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Nonparametric density estimation for the small jumps of Lévy

processes

Céline Duval ∗, Taher Jalal †and Ester Mariucci ‡

Abstract

We consider the problem of estimating the density of the process associated with the
small jumps of a pure jump Lévy process, possibly of infinite variation, from discrete
observations of one trajectory. The interest of such a question relies on the observation
that even when the Lévy measure is known, the density of the increments of the small
jumps of the process cannot be computed. We discuss results both from low and high
frequency observations. In a low frequency setting, assuming the Lévy density associated
the jumps larger than 1 in absolute value is known, a spectral estimator relying on the
deconvolution structure of the problem achieves minimax parametric rates of convergence
with respect to the integrated L2 loss. In a high frequency setting it is possible to remove
the assumption that the Lévy measure of the large jumps is known. In that case the rate
of convergence depends on the sampling scheme and on the behaviour of the Lévy measure
in a neighborhood of zero. An adaptive penalized procedure is also proposed to select the
cutoff parameter. The procedure is illustrated numerically for α-stable Lévy processes.

Keywords. Deconvolution; Density estimation; Lévy processes; Small jumps; Infinitely divisible

distributions.

1 Introduction

1.1 Motivations

Jump processes have been extensively studied and widely used in the mathematical modeling
of phenomena that may exhibit abrupt changes, and therefore are matters of interest in various
fields such as mathematical finance, seismology, climatology, neuroscience, and so on. Among
the most mathematically tractable examples of jump processes are Lévy processes (see e.g.
[1, 4, 6, 11, 26] for reviews and other applications). These are stochastic processes that have a
rather rigid structure (their increments are stationary and independent) but have often been
used as proxies to establish results for jump processes with a more flexible structure, e.g.,
Itô’s semi martingales.
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From a probabilistic point of view, the dynamics of the trajectories of a Lévy process X
is well understood. The law of X is uniquely determined by the so-called Lévy triplet that
contains a drift term, a diffusion coefficient and a Lévy measure (see e.g. [3, 30]). For any
pure jump Lévy process X, the distribution of its increments is the convolution between a
martingale XS describing its small jumps and a compound Poisson process XB gathering the
large jumps (large than 1) of the process. For most Lévy processes whose Lévy measure is
infinite, a closed form expression for the law of its increments is not known and the core of the
problem lies in computing the distribution of the small jumps which is never known in closed
form. We stress that even in very well known situations, for instance when X is an α-stable
Lévy process, there are already a lot of results for controlling the law of X but nothing can
be said for XS which is not and α-stable Lévy process.

This renders these processes difficult to handle and simulate (see [18, 22]), the small
jumps are therefore sometimes replaced with Gaussian distributions (see [13]), which can be
theoretically justified in some cases (see [10]). However this approximation is valid only in
specific regimes (see the lower bound result in [10]) and untrue in general.

The behaviour of the Lévy measure in a neighborhood of the origin is a key element in
understanding the jump activity. It is essentially related to the law of the so-called small jump
process of XS . So far there are no results in the literature that estimate the density of XS

from discrete observations of X contrary to XB which has been extensively studied (see e.g.
[2, 19, 20]). Using the convolution structure of the Lévy process and that XB is a compound
Poisson process with intensity and jump law depending on the Lévy measure of X in an ex-
plicit way we can derive an estimation procedure for XS . We can rely on the vast literature
for deconvolution results to conduct our study (see e.g. [7–9, 12, 17, 21, 27, 31] for the study of
the quadratic risk, other results for the multivariate anisotropic densities[16, 25, 29] also exist).

In this paper we consider pure jumps Lévy processes X with a Lévy measure absolutely
continuous with respect to the Lebesgue measure and we focus on the estimation of the density
of XS at time ∆, denoted by g∆, from n equidistant observations of X with a sampling
rate ∆. We propose several estimators based on a spectral approach to take into account
both low frequency observations (∆ > 0 fixed) and high frequency (∆ → 0). It appears
that in the low frequency regime, if the Lévy measure of XB is known, it appears that the
inverse deconvolution problem is well posed and as the density g∆ very regular (see [28]) our
estimator attains parametric rates of convergence that are optimal. In the high frequency
setting, without any knowledge on the distribution of XB another estimator can be proposed
and its rate of convergence depend on the behaviour of the Lévy density in a neighborhood of
the origin. Adaptation is achieved adapting a penalized procedure presented in [14] Theorem
4.1. Finally, a short numerical study is conducted on α-stable Lévy processes.

1.2 Setting and notations

Consider a pure jump Lévy process X characterized by its Lévy triplet (bν , 0, ν) where ν is a
Borel measure on R such that

ν({0}) = 0; ν(R) = +∞ and

∫
R

(y2 ∧ 1)ν(dy) <∞

2



and

bν :=

{∫
|x|≤1 xν(dx) if

∫
|x|≤1 |x|ν(dx) <∞,

0 if
∫
|x|≤1 |x|ν(dx) =∞.

(1)

Tanks to the Lévy-Itô decomposition (see [3]) , X can be written as

Xt = tbν +XS
t +XB

t ,

where XS is a centered martingale accounting for the jumps of X of size smaller than 1 and
is independent of XB which is a compound Poisson process independent of XS with intensity
λ = ν(R \ [−1, 1]) and jump density f = p1[−1,1]c/λ where p(x) = ν(dx)

dx .

In the following we write XB
t =

∑Nt
i=1 Yi where N is a Poisson process of intensity λ inde-

pendent of the sequence of i.i.d. (independent and identically distributed) random variables
Yi with common density f . We will denote by fB∆ the density of XB

∆ given by

fB∆ (x) =

∞∑
k=0

exp(−λ∆)
(λ∆)k

k!
f∗k(x), (2)

where f∗k is the k-th convolution of the density f and f∗0 = δ0 is the Dirac measure at point
0.

Consider the i.i.d. observations X = (Xi∆ − X(i−1)∆)ni=1 with X0 = 0. Our aim is to

estimate the density g∆ of Z∆ := XS
∆ + ∆bν from X both under the assumption ∆ > 0 fixed

and ∆ → 0, and compute the L2 integrated risk. For that we need to assume that X is a
Lévy process with with a Lévy density p = dν

dx satisfying

p(x) ≥ M

|x|1+α
, ∀|x| ≤ 1 (AM,α)

for some 0 < α ≤ 2.
The estimation strategy that we analyse is based on a spectral approach, and we use the

following notations. Given a random variable Z, φZ(u) = E[eiuZ ] denotes the characteristic
function of Z. For g ∈ L1(R), Fg(u) =

∫
eiuxg(x)dx is understood to be the Fourier transform.

Moreover, we denote by ‖ · ‖ the L2-norm of functions, ‖g‖2 :=
∫
|g(x)|2dx. Given some

function g ∈ L1(R) ∩ L2(R), we denote by gm the uniquely defined function with Fourier
transform Fgm = (Fg)1[−m,m].

2 Main results

2.1 Estimation in the low frequency regime

Let ∆ > 0 and suppose that ν is known on R \ [−1, 1] such that in the decomposition:
Xt = bνt + XS

t + XB
t = Zt + XB

t the density of XB
t is entirely known. Thanks to the

convolution structure of the law of X∆, it holds φX∆
= φZ∆

φXB
∆
. In particular, for a fixed

∆ > 0, φXB
∆

is known and never vanishes as

|φXB
∆

(u)| = | exp(−λ∆(φY1(u)− 1)| ≥ e−2λ∆ > 0, (3)
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where Y1 ∼ f . Hence, the quantity

φZ∆
(u) =

φX∆
(u)

φXB
∆

(u)

is well defined for all u ∈ R and can be estimated by

φ̂Z∆
(u) =

1

n

n∑
j=1

eiu(Xj∆−X(j−1)∆)

φXB
∆

(u)
. (4)

From (4) we derive an estimator of g∆, using a spectral cut-off as the latter quantity may not
be in L1(R):

ĝ∆,m(x) =
1

2π

∫ m

−m
φ̂Z∆

(u)e−iuxdu. (5)

The following result gives an upper bound for the integrated L2-risk of ĝ∆,m.

Theorem 1. Let X be a Lévy process whose Lévy measure ν satisfies (AM,α), for some
M > 0 and α ∈]0, 2]. Let ∆ > 0 and g∆ be the density of ∆bν +XS

∆ and ĝ∆,m the estimator
defined in (5). Then, for all m ≥ 1 it holds that

E[‖ĝ∆,m − g∆‖2] ≤ ‖g∆,m − g∆‖2 +
e4λ∆

π

m

n
,

and ‖g∆,m− g∆‖2 ≤ K∆−1/αe−c∆m
α

for constants c > 0 and K > 0 (that may depend on α).

Proof. To control the integrated L2-risk we write the decomposition

E[‖ĝ∆,m − g∆‖2] = ‖g∆,m − g∆‖2 + E[‖ĝ∆,m − g∆,m‖2]

= ‖g∆,m − g∆‖2 +
1

2π

∫ m

−m
E[|φ̂Z∆

(u)− φZ∆
(u)|2]du.

The first term is the standard bias term for which we can write using Plancherel equality,
(12), the fact that m ≥ 1 and (AM,α), that for some constant c > 0:

‖g∆,m − g∆‖2 =
1

2π

∫
[−m,m]c

|φZ∆
(u)|2du ≤ 1

π

∫ ∞
m

e−2c∆uαdu ≤ c̃e−c∆mα , (6)

where c̃ = 1
π

∫∞
0 e−c∆u

α
du = ∆−

1
α

π

∫∞
0 e−cu

α
du <∞ as α > 0.

In particular we have that

c̃ ≤ ∆−1/α

π

∫ ∞
0

e−cv

αv1− 1
α

dv =: ∆−1/αK.

Also observe that g∆ ∈ L2(R) as g∆ ∈ L1(R)∩L∞(R) by means of Lemma 2 in the Appendix.
For the variance term, using that

E[|φ̂Z∆
(u)− φZ∆

(u)|2] =
1

|φXB
∆

(u)|2
E[|φ̂X∆

(u)− φX∆
(u)|2]

=
1

|φXB
∆

(u)|2
V

 1

n

n∑
j=1

eiu(Xj∆−X(j−1)∆)

 =
1− |φX∆

(u)|2

|φXB
∆

(u)|2
1

n
,
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we easily get

E[‖ĝ∆,m − g∆,m‖2] ≤ e4λ∆

π

m

n
. (7)

Gathering (6) and (7) we derive:

E[‖ĝ∆,m − g∆‖2] ≤ e4λ∆

π

m

n
+K∆−1/αe−c∆m

α
,

which concludes the proof.

Remark 1. Making a bias variance compromise to select m we get to solve mec∆m
α

= n, for
that we use the properties of the Lambert W function and solve

m∗

n
= (c∆)−1/αe−c∆(m∗)α ⇐⇒ m∗ =

(
W (αnα)

αc∆

) 1
α

.

Using asymptotic expansion of the Lambert W function, we derive that the optimal cutoff

should be selected as follows m∗ �
(

log(αnα)
αc∆

) 1
α �

(
log(n)

∆

) 1
α

. In that case, the rate implied by

Theorem 1 is

E[‖ĝ∆,m − g∆‖2] .
(log n)

1
α

n∆
1
α

,

an almost (up to a log-loss) parametric rate (recall that ∆ > 0 is fixed), which is consistant
with the fact that: i) we are in a well posed deconvolution problem (see (3)), ii) under the
assumptions of Lemma 2, the Lévy density is C∞, morally g∆ has a regularity ∞.

The problem of finding a data driven way to select m is studied in Section 2.3. The
optimal cutoff m∗ depends on the unknown quantity α appearing in Assumption (AM,α).
Interestingly the adaptation problem of selecting m consists in estimating a possible α for
condition (AM,α). This is simpler than estimating the true Blumenthal-Getoor index of X,
all we need is a minorant of it.

2.2 Estimation in a high frequency regime

In this Section we consider the case where ∆→ 0. Then, it remains possible to estimate the
density of Z∆ using the estimator g∆,m as defined in (5) and with similar arguments as those

illustrated in the previous paragraph, one can show that it is consistent as soon as n∆
1
α →∞

and that its L2 rate of convergence is n−1∆−
1
α .

However, in the high frequency setting, it is possible to omit the assumption that φXB
∆

is
known since in this asymptotic φXB

∆
is close to 1. We therefore propose to consider a second

estimator of g∆, defined as follows

g̃∆,m(x) =
1

2π

∫ m

−m
φ̂X∆

(u)e−iuxdu, (8)

whose L2 risk is controlled in the following result. Note that if ∆ is fixed (5) is an estimator
of the density of X∆ (see Section 4 of [23]).
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Theorem 2. Let X be a Lévy process whose Lévy measure ν satisfies (AM,α), for some
M > 0 and α ∈]0, 2]. Let ∆ ∈ (0, 1) be such that λ∆ ≤ 1, where λ = ν(R \ [−1, 1]). Then,
there exist c > 0 and K > 0 (that may depend on α) such that for all m ≥ 1 it holds:

E[‖g̃∆,m − g∆‖2] ≤ K
(
‖g∆,m − g∆‖2 +

m

n
+ ∆2− 1

α

)
,

and ‖g∆,m − g∆‖2 ≤ KΓ
(

1
α , 2c∆m

α
)

∆−
1
α for constants c > 0 and K > 0 (that may depend

on α) and where Γ(s, x) denotes the incomplete Gamma function Γ(s, x) =
∫∞
x ts−1e−tdt.

Proof. To control the integrated L2-risk we write the decomposition (f∆,m denotes the pro-
jection on Sm of the density f∆ of X∆)

E[‖g̃∆,m − g∆‖2] = ‖f∆,m − g∆‖2 + E[‖ĝ∆,m − f∆,m‖2]

= ‖f∆,m − g∆‖2 +
1

2π

∫ m

−m
E[|φ̂X∆

(u)− φX∆
(u)|2]du.

The second variance term is easily bounded by m
πn . The first term is a bias term for which we

can write

‖f∆,m − g∆‖2 ≤ 2‖f∆,m − g∆,m‖2 + 2‖g∆,m − g∆‖2.

An upper bound for ‖g∆,m − g∆‖2 has already been provided in (6). Under the assumption
λ∆ ≤ 1, by means of Plancherel equality and (3), it holds:

‖f∆,m − g∆,m‖2 =
1

2π

∫
[−m,m]

|φX∆
(u)|2

∣∣∣∣∣1− 1

φXB
∆

(u)

∣∣∣∣∣
2

du

≤ e4

2π

∫
[−m,m]

|φX∆
(u)|2

∣∣∣φXB
∆

(u)− 1
∣∣∣2 du,

where for some positive constant C

φXB
∆

(u)− 1 = exp
(
− λ∆(φY1(u)− 1)

)
− 1 =

∑
k≥1

(λ∆)k

k!

(
1− φY1(u)

)k ≤ 2∆ + C∆2.

It follows that

‖f∆,m − g∆,m‖2 ≤
e4(2∆ + C∆2)2

2π

∫
R
|φX∆

(u)|2du

Regarding the term ‖φX∆
‖22, using (12) in Lemma 2 we obtain

‖φX∆
‖22 ≤

∫
|u|≥1

e−2c∆|u|αdu+

∫
|u|≤1

|φX∆
(u)|2du ≤ 2

∫ ∞
1

e−2c∆uαdu+ 2

=
2∆−1/α

α

∫ ∞
∆

e−2cvv
1
α
−1dv + 2 ≤ K∆−1/α,
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for some positive constant K, which may depend on α. Gathering both terms we derive that

‖f∆,m − g∆,m‖2 ≤ K∆2− 1
α . (9)

Gathering all terms we derive

E[‖g̃∆,m − g∆‖2] = ‖f∆,m − g∆‖2 + E[‖ĝ∆,m − f∆,m‖2]

≤ C
(
‖g∆,m − g∆‖2 +

m

n
+ ∆2− 1

α

)
,

for some positive constant C. Moreover, one can write using (6)

‖g∆,m − g∆‖2 ≤
1

π

∫ ∞
m

e−2c∆uαdu =
1

π(2cα∆)
1
α

Γ

(
1

α
, 2c∆mα

)
which completes the proof.

As discussed in Remark 1, in order to establish the rate of convergence of g̃∆,m in L2

norm one needs to choose a threshold m which realises a bias-variance tradeoff. Under the
asymptotic m∆α →∞, it holds that Γ( 1

α , 2c∆m
α)∆−

1
α ∼ ∆−1m1−αe−2c∆mα . To find a trade-

off between bias and variance we look for m solution of ∆−1m1−αe−2c∆mα = m/n which leads

to m∗ = (log(2cn))1/α

(2c)1/αn∆1/α , using the properties of the function Lambert W . This choice of m∗

allows to derive a rate of convergence of order of

max

{
1

n∆
1
α

,∆2− 1
α

}
which is of order of (n∆1/α)−1 if α > 1/2. Furthermore notice that, for α ≤ 1/2, the
consistency of g̃∆,m is not ensured. Finally, we observe that it is always possible to estimate
g∆ with a rate of order in L2 norm for any α ∈ (0, 2) by means of the estimator ĝ∆,m defined
in (5). However, such an estimator requires the knowledge the law of XB

∆ , whereas this
assumption is not needed to define g̃∆,m.

2.3 Adaptation procedure

We propose an adaptive procedure to select m for the estimator ĝ∆,m defined in (5) and that
enables to attain the bound of Theorem 1. This procedure is a penalization procedure inspired
by the one proposed in [14]. Note that it can be straightforwardly adapted to select m for
the estimator g̃∆,m defined in (8).

Consider the space Sm = {t ∈ L2(R), supp(F(t)) ⊂ [−m,m]}. This space is generated by
an orthonormal basis defined by

ψm,j(x) =
√
πmψ(mx− j), j ∈ Z ψ(x) =

sin(x)

πx
. (10)

Indeed Fψm,j(u) =
√
π e

iuj/m
√
m

1[−m,m](u) and it holds using Plancherel

〈ψm,j , ψm,k〉 =
1

2π
〈Fψm,j ,Fψm,k〉 =

1

2m

∫ m

−m
e
iu
m

(j−k)du = δjk.
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Therefore, we have the following decomposition of

ĝ∆,m =
∑
j∈Z

âm,jψm,j , âm,j = 〈ĝ∆,m, ψm,j〉 =

√
π

2
√
m

∫ m

−m
φ̂Z∆

(u)e−
iuj
m du.

Using either Plancherel or this series representation, we get

‖ĝ∆,m‖2 =
1

2π

∫ m

−m
|φ̂Z∆

(u)|2du =
∑
j∈Z
|âm,j |2.

The adaptive procedure is build using penalization techniques, define the contrast for
t ∈ Sm,

γn(t) = ‖t‖2 − 2〈ĝ∆,m, t〉 = ‖t‖2 − 1

π

∫
φ̂Z∆

(u)Ft(−u)du

for which we easily check that ĝ∆,m = arg mint∈Sm γn(t) and γn(ĝ∆,m) = −‖ĝ∆,m‖2. Consid-
ering a collection (Sm,m = 1, . . . , n) we select adaptively m satisfying

m̂ = arg min
m∈{1,...,n}

(γn(ĝ∆,m) + pen(m)) , with pen(m) = κe4λ∆m

n
. (11)

Theorem 3. The adaptive estimator ĝ∆,m̂ defined in (5) with m̂d defined in (11) for κ >
32/(3π) satisfies for a positive constant C

E[‖ĝ∆,m̂ − g∆‖2] ≤ 3 inf
m∈{1,...,n}

(
E[‖ĝ∆,m − g∆‖2] + pen(m)

)
+
C

n
.

Proof of Theorem 3. By definition we get for g∆,m the orthogonal projection of g∆ on Sm
that

γn(ĝ∆,m̂) + pen(m̂) ≤ γn(ĝ∆,m) + pen(m).

Using that

γn(t)− γn(s) = ‖t− g∆‖2 − ‖s− g∆‖2 − 2〈g∆, t− s〉 −
1

π
〈φ̂Z∆

,F(t− s)〉

= ‖t− g∆‖2 − ‖s− g∆‖2 − 2νn(t− s),

where using Plancherel

νn(t) =
1

2π
〈φ̂Z∆

− φZ∆
,F(t)〉 =

1

2πn

n∑
j=1

∫ (
eiu(Xj∆−X(j−1)∆)

φXB
∆

(u)
− E[eiuX∆ ]

φXB
∆

(u)

)
Ft(−u)du.
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Combining these results implies that

‖ĝ∆,m̂ − g∆‖2 ≤ ‖ĝ∆,m − g∆‖2 + 2νn(ĝ∆,m̂ − ĝ∆,m) + pen(m)− pen(m̂)

= ‖ĝ∆,m − g∆‖2 + 2‖ĝ∆,m̂ − ĝ∆,m‖νn
(

ĝ∆,m̂ − ĝ∆,m

‖ĝ∆,m̂ − ĝ∆,m‖

)
+ pen(m)− pen(m̂)

≤ ‖ĝ∆,m − g∆‖2 + 2‖ĝ∆,m̂ − ĝ∆,m‖ sup
t∈Sm+Sm̂,‖t‖=1

νn(t) + pen(m)− pen(m̂)

≤ ‖ĝ∆,m − g∆‖2 +
1

4
‖ĝ∆,m̂ − ĝ∆,m‖2 + 4 sup

t∈Sm+Sm̂,‖t‖=1
νn(t)2 + pen(m)− pen(m̂)

≤ 3

2
‖ĝ∆,m − g∆‖2 +

1

2
‖ĝ∆,m̂ − g∆‖2 + 4

(
sup

t∈Sm+Sm̂,‖t‖=1
νn(t)2 − p(m, m̂)

)
+

+ 4p(m, m̂) + pen(m)− pen(m̂),

where p(m,m′) = 4
πe

4λ∆(m ∨m′)/n is fixed by applying the Talagrand inequality to νn (see
the following Lemma 1). Note that Sm + Sm′ = Sm∨m′ .

Lemma 1. There exists a positive constant C such that

E

(
sup

t∈Sm∨m̂, ‖t‖=1
|νn(t)|2 − 4e4λ∆m ∨ m̂

πn

)
+

≤ C

n
.

Plugging this result in above inequalities implies that

1

2
E[‖ĝ∆,m̂ − g∆‖2] ≤ 3

2

(
E[‖ĝ∆,m − g∆‖2] + pen(m)

)
+

4C

n
+ E[4p(m, m̂)− pen(m̂)]− 1

2
pen(m),

using that for κ > 32/(3π)

4p(m, m̂)− pen(m̂)− 1

2
pen(m) =

e4λ∆

n

(
16

π
(m ∨ m̂)− κ

(
1

2
m+ m̂

))
≤ 0.

Taking the infimum over m complete the proof.

Proof of Lemma 1. We apply the Talagrand inequality Lemma 3. Note that we can write

νn(t) =
1

n

n∑
j=1

(
ft(Xj∆ −X(j−1)∆)− E[ft(X∆)]

)
where for t ∈ Sm∨m′ ,

ft(x) =
1

2π

∫ m∨m′

−m∨m′

eiux

φXB
∆

(u)
Ft(−u)du.

For that we compute the three positive constants M, H and v introduced in Lemma 3. First
note that as ‖t‖ = 1 we get using Cauchy-Schwarz and (3) that

sup
t∈Sm∨m′ ,‖t‖=1

‖ft‖∞ ≤

∥∥∥∥∥ 1

φXB
∆

∥∥∥∥∥
∞

1

2π

√
2(m ∨m′)

√∫ m∨m′

−m∨m′
|Ft(u)|2du ≤ e2λ∆

√
m ∨m′√
π

=: M.
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Using similar arguments we get

E

(
sup

t∈Sm∨m′ ,‖t‖=1
|νn(t)|

)2

≤ E

[
sup

t∈Sm∨m′ ,‖t‖=1
νn(t)2

]
≤ 1

2π

∫ m∨m′

−m∨m′

E[|φ̂X∆
(u)− φX∆

(u)|2]

|φXB
∆

(u)|2
du

≤ e4λ∆

πn
(m ∨m′) =: H2

Finally for the last term, following [15] we use the basis representation of the estimator to
compute v2. Indeed, using the basis (10) it holds t =

∑
j∈Z bjψj,m∨m′ with bj = 〈t, ψj,m∨m′〉

such that
∑

j∈Z b
2
j = 1, and we can write

V(ft(X∆)) ≤ 1

4π2

∫∫ m∨m′

−m∨m′

φX∆
(u− v)

φXB
∆

(u)φXB
∆

(−v)
Ft(−u)Ft(v)dudv

=
1

4π2

∑
j,k∈Z

bjbk

∫∫ m∨m′

−m∨m′

φX∆
(u− v)

φXB
∆

(u)φXB
∆

(−v)
Fψj,m∨m′(−u)Fψk,m∨m′(v)dudv

≤ 1

4π2

√√√√∑
j,k∈Z

b2jb
2
k

∑
j,k∈Z

∣∣∣∣∣
∫∫ m∨m′

−m∨m′

φX∆
(u− v)

φXB
∆

(u)φXB
∆

(−v)
Fψj,m∨m′(−u)Fψk,m∨m′(v)dudv

∣∣∣∣∣
2

=
1

4π2

√√√√∫∫ m∨m′

−m∨m′

∣∣∣∣∣ φX∆
(u− v)

φXB
∆

(u)φXB
∆

(−v)

∣∣∣∣∣
2

dudv

≤ e4λ∆

4π2

√∫∫ m∨m′

−m∨m′
|φX∆

(u− v)|2 dudv ≤
√
πe4λ∆

2π2

√
m ∨m′‖fX∆

‖,

where we used at the third line the Cauchy-Schwarz inequality on the index λ = (j, k) and at
the penultimate equality that for a bi-variate function φ(u, v) its norm can be computed as
‖φ‖2 =

∑
j,k∈Z〈φ, ψj,m∨m′ ⊗ ψk,m∨m′〉2. Therefore,

sup
t∈Sm∨m′ ,‖t‖=1

1

n

n∑
j=1

V(ft(Xj∆ −X(j−1)∆)) ≤
√
πe4λ∆

2π2

√
m ∨m′‖fX∆

‖ =: v2.

It follows from the Talagrand inequality (see Lemma 3, δ = 1/2) that there exist positive
constants C1, C2 and C3 such that

E

(
sup

t∈Sm∨m′ , ‖t‖=1
|νn(t)|2 − 4e4λ∆m ∨m′

πn

)
+

≤ C1

(√
m∨m′
n e−C2

√
m∨m′ + m∨m′

n2 e−C3
√
n
)
.

To complete the proof, we write

E

(
sup

t∈Sm∨m̂, ‖t‖=1
|νn(t)|2 − 4e4λ∆m ∨ m̂

πn

)
+

≤
n∑

m′=1

E

(
sup

t∈Sm∨m′ , ‖t‖=1
|νn(t)|2 − 4e4λ∆m ∨m′

πn

)
+

≤ C1

n

n∑
m′=1

(√
m ∨m′e−C2

√
m∨m′ +

m ∨m′

n
e−C3

√
n

)
≤ C

n
,

which completes the proof.
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3 Numerical example

We briefly illustrate our adaptive estimator ĝ∆,m̂ defined in (5) with m̂ defined in (11)on the
symmetric α−stable Lévy process whose Lévy density is given by

ν(dx)

dx
=

1

|x|1+α
1x 6=0.

Note that (AM,α) is met for (M,α) = (1, α). In that case realizations of X∆ can be obtained

using that X1 ∼ Sα
((

2Γ(1− α) cos
(
πα
2

)) 1
α , 0, 0

)
and that X∆

d
= ∆1/αX1. The calibration of

the constant κ in the penalty is done by preliminary simulation experiments. This constant
is selected as κ = 4 > 32/(3π).

In the sequel we consider cases where ∆ is small and α ≥ 1
2 as in that case (9) (making

m = ∞ which is allowed) suggests that g∆ should resemble the density of increments f∆. It
is not possible to evaluate the associated L2 loss easily. Indeed as has already been pointed
out, even knowing the Lévy density, it is not possible to obtain an explicit formula for g∆.
Sharper procedure to asses the performances of ĝ∆,m are under study.

Hereafter, we illustrate our procedure by plotting a cluster of 50 estimators in different
cases, allowing us to appreciate its variability. To provide points of comparison, we also plot
the histogram of the increments X∆, which in these regimes should be close to our curves,
as well as the histogram of the increments X∆|{|X∆| ≤ 1} which can be drawn by filtering
the increments X∆ that are such |X∆| ≤ 1. The different estimators and the histograms are
computed on the same datasets.

Results and comments The results are displayed in Figures 1 and 2. All 50 density
estimates are of similar shape which confirms the stability of the procedure. We observe that
the estimates are closer to each other for α = 1.8 than for α = 1.1 and α = 0.7 which can be
explained as the approximation error, that is of order (n∆1/α)−1, decreases when α increases.
For all the three values of α the histogram of X∆ is close to the estimated densities far from 0,
but is less precise in a neighborhood of 0. For α = 0.7, 1.1 the histogram is less accurate since

P(N∆ = 0) = e−
2∆
α is smaller. The histogram of X∆|{|X∆| ≤ 1} is close to the estimates for

α = 0.7, 1.1 and seems to be a better fit. But it is completely off for α = 1.8 because in a
high activity framework increments X∆ are more likely to go above 1.

We also observe that the larger is α the larger is the support of g∆ and the smaller is the
estimated cutoff m̂ in average. When ∆ gets close to 2 the estimated curve is visually similar to
the density of a Gaussian random variable. Note also that when ∆ gets smaller the estimated
‖ĝ∆,m̂‖∞ increases. This is consistent with Lemma 2 which states that ‖g∆‖∞ ≤ C∆−1/α.
Numerically, this upper bound in O(∆−1/α) seems to be of the correct order up to a constant.

4 Appendix

Smoothness of the Lévy density. The result below directly follows from Lemma 2.3 in
Picard [28].
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α = 0.7, m̂ = 33.62 (6.33) α = 1.1, m̂ = 7.12 (0.92)

α = 1.8, m̂ = 1.75 (0.07)

Figure 1: Estimation of g∆ with ∆ = 0.1 from n = 5000 increments of X (red lines, average estimated m̂
and associated standard deviation given in parenthesis) with the histogram of X∆ (green) and the histogram
of X∆||X∆| ≤ 1(yellow).

Lemma 2. Let X be a Lévy process satisfying (AM,α). Then, denoting by φt(u) = E[eiuXt ],
it holds

|φt(u)| ≤ e−ct|u|α , ∀|u| ≥ 1, ∀t > 0, (12)

for some c > 0. Furthermore, Xt has a smooth density gt with all the derivates uniformly
bounded :

sup
x∈R
|g(k)
t (x)| ≤ 1

2

∫
R
|ω|k|φt(ω)|dω ≤ Ct−

k+1
α , ∀k ≥ 0, ∀t > 0, (13)

where C is a positive constant only depending on k and c appearing in (12).

The Talagrand inequality. The result below follows from the Talagrand concentration
inequality given in [24] and arguments in [5] (see the proof of their Corollary 2 page 354).

Lemma 3. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables and let F
be a countable class of uniformly bounded measurable functions. Consider νn, the centered
empirical process defined by

νn(f) =
1

n

n∑
i=1

[f(Yi)− E(f(Yi))]

12



α = 0.7, m̂ = 823.46 (74.30) α = 1.1, m̂ = 63.40 (6.92)

α = 1.8, m̂ = 6.38 (0.47)

Figure 2: Estimation of g∆ with ∆ = 0.01 from n = 5000 increments of X (red lines, average estimated m̂
and associated standard deviation given in parenthesis) with the histogram of X∆ (green) and the histogram
of X∆||X∆| ≤ 1(yellow).

for f ∈ F . Assume there exists three positive constants M, H and v such that

sup
f∈F
‖f‖∞ ≤M, E

[
sup
f∈F
|νn(f)|

]
≤ H, sup

f∈F

1

n

n∑
k=1

Var(f(Yk)) ≤ v2.

Then, for any δ > 0 the following holds

E
[

sup
f∈F
|νn(f)|2 − 2(1 + 2δ)H2

]
+
≤ 4

K1

(
v2

n exp
(
−K1δ

nH2

v2

)
+ 49M2

K1n2C2(δ)
exp

(
−K1C(δ)

√
2δ

7
nH
M

))
,

with C(δ) =
√

1 + δ − 1 and K1 = 1/6.

By standard density arguments, this result can be extended to the case where F is a unit
ball of a linear normed space, after checking that f 7→ νn(f) is continuous and F contains a
countable dense family.
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