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Abstract

We consider min-max optimization problems for polynomial functions, where a multivariate polyno-
mial is maximized with respect to a subset of variables, and the resulting maximal value is minimized
with respect to the remaining variables. When the variables belong to simple sets (e.g., a hypercube,
the Euclidean hypersphere, or a ball), we derive a sum-of-squares formulation based on a primal-dual
approach. In the simplest setting, we provide a convergence proof when the degree of the relaxation
tends to infinity and observe empirically that it can be finitely convergent in several situations. More-
over, our formulation leads to an interesting link with feasibility certificates for polynomial inequalities
based on Putinar’s Positivstellensatz.

1 Introduction

In this paper, we consider min-max optimization problems of the form

min
x∈X

max
y∈Y

g(x, y), (1)

where X and Y are compact sets and g is a continuous function. Throughout the paper, like [1], we will
assume that g is a multivariate polynomial. Among particular cases, a finite set Y leads to the minimization
of the maximum of multivariate polynomials, which is typically not a polynomial function. Thus min-max
problems extend the reach of polynomial optimization and have applications in several areas, such as robust
optimization [2]. Note that we do not consider saddle-point problems where polynomial optimization has
already been studied [3].

We will consider algorithms based on the sum-of-squares principle [4, 5]. This problem has been looked at
by [1], which models the function x 7→ maxy∈Y g(x, y) by a polynomial, as an upper-bound that is tightly
converging as the degree of the approximant increases, but slowly and in most interesting cases non finitely.
This bound is then minimized in a two-stage approach, which can deal with a set Y which can be defined
through polynomial inequalities. In this paper, we will need to assume that both sets X and Y are “simple”,
in a sense to be defined in Section 3. This includes the regular hypercube, the Boolean hypercube, the unit
Euclidean sphere or ball, and all Cartesian products of such sets. However, we will consider a one-stage
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primal-dual approach that is often finitely convergent (although we currently do not have any provable
sufficient conditions).

Paper outline. We review SOS relaxations over simple sets in Section 3 and present our SOS formulation
for the min-max problem in Section 4, together with algorithms based on kernels and a convergence proof,
while in Section 5, we perform illustrative experiments. We start by presenting in Section 2 the duality
principles that underlie our formulations, which apply beyond polynomials.

2 Primal-dual formulations

We first consider the classical primal-dual formulation of minimization problems, before extending it to
min-max problems. In this section, we consider continuous functions (not necessarily polynomials).

2.1 Minimization problems

Given a continuous function f defined on a compact set X, minimizing f can be cast as the minimization
of

∫
X
f(x)dµ(x) over µ ∈ P(X), the set of probability distributions on X, that is,

min
x∈X

f(x) = min
µ∈P(X)

∫

X

f(x)dµ(x), (2)

where the minimizer is any measure supported on the minimizers of f . Introducing the notation M(X, Q)
for the set of finite measures with values in the cone Q, we can see probability distributions as the elements
of M(X,R+) such that

∫
X
dµ(x) = 1. Introducing a Lagrange multiplier c ∈ R for this linear constraint,

we get by convex duality:

min
µ∈P(X)

∫

X

f(x)dµ(x) = max
c∈R

inf
µ∈M(X,R+)

∫

X

f(x)dµ(x) + c
( ∫

X

dµ(x)− 1
)

= max
c∈R

c such that ∀x ∈ X, f(x)− c > 0, (3)

which is equivalent to finding the largest minorant of f (and thus provides a direct proof of strong duality).
As shown in Section 3, these two equivalent formulations lead to equivalent SOS relaxations, by replac-
ing non-negative functions by sums-of-squares in Eq. (3), and representing probability measures by their
moments and “pseudo”-moments in Eq. (2). We now extend these equivalent formulations to min-max
problems.

2.2 Min-max problems

We now consider primal-dual interpretations for the original problem in Eq. (1), akin to Eq. (2) and Eq. (3)
in Section 2.1 above, for a continuous function g : X× Y → R.

For the outer minimization problem in x ∈ X, we consider the probabilistic formulation from Eq. (2), and
we thus have the equivalent formulation:

min
x∈X

max
y∈Y

g(x, y) = min
µ∈P(X)

∫

X

(
max
y∈Y

g(x, y)
)
dµ(x).
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For the inner maximization problem in y ∈ Y, which is different for every x ∈ X, we consider probability
measures ν(·|x) ∈ P(Y) (the set of probability measures on Y), and apply the same reformulation, to obtain

min
x∈X

max
y∈Y

g(x, y) = min
µ∈P(X)

max
ν:X→P(Y)

∫

X

∫

Y

g(x, y)dν(y|x)dµ(x). (4)

This is now a convex-concave min-max problem in infinite dimensions (while the original one in Eq. (1) is
typically not), with a bilinear objective and two convex domains, for which min and max can be swapped [6,
7]. We can now use convex duality to obtain either a minimization problem or a maximization problem.

We have, from Eq. (4), by adding the Lagrange multiplier c ∈ R for the constraint

∫

X

dµ(x) = 1:

min
x∈X

max
y∈Y

g(x, y) = min
µ∈P(X)

max
ν:X→P(Y), c∈R

∫

X

∫

Y

g(x, y)dν(y|x)dµ(x) + c
(
1−

∫

X

dµ(x)
)

= max
ν:X→P(Y), c∈R

c such that ∀x ∈ X,

∫

Y

g(x, y)dν(y|x) > c, (5)

which is a maximization problem.

Alternatively, by convex duality, this equal to, introducing in Eq. (4) a Lagrange multiplier λ ∈ M(X,R)
for the constraint that ∀x ∈ X,

∫
Y
dν(y|x) = 1 [7]:

min
µ∈P(X), λ∈M(X,R)

max
ν:X→M(Y,R+)

∫

X

( ∫

Y

g(x, y)dν(y|x)
)
dµ(x) +

∫

X

(
1−

∫

Y

dν(y|x)
)
dλ(x),

which is equal to

min
µ∈P(X), λ∈M(X,R)

∫

X

dλ(x) such that ∀y ∈ Y, λ > g(·, y)µ, (6)

which is another convex formulation as a minimization problem.

Overall we get three formulations which are all equivalent to the original problem (in Section 4, our SOS
formulation will also have these three equivalent formulations):

• Minimization, corresponding to Eq. (23) and Eq. (27) in Section 4:

min
µ∈P(X), λ∈M(X,R)

∫

X

dλ(x) such that ∀y ∈ Y, λ > g(·, y)µ. (7)

• Maximization, corresponding to Eq. (24) and Eq. (28) in Section 4:

max
ν:X→P(Y), c∈R

c such that ∀x ∈ X,

∫

Y

g(x, y)dν(y|x) > c. (8)

• Saddle-point, corresponding to Eq. (22) and Eq. (26) in Section 4:

min
µ∈P(X)

max
ν:X→P(Y)

∫

X

∫

Y

g(x, y)dν(y|x)dµ(x). (9)
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Non-convex formulation. By writing dλ(x) = a(x)dµ(x) for a certain function a : X → R, which is
only possible for a dense subset of M(X,R), we get an equivalent reformulation

min
µ∈P(X), a:X→R

∫

X

a(x)dµ(x) such that ∀(x, y) ∈ X× Y, a(x) > g(x, y), (10)

which is a non-convex formulation because the objective is non-convex. An alternating minimization
algorithm starting from a measure µ with full support leads to the global optimum after one minimization
with respect to a (leading to a(x) = maxy∈Y g(x, y)), and then one minimization with respect to µ (leading
to the minimizer of this function a). When using SOS formulations for these two operations, we exactly
obtain the formulation of [1] (see Eq. (17) in Section 4.1).

Optimal solutions. With c∗ being the optimal value of Eq. (1), the optimal measure µ ∈ P(X) is any
measure supported on the minimizers of x 7→ maxy∈Y g(x, y). The optimal ν : X → P(Y) is such that for all
x ∈ X,

∫
Y
g(x, y)dν(y|x) > c∗ with equality at any minimizer x∗ ∈ X. Therefore, at all minimizers x∗ ∈ X,

we need ν(·|x∗) to put mass only at maximizers of y 7→ g(x∗, y), but this is not required at other positions.
The optimal λ is equal to an optimal µ times maxy∈Y g(x, y).

3 SOS relaxations for polynomials over simple sets

In this section, we review existing work on minimizing polynomial functions over simple sets, which we
cast as minimizing a quadratic form f(x) = ϕ(x)⊤Fϕ(x) for a feature map ϕ : X → Rm, where X is a
compact set. While we use specific notations that will make further developments easier to describe, this
section follows the classical SOS formulations (see [8, 9] for a thorough review).

We use the denomination “simple set” to refer to a set X coming with its feature map ϕ : X → Rm with
unit norm, that is, ‖ϕ(x)‖2 = 1 for all x ∈ X (for the Euclidean norm), and, which can be represented
(potentially after transformation) as a multivariate polynomial (this thus imposes that X is a subset of Rd

for a specific d).

We will always assume that the constant mapping and the identity mapping x 7→ x can be obtained as a
linear function of ϕ(x) (this will be useful in recovering maximizers in Section 3.4). Moreover, we will only
need to access the positive-definite kernel function k : X×X → R defined as k(x, y) = ϕ(x)⊤ϕ(y) (and not
access to the vector ϕ). Our unit norm normalization on ϕ translates to k(x, x) = 1 for all x ∈ X.

We assume that the dimension of the span of all ϕ(x), x ∈ X is m, while the dimension of the span Vϕ of
all ϕ(x)ϕ(x)⊤ ∈ Rm×m, x ∈ X, is m′ ∈ [m,m(m + 1)/2]. Finally, we assume we can generate (typically,
randomly) m′ points x1, . . . , xm′ , such that ϕ(xi)ϕ(xi)

⊤, i = 1, . . . ,m′, is a basis of Vϕ.

The optimization problem and our solution will be invariant by invertible linear transformations, and we
can choose the feature map so that the kernel is as simple as possible (note, however, that in terms of
conditioning of the associated numerical linear algebra, some kernels are better than others).

All of our examples will be (subsets of) Euclidean unit spheres or products of Euclidean spheres.
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3.1 Examples

We will consider the following sets, feature maps, and kernel functions. Since our relaxations are based on
approximating non-negative polynomials as sums-of-squares, that is, positive semi-definite quadratic forms
in ϕ, we describe these SOS polynomials for some instances.

• Discrete data: X = {1, . . . ,m} with orthonormal features ϕ : X → Rm, defined as ϕ(x)i = 1x=i.
The corresponding kernel is k(x, x′) = 1x=x′ , with m

′ = m.

• Trigonometric polynomials on [0, 1]: X ∈ [0, 1] with ϕ(x)ω = 1
(2r+1)1/2

e2iπωx for ω ∈ {−r, . . . ,+r}.1

The kernel is k(x, x′) = sin[(2r+1)π(x−x′)]
(2r+1) sinπ(x−x′) . This can be equivalently represented in the unit Eu-

clidean sphere in R2 with the bijection θ 7→ (cos 2πθ, sin 2πθ), where the corresponding feature
map spans all bivariate polynomials of degree r, with a kernel that can be taken to be equal to
k(y, y′) = 1

2r (1 + y⊤y′)r for y, y′ ∈ R2 of unit norm (we could construct one with Chebyshev polyno-
mials to get the exact equivalence with the kernel above). We then have m = 2r+1 and m′ = 4r+1.

• Polynomials on [−1, 1]: this is simply the projection of the case above by considering y ∈ R2 such
that y21 + y22 = 1, and only considering functions of y1. As shown in [10], a polynomial in y1 which is
equal to an SOS polynomial on y1, y2 can be written as the sum u(y1) + (1 − y21)v(y1) where u and
v are univariate SOS polynomials.

• Hypersphere: X = {x ∈ Rd+1, ‖x‖22 = x⊤x = 1}, with all functions that are multivariate poly-
nomials of degree r. This corresponds to m =

(d+r
r

)
+

(d+r−1
r−1

)
and m′ =

(d+2r
2r

)
+

(d+2r−1
2r−1

)
. We

can choose the kernels k(x, x′) = 1
r+1

∑r
i=0

(
x⊤y

)i
or k(x, x′) = 1

2r (1 + x⊤x′)r. We could also use
generalized Legendre polynomials [11] to get better-conditioned kernel matrices.

• Euclidean ball: X = {x ∈ Rd, x⊤x 6 1} can be seen as the projection of the hypersphere above to
the first d dimensions. When obtaining an SOS polynomial on the hypersphere, this translates for
the Euclidean ball to a sum u(x) + (1− ‖x‖22)v(x) where u and v are SOS polynomials.

• Products of one-dimensional spheres ⊂ R2 ⇔ trigonometric polynomials on [0, 1]d ⇔
regular polynomials on [−1, 1]d: this is the tensor product of the univariate cases above; the
kernel is then k(y, y′) =

∏d
i=1

1
2r (1 + y⊤i y

′
i)
r for the polynomial representations, or alternatively

k(x, x′) =
∏d
i=1

sin[(2r+1)π(xi−x′i)]
(2r+1) sinπ(xi−x′i)

for trigonometric polynomials. This then corresponds to multivari-

ate polynomials of maximal2 degree 2r. As shown in [10], a trigonometric SOS polynomial transferred
to regular polynomials on [−1, 1]d leads to a representation of Schmudgen’s type [12].

• Boolean hypercube X = {−1, 1}d: it can be seen as a sub-case of the hypersphere in dimension d−1
and radius

√
d, where quadratic forms are polynomials of degree 2r. We then have m =

∑r
i=0

(
d
i

)
.

1This feature is complex-valued but equivalent real-valued formulations with cosines and sines could be used. Since we
only use kernel formulations, we do not need to pursue them explicitly.

2For a monomial Xα1

1 · · ·X
αd

d , its degree is α1 + · · ·+ αd and its maximal degree is max{α1, . . . , αd}.
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3.2 Relaxation

The SOS relaxation is obtained by first representing the minimization of f as the maximization of a
minorant c of f , that is, such that f(x) − c > 0 for all x ∈ X, that is, Eq. (3) in Section 2. We then
represent non-negative functions as sums-of-squares, that is, a positive semi-definite quadratic form in
ϕ(x), thus solving:

max
c∈R, A<0

c such that ∀x ∈ X, f(x) = c+ ϕ(x)⊤Aϕ(x). (11)

It can be re-written using Vϕ the span of all ϕ(x)ϕ(x)⊤, x ∈ X, and its orthogonal subspace V⊥
ϕ , as:

max
c∈R, A<0

c such that ∀x ∈ X, tr
[
ϕ(x)ϕ(x)⊤(F − cI −A)

]
= 0

= max
c∈R, A<0, Y ∈V⊥

ϕ

c such that F − cI −A+ Y = 0, by definition of V⊥
ϕ .

We can then optimize out c and A, by noticing that c ∈ R is the largest c such that F + Y < cI, leading
to the following spectral formulation

max
Y ∈V⊥

ϕ

λmin(F + Y ). (12)

Its dual can be written as, using standard semi-definite programming duality [13]:

max
Y ∈V⊥

ϕ

λmin(F + Y ) = min
Σ<0

max
Y ∈V⊥

ϕ

tr[Σ(F + Y )] such that tr(Σ) = 1

= min
Σ<0

tr(ΣF ) such that tr(Σ) = 1, Σ ∈ Vϕ, (13)

which corresponds to an outer approximation of the convex hull of all ϕ(x)ϕ(x)⊤, x ∈ X, by the set of

positive semi-definite matrices such that tr(Σ) = 1 and Σ ∈ Vϕ, which we denote K̂ϕ and which is an
outer approximation of Kϕ, the closure of the convex hull of all ϕ(x)ϕ(x)⊤, x ∈ X. This dual formulation
corresponds to (a) replacing the minimization of f by the minimization with respect to a probability
measure on X of the expectation of f with respect to that measure, as done in Section 2.1 in Eq. (2),
and (b) characterizing these measures by their expectations of ϕϕ⊤. Elements of Kϕ are moment matrices

while elements of K̂ϕ are often referred to as “pseudo-moment” matrices.

3.3 Kernelization

With an explicit description of V, it may be cumbersome to implement the semi-definite program, particu-
larly for larger input dimensions, leading to dedicated codes for each case. This is simpler with kernels, as
described below. It allows accessing the function f using only function values, like proposed by [14], with a
direct link with positive definite kernels outlined by [15]. As we now show, this corresponds to representing
the space V by a span of finitely many elements, leading to a representation of the moment matrices Σ as
a linear combination of rank-one matrices.

We consider m′ “well-positioned” points x1, . . . , xm′ ∈ X, so that V is the span of all ϕ(xi)ϕ(xi)
⊤, i =

1, . . . ,m′. Quasi-random sequences [16] are natural candidates, in particular, because we will extract below
the first m points and also need them to be well-spread to avoid ill-conditioning of the kernel matrices.
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For the primal formulation in Eq. (11), the constraint that ∀x ∈ X, f(x) = c+ϕ(x)⊤Aϕ(x) is equivalently
replaced by an equality only on x1, . . . , xm′ . This corresponds to checking that two polynomials are equal
by checking that they are equal on sufficiently many points.

The dual formulation in Eq. (13) is then equivalent to:

inf
α∈Rm′

m′∑

i=1

αif(xi) such that

m′∑

i=1

αi = 1,

m′∑

i=1

αiϕ(xi)ϕ(xi)
⊤
< 0,

which is only accessing the function f through m′ function evaluations. The crucial point is that the vector
α ∈ Rm

′

is not constrained to have non-negative values (otherwise, the formulation above would lead to
mini∈{1,...,m′} f(xi)).

If m is the dimension of ϕ, then from the kernel matrix K ∈ Rm×m associated with the first m points, we
build the “empirical feature map” as ϕ̃(x) = K−1/2(k(xi, x))i∈{1,...,m} ∈ Rm, where K−1/2 is any inverse

square root of K ∈ Rm×m. This defines an empirical feature matrix Φ = LK−1/2 ∈ Rm
′×m, where

L ∈ Rm
′×m′

is the full kernel matrix of all m′ points. We then solve, equivalently,

inf
α∈Rm′

m′∑

i=1

αif(xi) such that
m′∑

i=1

αi = 1, Φ⊤ diag(α)Φ < 0, (14)

and obtain a solution Σ =
∑m′

i=1 αiϕ(xi)ϕ(xi)
⊤. We will see below how to obtain a candidate maximizer

x∗ ∈ X from Σ without the need to compute ϕ.

Going infinite-dimensional. Solving Eq. (14) will lead to the SOS relaxation if f is indeed a quadratic
form in ϕ(x). In all our examples, the feature map is finite-dimensional. Still, we can go infinite-dimensional
using positive definite kernels corresponding to infinite dimensional feature spaces, such as k(x, x′) =
exp(x⊤x′), with an additional regularizer. See [15] for more details and convergence analysis.

3.4 Practical algorithms

Solving the SDP. The problem in Eq. (14) is a semi-definite program, which can either be solved using
generic toolboxes, with complexity (m′)3.5 [17]. Adding a log-determinant barrier leads to an approximate
algorithm with only matrix inversions of size m and m′ [15], but no eigenvalue decompositions.

Obtaining rank-one solutions. The obtained solution α ∈ Rm
′

of Eq. (14) may not lead to a rank-one

matrix Σ =
∑m′

i=1 αiϕ(xi)ϕ(xi)
⊤ when the minimization problem has several minimizers or the relaxation

is not tight. We can obtain a lower-rank solution (and rank-one when the relaxation is tight) by minimizing
a random linear function of α over all α that are minimizers of Eq. (14). Rank-minimization heuristics
could also be used [18].

Obtaining candidates for x∗. Once the vector α is obtained such that the matrix Σ =
∑m′

i=1 αiϕ(xi)ϕ(xi)
⊤

has rank one, we can simply obtain the corresponding x∗ ∈ X exactly as x∗ =
∑m′

i=1 αixi. This is only
approximate when Σ does not have rank one. See also [19].
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3.5 Tightness guarantees

For a small number of cases, we have K̂ϕ = Kϕ, that is, the relaxation is tight, e.g., for one-dimensional
problems or with linear features (modeling quadratic polynomials). Otherwise, we need “hierarchies”.

Hierarchies. For most cases, the relaxation is not tight, that is, K̂ϕ ) Kϕ, but we can see a 2r-
dimensional polynomial as an instance of a polynomial of degree less than 2s, for s > r, and run the
algorithm with the kernel corresponding to this larger dimensional space (which requires access to more

function values since it leads to an increase in m′). This corresponds to using a relaxation K̃ϕ such that

Kϕ ⊂ K̃ϕ ⊂ K̂ϕ, for which sup
Σ∈K̃ϕ

infΣ′∈Kϕ ‖Σ − Σ′‖F is hopefully going to zero when the degree s

goes to infinity, where ‖ · ‖F denotes the Frobenius norm. This is the case for several of the simple
sets in the examples above, with a rate in O(1/s2), for hyperspheres [20], polynomials on [−1, 1]d [21],
and trigonometric polynomials [10]. By increasing the degrees s until approximating the global optimum
arbitrarily well, we obtain a “hierarchy” of optimization problems.

More precisely, this corresponds to replacing ϕ(x) ∈ Rm by ϕ̃(x) =
( ϕ(x)
ϕ+(x)

)
∈ Rm̃, and F by F̃ =

(
F 0
0 0

)
,

with the function f defined by f(x) = ϕ(x)⊤Fϕ(x) = ϕ̃(x)⊤F̃ ϕ̃(x). The convergence results in [20, 21, 10]
correspond to the existence of ε(ϕ,ϕ+) > 0 such that

∀x ∈ X, f(x) > ε(ϕ,ϕ+)‖F‖F ⇒ ∃Ã < 0, ∀x ∈ X, f(x) = ϕ̃(x)⊤Ãϕ̃(x).

The constant ε(ϕ,ϕ+) can be chosen as O(1/s2), where s is the degree of the polynomials defining ϕ̃.

Note that in practice, when using kernel formulations, using hierarchies simply means using a different
kernel and more function evaluations.

3.6 Matrix-valued SOS

In Section 4, we will need to consider functions from X to some subspace T of Sp (the set of symmetric
matrices of dimension p), and use characterizations of functions f : X → T that are linear in ϕ(x)ϕ(x)⊤

and such that for all x ∈ X, f(x) < 0. We assume the identiy matrix I belongs to T.

This is an extension of the classical situation (where p = 1). We denote by F ∈ Rmp×mp the linear form
defined with blocks Fij of size m×m, for i, j ∈ {1, . . . , p}, such that

f(x) = F [ϕ(x)ϕ(x)⊤],

which is defined as ∀x ∈ X, f(x)ij = ϕ(x)⊤Fijϕ(x). The constraint that for all x ∈ X, f(x) ∈ T is equivalent
to F ∈ V⊥

ϕ ⊗ Sp + Sm ⊗ T. Following [22, 20, 23], a sufficient condition for the matrix-non-negativity of f
is F < 0.

The condition F < 0 is also necessary for some special cases. Indeed, if T is the set of diagonal matrices,
we are then simply looking at p different non-negative polynomials, and if ϕ is such that we have a tight
scalar SOS representation of non-negative functions, the condition is indeed necessary.

For the cases where we had the tightness guarantees in Section 3.5, it turns out that we have similar
tightness guarantees, that is, if f is a degree 2r matrix-valued polynomials. We consider ϕ̃ =

( ϕ
ϕ+

)
leading
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to polynomials of degree 2s, then if f has strictly positive-semidefinite values (that is, all eigenvalues
greater than ε times some norm of f), then f is a matrix-SOS polynomial of degree 2s. The constant ε
can be taken as O(1/s2).

Indeed, all the proofs for hyperspheres [20], polynomials on [−1, 1]d [21], and trigonometric polynomials [10]
are based on the same integral operator idea from [20] who showed how to extend it to the matrix domain.
See a precise instance of such a result for trigonometric polynomials in Appendix A.

Link between matrix-SOS to tensor products. In the min-max problem in Section 4, we will need
to minimize quadratic forms in ϕ(x)ϕ(x)⊤ ∈ Rm×m, rather than in ϕ(x) ∈ Rm. Such a quadratic form is
defined as f(x) = tr

[
F (ϕ(x)ϕ(x)⊤⊗ϕ(x)ϕ(x)⊤)

]
, and if the matrix-valued function G : x 7→ F [ϕ(x)ϕ(x)⊤]

is such that ∀x ∈ X, G(x) < cI, then f(x) = ϕ(x)⊤G(x)ϕ(x) > c for all x ∈ X. Thus the threshold
for scalar-valued quadratic forms in ϕ(x)ϕ(x)⊤ leads to (at least) the same threshold for matrix-valued
quadratic forms in ϕ(x).

4 SOS relaxations for min-max problems

We consider the min-max problem
min
x∈X

max
y∈Y

g(x, y), (15)

for a continuous function g : X× Y → R defined on the product of two compact sets X and Y. We assume
that we have two feature maps ϕ : X → Rm and ψ : Y → Rp, such that ‖ϕ(x)‖ = ‖ψ(y)‖ = 1 for all x ∈ X

and y ∈ Y, thus within the framework of Section 3. While the motivation is polynomials, this is not needed
in most of this section.

We assume that the function g is a bilinear function of ϕϕ⊤ and ψψ⊤, that is, of the form

g(x, y) = tr
[
G
(
ψ(y)ψ(y)⊤ ⊗ ϕ(x)ϕ(x)⊤

)]
, (16)

for a symmetrix matrix G ∈ Rmp×mp. By definition of the Kronecker product [24], we can see G as matrix
defined by blocks Gij of size m×m, for i, j ∈ {1, . . . , p}, and Eq. (16) can be rewritten as:

g(x, y) =

p∑

i,j=1

ψ(y)iψ(y)j · ϕ(x)⊤Gijϕ(x).

Because of our unit norm assumptions for the feature maps, this includes linear forms in ϕϕ⊤ and ψψ⊤

(e.g., by considering all Gij proportional to I, we obtain a linear form in ψψ⊤). For the examples in
Section 3, such a representation exists for all multivariate polynomials in x and y.

The goal of this paper is to design SOS methods for this problem. Note that they will sometimes not be
relaxations per se, as their values will not always be lower bounds on optimal values.

Notations. Following Section 3, we denote by Vϕ ⊂ Rm×m the span of all ϕ(x)ϕ(x)⊤, and Kϕ ⊂ Rm×m

the closure of its convex hull, with similar notations for Vψ ⊂ Rp×p and Kψ ⊂ Rp×p.
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The natural SOS formulation is to replace Kϕ by K̂ϕ = {S ∈ Vϕ, S < 0, tr(S) = 1} ⊃ Kϕ and Kψ by

K̂ψ = {T ∈ Vψ, T < 0, tr(T ) = 1} ⊃ Kψ. When using hierarchies, we may use tighter sets K̃ϕ and K̃ψ,
which often corresponds to embedding ϕ in a bigger feature map.

We will also need Kϕ⊗ϕ ∈ Rm
2×m2

corresponding to the hull of all ϕ(x)⊗4 = ϕ(x)ϕ(x)⊤ ⊗ ϕ(x)ϕ(x)⊤,

x ∈ X, as well as it outer approximation K̂ϕ⊗ϕ.

4.1 Existing SOS relaxation

The method of [1], which applies more generally (in particular to sets Y which are not simple), corresponds
to an SOS formulation for Eq. (10), for a fixed probability measure µ ∈ P(X) with full support, that is,

min
a:X→R

∫

X

a(x)dµ(x) such that ∀(x, y) ∈ X× Y, a(x) > g(x, y),

and then the minimization of the resulting function a.

It can be cast as follows with our notations. In a first stage, assuming that one can compute Σ =
E[ϕ(x)ϕ(x)⊤] for a distribution with full support on X (typically the uniform distribution), we solve

min
A∈Rm×m, C∈Rmp×mp

tr(AΣ) (17)

such that C < 0 and ∀(x, y) ∈ X× Y, g(x, y) = ϕ(x)⊤Aϕ(x) − tr
[
C
(
ψ(y)ψ(y)⊤ ⊗ ϕ(x)ϕ(x)⊤

)]
,

which approximates, with an SOS approach, the polynomial in x with the smallest expectation, which
is above g(x, y) for all (x, y) ∈ X × Y. In the second stage, this polynomial a defined by the matrix A
is minimized with an SOS method. This will converge when the degree of a is allowed to increase but
requires approximating a non-polynomial function by a polynomial function, which may require a large
degree. Moreover, it is typically not finitely convergent. Note that we could also minimize with respect
to Σ in Eq. (17), but this leads to a non-convex problem. A natural algorithm for this non-convex problem
is to perform alternating optimization, alternating between optimizing with respect to A and Σ, which
improves the result but is not globally convergent in general (see Appendix B for more details). Finally, if
the polynomial defined by A is minimized exactly, we obtain an upper-bound on the actual optimal value
of Eq. (15).

Kernelization. Using notations from Section 3, we can formulate the problem in Eq. (17) above as

min
A∈Rm×m, C∈Rmp×mp

tr(AΣ) such that C < 0 and G− I ⊗A+ C ∈ (Vϕ ⊗ Vψ)
⊥

by definition of the vector space Vϕ ⊗ Vψ. We can then introduce a Lagrange multiplier M ∈ Vϕ ⊗ Vψ to
obtain by convex duality:

max
M∈Vϕ⊗Vψ

min
A∈Rm×m, C<0

tr(AΣ) + tr
[
M(G− I ⊗A+ C)

]
.

We can then optimize with respect to C < 0, which leads to the constraint M < 0, and with respect to A,
which leads to a linear constraint, that is:

max
M∈Vϕ⊗Vψ

tr(MG) such that M < 0 and t̃r[M ] = Σ,

10



0 0.5 1
-4

-2

0

2
Two-stage - r = 2

max
j
 g

j
(x)

a(x)

0 0.5 1
-4

-2

0

2
Two-stage - r = 8

max
j
 g

j
(x)

a(x)

0 0.5 1
-4

-2

0

2
Two-stage - r = 4

max
j
 g

j
(x)

a(x)

Figure 1: Two-stage approach [1] for trigonometric polynomials in one dimension: three polynomials of
maximal degree 2 on [0, 1] (in green), with their maximum (in blue), and the upper-bounding polynomial
(in red), when using polynomials of degree r, with r = 2 (left), r = 4 (middle), and r = 8 (right).

where t̃r[M ] ∈ Rm×m denotes the “partial trace” defined as tr(N t̃r[M ]) = tr(M(N ⊗ I)) for any matrix
N ∈ Rm×m, and Sp denotes the set of symmetric matrices of size p. In other words, (t̃r[M ])ij = tr(Mij).

It can be kernelized like in Section 3.3, in particular in situations where Σ = 1
mI, which is the case when

using a uniform distribution and ϕ obtained from orthonormal bases. Like in Eq. (14), we can then

represent Σ as Σ =
∑m′

i=1 µiϕ(xi)ϕ(xi)
⊤ for some µ ∈ Rm

′

. We thus solve

max
α∈Rm′×p′

∑

i,j

αijg(xi, yj) such that ∀i,
∑

j

αij = µi and
∑

i,j

αijϕ(xi)ϕ(xi)
⊤ ⊗ ψ(yj)ψ(yj)

⊤
< 0, (18)

and we recover ϕ(xi)
⊤Aϕ(xi) from the Lagrange multiplier for the constraint

∑p′

j=1 αij = µi. This is

sufficient to minimize a(x) = ϕ(x)⊤Aϕ(x) with an SOS method like described in Section 3.

Illustration. We consider X = [0, 1] and trigonometric polynomials, with Y = {1, 2, 3}. Thus, we aim to
minimize the maximum of three trigonometric polynomials, which we take to have a maximal degree of 2.
This is illustrated in Figure 1, where we plot the three polynomials and the upper-bounding polynomial
when using polynomials of degree r, with r = 2, 4, 8, where we can see the slow and in general only
asymptotic convergence.

4.2 Primal-dual SOS relaxation

We consider the following “exact” reformulation already presented in Eq. (4):

min
x∈X

max
y∈Y

g(x, y) = min
µ∈P(X)

max
ν:X→P(Y)

∫

X

∫

Y

g(x, y)dν(y|x)dµ(x),

where the maximization problem is replaced by the maximization of an expectation. Using the expression
of g in Eq. (16), we can then use the bi-linearity of g and write the equation above as

min
µ∈P(X)

max
ν:X→P(Y)

∫

X

tr

[
G

(∫

Y

ψ(y)ψ(y)⊤dν(y|x)⊗ ϕ(x)ϕ(x)⊤
)]
dµ(x),

11



and thus as (with no approximation yet), with V (x) =

∫

Y

ψ(y)ψ(y)⊤dν(y|x) ∈ Kψ (the hull of all ψ(y)ψ(y)⊤

for y ∈ Y):

min
x∈X

max
y∈Y

g(x, y) = min
µ∈P(X)

max
V :X→Kψ

∫

X

tr
[
G
(
V (x)⊗ ϕ(x)ϕ(x)⊤

)]
dµ(x). (19)

We will now make a sequence of three relaxations to approximate the problem in Eq. (19) above.

Replacing Kψ by K̂ψ. We first consider functions V with values in K̂ψ (which is computationally more
manageable) instead of Kψ (which may not), leading to

min
µ∈P(X)

max
V :X→K̂ψ

∫

X

tr
[
G
(
V (x)⊗ ϕ(x)ϕ(x)⊤

)]
dµ(x), (20)

which is always greater or equal to the optimal value of Eq. (19).

Parameterizing V by a matrix sum-of-squares. The set K̂ψ = {T < 0, tr(T ) = 1, T ∈ Vψ} has a
PSD constraint. Thus, as presented in Section 3.6, following [22, 20, 23], we can try to approximate it by
a positive linear form in ϕ(x)ϕ(x)⊤ as

V (x) = T [ϕ(x)ϕ(x)⊤],

with T ∈ Rmp×mp such that T < 0, where, for M ∈ Rm×m, T [M ] denotes the symmetric matrix in Rp×p

such that for any symmetric matrix N ∈ Rp×p, tr
(
T [M ]N

)
= tr

[
T (N ⊗M)

]
. In other words, if T is

defined by blocks Tij ∈ Rm×m for i, j ∈ {1, . . . , p}, then T [ϕ(x)ϕ(x)⊤]ij = ϕ(x)⊤Tijϕ(x).

In order to impose that for all x ∈ X, V (x) ∈ Vψ and tr[V (x)] = 1, we add the additional affine constraints

T ∈ V⊥
ϕ ⊗ Sp + Sm ⊗ Vψ, t̃r[T ]− I ∈ V⊥

ϕ ,

where t̃r[T ] ∈ Rm×m denotes the “partial trace” defined as tr(M t̃r[T ]) = tr(T (M ⊗ I)) for any matrix
M ∈ Rm×m, and Sp denotes the set of symmetric matrices of size p. In other words, (t̃r[T ])ij = tr(Tij).

We then obtain a problem where the measure µ only appears through the moment Σ of ϕ(x)⊗4 =
ϕ(x)ϕ(x)⊤ ⊗ ϕ(x)ϕ(x)⊤ ∈ Rm

2×m2

, since we have, using properties of Kronecker products:

∫

X

tr
[
G
(
V (x)⊗ ϕ(x)ϕ(x)⊤

)]
dµ(x) =

p∑

i,j=1

∫

X

ϕ(x)⊤Gijϕ(x)ϕ(x)
⊤Tijϕ(x)dµ(x)

= tr
(
Σ

p∑

i,j=1

Gij ⊗ Tij

)
.

We thus get a partially relaxed formulation, which cannot be solved yet by a semi-definite program (SDP),
because of the set Kϕ⊗ϕ:

min
Σ∈Rm2×m2

max
T∈Rmp×mp

tr
(
Σ

p∑

i,j=1

Gij ⊗ Tij

)
such that Σ ∈ Kϕ⊗ϕ (21)

T < 0, T ∈ V⊥
ϕ ⊗ Sp + Sm ⊗ Vψ, t̃r[T ]− I ∈ V⊥

ϕ .
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Replacing Kϕ⊗ϕ by K̂ϕ⊗ϕ. We obtain our final formulation, which can be solved as an SDP, where

Kϕ⊗ϕ is replaced by K̂ϕ⊗ϕ:

min
Σ∈Rm2×m2

max
T∈Rmp×mp

tr
(
Σ

p∑

i,j=1

Gij ⊗ Tij

)
such that Σ < 0, Σ ∈ Vϕ⊗ϕ, tr(Σ) = 1 (22)

T < 0, T ∈ V⊥
ϕ ⊗ Sp + Sm ⊗ Vψ, t̃r[T ]− I ∈ V⊥

ϕ .

We thus obtain a convex-concave min-max problem corresponding exactly to Eq. (9) in Section 2.2.

Alternative formulations. We can then choose to transform it into a minimization problem akin to
Eq. (7) by adding a Lagrange multiplier C for the constraint T < 0, and Λ ∈ Vϕ for t̃r[T ]− I ∈ V⊥

ϕ , leading
to:

min
Σ∈Rm2×m2 , C∈Rmp×mp, Λ∈Rm×m

tr[Λ] such that Σ G+ C − Λ⊗ I ∈ Vϕ ⊗ V⊥
ψ (23)

Σ ∈ Vϕ⊗ϕ, Σ < 0, tr(Σ) = 1

Λ ∈ Vϕ, C < 0,

where Σ G ∈ Rmp×mp is defined by block as: [Σ G]ij = ΣijGij ∈ Rm×m. This is the formulation used
for solving the optimization problem empirically in Section 5.

Alternatively, we obtain a maximization problem akin to Eq. (8) from Eq. (22), by adding a Lagrange
multiplier A < 0 for the constraint Σ < 0, and c ∈ R for the constraint tr Σ = 1:

max
T∈Rmp×mp, A∈Rm2×p2 , c∈R

c such that T ◦G− cI −A ∈ V⊥
ϕ⊗ϕ (24)

T < 0, T ∈ V⊥
ϕ ⊗ Sp + Sm ⊗ Vψ, t̃r[T ]− I ∈ V⊤

ϕ

A < 0.

This formulation will be used in the convergence proof in Section 4.5.

Summary. Overall, the formulation is obtained through 3 approximations:

• Replacing Kψ by K̂ψ. If this approximation is exact, then the maximization in y is exact, and
we obtain lower bounds. This is, for example the case for Y = {1, . . . , p}, and also for degree 2
polynomials. Otherwise, the equal values of problems in Eq. (22), Eq. (23), and Eq. (24) may be
above or below the optimal value.

• Parameterizing all functions V : X → Vψ ∩ S+p by a matrix sum-of-squares [22, 20, 23]. This can
only be exact if the function V is a polynomial, with the extra approximation due to the potential
non-tightness of matrix SOS.

• Replacing Kϕ⊗ϕ by K̂ϕ⊗ϕ. This is a typical SOS relaxation problem.

These approximations are discussed in Section 4.5.
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4.3 Kernelization

We assume that we have m points x1, . . . , xm such that the corresponding kernel matrix is invertible,
complemented bym′−m points xm+1, . . . , xm′ such that Vϕ is spanned by ϕ(x1)ϕ(x1)

⊤, . . . , ϕ(xm′)ϕ(xm′)⊤,
and finallym′′−m′ points such that Vϕ⊗ϕ is spanned by ϕ(x1)

⊗4, . . . , ϕ(xm′′ )⊗4. We denote byK ′ ∈ Rm
′×m′

the kernel matrix of the first m′ points. The matrix K ′ is not invertible, but K ′ ◦K ′ (with ◦ the element-
wise product) is, because ϕ(x1)ϕ(x1)

⊤, . . . , ϕ(xm′)ϕ(xm′)⊤ is a basis of V. We denote by K ′′ ∈ Rm
′×m′′

the kernel matrix between the m′ first points and all m′′ points.

We can then express for all i ∈ {1, . . . ,m′′}, ϕ(xi)ϕ(xi)⊤ =
∑m′

j=1Njiϕ(xj)ϕ(xj)
⊤, with the matrix N ∈

Rm
′×m′′

equal to N = (K ′ ◦K ′)−1K ′′.

We can write Eq. (23) with Σ =
∑m′′

i=1 αiϕ(xi)
⊗4, C =

∑m′

i=1Di⊗ϕ(xi)ϕ(xi)⊤ , and Λ =
∑m′

i=1 λiϕ(xi)ϕ(xi)
⊤,

and get the optimization problem (which is an SDP which we use in our experiments Section 5):

min
α∈Rm′′ , λ∈Rm′ , D1,...,Dm′∈Rp

′×p′

m′∑

i=1

λi

such that ∀i ∈ {1, . . . ,m′}, j ∈ {1, . . . , p′}, ψ(yj)⊤Diψ(yj)− λi + [N Diag(α)G]ij = 0

m′∑

i=1

Di ⊗ ϕ(xi)ϕ(xi)
⊤
< 0,

m′′∑

i=1

αi = 1,

m′′∑

i=1

αiϕ(xi)
⊗4

< 0.

From the vector α, we can obtain a potential minimizer using algorithms from Section 3.4, with the
possibility of full kernelization as in Section 3.3, where G ∈ Rm

′′×p′ is the matrix of evaluations g(xi, yj).

4.4 A posteriori guarantees

Since we have used relaxations of both maximization and minimization problems, we do not obtain, in
general, an upper or lower bound, except in some special cases that we now describe.

If the feature map ψ is such that K̂ψ = Kψ, then from the matrix T ∈ Rmp×mp, we get V : X → Kψ,
and thus a feasible dual point for Eq. (19). Therefore the value of the SOS formulation is always below
the true one. If Σ is represented by a singleton ϕ(x∗)ϕ(x∗)

⊤, then if V (x∗) is such that maxy∈Y L(x∗, y) =
tr[M(ϕ(x∗)ϕ(x∗)

⊤ ⊗ V (x∗))], we have a tight solution. This happens in our simulations.

If K̂ψ ) Kψ, then, when Σ is represented by a singleton ϕ(x∗)ϕ(x∗)
⊤, if V (x∗) is such that maxy∈Y L(x∗, y) =

tr[M(ϕ(x∗)ϕ(x∗)
⊤ ⊗ V (x∗))], we only know that we have an upper-bound on the true value.

4.5 A priori guarantees

In this section, we focus primarily on the situation where K̂ψ = Kψ, so we do not have to use hierarchies

on Y. If this is not the case, we can use another relaxation K̃ψ that would lead to an extra approximation
factor that goes to zero as the degree of the hierarchy on y goes to infinity. Still, the precise details are
out of the scope of this paper.

The main new result shows that for the polynomial examples in Section 3.1, the partially relaxed problem in
Eq. (21) can be solved through hierarchies with arbitrary precisions. We make the following assumptions:
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(A1) K̂ψ = Kψ, so that our relaxation is a lower-bound.

(A2) Given a one-dimensional Lipschitz-continuous function g : X → R, it can be approximated by a
quadratic form in

( ϕ
ϕ+

1

)
, where ϕ+

1 includes additional monomials, and we denote by εapp(ϕ,ϕ+
1 ) the

approximation constant so that for all g, there exists a quadratic form in ϕ̃ defined by the matrix H̃,
such that

∀x ∈ X, |g(x) − ϕ̃(x)⊤H̃ϕ̃(x)| 6 Lip(g) · εapp(ϕ,ϕ+
1 ).

It is known that, given ϕ, we can make εapp(ϕ,ϕ+
1 ) as small as desired by increasing the degree of

the polynomials, with well-studied convergence rates, through “Jackson’s inequalities” [25].

(A3) We solve the equivalent optimization problems in Eq. (22), Eq. (23), or Eq. (24) with ϕ replaced

by ϕ̃ =
( ϕ
ϕ+

)
, where ϕ+ =

(ϕ+

1

ϕ+

2

)
includes additional mononials on top of ϕ+

1 . We denote by

εSOS(ϕ,ϕ+
1 , ϕ

+
2 ) the SOS approximability ratio defined in Section 3.5 as, for anyH ∈ R(m+m1)s×(m+m1)s:

∀x ∈ X, H[ϕ(x)ϕ(x)⊤] < εSOS(ϕ,ϕ+
1 , ϕ

+
2 )‖H‖FI ⇒ ∃Ã < 0, ∀x ∈ X, H[ϕ(x)ϕ(x)⊤] = Ã[ϕ̃(x)ϕ̃(x)⊤].

We select the threshold to have a similar result for scalar-valued quadratic forms in ϕ(x)ϕ(x)⊤, as
described at the end of Section 3.6. We know from Section 3.6 that, given ϕ and ϕ+

1 , we can make
εSOS(ϕ,ϕ+

1 , ϕ
+
2 ) as small as desired by increasing the degree of the polynomials.

Note that we only need to divide ϕ+ in
(ϕ+

1

ϕ+

2

)
for the proof, as the algorithm is oblivious to this distinction.

Our main result follows.

Theorem 1 Let G be defined by a polynomial as in Eq. (16) and ε > 0. Assume (A1), (A2), and (A3).
Then there exist feature maps ϕ+

1 and ϕ+
2 such that the optimal value of the SOS primal-dual relaxation is

within ε of the optimal value.

Proof This requires obtaining SOS polynomial approximations to the matrix-valued function V obtained
in Eq. (20). To obtain a finite convergence, we would need to represent one of the many optimal V ’s
exactly. Here we will consider a specific approximation based on Von Neumann entropy regularization and
start with a smoothing lemma.

Lemma 1 Let B ∈ Sp and η > 0. Let Wη(B) be the unique maximizer of tr[BW ] − η tr[W logW ] such
that W < 0, tr(W ) = 1, and W ∈ Vψ ⊂ Rp. Then Wη is a (1/η)-Lipschitz-continuous function of B, and

0 6 max
W<0, tr(W )=1, W∈Vψ

tr[BW ]− tr[BWη(B)] 6 η log p.

Proof Since the function W 7→ tr[W logW ] is 1-strongly convex with respect to the nuclear norm on
the set {W < 0, tr(W ) = 1} [26], Wη is such that ‖Wη(B) −Wη(B

′)‖∗ 6 1
η‖B − B′‖op [27], where ‖ · ‖∗

denotes the nuclear norm. The bound is obtained by looking at eigenvalues of V and using classical bound
on entropies [28].

We can now build a feasible point for Eq. (24) which will lead to the desired bound. Following the discussion
at the end of Section 2, there are many optimal candidates for x 7→ V (x). In this proof, we propose a dual
candidate V based on maximizing approximately g(x, y) for all x ∈ X, and not only at the minimizer x∗.
While it allows to show asymptotic convergence, it is not sufficient to show finite convergence.
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We consider η > 0, and the function V : x 7→Wη

(
G[ϕ(x)ϕ(x)⊤]) obtained from Lemma 1. By construction,

∀x ∈ X, V (x) ∈ K̂ψ, V is Lipschitz-continuous with constant proportional to ‖G‖F/η (with constants that
depends on ϕ), since

‖V (x′)− V (x)‖∗ 6
1

η
‖G′[ϕ(x)ϕ(x′)⊤]−G[ϕ(x)ϕ(x)⊤]‖op 6

1

η
‖G‖FLip(ϕ).

Moreover, from Lemma 1, we have

0 6 max
y∈Y

g(x, y)− tr
(
V (x)G[ϕ(x)ϕ(x)⊤ ]

)
6 η log p. (25)

We can then use Assumption (A2) and approximate V by a quadratic form in
( ϕ
ϕ+

1

)
. We thus find a

matrix U ∈ R(m+m1)p×(m+m1)p such that all affine constraints on values of V are still satisfied, that is,
U ∈ V⊥

ϕ ⊗ Sp + Sm ⊗ Vψ and t̃r[U ]− I ∈ V⊤
ϕ , and

∀x ∈ X, ‖V (x)− U [ϕ(x)ϕ(x)⊤]‖op 6 C · 1
η
‖G‖F · ε(app)(ϕ,ϕ+

1 )

for some constant C that is independent of G and ϕ+
1 . Thus for all x ∈ X, U [ϕ(x)ϕ(x)⊤] < −C · 1

η‖G‖F ·
εapp(ϕ,ϕ+

1 )I, which implies from Assumption (A3) that

U [ϕ(x)ϕ(x)⊤] +
[
εSOS(ϕ,ϕ+

1 , ϕ
+
2 )‖U‖F +C · 1

η
‖G‖F · εapp(ϕ,ϕ+

1 )
]
I

is a sum-of-squares and satisfies all other affine constraints. We denote by T the corresponding matrix,
which is feasible for Eq. (24). Moreover, because of Eq. (25), we have, for all x ∈ X,

tr
(
T [ϕ(x)ϕ(x)⊤]G[ϕ(x)ϕ(x)⊤]

)
> min

x′∈X
max
y∈Y

g(x′, y)−η log p−
[
εSOS(ϕ,ϕ+

1 , ϕ
+
2 )‖U‖F+

C

η
‖G‖F ·εapp(ϕ,ϕ+

1 )
]
,

and thus, applying Assumption (A3) again, T◦G−minx′∈Xmaxy∈Y g(x
′, y)−η log p+

[
εSOS(ϕ,ϕ+

1 , ϕ
+
2 )(‖U‖F+

‖T◦G‖F)+C
η ‖G‖F·εapp(ϕ,ϕ

+
1 )

]
is a sum of squares, and thus we obtain an approximation of minx′∈Xmaxy∈Y g(x

′, y)

up to η log p + εSOS(ϕ,ϕ+
1 , ϕ

+
2 )(‖U‖F + ‖T ◦ G‖F) + C

η ‖G‖F · εapp(ϕ,ϕ+
1 ). Now, given ε > 0, we take

η = 1
3 log p , then select ϕ+

1 such that C
η ‖G‖F · εapp(ϕ,ϕ+

1 ) is smaller than ε/3, and finally select ϕ+
2 such

that εSOS(ϕ,ϕ+
1 , ϕ

+
2 )(‖U‖F + ‖T ◦G‖F) is less than ε/3. This leads to desired approximation within ε.

We can make the following observations:

• The hierarchy often empirically converges in finitely many iterations, but we cannot find provable
sufficient conditions. It would be interesting to see if, assuming that the polynomial is convex-concave,
we could use tools from [29] to prove such convergence.

• To obtain a convergence rate, we would need to be able to characterize the dependence of εSOS(ϕ,ϕ+
1 , ϕ

+
2 )

on ϕ+
1 , which we leave for future work.
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4.6 Special case Y = {1, . . . , p}

This corresponds to having Kψ = K̂ψ the set of PSD diagonal matrices with unit trace. We can then
simplify notations and solve

min
x∈X

max
j∈{1,...,p}

ϕ(x)⊤Gjϕ(x),

with G1, . . . , Gp ∈ Sm. We then have V diagonal, with diagonal elements vj(x) = ϕ(x)⊤Tjϕ(x), with
Tj < 0, and

∑p
j=1 Tj − I ∈ V⊥

ϕ . We thus obtain the min/max formulation corresponding to Eq. (22):

min
Σ∈Rm2×m2

max
T1,...,Tp∈∈Rm×m

tr
[
Σ ·

p∑

j=1

Gj ⊗ Tj

]
such that Σ < 0, Σ ∈ Vϕ⊗ϕ, tr(Σ) = 1 (26)

T1, . . . , Tp < 0,

p∑

j=1

Tj − I ∈ V⊥
ϕ .

We also get the minimization formulation, which is the one used in experiments, corresponding to Eq. (23):

min
Σ∈Rm2×m2 , Λ∈Rm×m

tr[Λ] such that ∀j ∈ {1, . . . , p}, Σ[Gj ] 4 Λ (27)

Σ ∈ Vϕ⊗ϕ, Σ < 0, tr(Σ) = 1

Λ ∈ Vϕ.

We also get a maximization formulation, corresponding to Eq. (24), and leading to a nice interpretation
below:

max
T1,...,Tp∈Rm×m

c such that

p∑

j=1

Gj ⊗ Tj − cI −A ∈ V⊥
ϕ⊗ϕ (28)

T1, . . . , Tp < 0,

p∑

j=1

Tj − I ∈ V⊥
ϕ .

Kernelization. Empirically, we solve

min
α∈Rm′′ , λ∈Rm′

m′∑

i=1

λi such that ∀j ∈ {1, . . . , p},
m′′∑

i=1

αigj(xi)ϕ(xi)ϕ(xi)
⊤
4

m′∑

i=1

λiϕ(xi)ϕ(xi)
⊤

m′′∑

i=1

αi = 1,
m′′∑

i=1

αiϕ(xi)ϕ(xi)
⊤ ⊗ ϕ(xi)ϕ(xi)

⊤
< 0.

We obtain the matrices T1, . . . , Tp as Lagrange multipliers for the PSD constraints.

Relationship with Putinar’s Positivstellensatz. An interesting parallel with Putinar’s Positivstel-
lensatz [30] can be made. We consider p multi-variate polynomials g1, . . . , gp, with X ⊂ Rd one of the
simple sets described in Section 3. Because of the approximation result in Section 4.5, we know that if
minx∈Xmaxj=1,...,p gj(x) is strictly positive, there is a level of the hierarchy of polynomials so that our relax-
ation also has strictly positive values, and, in fact, the converse is also true. Thus, using the maximization
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formulation from Eq. (28), minx∈Xmaxj=1,...,p gj(x) > 0, if and only if there exists c > 0 and sum-of-square
(that is, PSD quadratic forms in ϕ) polynomials q0 (represented by A), and q1, . . . , qp, represented by
T1, . . . , Tp, such that

∀x ∈ X, c =

p∑

j=1

gj(x)qj(x)− q0(x),

and such that q1(x) + · · ·+ qp(x) = 1 for all x ∈ X.

Without loss of the generality, we can take c = 1, and we have shown that

min
x∈X

max
j=1,...,p

gj(x) > 0

if and only if there exist SOS polynomials (based on the feature vector ϕ) q0, . . . , qp such that

∀x ∈ X, −1 =

p∑

j=1

(−gj(x))qj(x) + q0(x)

and q1(x) + · · ·+ qp(x) is constant on X.

Without the last constraint, this turns out to be exactly the Putinar certificate for the positivity of −1 on
the set A = {x ∈ Rd, ∀j ∈ {1, . . . , p}, −gj(x) > 0}, and thus a certificate for the emptiness of that set.
Given that

min
x∈X

max
j=1,...,p

gj(x) 6 0 ⇔ ∃x ∈ X, ∀j ∈ {1, . . . , p}, gj(x) 6 0 ⇔ X ∩A 6= ∅,

we obtained a feasibility certificate similar to the one obtained for Putinar. Note that the original Putinar
certificate does require an extra assumption, e.g., that one of the sets {x ∈ Rd, −gj(x) > 0} is bounded.

Note moreover that with our assumptions from Section 3.1, SOS-polynomials that are PSD quadratic forms
in ϕ have a slightly different meaning; that is, for example, for the unit Euclidean ball, they correspond to
(1− ‖x‖22)u(x) + v(x), where u and v are regular sums-of-squares. This leads to the following proposition
(where we have replaced gj by −gj to match classical certificates, and we have dropped the constraint of
summing to a constant, which is not necessary).

Proposition 1 Let g1, . . . , gp be p multivariate polynomials on Rd. Then, the set

{x ∈ Rd, ‖x‖22 6 1, ∀j ∈ {1, . . . , p}, gj(x) > 0}

is empty if and only if there exists polynomials u0, v0, u1, v1, . . . , up, vp that are sums-of-squares such that

∀x ∈ Rd, −1 =

p∑

j=1

gj(x)
[
(1− ‖x‖22)uj(x) + vj(x)

]
+ (1− ‖x‖22)u0(x) + v0(x).

It is weaker than Putinar’s certificate, which would not need v0, and u1, . . . , up. Still, it could be extended
to continuous situations where the set Y (and the corresponding feature map ψ) in our min-max formulation
leads to tight SOS formulations, for example, for polynomials in [−1, 1].
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Figure 2: Minimization of the maximum of 3 trigonometric polynomials on [0, 1]: two-stage approach
of [1] (left), one-stage primal-dual approach (middle), functions vj , j = 1, 2, 3 from the two-stage approach
(right).
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Figure 3: Minimization of the maximum of a bivariate trigonometric polynomial with X = Y = [0, 1].
Two-stage approach of [1] (left), one-stage primal-dual approach (right).

5 Experiments

In this section, we provide illustrative experiments where we obtain tight relaxations on small problems.
See https://www.di.ens.fr/~fbach/sos_min_max.zip for Matlab code reproducing these experiments.

Minimizing the maximum of univariate trigonometric polynomials. See Figure 2, where we
obtain a tight relaxation. We also plot the optimal function vj(x) = ϕ(x)⊤Tjϕ(x), j ∈ {1, . . . , p}, which
are non-negative and sum to one, and, at x∗, have non-zero values only for the j’s attaining the maximum
in maxj∈{1,...,p} gj(x∗).

Maximizing the maximum of bivariate trigonometric polynomials. See Figure 4 for an example
with a tight relaxation.

Min-max optimization of a trigonometric polynomial on [0, 1]2. See Figure 3 for an example with
a tight relaxation.
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Figure 4: Minimization of the maximum 4 trigonometric polynomials on [0, 1]2, with the maximizer in red.

6 Conclusion

In this paper, we proposed an SOS formulation for min-max problems over polynomials and provided a
convergence proof when degrees of polynomials are allowed to increase. This work opens up several avenues
for future work, such as (a) infinite-dimensional extensions for smooth functions by adding proper regular-
ization like done by [15] for plain minimization, (b) finding sufficient conditions for either finite convergence
or an explicit rate, and (c) exploring how the min-max approach relates to the several Positivstellensatz
from the literature.
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A Convergence rates of matrix-valued SOS

We extend the proof of [10, Theorem 1] to matrix-valued polynomials, using the same technique as [20],
and following the notations of [10] closely.
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Proposition 2 Let r > 0 and s > 3r, and ε(s) =
[(
1 − 6r2

s2

)−d − 1
]
∼s→+∞

6r2d
s2

. For any multivariate

matrix-valued trigonometric polynomial f of degree less than 2r, written f(x) =
∑

‖ω‖∞62r f̂(ω)e
2iπω⊤x,

∀x ∈ [0, 1]d, f(x) < ε(s)
∑

‖ω‖∞62r, ω 6=0

‖f̂(ω)‖op ⇒ f is a sum of squares of polynomials of degree s.

Proof We consider the following integral operator on 1-periodic matrix-valued functions on [0, 1]d, defined
as

Th(x) =

∫

[0,1]d
|q(x− y)|2h(y)dy, (29)

for a well-chosen 1-periodic function q which is a trigonometric polynomial of degree s. The function
x 7→ |q(x − y)|2 is an element of the finite-dimensional cone of SOS polynomials of degree s, thus, by
design, if h has positive semi-definite values, then Th is a sum of squares of matrix polynomials of degree
less than s. We will find h such that Th = f .

In the Fourier domain, since convolutions lead to pointwise multiplication and vice-versa, we have for all
ω ∈ Zd, where q̂ ∗ q̂(ω) is a shorthand for (q̂ ∗ q̂)(ω) :

T̂ h(ω) = q̂ ∗ q̂(ω) · ĥ(ω),

and thus, the candidate h is defined by its Fourier series, which is equal to zero for ‖ω‖∞ > 2r, and to

f̂(ω)

q̂ ∗ q̂(ω)

otherwise. If we impose that q̂ ∗ q̂(0) = 1, we then have

f − h =
∑

ω∈Zd

f̂(ω)
(
1− 1

q̂ ∗ q̂(ω)
)
exp(2iπω⊤·) =

∑

ω 6=0

f̂(ω)
(
1− 1

q̂ ∗ q̂(ω)
)
exp(2iπω⊤·).

We then get:

sup
x∈[0,1]d

‖f(x)− h(x)‖op 6
∑

ω 6=0

∥∥f̂(ω)
∥∥
op

· max
‖ω‖∞62r

∣∣∣ 1

q̂ ∗ q̂(ω) − 1
∣∣∣. (30)

With the choice q̂(ω) = a
d∏

i=1

(
1 − |ωi|

s

)
+
, with a a normalizing constant, we get q̂ ∗ q̂(0) = 1 and

max‖ω‖∞62r

∣∣ 1
q̂∗q̂(ω) − 1

∣∣ 6 ε(s) (see [10] for details). Thus, for all x ∈ [0, 1]d, using Eq. (30) and the
assumption on f :

h(x) = f(x)− (f(x)− h(x)) < ε(s)
∑

ω 6=0

‖f̂(ω)‖op − ε(s)
∑

ω 6=0

‖f̂(ω)‖op = 0,

which leads to the desired result.
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Figure 5: Two-stage approach for trigonometric polynomials in one dimension, with alternating optimiza-
tion and r = 2, with 6 iterations.

B Alternating optimization for the two-stage approach

In this section, we explore briefly the possibility evoked in Section 4.1 of trying to minimize Eq. (17) with
respect to Σ as well. This is a non-convex problem, and alternating optimization has a particularly simple
formulation. Indeed, in the kernelized version in Eq. (18), this corresponds to replacing µ by the previous
value of α and iterating. Since the first upper-bound is minimized exactly, at the second iteration and all
later ones, the matrix Σ corresponds to a Dirac measure, and the upper-bounding polynomial is so that its
value at this point is minimized. This is shown empirically in Figure 5: even in the good attraction basin,
the alternating optimization does not lead to the global optimum.
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hypercube. Optimization Letters, pages 1–16, 2022. (cited on pages 8 and 9)

[22] Carsten W. Scherer and Camile W. J. Hol. Matrix sum-of-squares relaxations for robust semi-definite
programs. Mathematical Programming, 107(1-2):189–211, 2006. (cited on pages 8, 12, and 13)

23



[23] Boris Muzellec, Francis Bach, and Alessandro Rudi. Learning PSD-valued functions using kernel
sums-of-squares. Technical Report 2111.11306, arXiv, 2021. (cited on pages 8, 12, and 13)

[24] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press,
1996. (cited on page 9)

[25] Michael Iosifovich Ganzburg. Multidimensional Jackson theorems. Siberian Mathematical Journal,
22(2):223–231, 1981. (cited on page 15)

[26] Yao-Liang Yu. The strong convexity of von Neumann’s entropy. Unpublished note, 2013.
http://www.cs.cmu.edu/~yaoliang/mynotes/sc.pdf. (cited on page 15)
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