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Introduction 1.Motivations

Jump processes have been extensively studied and widely used in the mathematical modeling of phenomena that may exhibit abrupt changes, and therefore are matters of interest in various fields such as mathematical finance, seismology, climatology, neuroscience, and so on. Among the most mathematically tractable examples of jump processes are Lévy processes (see e.g. [START_REF] Barndorff-Nielsen | Lévy processes: theory and applications[END_REF][START_REF] Biagini | Electricity futures price modeling with Lévy term structure models[END_REF][START_REF] Boxma | Lévy-driven polling systems and continuousstate branching processes[END_REF][START_REF] Carr | The fine structure of asset returns: An empirical investigation[END_REF][START_REF] Noven | A Lévy-driven rainfall model with applications to futures pricing[END_REF] for reviews and other applications). These are stochastic processes that have a rather rigid structure (their increments are stationary and independent) but have often been used as proxies to establish results for jump processes with a more flexible structure, e.g., Itô's semi martingales.

From a probabilistic point of view, the dynamics of the trajectories of a Lévy process X is well understood. The law of X is uniquely determined by the so-called Lévy triplet that contains a drift term, a diffusion coefficient and a Lévy measure (see e.g. [START_REF] Bertoin | Lévy processes[END_REF][START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]). For any pure jump Lévy process X, the distribution of its increments is the convolution between a martingale X S describing its small jumps and a compound Poisson process X B gathering the large jumps (large than 1) of the process. For most Lévy processes whose Lévy measure is infinite, a closed form expression for the law of its increments is not known and the core of the problem lies in computing the distribution of the small jumps which is never known in closed form. We stress that even in very well known situations, for instance when X is an α-stable Lévy process, there are already a lot of results for controlling the law of X but nothing can be said for X S which is not and α-stable Lévy process.

This renders these processes difficult to handle and simulate (see [START_REF] Cont | Financial modelling with jump processes[END_REF][START_REF] Gnedenko | Limit distributions for sums of independent random variables[END_REF]), the small jumps are therefore sometimes replaced with Gaussian distributions (see [START_REF] Cohen | Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes[END_REF]), which can be theoretically justified in some cases (see [START_REF] Carpentier | Total variation distance for discretely observed lévy processes: A gaussian approximation of the small jumps[END_REF]). However this approximation is valid only in specific regimes (see the lower bound result in [START_REF] Carpentier | Total variation distance for discretely observed lévy processes: A gaussian approximation of the small jumps[END_REF]) and untrue in general.

The behaviour of the Lévy measure in a neighborhood of the origin is a key element in understanding the jump activity. It is essentially related to the law of the so-called small jump process of X S . So far there are no results in the literature that estimate the density of X S from discrete observations of X contrary to X B which has been extensively studied (see e.g. [START_REF] Belomestny | [END_REF][START_REF] Duval | Density estimation for compound Poisson processes from discrete data[END_REF][START_REF] Duval | Spectral-free estimation of lévy densities in high-frequency regime[END_REF]). Using the convolution structure of the Lévy process and that X B is a compound Poisson process with intensity and jump law depending on the Lévy measure of X in an explicit way we can derive an estimation procedure for X S . We can rely on the vast literature for deconvolution results to conduct our study (see e.g. [7-9, 12, 17, 21, 27, 31] for the study of the quadratic risk, other results for the multivariate anisotropic densities [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF][START_REF] Lepski | Oracle inequalities and adaptive estimation in the convolution structure density model[END_REF][START_REF] Rebelles | Structural adaptive deconvolution under l p -losses[END_REF]] also exist).

In this paper we consider pure jumps Lévy processes X with a Lévy measure absolutely continuous with respect to the Lebesgue measure and we focus on the estimation of the density of X S at time ∆, denoted by g ∆ , from n equidistant observations of X with a sampling rate ∆. We propose several estimators based on a spectral approach to take into account both low frequency observations (∆ > 0 fixed) and high frequency (∆ → 0). It appears that in the low frequency regime, if the Lévy measure of X B is known, it appears that the inverse deconvolution problem is well posed and as the density g ∆ very regular (see [START_REF] Picard | Density in small time for lévy processes[END_REF]) our estimator attains parametric rates of convergence that are optimal. In the high frequency setting, without any knowledge on the distribution of X B another estimator can be proposed and its rate of convergence depend on the behaviour of the Lévy density in a neighborhood of the origin. Adaptation is achieved adapting a penalized procedure presented in [START_REF] Comte | Nonparametric adaptive estimation for pure jump lévy processes[END_REF] Theorem 4.1. Finally, a short numerical study is conducted on α-stable Lévy processes.

Setting and notations

Consider a pure jump Lévy process X characterized by its Lévy triplet (b ν , 0, ν) where ν is a Borel measure on R such that

ν({0}) = 0; ν(R) = +∞ and R (y 2 ∧ 1)ν(dy) < ∞ and b ν := |x|≤1 xν(dx) if |x|≤1 |x|ν(dx) < ∞, 0 if |x|≤1 |x|ν(dx) = ∞. (1) 
Tanks to the Lévy-Itô decomposition (see [START_REF] Bertoin | Lévy processes[END_REF]) , X can be written as

X t = tb ν + X S t + X B t ,
where X S is a centered martingale accounting for the jumps of X of size smaller than 1 and is independent of X B which is a compound Poisson process independent of X S with intensity

λ = ν(R \ [-1, 1]
) and jump density f = p1 [-1,1] c /λ where p(x) = ν(dx) dx . In the following we write X B t = Nt i=1 Y i where N is a Poisson process of intensity λ independent of the sequence of i.i.d. (independent and identically distributed) random variables Y i with common density f . We will denote by f B ∆ the density of X B ∆ given by

f B ∆ (x) = ∞ k=0 exp(-λ∆) (λ∆) k k! f * k (x), (2) 
where f * k is the k-th convolution of the density f and f * 0 = δ 0 is the Dirac measure at point 0.

Consider the i.i.d. observations X = (X i∆ -X (i-1)∆ ) n i=1 with X 0 = 0. Our aim is to estimate the density g ∆ of Z ∆ := X S ∆ + ∆b ν from X both under the assumption ∆ > 0 fixed and ∆ → 0, and compute the L 2 integrated risk. For that we need to assume that X is a Lévy process with with a Lévy density p = dν dx satisfying

p(x) ≥ M |x| 1+α , ∀|x| ≤ 1 (A M,α )
for some 0 < α ≤ 2.

The estimation strategy that we analyse is based on a spectral approach, and we use the following notations. Given a random variable Z, φ Z (u) = E[e iuZ ] denotes the characteristic function of Z. For g ∈ L 1 (R), Fg(u) = e iux g(x)dx is understood to be the Fourier transform. Moreover, we denote by

• the L 2 -norm of functions, g 2 := |g(x)| 2 dx. Given some function g ∈ L 1 (R) ∩ L 2 (R), we denote by g m the uniquely defined function with Fourier transform Fg m = (Fg)1 [-m,m] .
2 Main results

Estimation in the low frequency regime

Let ∆ > 0 and suppose that ν is known on R \ [-1, 1] such that in the decomposition:

X t = b ν t + X S t + X B t = Z t + X B t the density of X B t is entirely known. Thanks to the convolution structure of the law of X ∆ , it holds φ X ∆ = φ Z ∆ φ X B ∆ .
In particular, for a fixed ∆ > 0, φ X B ∆ is known and never vanishes as

|φ X B ∆ (u)| = | exp(-λ∆(φ Y 1 (u) -1)| ≥ e -2λ∆ > 0, (3) 
where Y 1 ∼ f . Hence, the quantity

φ Z ∆ (u) = φ X ∆ (u) φ X B ∆ (u)
is well defined for all u ∈ R and can be estimated by

φ Z ∆ (u) = 1 n n j=1 e iu(X j∆ -X (j-1)∆ ) φ X B ∆ (u) . (4) 
From ( 4) we derive an estimator of g ∆ , using a spectral cut-off as the latter quantity may not be in L 1 (R):

g ∆,m (x) = 1 2π m -m φ Z ∆ (u)e -iux du. (5) 
The following result gives an upper bound for the integrated L 2 -risk of g ∆,m .

Theorem 1. Let X be a Lévy process whose Lévy measure ν satisfies (A M,α ), for some M > 0 and α ∈]0, 2]. Let ∆ > 0 and g ∆ be the density of ∆b ν + X S ∆ and g ∆,m the estimator defined in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]. Then, for all m ≥ 1 it holds that

E[ g ∆,m -g ∆ 2 ] ≤ g ∆,m -g ∆ 2 + e 4λ∆ π m n ,
and g ∆,m -g ∆ 2 ≤ K∆ -1/α e -c∆m α for constants c > 0 and K > 0 (that may depend on α).

Proof. To control the integrated L 2 -risk we write the decomposition

E[ g ∆,m -g ∆ 2 ] = g ∆,m -g ∆ 2 + E[ g ∆,m -g ∆,m 2 ] = g ∆,m -g ∆ 2 + 1 2π m -m E[| φ Z ∆ (u) -φ Z ∆ (u)| 2 ]du.
The first term is the standard bias term for which we can write using Plancherel equality, [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], the fact that m ≥ 1 and (A M,α ), that for some constant c > 0:

g ∆,m -g ∆ 2 = 1 2π [-m,m] c |φ Z ∆ (u)| 2 du ≤ 1 π ∞ m e -2c∆u α du ≤ ce -c∆m α , (6) 
where

c = 1 π ∞ 0 e -c∆u α du = ∆ -1 α π ∞ 0 e -cu α du < ∞ as α > 0. In particular we have that c ≤ ∆ -1/α π ∞ 0 e -cv αv 1-1 α dv =: ∆ -1/α K. Also observe that g ∆ ∈ L 2 (R) as g ∆ ∈ L 1 (R) ∩ L ∞ (R) by means of Lemma 2 in the Appendix.
For the variance term, using that

E[| φ Z ∆ (u) -φ Z ∆ (u)| 2 ] = 1 |φ X B ∆ (u)| 2 E[| φ X ∆ (u) -φ X ∆ (u)| 2 ] = 1 |φ X B ∆ (u)| 2 V   1 n n j=1 e iu(X j∆ -X (j-1)∆ )   = 1 -|φ X ∆ (u)| 2 |φ X B ∆ (u)| 2 1 n ,
we easily get

E[ g ∆,m -g ∆,m 2 ] ≤ e 4λ∆ π m n . (7) 
Gathering ( 6) and ( 7) we derive:

E[ g ∆,m -g ∆ 2 ] ≤ e 4λ∆ π m n + K∆ -1/α e -c∆m α ,
which concludes the proof.

Remark 1. Making a bias variance compromise to select m we get to solve me c∆m α = n, for that we use the properties of the Lambert W function and solve

m * n = (c∆) -1/α e -c∆(m * ) α ⇐⇒ m * = W (αn α ) αc∆ 1 α
.

Using asymptotic expansion of the Lambert W function, we derive that the optimal cutoff should be selected as follows m * log(αn α ) αc∆

1 α log(n) ∆ 1 α .
In that case, the rate implied by Theorem 1 is

E[ g ∆,m -g ∆ 2 ] (log n) 1 α n∆ 1 α
, an almost (up to a log-loss) parametric rate (recall that ∆ > 0 is fixed), which is consistant with the fact that: i) we are in a well posed deconvolution problem (see (3)), ii) under the assumptions of Lemma 2, the Lévy density is C ∞ , morally g ∆ has a regularity ∞.

The problem of finding a data driven way to select m is studied in Section 2.3. The optimal cutoff m * depends on the unknown quantity α appearing in Assumption (A M,α ). Interestingly the adaptation problem of selecting m consists in estimating a possible α for condition (A M,α ). This is simpler than estimating the true Blumenthal-Getoor index of X, all we need is a minorant of it.

Estimation in a high frequency regime

In this Section we consider the case where ∆ → 0. Then, it remains possible to estimate the density of Z ∆ using the estimator g ∆,m as defined in ( 5) and with similar arguments as those illustrated in the previous paragraph, one can show that it is consistent as soon as n∆

1 α → ∞ and that its L 2 rate of convergence is n -1 ∆ -1
α . However, in the high frequency setting, it is possible to omit the assumption that φ X B ∆ is known since in this asymptotic φ X B ∆ is close to 1. We therefore propose to consider a second estimator of g ∆ , defined as follows

g ∆,m (x) = 1 2π m -m φ X ∆ (u)e -iux du, (8) 
whose L 2 risk is controlled in the following result. Note that if ∆ is fixed ( 5) is an estimator of the density of X ∆ (see Section 4 of [START_REF] Kappus | Nonparametric estimation for irregularly sampled lévy processes[END_REF]).

Theorem 2. Let X be a Lévy process whose Lévy measure ν satisfies (A M,α ), for some M > 0 and α ∈]0, 2]. Let ∆ ∈ (0, 1) be such that λ∆ ≤ 1, where λ = ν(R \ [-1, 1]). Then, there exist c > 0 and K > 0 (that may depend on α) such that for all m ≥ 1 it holds:

E[ g ∆,m -g ∆ 2 ] ≤ K g ∆,m -g ∆ 2 + m n + ∆ 2-1 α ,
and g ∆,m -g ∆ 2 ≤ KΓ 1 α , 2c∆m α ∆ -1 α for constants c > 0 and K > 0 (that may depend on α) and where Γ(s, x) denotes the incomplete Gamma function Γ(s, x) = ∞ x t s-1 e -t dt.

Proof. To control the integrated L 2 -risk we write the decomposition (f ∆,m denotes the projection on S m of the density

f ∆ of X ∆ ) E[ g ∆,m -g ∆ 2 ] = f ∆,m -g ∆ 2 + E[ g ∆,m -f ∆,m 2 ] = f ∆,m -g ∆ 2 + 1 2π m -m E[| φ X ∆ (u) -φ X ∆ (u)| 2 ]du.
The second variance term is easily bounded by m πn . The first term is a bias term for which we can write

f ∆,m -g ∆ 2 ≤ 2 f ∆,m -g ∆,m 2 + 2 g ∆,m -g ∆ 2 .
An upper bound for g ∆,m -g ∆ 2 has already been provided in [START_REF] Boxma | Lévy-driven polling systems and continuousstate branching processes[END_REF]. Under the assumption λ∆ ≤ 1, by means of Plancherel equality and (3), it holds:

f ∆,m -g ∆,m 2 = 1 2π [-m,m] |φ X ∆ (u)| 2 1 - 1 φ X B ∆ (u) 2 du ≤ e 4 2π [-m,m] |φ X ∆ (u)| 2 φ X B ∆ (u) -1 2 du,
where for some positive constant

C φ X B ∆ (u) -1 = exp -λ∆(φ Y 1 (u) -1) -1 = k≥1 (λ∆) k k! 1 -φ Y 1 (u) k ≤ 2∆ + C∆ 2 .
It follows that

f ∆,m -g ∆,m 2 ≤ e 4 (2∆ + C∆ 2 ) 2 2π R |φ X ∆ (u)| 2 du
Regarding the term φ X ∆ 2 2 , using [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF] in Lemma 2 we obtain

φ X ∆ 2 2 ≤ |u|≥1 e -2c∆|u| α du + |u|≤1 |φ X ∆ (u)| 2 du ≤ 2 ∞ 1 e -2c∆u α du + 2 = 2∆ -1/α α ∞ ∆ e -2cv v 1 α -1 dv + 2 ≤ K∆ -1/α ,
for some positive constant K, which may depend on α. Gathering both terms we derive that

f ∆,m -g ∆,m 2 ≤ K∆ 2-1 α . (9) 
Gathering all terms we derive

E[ g ∆,m -g ∆ 2 ] = f ∆,m -g ∆ 2 + E[ g ∆,m -f ∆,m 2 ] ≤ C g ∆,m -g ∆ 2 + m n + ∆ 2-1 α ,
for some positive constant C. Moreover, one can write using ( 6)

g ∆,m -g ∆ 2 ≤ 1 π ∞ m e -2c∆u α du = 1 π(2cα∆) 1 α Γ 1 α , 2c∆m α
which completes the proof.

As discussed in Remark 1, in order to establish the rate of convergence of g ∆,m in L 2 norm one needs to choose a threshold m which realises a bias-variance tradeoff. Under the asymptotic m∆ α → ∞, it holds that Γ( 1α , 2c∆m α )∆ -1 α ∼ ∆ -1 m 1-α e -2c∆m α . To find a tradeoff between bias and variance we look for m solution of ∆ -1 m 1-α e -2c∆m α = m/n which leads to m * = (log(2cn)) 1/α (2c) 1/α n∆ 1/α , using the properties of the function Lambert W . This choice of m * allows to derive a rate of convergence of order of max 1

n∆ 1 α , ∆ 2-1 α
which is of order of (n∆ 1/α ) -1 if α > 1/2. Furthermore notice that, for α ≤ 1/2, the consistency of g ∆,m is not ensured. Finally, we observe that it is always possible to estimate g ∆ with a rate of order in L 2 norm for any α ∈ (0, 2) by means of the estimator g ∆,m defined in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]. However, such an estimator requires the knowledge the law of X B ∆ , whereas this assumption is not needed to define g ∆,m .

Adaptation procedure

We propose an adaptive procedure to select m for the estimator g ∆,m defined in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] and that enables to attain the bound of Theorem 1. This procedure is a penalization procedure inspired by the one proposed in [START_REF] Comte | Nonparametric adaptive estimation for pure jump lévy processes[END_REF]. Note that it can be straightforwardly adapted to select m for the estimator g ∆,m defined in [START_REF] Butucea | Sharp optimality in density deconvolution with dominating bias[END_REF].

Consider the space

S m = {t ∈ L 2 (R), supp(F(t)) ⊂ [-m, m]}.
This space is generated by an orthonormal basis defined by

ψ m,j (x) = √ πmψ(mx -j), j ∈ Z ψ(x) = sin(x) πx . ( 10 
) Indeed Fψ m,j (u) = √ π e iuj/m √ m 1 [-m,m]
(u) and it holds using Plancherel

ψ m,j , ψ m,k = 1 2π Fψ m,j , Fψ m,k = 1 2m m -m e iu m (j-k) du = δ jk .
Therefore, we have the following decomposition of

g ∆,m = j∈Z a m,j ψ m,j , a m,j = g ∆,m , ψ m,j = √ π 2 √ m m -m φ Z ∆ (u)e -iuj m du.
Using either Plancherel or this series representation, we get

g ∆,m 2 = 1 2π m -m | φ Z ∆ (u)| 2 du = j∈Z | a m,j | 2 .
The adaptive procedure is build using penalization techniques, define the contrast for t ∈ S m ,

γ n (t) = t 2 -2 g ∆,m , t = t 2 - 1 π φ Z ∆ (u)Ft(-u)du
for which we easily check that g ∆,m = arg min t∈Sm γ n (t) and γ n ( g ∆,m ) = -g ∆,m 2 . Considering a collection (S m , m = 1, . . . , n) we select adaptively m satisfying m = arg min m∈{1,...,n}

(γ n ( g ∆,m ) + pen(m)) , with pen(m) = κe 4λ∆ m n . (11) 
Theorem 3. The adaptive estimator g ∆, m defined in (5) with md defined in [START_REF] Carr | The fine structure of asset returns: An empirical investigation[END_REF] for κ > 32/(3π) satisfies for a positive constant C

E[ g ∆, m -g ∆ 2 ] ≤ 3 inf m∈{1,...,n} E[ g ∆,m -g ∆ 2 ] + pen(m) + C n .
Proof of Theorem 3. By definition we get for g ∆,m the orthogonal projection of g ∆ on S m that γ n ( g ∆, m ) + pen( m) ≤ γ n ( g ∆,m ) + pen(m).

Using that

γ n (t) -γ n (s) = t -g ∆ 2 -s -g ∆ 2 -2 g ∆ , t -s - 1 π φ Z ∆ , F(t -s) = t -g ∆ 2 -s -g ∆ 2 -2ν n (t -s),
where using Plancherel

ν n (t) = 1 2π φ Z ∆ -φ Z ∆ , F(t) = 1 2πn n j=1 e iu(X j∆ -X (j-1)∆ ) φ X B ∆ (u) - E[e iuX ∆ ] φ X B ∆ (u) Ft(-u)du.
Combining these results implies that

g ∆, m -g ∆ 2 ≤ g ∆,m -g ∆ 2 + 2ν n ( g ∆, m -g ∆,m ) + pen(m) -pen( m) = g ∆,m -g ∆ 2 + 2 g ∆, m -g ∆,m ν n g ∆, m -g ∆,m g ∆, m -g ∆,m + pen(m) -pen( m) ≤ g ∆,m -g ∆ 2 + 2 g ∆, m -g ∆,m sup t∈Sm+S m , t =1 ν n (t) + pen(m) -pen( m) ≤ g ∆,m -g ∆ 2 + 1 4 g ∆, m -g ∆,m 2 + 4 sup t∈Sm+S m , t =1 ν n (t) 2 + pen(m) -pen( m) ≤ 3 2 g ∆,m -g ∆ 2 + 1 2 g ∆, m -g ∆ 2 + 4 sup t∈Sm+S m , t =1 ν n (t) 2 -p(m, m) + + 4p(m, m) + pen(m) -pen( m),
where p(m, m ) = 4 π e 4λ∆ (m ∨ m )/n is fixed by applying the Talagrand inequality to ν n (see the following Lemma 1). Note that S m + S m = S m∨m . Lemma 1. There exists a positive constant C such that

E sup t∈S m∨ m , t =1 |ν n (t)| 2 -4e 4λ∆ m ∨ m πn + ≤ C n .
Plugging this result in above inequalities implies that Taking the infimum over m complete the proof.

1 2 E[ g ∆, m -g ∆ 2 ] ≤ 3 2 E[ g ∆,m -g ∆ 2 ] + pen(m) + 4C n + E[4p(m, m) -pen( m)] - 1 
Proof of Lemma 1. We apply the Talagrand inequality Lemma 3. Note that we can write

ν n (t) = 1 n n j=1 f t (X j∆ -X (j-1)∆ ) -E[f t (X ∆ )]
where for t ∈ S m∨m ,

f t (x) = 1 2π m∨m -m∨m e iux φ X B ∆ (u)
Ft(-u)du.

For that we compute the three positive constants M, H and v introduced in Lemma 3. First note that as t = 1 we get using Cauchy-Schwarz and (3) that sup

t∈S m∨m , t =1 f t ∞ ≤ 1 φ X B ∆ ∞ 1 2π 2(m ∨ m ) m∨m -m∨m |Ft(u)| 2 du ≤ e 2λ∆ √ m ∨ m √ π =: M.
Using similar arguments we get

E sup t∈S m∨m , t =1 |ν n (t)| 2 ≤ E sup t∈S m∨m , t =1 ν n (t) 2 ≤ 1 2π m∨m -m∨m E[| φ X ∆ (u) -φ X ∆ (u)| 2 ] |φ X B ∆ (u)| 2 du ≤ e 4λ∆ πn (m ∨ m ) =: H 2
Finally for the last term, following [START_REF] Comte | Nonparametric adaptive estimation for pure jump lévy processes[END_REF] we use the basis representation of the estimator to compute v 2 . Indeed, using the basis [START_REF] Carpentier | Total variation distance for discretely observed lévy processes: A gaussian approximation of the small jumps[END_REF] it holds t = j∈Z b j ψ j,m∨m with b j = t, ψ j,m∨m such that j∈Z b 2 j = 1, and we can write

V(f t (X ∆ )) ≤ 1 4π 2 m∨m -m∨m φ X ∆ (u -v) φ X B ∆ (u)φ X B ∆ (-v) Ft(-u)Ft(v)dudv = 1 4π 2 j,k∈Z b j b k m∨m -m∨m φ X ∆ (u -v) φ X B ∆ (u)φ X B ∆ (-v) Fψ j,m∨m (-u)Fψ k,m∨m (v)dudv ≤ 1 4π 2 j,k∈Z b 2 j b 2 k j,k∈Z m∨m -m∨m φ X ∆ (u -v) φ X B ∆ (u)φ X B ∆ (-v) Fψ j,m∨m (-u)Fψ k,m∨m (v)dudv 2 = 1 4π 2 m∨m -m∨m φ X ∆ (u -v) φ X B ∆ (u)φ X B ∆ (-v) 2 dudv ≤ e 4λ∆ 4π 2 m∨m -m∨m |φ X ∆ (u -v)| 2 dudv ≤ √ πe 4λ∆ 2π 2 √ m ∨ m f X ∆ ,
where we used at the third line the Cauchy-Schwarz inequality on the index λ = (j, k) and at the penultimate equality that for a bi-variate function φ(u, v) its norm can be computed as φ 2 = j,k∈Z φ, ψ j,m∨m ⊗ ψ k,m∨m 2 . Therefore,

sup t∈S m∨m , t =1 1 n n j=1 V(f t (X j∆ -X (j-1)∆ )) ≤ √ πe 4λ∆ 2π 2 √ m ∨ m f X ∆ =: v 2 .
It follows from the Talagrand inequality (see Lemma 3, δ = 1/2) that there exist positive constants C 1 , C 2 and C 3 such that

E sup t∈S m∨m , t =1 |ν n (t)| 2 -4e 4λ∆ m ∨ m πn + ≤ C 1 √ m∨m n e -C 2 √ m∨m + m∨m n 2 e -C 3 √ n .
To complete the proof, we write

E sup t∈S m∨ m , t =1 |ν n (t)| 2 -4e 4λ∆ m ∨ m πn + ≤ n m =1 E sup t∈S m∨m , t =1 |ν n (t)| 2 -4e 4λ∆ m ∨ m πn + ≤ C 1 n n m =1 √ m ∨ m e -C 2 √ m∨m + m ∨ m n e -C 3 √ n ≤ C n ,
which completes the proof. 

for some c > 0. Furthermore, X t has a smooth density g t with all the derivates uniformly bounded :

sup x∈R |g (k) t (x)| ≤ 1 2 R |ω| k |φ t (ω)|dω ≤ Ct -k+1 α , ∀k ≥ 0, ∀t > 0, ( 13 
)
where C is a positive constant only depending on k and c appearing in [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF].

The Talagrand inequality. The result below follows from the Talagrand concentration inequality given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] and arguments in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] (see the proof of their Corollary 2 page 354). Then, for any δ > 0 the following holds

E sup f ∈F |ν n (f )| 2 -2(1 + 2δ)H 2 + ≤ 4 K 1 v 2 n exp -K 1 δ nH 2 v 2 + 49M 2 K 1 n 2 C 2 (δ) exp -K 1 C(δ) √ 2δ 7 nH M , with C(δ) = √ 1 + δ -1 and K 1 = 1/6.
By standard density arguments, this result can be extended to the case where F is a unit ball of a linear normed space, after checking that f → ν n (f ) is continuous and F contains a countable dense family.
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 1 Figure 1: Estimation of g∆ with ∆ = 0.1 from n = 5000 increments of X (red lines, average estimated m and associated standard deviation given in parenthesis) with the histogram of X∆ (green) and the histogram of X∆||X∆| ≤ 1(yellow).

Lemma 2 .

 2 Let X be a Lévy process satisfying (A M,α ). Then, denoting by φ t (u) = E[e iuXt ], it holds|φ t (u)| ≤ e -ct|u| α , ∀|u| ≥ 1, ∀t > 0,

Lemma 3 .Figure 2 :

 32 Figure 2: Estimation of g∆ with ∆ = 0.01 from n = 5000 increments of X (red lines, average estimated m and associated standard deviation given in parenthesis) with the histogram of X∆ (green) and the histogram of X∆||X∆| ≤ 1(yellow).

Numerical example

We briefly illustrate our adaptive estimator g ∆, m defined in [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF] with m defined in [START_REF] Carr | The fine structure of asset returns: An empirical investigation[END_REF]on the symmetric α-stable Lévy process whose Lévy density is given by

Note that (A M,α ) is met for (M, α) = (1, α). In that case realizations of X ∆ can be obtained

The calibration of the constant κ in the penalty is done by preliminary simulation experiments. This constant is selected as κ = 4 > 32/(3π).

In the sequel we consider cases where ∆ is small and α ≥ 1 2 as in that case (9) (making m = ∞ which is allowed) suggests that g ∆ should resemble the density of increments f ∆ . It is not possible to evaluate the associated L 2 loss easily. Indeed as has already been pointed out, even knowing the Lévy density, it is not possible to obtain an explicit formula for g ∆ . Sharper procedure to asses the performances of g ∆,m are under study.

Hereafter, we illustrate our procedure by plotting a cluster of 50 estimators in different cases, allowing us to appreciate its variability. To provide points of comparison, we also plot the histogram of the increments X ∆ , which in these regimes should be close to our curves, as well as the histogram of the increments X ∆ |{|X ∆ | ≤ 1} which can be drawn by filtering the increments X ∆ that are such |X ∆ | ≤ 1. The different estimators and the histograms are computed on the same datasets.

Results and comments

The results are displayed in Figures 1 and2. All 50 density estimates are of similar shape which confirms the stability of the procedure. We observe that the estimates are closer to each other for α = 1.8 than for α = 1.1 and α = 0.7 which can be explained as the approximation error, that is of order (n∆ 1/α ) -1 , decreases when α increases. For all the three values of α the histogram of X ∆ is close to the estimated densities far from 0, but is less precise in a neighborhood of 0. For α = 0.7, 1.1 the histogram is less accurate since

α is smaller. The histogram of X ∆ |{|X ∆ | ≤ 1} is close to the estimates for α = 0.7, 1.1 and seems to be a better fit. But it is completely off for α = 1.8 because in a high activity framework increments X ∆ are more likely to go above 1.

We also observe that the larger is α the larger is the support of g ∆ and the smaller is the estimated cutoff m in average. When ∆ gets close to 2 the estimated curve is visually similar to the density of a Gaussian random variable. Note also that when ∆ gets smaller the estimated g ∆, m ∞ increases. This is consistent with Lemma 2 which states that g ∆ ∞ ≤ C∆ -1/α . Numerically, this upper bound in O(∆ -1/α ) seems to be of the correct order up to a constant.

Appendix

Smoothness of the Lévy density. The result below directly follows from Lemma 2.3 in Picard [START_REF] Picard | Density in small time for lévy processes[END_REF].