU as activation functions.

The choice of the input of the DNN is made
considering eq. (2b): both sines and cosines of
Euler angles are provided to the input as they
appear in the rotation matrix R. As the drag force
is proportional to the square of velocities, one pro-
vides them to the network. The battery’s voltage
tension, upq¢s, i provided to better learn the dis-
charge profile. Finally, one provides the thrust, T,

10 FEvent-based Neural Learning for Quadrotor Control

as it is an important term in the linear accelera-
tion dynamics. To summarize, the input vector for
the proposed DNN at time ¢, x;, is given by (37):

2 .2 .2 T
Xt = I:cd)a S¢y €5 S0, Uz, Uy, Uz Ubatt, T} . (37)

The Mean-Squared Error (MSE) is chosen as loss
function £ for training and validation. Here, the
MSE is between 6;"¢*, computed using measured
values of accelerations and expected linear accel-
erations, and predictions 5. Let’s define 9 as the

optimization variable composed of all weights and
biases of the DNN, given by (38):

Y= {Al Az A3 Bl B2 B3} (38)

The network’s training will try to find 9 that
minimizes L:

N
. 1 mes S 2
i £(0) = g D157 G (30

The solver used to solve (39) is the Nesterov-
Accelerated Adaptive Moment Algorithm, known
as NADAM algorithm. It is an improved version
of the stochastic gradient descent algorithm.

All the network parameters and hyper-
parameters used for training are given in the
following Table 1. They are experimentally and
empirically chosen to achieve fast and efficient
convergence of the DNN.

Table 1 Parameters of the proposed deep neural
network and training values.

Parameter Value
Number of inputs 9
Number of hidden layers n; 2
Number of units n., 32
Batch 128
Epoch 250
Learning rate [, 0.005
o 0.9
v 0.9999

The learning is done on several small databases
created online during flights using the proposed
event-based learning strategy given in section 4.

Each training set is covering at least t. = 30s of
collected data (Xx,Yk); -

In the next section, we assess the effectiveness
of the event-based neural learning control strategy.
It is both tested in simulation environment and in
real flights tests.

6 Simulation and
experimental results

In this section, the proposed strategy is first val-
idated in a simulation environment in section 6.1
and it is then tested in experimental flights in
section 6.3 using setup described in section 6.2.

For both simulations and experiments, we have
worked with a ROS environment. Data collected
from different sensors are stored in rosbag and
used for the learning procedure. Main parame-
ters for simulation and experimental flights are
provided in Table 2.

Table 2 Parameters and their values for simulation and
experimentation.

Parameter Value
g(m/s™2) 9.81
m(kg) 0.55
4.47 0 0
K. 0 447 0
0 0 4.47
014 O 0 024 0 O
K, 0 -0.14 0 0 -0140
0 0 25 0 0 2
S (simu) 1.0
Sm (exp) 0.7
te(s) 30

6.1 Simulations results

Simulations are performed using ROS and Gazebo
environment (Koenig and Howard, 2004). To val-
idate the proposed strategy, two independent
scenarios are proposed:

1. A first scenario (I) consists in a repetition of
circles in z/y plane,

2. A second one (II) requests the quadrotor to
first perform circles in x/y plane and next to
perform steps in y/z plane.

For both tests, no external disturbances are added
to the simulation. Here, presented errors are

FEvent-based Neural Learning for Quadrotor Control 11

T
100

—— Event-based Neural Strategy

Fig. 5 Simulation scenario (I):
learning and re-learning process.

T
100

T T
0 _ 200 250 300
Time (s)

---- Expected Linear Behavior

circles motions. This scenario illustrate the performance criterion. Red areas represent

0 50 100 150 200 250 300
£ 5.0 -
T Triggering
254 Stability Criterion
=
2 00 . -
0 50 100 150 200 250 300

—— Expected Linear Behavior

Time (s)
---- Event-based Neural Strategy

Fig. 6 Simulation scenario (II): circles followed by steps motions. This scenario illustrate stability and performance criteria.

Red areas represent learning and re-learning process.

12 FEvent-based Neural Learning for Quadrotor Control

mainly due to the simplicity of the initial linear
control (10), that does not contain an integral
action. Through the scenario, the quadrotor will
learn to correct its behavior via the proposed
strategy.

6.1.1 Performance criterion analysis:
scenario (I)

Simulations results of scenario (I), consisting in
circles motions, are presented in Fig. 5. The first
three graphs represent the three spatial motions.
The fourth graph is representing the cumulative
error (33). It is reset after each re-learning.

At the beginning of the scenario, one notices
major static errors in all three components (z, y
and z). A first data collection and a first DNN
is proposed after few seconds of flight. It corrects
the behavior and get closer to the linear desired
behavior in blue dashed dot. It gets closer but
can still be improved because the deep neural net-
work has not yet fully learned the dynamics to
be corrected. The performance criterion is here
increasing directly after applying the first DNN.
After a second data collection and when the per-
formance threshold has been reached, a re-learning
procedure is triggered. A second DNN, is then
applied around 90s, and decreases the tracking
errors in all components. At ¢t = 180s, the tra-
jectory generation asks the quadrotor to perform
larger circles, as these references were not part of
the training scenario, tracking performance is not
as good as previously learned circles. Still, main
static errors of initial controller are corrected. The
learning procedure is triggered once more and
improves the DNN proposed. At the end of the sce-
nario, one notices that the behavior is significantly
closer to the expected linear behavior.

6.1.2 Stability criterion analysis:
scenario (II)

The results of the second scenario (IT) are shown
in Fig. 6 and illustrate the stability criterion. Here,
we restarted the procedure from scratch, where
only the initial linear cascaded controller is used
at starting. For practical reasons, the criterion
presented in (32) is implemented with a time-
triggering threshold. Indeed, in order to avoid
possible unwanted and unnecessary switching due
to noise, the controller switch is activated if the
stability criterion is activated during 10 samples.

The first three curves represent the displacement
on z, y and z. The second one is the cumulative
error (33). The last curve represents the stability
criterion (32).

This scenario is composed of eight circles
motions in z/y plane followed by six steps in y/z
plane after 160s of flight. As for previous test case
scenario, the quadrotor starts with large static
errors that are next corrected using successive
improvement of 5,51 and the previously studied per-
formance criterion. The DNN is re-learned up to
5;1. After 160s, the quadrotor is asked to perform
successions of steps, a case that is not part of the
training of the neural controller. It starts to well
behave, however, at t=180s, the stability criterion
(32) is triggered. It means that the last proposed
DNN, 3;1, is destabilising the quadrotor system for
the scenario. The initial linear cascaded controller
is then next used to maintain stability and collect
new useful data to learn a new DNN. After that
training, the new proposed network, here denoted

as 5’?, is correcting the dynamics to fit the linear
behavior correctly without destabilisation in step
motions.

The choice to switch to the initial controller
instead of the previously learned network is moti-
vated by the fact that when testing that other
solution, the proposed strategy was successively
switching controller till the initial controller.
Indeed, if the lastly learned network is not able
to well behave, there is a high possibility that
the previous one did not correctly learned the
information.

Now, as we validated the proposed strategy in
simulation, one can deploy it in real flight test.
Before performing test, a description of the experi-
mental aerial platform is presented in the following
section.

6.2 Experimental setup

To experimentally validate our event-based neural
learning control strategy we used a Holybro Kopis
2 quadrotor. It is built with two on-board micro-
controllers:

® One Kakute F7 with PX4 firmware (PX4,
2021). It is used as low-level controller (PID for
angular speed control) and it also performs state
estimation using an Extended Kalman Filter,
ECL EKF2.

FEvent-based Neural Learning for Quadrotor Control 13

.)))

Holybro Kopis 2 \%‘

Kakute F7 : PX4 Low Level Controller b CEEE

Input u = [p,q,7,T]"

..p OrangePI : Position / Speed &
Attitude Nonlinear Controllers

.

'

Semu‘it,); (Failsafe)
Manual Mode
Commands

4

(.
Vicon

Posn,u;n .Ca‘Ptva“O“ Live —
ystem Position >

Autonomous
Off-board Mode

1ROS :
e
R “S

Ground Station
Send Trajectory Reference

Manual
On-board Mode

Fig. 7 The experimental motion capture room used for experimental tests of the event-based neural learning controller.

® One Orange-pi, it is used to perform our event-
based neural learning controller. It publishes
computed commands (13) to the Kakute F7. We
use TensorFlow Lite for fast on-board neural
predictions.

The quadrotor is connected to the ground
station computer using a WiFi bridge, communi-
cation is done at 100Hz. References trajectories
are generated from the ground station and are sent
to the controller via WiFi. A motion capture sys-
tem is used to obtain spatial positions and Euler
angles of the quadrotor. The global setup is illus-
trated in Fig. 7. The experimental test and results
are explained in following section.

6.3 Experimental results

To better assess the contribution of the proposed
event-based neural strategy, we tested its track-
ing performance under external disturbances,
in a real test case. Here, experimental tests
are performed in a windy environment, using a
wind indoor tunnel, see Fig. 8. The quadrotor is
asked to face a sinusoidal wind doing back and
forth motions. Results are compared to a well
tuned PID controller coupled with a disturbance
observer. That controller was previously tuned

in order to fit the desired expected linear closed-
loop behavior given by (9) with the PD controller
without learning (13) in windy conditions. The
experimental results are provided in Fig. 9. A
video of the experimental results is available at:
youtu.be/S4I2d1PDCJY

The last curve is representing the intensity of
the wind applied in m/s. It is an approximate
value calculated from the maximum speed of the
wind generated by the wind indoor tunnel and the
transmitted value in PWM. Applied disturbance
is a sinus whose frequency is around 0.046Hz start-
ing at ¢t = 10s. It is important to notice that the
wind frequency is not synchronized with the back
and forth motion of the quadrotor.

When the wind starts, in part n°0 in the figure,
the proposed controller is not able to reject the
disturbance, generating large errors compared to
the PID cascaded controller along with the distur-
bance observer. After a collection time and a first
learning, the first DNN mainly corrects the wind
disturbance effect, in portion n°1. In part n°2, the
quadrotor has re-learned the deep neural network
but has difficulty in z component compared to the
other controller. Indeed the battery discharge is
not yet completely learned. A change of amplitude

https://youtu.be/S4I2dlPDCJY

14 FEvent-based Neural Learning for Quadrotor Control

stability criterion is very noisy, but via the filtered
procedure, it is not triggered during the proposed
scenario.

Table 3 RMSE (in meters) in each components during
the proposed wind scenario for each controller.

Fig. 8 The quadrotor facing the wind indoor tunnel.

and offset of the intensity of the wind is oper-
ated at t = 145s, at the end of part n°2. Here,
notice that the proposed controller with the previ-
ously learned controller has difficulty to reach its
desired target point, as the intensity of the wind
is stronger and was not previously learned. After
a new collection and re-learning process, it is able
to get closer to the linear desired behavior in parts
n°4 and n°5.

It is important to notice that when applying
the same DNN;, the behavior between each steps is
not always exactly the same. Indeed conditions are
varying at each step: the de-synchronized wind,
the increased battery discharge, the wind distur-
bance generated in the whole room, etc. Thus,
the output of the network is not exactly the same
each time and the correction leads to a slightly
different behavior at each new step. Root mean
squared errors (RMSE) of all parts [0 up to 5]
presented in the figure are computed for both con-
trollers compared to the linear excepted behavior
with PD controller in perfect simulated non windy
case. RMSE are provided in Table 3. A global
improvement of RMSE through flights, thus of
flight tracking, can be observed with the proposed
event-based neural learning control strategy. One
notices that the behavior in z component of the
PID along with then disturbance observer is glob-
ally better than the proposed solution. Indeed,
the event-based neural strategy does not include
integral action and is progressively learning the
battery discharge profile. It needs more time to
better learn the correction. However, at the end
of the scenario, it is improved as more data as
been used and introduced in the last DNN. Also,
the PID controller with observer produces more
low frequency oscillations during whole scenario in
each component. Finally, one may notice that the

Event-based
Neural strategy

PID+Observer

Part X y Z X y Z

0.054 0.323 0.02 0.023 0.046 0.072
0.031 0.098 0.021 0.015 0.061 0.006
0.012 0.065 0.053 0.013 0.058 0.006
0.011 0.114 0.018 0.012 0.06 0.007
0.011 0.059 0.027 0.012 0.064 0.007
0.013 0.059 0.015 0.016 0.064 0.064

Gk W N+~ O

7 Conclusion

This paper presents an event-based neural learn-
ing control strategy for quadrotor trajectory
tracking in different scenarios including internal
and external disturbances. The objective of this
controller is twofold: to allow an ease of imple-
mentation (PD gains) using well-spread cascaded
control architecture and to provide a great capac-
ity of adaptability to correct flight errors whether
they are internal (model, unknown dynamics, etc.)
or external (wind disturbances, etc.) while keep-
ing the system stable. The proposed controller is
based on a succession of data collections, learn-
ing procedures and correction phases. It allows
an online application as it does not require huge
computing time and it is fast enough to avoid
landing for learning. It is based upon two cri-
teria. The first one is used to re-learn the deep
neural network, to adjust the correction proposed
to the initially tuned linear cascaded controller,
in order to improve flight performance, and get
closer to the initial desired linear behavior. The
second criterion, that is concerning the stabil-
ity, is implemented to overcome the shortcoming
of deep neural networks: the coherence of the
output value in the case of unknown data. Simula-
tion and experiments validate the benefits of such
approach.

FEve

nt-based Neural Learning for Quadrotor Control 15

x (m)

®

y (m)

z (m)

2y

leqll = €m

Wind
(m/s™1)

Time (s)

Fig. 9 Experimental test: back and forth motions in front of a sinusoidal varying wind. Red areas represent learning and
re-learning process. For z, y and z, the red curve is the result with the event-based neural strategy. The green curve is the
obtained result with the PID along with disturbance observer. The blue one is the expected linear behavior with the linear

PD controller only.

Acknowledgments. This version of the arti-
cle has been accepted for publication, after peer
review but is not the Version of Record and
does not reflect post-acceptance improvements, or
any corrections. The Version of Record is avail-
able online at: https://doi.org/10.1007/s10514-
023-10115-7. Use of this Accepted Version is sub-
ject to the publisher’s Accepted Manuscript terms
of use https://www.springernature.com/gp/open-
research/policies/accepted-manuscript-terms.

This work has been partially supported by
the LabEx PERSYVAL-Lab (ANR-11-LABX-
0025-01) and ROBOTEX 2.0 (Grants ROBO-
TEX ANR-10-EQPX-44-01 and TIRREX ANR-
21-ESRE-0015) funded by the French program
Investissements d’Avenir.

References

Ang KH, Chong G, Li Y (2005) PID con-
trol system analysis, design, and technol-
ogy. IEEE Transactions on Control Systems
Technology 13(4):559-576. https://doi.org/10.
1109/tcst.2005.847331, URL https://doi.org/
10.1109/tcst.2005.847331

Anh TT, Luong NC, Niyato D, et al (2018)
Efficient training management for mobile
crowd-machine learning: A deep reinforce-
ment learning approach. https://doi.org/10.
48550/ ARXIV.1812.03633, URL https://arxiv.
org/abs/1812.03633

Bangura M, Mahony R (2012) Nonlinear dynamic
modeling for high performance control of a
quadrotor. In: Proc. of the Australasian Confer-
ence on Robotics and Automation

https://doi.org/10.1007/s10514-023-10115-7
https://doi.org/10.1007/s10514-023-10115-7
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1109/tcst.2005.847331
https://doi.org/10.1109/tcst.2005.847331
https://doi.org/10.1109/tcst.2005.847331
https://doi.org/10.1109/tcst.2005.847331
https://doi.org/10.48550/ARXIV.1812.03633
https://doi.org/10.48550/ARXIV.1812.03633
https://arxiv.org/abs/1812.03633
https://arxiv.org/abs/1812.03633

16 FEvent-based Neural Learning for Quadrotor Control

Bangura M, Mahony R (2014) Real-time model
predictive control for quadrotors. IFAC
Proceedings Volumes 47(3):11,773-11,780.
https://doi.org/10.3182/20140824-6-za-1003.
00203, URL https://doi.org/10.3182/
20140824-6-za-1003.00203

Bura A, HasanzadeZonuzy A, Kalathil D, et al
(2021) Dope: Doubly optimistic and pessimistic
exploration for safe reinforcement learning.
https://doi.org/10.48550/ ARXIV.2112.00885,
URL https://arxiv.org/abs/2112.00885

Carvalho E, Susbielle P, Hably A, et al
(2022) Neural enhanced control for quadro-
tor linear behavior fitting. In: 2022 Interna-
tional Conference on Unmanned Aircraft Sys-
tems (ICUAS). IEEE, https://doi.org/10.1109/
icuas54217.2022.9836058, URL https://doi.org/
10.1109/icuasb4217.2022.9836058

Castillo A, Sanz R, Garcia P, et al (2019) Distur-
bance observer-based quadrotor attitude track-
ing control for aggressive maneuvers. Control
Engineering Practice 82:14-23. https://doi.org/
10.1016/j.conengprac.2018.09.016, URL https:
//doi.org/10.1016/j.conengprac.2018.09.016

Durand S, Boisseau B, Marchand N, et al
(2018) Event-Based PID Control: Applica-
tion to a Mini Quadrotor Helicopter. Jour-
nal of Control Engineering and Applied
Informatics 20(1):36-47. URL https://hal.
archives-ouvertes.fr/hal-01722845

Dydek ZT, Annaswamy AM, Lavretsky E (2013)
Adaptive control of quadrotor UAVs: A design
trade study with flight evaluations. IEEE
Transactions on Control Systems Technology
21(4):1400-1406. https://doi.org/10.1109/tcst.
2012.2200104, URL https://doi.org/10.1109/
tcst.2012.2200104

Goodfellow I, Bengio Y, Courville A (2016) Deep
learning. MIT press

Gu W, Hu D, Cheng L, et al (2020) Autonomous
wind turbine inspection using a quadrotor. In:
2020 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE, https:
//doi.org/10.1109/icuasd8674.2020.9214066,
URL https://doi.org/10.1109/icuas48674.2020.

9214066

Hornik K, Stinchcombe M, White H
(1989) Multilayer feedforward net-
works are universal approximators.
Neural Networks — 2(5):359-366. https:

//doi.org/10.1016/0893-6080(89)90020-8, URL
https://doi.org/10.1016,/0893-6080(89)90020-8

Hwangbo J, Sa I, Siegwart R, et al
(2017) Control of a quadrotor with
reinforcement learning. IEEE Robotics
and Automation Letters 2(4):2096-2103.
https://doi.org/10.1109/1ra.2017.2720851,

URL https://doi.org/10.1109/1ra.2017.2720851

Kim S, Choi S, Kim HJ (2013) Aerial manip-
ulation using a quadrotor with a two DOF
robotic arm. In: 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and
Systems. IEEE, https://doi.org/10.1109/iros.
2013.6697077, URL https://doi.org/10.1109/
iros.2013.6697077

Koenig N, Howard A (2004) Design and

use paradigms for gazebo, an open-
source multi-robot simulator. In: 2004
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566). IEEE, https:
//doi.org/10.1109/iros.2004.1389727, URL
https://doi.org/10.1109/ir0s.2004.1389727

Koller T, Berkenkamp F, Turchetta M, et al
(2019) Learning-based model predictive control
for safe exploration and reinforcement learning.
https://doi.org/10.48550/ ARXIV.1906.12189,
URL https://arxiv.org/abs/1906.12189

Lambert NO, Drew DS, Yaconelli J,
et al (2019) Low-level control of a
quadrotor with deep model-based rein-
forcement learning. IEEE Robotics and
Automation Letters 4(4):4224-4230.
https://doi.org/10.1109/1ra.2019.2930489,

URL https://doi.org/10.1109/1ra.2019.2930489

Mahony R, Kumar V, Corke P (2012) Mul-
tirotor aerial vehicles: Modeling, estimation,
and control of quadrotor. IEEE Robotics &
Automation Magazine 19(3):20-32. https://doi.
org/10.1109/MRA.2012.2206474, URL http://

https://doi.org/10.3182/20140824-6-za-1003.00203
https://doi.org/10.3182/20140824-6-za-1003.00203
https://doi.org/10.3182/20140824-6-za-1003.00203
https://doi.org/10.3182/20140824-6-za-1003.00203
https://doi.org/10.48550/ARXIV.2112.00885
https://arxiv.org/abs/2112.00885
https://doi.org/10.1109/icuas54217.2022.9836058
https://doi.org/10.1109/icuas54217.2022.9836058
https://doi.org/10.1109/icuas54217.2022.9836058
https://doi.org/10.1109/icuas54217.2022.9836058
https://doi.org/10.1016/j.conengprac.2018.09.016
https://doi.org/10.1016/j.conengprac.2018.09.016
https://doi.org/10.1016/j.conengprac.2018.09.016
https://doi.org/10.1016/j.conengprac.2018.09.016
https://hal.archives-ouvertes.fr/hal-01722845
https://hal.archives-ouvertes.fr/hal-01722845
https://doi.org/10.1109/tcst.2012.2200104
https://doi.org/10.1109/tcst.2012.2200104
https://doi.org/10.1109/tcst.2012.2200104
https://doi.org/10.1109/tcst.2012.2200104
https://doi.org/10.1109/icuas48674.2020.9214066
https://doi.org/10.1109/icuas48674.2020.9214066
https://doi.org/10.1109/icuas48674.2020.9214066
https://doi.org/10.1109/icuas48674.2020.9214066
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/lra.2017.2720851
https://doi.org/10.1109/lra.2017.2720851
https://doi.org/10.1109/iros.2013.6697077
https://doi.org/10.1109/iros.2013.6697077
https://doi.org/10.1109/iros.2013.6697077
https://doi.org/10.1109/iros.2013.6697077
https://doi.org/10.1109/iros.2004.1389727
https://doi.org/10.1109/iros.2004.1389727
https://doi.org/10.1109/iros.2004.1389727
https://doi.org/10.48550/ARXIV.1906.12189
https://arxiv.org/abs/1906.12189
https://doi.org/10.1109/lra.2019.2930489
https://doi.org/10.1109/lra.2019.2930489
https://doi.org/10.1109/MRA.2012.2206474
https://doi.org/10.1109/MRA.2012.2206474
http://ieeexplore.ieee.org/document/6289431/

FEvent-based Neural Learning for Quadrotor Control 17

ieeexplore.ieee.org/document /6289431 /

Pi CH, Hu KC, Cheng S, et al (2020) Low-level
autonomous control and tracking of quadro-
tor using reinforcement learning. Control Engi-
neering Practice 95:104,222. https://doi.org/10.
1016/j.conengprac.2019.104222, URL https://
doi.org/10.1016/j.conengprac.2019.104222

PX4 (2021) PX4/PX4-autopilot software. URL
https://github.com/PX4/PX4- Autopilot

Robins A (1995) Catastrophic forgetting,
rehearsal and pseudorehearsal. Con-
nection Science 7(2):123-146. https:

//doi.org/10.1080/09540099550039318, URL
https://doi.org/10.1080/09540099550039318

Schneider D (2020) The delivery drones are com-
ing. IEEE Spectrum 57(1):28-29. https://doi.
org/10.1109/mspec.2020.8946304, URL https:
//dot.org/10.1109 /mspec.2020.8946304

Shi G, Shi X, O'Connell M, et al (2019)
Neural lander: Stable drone landing control
using learned dynamics. In: 2019 Interna-
tional Conference on Robotics and Automation
(ICRA). IEEE, https://doi.org/10.1109/icra.
2019.8794351, URL https://doi.org/10.1109/
icra.2019.8794351

Silano G, Bednar J, Nascimento T, et al
(2021) A multi-layer software architecture
for aerial cognitive multi-robot systems in
power line inspection tasks. In: 2021 Interna-
tional Conference on Unmanned Aircraft Sys-
tems (ICUAS). IEEE, https://doi.org/10.1109/
icuas51884.2021.9476813, URL https://doi.org/
10.1109/icuas51884.2021.9476813

Sutton RS, Barto AG (2018) Reinforcement
Learning, 2nd edn. Adaptive Computation and
Machine Learning series, Bradford Books, Cam-
bridge, MA

Torrente G, Kaufmann E, Foehn P, et al (2021)
Data-driven mpc for quadrotors. IEEE Robotics
and Automation Letters https://doi.org/10.
48550/ARXIV.2102.05773, URL https://arxiv.
org/abs/2102.05773

Torres-Gonzalez A, Capitan J, Cunha R, et al
(2017) A multidrone approach for autonomous
cinematography planning. In: ROBOT 2017:
Third Iberian Robotics Conference. Springer
International Publishing, pp 337-349, https:
//doi.org/10.1007/978-3-319-70833-1_28, URL
https://doi.org,/10.1007/978-3-319-70833-1_28

Wang X, Shirinzadeh B (2015) Nonlinear
augmented observer design and application
to quadrotor aircraft. Nonlinear Dynam-
ics 80(3):1463-1481. https://doi.org/10.1007/
s11071-015-1955-y, URL https://doi.org/10.
1007/s11071-015-1955-y

Zhao W, Queralta JP, Westerlund T (2020a)
Sim-to-real transfer in deep reinforcement learn-
ing for robotics: a survey. In: 2020 IEEE
Symposium Series on Computational Intelli-
gence (SSCI). IEEE, https://doi.org/10.1109/
$s¢id7803.2020.9308468, URL https://doi.org/
10.1109/ss¢id7803.2020.9308468

Zhao Z, Cerf S, Robu B, et al (2020b)
Event-based control for online training of
neural networks. IEEE Control Systems
Letters 4(3):773-778. https://doi.org/https:
//doi.org/10.1109/LCSYS.2020.2981984, URL
https://hal.archives-ouvertes.fr/hal-02509604,
hal-02509604

http://ieeexplore.ieee.org/document/6289431/
http://ieeexplore.ieee.org/document/6289431/
https://doi.org/10.1016/j.conengprac.2019.104222
https://doi.org/10.1016/j.conengprac.2019.104222
https://doi.org/10.1016/j.conengprac.2019.104222
https://doi.org/10.1016/j.conengprac.2019.104222
https://github.com/PX4/PX4-Autopilot
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1109/mspec.2020.8946304
https://doi.org/10.1109/mspec.2020.8946304
https://doi.org/10.1109/mspec.2020.8946304
https://doi.org/10.1109/mspec.2020.8946304
https://doi.org/10.1109/icra.2019.8794351
https://doi.org/10.1109/icra.2019.8794351
https://doi.org/10.1109/icra.2019.8794351
https://doi.org/10.1109/icra.2019.8794351
https://doi.org/10.1109/icuas51884.2021.9476813
https://doi.org/10.1109/icuas51884.2021.9476813
https://doi.org/10.1109/icuas51884.2021.9476813
https://doi.org/10.1109/icuas51884.2021.9476813
https://doi.org/10.48550/ARXIV.2102.05773
https://doi.org/10.48550/ARXIV.2102.05773
https://arxiv.org/abs/2102.05773
https://arxiv.org/abs/2102.05773
https://doi.org/10.1007/978-3-319-70833-1_28
https://doi.org/10.1007/978-3-319-70833-1_28
https://doi.org/10.1007/978-3-319-70833-1_28
https://doi.org/10.1007/s11071-015-1955-y
https://doi.org/10.1007/s11071-015-1955-y
https://doi.org/10.1007/s11071-015-1955-y
https://doi.org/10.1007/s11071-015-1955-y
https://doi.org/10.1109/ssci47803.2020.9308468
https://doi.org/10.1109/ssci47803.2020.9308468
https://doi.org/10.1109/ssci47803.2020.9308468
https://doi.org/10.1109/ssci47803.2020.9308468
https://doi.org/https://doi.org/10.1109/LCSYS.2020.2981984
https://doi.org/https://doi.org/10.1109/LCSYS.2020.2981984
https://hal.archives-ouvertes.fr/hal-02509604

	Introduction
	Preliminaries
	Rigid-body dynamics
	Quadrotor linear model
	Piloting the linear system
	Rewriting the nonlinear model

	Problem formulation
	The proposed event-based neural control strategy
	DNN-based controller
	The event-based neural learning strategy
	Stability criterion
	Performance criterion

	Error dynamics learning
	Simulation and experimental results
	Simulations results
	Performance criterion analysis: scenario (I)
	Stability criterion analysis: scenario (II)

	Experimental setup
	Experimental results

	Conclusion
	Acknowledgments

