
HAL Id: hal-04140345
https://hal.science/hal-04140345v1

Submitted on 25 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Automatic differentiation and iterative processes
Jean Charles Gilbert

To cite this version:
Jean Charles Gilbert. Automatic differentiation and iterative processes. Optimization Methods and
Software, 1992, 1 (1), pp.13-21. �10.1080/10556789208805503�. �hal-04140345�

https://hal.science/hal-04140345v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


AUTOMATIC DIFFERENTIATION AND ITERATIVE PROCESSES∗

Jean Charles Gilbert†

April 1991 (Revised in January 1992)

We identify a class of iterative processes that can be used in the definition of a function
while preserving the good behavior of automatic differentiation codes on this function.
By iterative process, we mean a process where the number of iterations is determined
by a stopping criterion, which can depend on the independent variables. By good
behavior, we mean that the derivatives will be calculated correctly, asymptotically.
The class contains the Newton method.

Key words: automatic differentiation, iterative process, Newton’s method.

1 Introduction

Automatic differentiation is a technique used for generating computer programs that com-
pute the value of the derivatives of a function

f : Rn → R
m : x 7→ f(x),

given by an original computer program. See [8, 4, 3] for an introduction to the subject
and [6] for discussions of more recent developments and applications. The variables forming
the vector x are called independent. All the other variables used in the program evaluating
f(x) are called intermediate.

The programs generated by automatic differentiation calculate the value of the deriva-
tives correctly in a wide variety of situations. However, the value may be false when the
original program uses an iterative process to define the function f . Therefore, researchers
have focused attention on finding a means to determine whether a given iterative process
can be treated correctly [7, 2, 3].

In the automatic differentiation framework, we call an iterative process a part of a
computer program whose instructions are executed several times until a stopping criterion
is reached. This stopping criterion can depend on some independent or intermediate
variables. As a result, the number k of iterations realized in a particular run of the program
is not known beforehand, but depends on the value x given to the independent variables:
k = k(x). A typical example of such a situation occurs when an iterative method, such as
Newton’s method, is used to calculate an implicit function, say, the solution of a nonlinear
equation.

Let us assume that the program contains a single iterative process. We denote by
fk : Rn → R

m the function realized by the program when k iterations are executed. We

∗This work was supported in part by the Centre National d’Etudes Spaciales (CNES), 3 avenue Édouard
Belin, 31055 Toulouse (France).

†INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex (France).

1



shall restrict our attention to the case when the iterative process aims at making fk close
to a certain function f : Rn → R

m. If the algorithm is well conceived, we can expect that
the sequence of functions {fk}k≥0 will locally converge pointwise to f , meaning that

∀x ∈ Ω, fk(x) → f(x), when k → ∞, (1)

where Ω is some open set in R
n. It is important to note here that if automatic differentia-

tion is used with such a program and if, for a particular x, k iterations are executed by the
original program, the derivative computed at x by the generated program will be f ′k(x)
and not ξ′(x), the derivative of the function ξ(x) := fk(x)(x). It is indeed the function
representing all the operations executed in a computation that is differentiated. Note also
that this function ξ will probably be discontinuous.

Now, we can wonder to what extent the fact that fk(x) is close to f(x) (a situation
detected by the stopping criterion) implies that f ′k(x) will be close to f ′(x). Since this
question is difficult to answer, we instead ask whether we can expect that some convergence
of fk to f implies, for instance, the local pointwise convergence of f ′k to f ′:

∀x ∈ Ω, f ′k(x) → f ′(x), when k → ∞. (2)

This is a theoretical question since it concerns asymptotic behavior, which has little to
do with practical situations; but it has the major advantage of being mathematically
tractable. Moreover, an asymptotic analysis may give some insight into what can happen
in practical finite situations. Our aim, therefore, is to identify some of the processes for
which property (1) implies property (2).

One can argue that this is not the right approach because, in optimization for instance,
what is really needed is the gradient (m = 1) of the computed function ξ. In this regard, we
can say that the function ξ is usually not continuous, and therefore its analysis is difficult.
On the other hand, this analysis would require more information on the iterative process,
in particular on the stopping criterion (obviously, if this criterion is always satisfied, we
would have ξ = f0), which we do not require in our simple study. Finally, the user may
really wish to compute f ′(x), not ξ′(x) (when this derivative exists).

Generally speaking, there is no reason for property (1) to imply property (2). Worse,
even if f ′k converges pointwise, it can be to a function different from f ′. In fact, it is well
known that this situation would be avoided if f ′k would converge locally uniformly; see,
for example, Schwartz [10, Chapter IV, Theorem 111]. As an illustration, let us consider
the following example [2] where n = m = 1:

fk(x) = xe−kx2

. (3)

The sequence of functions {fk} converges uniformly to the function f ≡ 0, f ′k(x) → 0 if
x 6= 0, but f ′k(0) = 1 for any k. As a result, the pointwise limit of f ′k differs from the
function f ′ ≡ 0. Note that when the components of the functions fk are smooth and
convex, (1) implies (2); see Rockafellar [9, Theorem 24.5].

In Section 2, however, Proposition 1 shows that, for a wide class of convergent iterative
processes, the derivative computed by automatic differentiation will be asymptotically
correct, that is, close to the derivative of f .

2



2 A Class of Safe Iterative Processes

To make Proposition 1 useful for practical situations, we need to particularize the problem
and to focus our attention on that part of the code where the iterative process occurs.

Let us separate the variables existing just before beginning the iterative process in a
triplet (y0, a0, u), where the vector u gathers the variables that will not be modified during
the iterations, while the vectors y0 and a0 gather the variables that will be modified at
each iteration to become yk and ak after iteration k. We assume that the independent
variables x are not updated, so that they are part of the variables u. We distinguish
between auxiliary variables (ak) that can be dismissed in the definition of the function fk
and those (yk) that are necessary or that we wish to use in this definition. In other words,
it must be possible to define fk(x) as a function of yk and u, avoiding the dependence
in ak:

fk(x) = ψ(yk, u). (4)

The dependence of fk on x derives from that of yk and u. We shall see later the advantage
of expressing fk independently of some auxiliary variables ak with regard to the analysis
of the convergence of f ′k(x) to f

′(x). But this structure in the variables need not be known
by the automatic differentiator, whose role is always to “differentiate blindly.”

Next, we also suppose that the update of the variables yk ∈ R
q during iteration k + 1

can be described by a smooth operator Φ defined on an open set of Rq × R
p with value

in R
q:

yk+1 = Φ(yk, u), k ≥ 0. (5)

Note that, in the program, the initial iterate y0 may be considered as a function of u. By
induction, rule (5) makes yk a function of u alone; thus, (5) can be rewritten as follows:

yk+1(u) = Φ(yk(u), u), k ≥ 0. (6)

We assume that the iterative process converges, that is, that the sequence {yk(u)}k≥0

in R
q converges to a vector y∗ = y∗(u) (u is fixed). Then, y∗(u) is necessarily a fixed point

of Φ(·, u), as we have from (6)

y∗(u) = Φ(y∗(u), u). (7)

Therefore, the map u 7→ y∗(u) appears as an implicit function of the equation y = Φ(y, u).
According to (4), we have for fixed x and for K tending to infinity

fk(x) → f(x) := ψ(y∗(u), u). (8)

The question is whether f ′k(x) converges to f ′(x). If we denote by ψ′
y and ψ′

u the partial
derivatives of ψ, we have from (4) and (8)

f ′k(x) = ψ′
y(yk(u), u) · y

′
k(u) · u

′(x) + ψ′
u(yk(u), u) · u

′(x), (9)

f ′(x) = ψ′
y(y∗(u), u) · y

′
∗(u) · u

′(x) + ψ′
u(y∗(u), u) · u

′(x). (10)

With our assumptions, we see that the convergence of the derivatives f ′k(x) → f ′(x) will
follow from the convergence of y′k(u) → y′∗(u). Proposition 1 gives conditions on Φ that

3



guarantee this convergence. A similar result has been given by H. Fischer [1], where the
iterative process is used for solving a linear system. Below, L(E,F ) denotes the space of
linear operators between the linear spaces E and F .

Proposition 1. Suppose that the application Φ defined on the product of open sets ωy ×
ωu ⊂ R

q × R
p with value in R

q is continuously differentiable and that its derivative map
Φ′ : ωy × ωu → L(Rq × R

p,Rq) is Lipschitz continuous. Suppose also that the initial
iterate y0 is a differentiable function of u on ωu and that, for fixed u ∈ ωu, the sequence
{yk(u)}k≥0 defined by (6) is in ωy and converges to a point y∗ = y∗(u) ∈ ωy. If the spectral
radius ρ of the restriction Φ′

y(y∗, u) of Φ
′(y∗, u) to R

q (partial derivative with respect to y)
satisfies

ρ
(

Φ′
y(y∗, u)

)

< τ < 1, (11)

then
(i) the convergence of the sequence {yk}k≥0 is asymptotically linear; that is, there exist a

vector norm ‖ · ‖ and an index k0 such that ‖yk+1 − y∗‖ ≤ τ‖yk − y∗‖, for all indices
k ≥ k0; and

(ii) the sequence of derivatives {y′k(u)} converges to y′∗(u).

Proof. We first show that the convergence of yk is asymptotically linear. According to
the Taylor formula, we have

yk+1 − y∗ = Φ(yk, u)− Φ(y∗, u) =

∫ 1

0
Φ′
y(y∗ + t(yk − y∗), u) · (yk − y∗) dt.

From (11), there exists a matrix norm subordinated to a vector norm, both denoted by ‖·‖,
such that ‖Φ′

y(y∗, u)‖ < τ < 1. Then, as soon as yk is sufficiently close to y∗, say for k ≥ k0,
we have

‖Φ′
y(y∗ + t(yk − y∗), u)‖ ≤ τ, for t ∈ [0, 1], (12)

and therefore
‖yk+1 − y∗‖ ≤ τ ‖yk − y∗‖, for k ≥ k0.

This shows (i).
Before proving (ii), we remark that the application u 7→ yk(u) is differentiable because,

by (6), it is the composition of k differentiable applications with the differentiable appli-
cation u 7→ y0(u). The application u 7→ y∗(u) is also differentiable because it is an implicit
function of the equation F (y, u) ≡ y−Φ(y, u) = 0 and because the conditions to apply the
implicit function theorem are satisfied. To check this, first observe that the conditions of
smoothness are fulfilled. Next, note that F ′

y(y∗, u) = I −Φ′
y(y∗, u) is nonsingular, because

if η ∈ R
q is such that F ′

y(y∗, u) · η = 0, then η = Φ′
y(y∗, u) · η and, using (12), we have

‖η‖ ≤ τ‖η‖, which implies η = 0 (because τ < 1).
Now, we can differentiate (6) and (7) with respect to u in a direction v ∈ R

p. Writing
δk = y′k(u) · v and δ∗ = y′∗(u) · v, we have

δk+1 = Φ′
y(yk, u) · δk +Φ′

u(yk, u) · v,

δ∗ = Φ′
y(y∗, u) · δ∗ +Φ′

u(y∗, u) · v.

4



Subtracting each side of these identities, we get:

δk+1 − δ∗ = Φ′
y(yk, u) · [δk − δ∗] + [Φ′

y(yk, u)− Φ′
y(y∗, u)] · δ∗ + [Φ′

u(yk, u)− Φ′
u(y∗, u)] · v.

From the Lipschitz continuity of Φ′ and to (12), we obtain for sufficiently large k (say, for
k ≥ k1 ≥ k0) and a positive constant C

‖δk+1 − δ∗‖ ≤ τ‖δk − δ∗‖+ C‖yk − y∗‖. (13)

By induction and by using (i), one finds for k ≥ k1

‖δk+1 − δ∗‖ ≤ τk−k1+1‖δk1 − δ∗‖+ C





k
∑

i=k1

τk−i‖yi − y∗‖





≤ τk−k1+1‖δk1 − δ∗‖+ C (k − k1 + 1)τk−k1‖yk1 − y∗‖.

Since τ < 1, we have that τk−k1+1 → 0 and that (k − k1 + 1)τk−k1 → 0, when k goes to
infinity. These results prove that δk = y′k(u) · v converges to δ∗ = y′∗(u) · v. Since this
conclusion is true for all v ∈ R

p, we deduce (in finite dimension) that y′k(u) → y′∗(u) in
L(Rp,Rq). �

Note that we cannot get rid of a hypothesis like (11). Indeed, the iterations (3) give a
counterexample for this hypothesis, because these can be written fk+1 = Φ(fk, x), with

Φ(f, x) = fe−x2

, f0(x) = x,

and Φ′
f (f, 0) = e−x2

∣

∣

∣

x=0
= 1 does not satisfy (11).

This result is essentially qualitative and describes only an asymptotic behavior. In
particular, even in the conditions of Proposition 1, if for a given x1 ∈ R

n the process stops
at iteration k1 because the stopping criterion is able to assert that fk1(x1) is close to f(x1),
there is no reason for f ′k1(x1) (with index k1) to be close to f ′(x1). The closeness of the
derivatives may be obtained only for an index k2 much larger than k1.

3 Application to Newton’s Method

As an application of the preceding result, let us consider the case when Newton’s iterations
are used to calculate an implicit function, say, the solution y : u ∈ R

p 7→ y(u) ∈ R
q of

F (y, u) = 0.

Suppose that the application F : ωy × ωu → R
q is sufficiently smooth and that the initial

iterate y0 is obtained as a smooth function of u. With Newton’s method, the iterates are
calculated by the following formula:

yk+1 = yk − F ′
y(yk, u)

−1F (yk, u), for k ≥ 0. (14)

5



It is well known that when the point y0(u), u ∈ ωu, is sufficiently close to a point y∗ = y∗(u)
verifying F (y∗, u) = 0 with F ′

y(y∗, u) nonsingular, the sequence {yk(u)}k≥0 is well defined
and converges to y∗. Here, the function Φ used in the proposition can be written

Φ(y, u) = y − F ′
y(y, u)

−1F (y, u).

The condition (11) is satisfied because, using F (y∗, u) = 0, we have

Φ′
y(y∗, u) = I + F ′

y(y∗, u)
−1F ′′

yy(y∗, u)F
′
y(y∗, u)

−1F (y∗, u)− F ′
y(y∗, u)

−1F ′
y(y∗, u) = 0.

Consequently, the sequence {y′k(u)}k≥0 will converge to y′∗(u).
This example enables us to distinguish between updated variables yk on which fk de-

pends and those ak that can be dismissed in the description of fk. An implementation of
Newton’s method (14) uses, indeed, many other variables ak in addition to the variables yk
updated by (14). If we had made no distinction between these variables, we would have
had difficulty applying the proposition to the present case. On the one hand, it is often
difficult, and in any case tedious, to give an updated rule Φ̃ for some auxiliary variables ak.
On the other hand, there is generally no reason for the global law (Φ, Φ̃) to satisfy condi-
tion (11). To see this last point, just add to the process useless iterations like (3) acting
on useless additional variables: the global law will not satisfy (11) at some point, although
convergence of the derivatives f ′k to f ′ can be assured if fk can be defined without using
the additional variables.

4 Implementation Issues

At first glance, it may appear expensive to use automatic differentiation techniques for
functions defined by iterative processes, because apparently the differentiation has to go
through all the iterations of the original program to get the correct value of the derivatives.
The automatic differentiation approach could look unattractive, especially in comparison
to linearization techniques, which linearize equation (7) and obtain y′∗(u) by solving the
associated linear system. Because the calculation of y′∗(u) is independent of the way the
solution point y∗ is obtained, this approach looks better.

Nevertheless, it is possible to avoid differentiating the complete program to obtain
the desired approximation of y∗. The clue lies in the observation [5] that, as far as the
calculation of the derivatives is concerned, the form of the function u 7→ y0(u) has no
effect on the convergence of y′k(u) to y′∗(u) (although this form generally influences the
speed of convergence). Proposition 1 makes indeed no other hypotheses on this function
than its differentiability. As a result, the automatic differentiator can consider that y0 is
the function of u realized by the original program or any other convenient function—for
instance, the constant function u 7→ y0. The first case is desirable if one has some reason
to think that the function u 7→ y0(u) realized by the original program is such that y0(u)
is close to y∗(u) and y

′
0(u) is close to y′∗(u). The second case is interesting in many other

situations, which we discuss below.
One way to avoid differentiating the complete program formed of all the iterations

calculating approximations of y∗ is to take as starting point, y0, of the iterative process a

6



good approximation of the solution, y∗. This approximation can be obtained by a first run
of the original program. The idea is therefore to generate a derivation code from a modified
original program, in which the starting function is now the constant function u 7→ y0 ≃ y∗
and the number of iterations aims only at assuring the convergence of the derivatives in
the generated program. The improvement in the approximations y′k of the derivative y′∗
can be observed in inequality (13), which shows that δk converges to δ∗ linearly (the second
term of the right hand side is approximately zero). This approach corresponds to solving
the system coming from the linearization of (7) at yk ≃ y∗ by the iterations

δk+1 := Φ′
y(y∗, u) · δk +Φ′

u(y∗, u) · v, (15)

where δk stands for y′k(u) · v.
This idea is extremely efficient when applied to methods for which Φ′

y(y∗, u) = 0.
In such cases, a good approximation of the derivatives is obtained in just one iteration
(see, e.g., (15)). For example, for Newton’s method (14), we would do just one iteration,
starting from y0 ≃ y∗ considered as a constant:

z = y0 − F ′
y(y0, u)

−1F (y0, u).

Since F (y0, u) ≃ F (y∗, u) = 0, we see that the derivative of z can be written

z′(u) · v ≃ −F ′
y(y0, u)

−1F ′
u(y0, u) · v ≃ −F ′

y(y∗, u)
−1F ′

u(y∗, u) · v,

which is precisely the expected derivative y′∗(u) · v.
In the general case where Φ′

y(y∗, u) 6= 0, the number of iterations needed to get con-
vergence of the derivatives should be controlled during the differentiation phase, in the
generated code. In the direct mode of differentiation, a direction d ∈ R

n is usually given,
and the directional derivative f ′k(x)·d is evaluated by computing the directional derivatives
z̃ = z′(x) · d of all the variables z in the original program, in parallel with the calculation
of z. Since ỹk = (yk ◦ u)′(x) · d = y′k(u) · ũ, a simple stopping criterion would be to test
whether

ỹk ≃ ỹk−1.

This is less restrictive than requiring y′k(u) ≃ y′k−1(u) but it is enough to get f̃k ≃ f̃ ,
because the nonsingularity of I −Φ′

y(yk, u) implies then that

ỹk ≃ ỹ∗ ≡ (y∗ ◦ u)
′(x) · d.

In the reverse mode of differentiation, a direction r ∈ R
m is given and the gradient ∇(r⊤f)

with respect to x is calculated by updating the adjoint variable z̄ associated with any
variable z in the original code, in reverse order of their evaluation. The adjoint variable z̄
is the current estimation of the partial derivative ∂(r⊤f)/∂z. In this mode, a reasonable
stopping criterion would consist of testing whether

ȳ0 ≃ 0. (16)

To see this, observe from (9), (10), and yk ≃ y∗ that
(

r⊤fk

)′

(x) ≃
(

r⊤f
)′

(x)

7



if and only if
(

r⊤ψ
)′

y
(y∗, u) ·

[

y′k(u)− y′∗(u)
]

· u′(x) ≃ 0.

Differentiating (6) and (7) and using k times the resulting equations, we see that this is
also equivalent to

(

r⊤ψ
)′

y
(y∗, u) · Φ

′
y(y∗, u)

k ·
[

y′0(u)− y′∗(u)
]

· u′(x) ≃ 0.

Since functions u 7→ y0(u) and u 7→ y∗(u) are usually not linked and since x 7→ u(x) is
independent of the iterative process, the only way to ensure this condition is to take k
sufficiently large so as to have

(

r⊤ψ
)′

y
(y∗, u) · Φ

′
y(y∗, u)

k ≃ 0.

This is approximately equivalent to condition (16). More precisely, we have

ȳ0 = Φ′
y(y0, u)

⊤Φ′
y(y1, u)

⊤ · · ·Φ′
y(yk−1, u)

⊤∇y

(

r⊤ψ
)

(yk, u).

In the reverse mode, this quantity is evaluated from right to left. This shows that, in this
mode of differentiation, it is not easy to adapt the number of iterations to satisfy condi-
tion (16). However, since y0 ≃ y1 ≃ . . . ≃ yk ≃ y∗, the value of ȳ0 can be approximated by

ȳ0 ≃ Φ′
y(yk−1, u)

⊤Φ′
y(yk−2, u)

⊤ · · ·Φ′
y(y0, u)

⊤∇y

(

r⊤ψ
)

(y0, u),

which allows an easy adaptation of k during the reverse part of the calculation. With this
approximation of ȳ0, condition (16) is a reasonable criterion.

To conclude, let us mention another situation where it is better not to differentiate
the function u 7→ y0(u) realized by the original program. This situation arises when the
iterative process obeys a rule like (5) only after a certain number of iterations, say s.
Before this, some nondifferentiable actions such as step-sizing are taken. In this case, it
is preferable that the automatic differentiator not generate codes for the calculation of
ys(u); rather, it should consider that the iterative process starts with a constant initial
approximation ys.

Acknowledgments

The author has benefited from fruitful discussions with C. Lemaréchal and from enlighting
comments by A. Griewank, which are at the root of Section 4.

References

[1] H. Fischer (1991). Automatic differentiation of the vector that solves a parametric linear
system. Journal of Computational and Applied Mathematics, 35, 169–184. 4

8



[2] H. Fischer (1991). Special problems in automatic differentiation. Presented at the “1991 SIAM
Workshop on Automatic Differentiation of Algorithms: Theory, Implementation and Appli-
cation”, January 6-8, 1991, Breckenridge, Colorado. 1, 2

[3] J. Ch. Gilbert, G. Le Vey, and J. Masse (1991). La différentiation automatique de fonctions
représentées par des programmes. Rapport de Recherche no 1557, INRIA, BP 105, F-78153 Le
Chesnay, France. 1

[4] A. Griewank (1989). On automatic differentiation. In M. Iri and K. Tanabe (editors), Mathe-
matical Programming: Recent Developments and Applications, pp. 83–108. Kluwer Academic
Publishers, Dordrecht. 1

[5] A. Griewank (1991). Personal communication. 6

[6] A. Griewank and G. Corliss, eds. (1991). Automatic Differentiation of Algorithms: Theory,
Implementation, and Application, Proceedings in Applied Mathematics 53. SIAM. Philadel-
phia. 1

[7] G. Kedem (1980). Automatic differentiation of computer programs. ACM Transactions on
Mathematical Software, 6, 150–165. 1

[8] L. B. Rall (1981). Automatic Differentiation, Techniques and Applications. Lecture Notes in
Computer Science 120. Springer-Verlag, Berlin. 1

[9] R. T. Rockafellar (1970). Convex Analysis. Princeton University Press, Princeton, New Jersey.
2

[10] L. Schwartz (1981). Cours d’analyse, Tome I. Hermann, Paris. 2

9


	Introduction
	A Class of Safe Iterative Processes
	Application to Newton's Method
	Implementation Issues

