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A STRUCTURE AND ASYMPTOTIC PRESERVING SCHEME FOR THE
VLASOV-POISSON-FOKKER-PLANCK MODEL

ALAIN BLAUSTEIN' AND FRrRANCIS FILBET?

ABSTRACT. We propose a numerical method for the Vlasov-Poisson-Fokker-Planck model written as an
hyperbolic system thanks to a spectral decomposition in the basis of Hermite functions with respect to the
velocity variable and a structure preserving finite volume scheme for the space variable. On the one hand,
we show that this scheme naturally preserves both stationary solutions and linearized free-energy estimate.
On the other hand, we adapt previous arguments based on hypocoercivity methods to get quantitative
estimates ensuring the exponential relaxation to equilibrium of the discrete solution for the linearized Vlasov-
Poisson-Fokker-Planck system, uniformly with respect to both scaling and discretization parameters. Finally,
we perform substantial numerical simulations for the nonlinear system to illustrate the efficiency of this
approach for a large variety of collisional regimes (plasma echos for weakly collisional regimes and trend
to equilibrium for collisional plasmas) and to highlight its robustness (unconditional stability, asymptotic
preserving properties).
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1. INTRODUCTION

The Vlasov-Poisson-Fokker-Planck system provides a kinetic description of a gas constituted of charged
particles, let us say electrons and heavy positive ions, interacting through a mean electrostatic field:
of

1
Y o Vaf + LE-Vof = ~dive (f + Ty Vof)
ot m T

(1.1)
E=-Vz® ; —0Az® =qg(n—mn) ; n—/ fdv.
R3

In (1.1), f(t,z,v) is the distribution of electrons over the phase space (x,v) € T? x R? at time ¢ > 0.
Field interactions are taken into account thanks to a coupling between kinetic and Poisson equations (first
and second line of (1.1) respectively). The coupling displays several constants: vacuum permittivity &g,
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elementary charge ¢, mass m of an electron as well as macroscopic densities n(t, ) of electrons and n;(x) of
ions. Thermodynamic effects are taken into account thanks to a Fokker-Planck operator, on the right-hand
side of the kinetic equation, where appears the relaxation time 7 > 0 of electrons due to their collisions
with the ionic surrounding bath described by a spatially homogeneous temperature Ty > 0.

To investigate the physical behavior of the solution to system (1.1), two important quantities will be
considered [21]. The first one is € the square root of the ratio between the mass of electrons and positive

heavy ions, given by
m
€= ,/— < 1,
my

whereas the second one is 7(¢) > 0, the ratio between the elapsed time between two collisions of electrons
and the observable time. We focus on a situation where the one dimensional Vlasov-Poisson-Fokker-Planck
system can be reformulated using these parameters as

EOf + VOuf — DudOuf = %

—0%0 = p—pi, pt,z) = / flt,z,v)dv.
R

This system is completed with the following condition, which ensures uniqueness of the electrical potential

)
(1.3) /Tgb(t,x) dez = 0.

Since we focus on the situation where the electron to ion mass ratio is very small, it allows to describe ions as
a steady thermal bath. More precisely, ions are supposed to be fixed with a prescribed temperature Ty > 0
and a density p; > 0, which is an integrable function over T. Furthermore, the following quasi-neutrality
assumption is satisfied for all time t > 0

p(t,x)de = [ pi(x)ds
T T

as soon as this condition is initially verified. As already mentioned, the other scaling parameter 7(g) > 0
stands for the ratio between the time which separates two collisions of an electron with the ionic background
and the timescale of observation. In this work, we suppose

811 ('Uf + TOavf) )
(1.2)

T(e) =T0€.

Therefore, as € goes to zero, we expect that the couple (f, ¢), solution to (1.2)-(1.3), converges to ( foo, Poo)
given by

1
Uaxfoo - 8x@f)ooavfoo = —0y (Ufoo + TOavfoo) s

70
—8%@500 = Poo = Pi, PoolT) = / foolz,v)dv.
R
Actually, the equilibrium state f. is uniquely determined as follows
fOO(x7U) = poo(x) M(U) ,

where M denotes the Maxwellian with temperature Tj

(1.4) M(v) = \/2717*% exp <—|”|2> ,

and where po, solves
= (52,
(1.5) T

completed with the following condition on the constant c,o > 0

Poo > /
Co | €exp| —= | dx = pidex.
/1r ( Ip T

Therefore, the electrons’ temperature relaxes to the background temperature whereas their spatial distri-
bution converges to a Maxwell-Boltzmann equilibrium.
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Let us point out that there is an attractive version of the Vlasov-Poisson-Fokker-Planck system (1.2)-(1.3)
which is also widely used in stellar physics. For that case the repulsive electrostatic force is replaced by
the attractive gravitational force, responsible for a change of sign in the Poisson equation. In this paper,
we only consider the repulsive case. The numerical resolution of the system (1.2)-(1.3) shares the same
difficulties as most of kinetic equations: high dimensionality, presence of various scales, etc... Several
numerical methods have been developed for (1.2)-(1.3), we mention for instance [27, 39, 14, 15, 9, 32].
These numerical schemes are either deterministic or stochastic, with an effort to capture some physical
phenomena associated to weakly collisional plasmas such as Landau damping or two-stream instability,
occurring for short time range, before being canceled by collisions. More recently, dynamical low-rank al-
gorithms have been proposed [19, 13], they decouple the dimensions of the phase space allowing to reduce
the computational cost.

Here, we want to design a numerical scheme preserving the large-time behavior of solutions to the Vlasov-
Poisson-Fokker-Planck equation or related nonlinear kinetic models. More precisely, we want to describe
accurately the transient regime in which transport effects dominate and where the distribution function
exhibits filamentation, but also large time scales in which collisions take over, forcing the relaxation of the
distribution to thermal equilibrium, given here by a Maxwell-Boltzmann distribution. Let us remind that
when we neglect both the coupling with the Poisson equation and the free transport term, a fully discrete
finite difference scheme for the homogeneous Fokker-Planck equation has been proposed in the pioneering
work of Chang and Cooper [11]. This scheme has nice properties since it preserves the stationary solution
and the entropy decay of the numerical solution. Later, finite volume schemes preserving the exponen-
tial trend to equilibrium have been studied for nonlinear convection-diffusion equations (see for example
[3, 8, 10] and more recently [24, 18, 6] in the frame of hypocoercive methods). Let us also mention that
in [36], authors investigate the question of describing correctly the equilibrium state of nonlinear diffusion
and kinetic models for high order schemes.

More recently, in our previous work [7], we have proposed and carefully studied a numerical scheme
based on Hermite polynomials in the velocity space for the linear Vlasov-Fokker-Planck equation when
the electric field Fo, = —0,0 is prescribed. This approach preserves the equilibrium and thanks to a
discrete hypocoercive method, it is shown that numeric solutions relax exponentially fast to thermodynamic
equilibrium. When collisions are neglected, Hermite decomposition has also been successfully applied to
approximate the Vlasov-Poisson system on a finite time interval [23, 4, 5]. Therefore, our goal is to provide
here an efficient approximation of the nonlinear Vlasov-Poisson-Fokker-Planck system (1.2)-(1.3) able to
describe accurately both weakly and strongly collisional regimes and to preserve the long time behavior of
the solution. To illustrate the feature of our numerical scheme, we will analyze the asymptotic behavior
of the solution given by the discrete linearized system and then propose various numerical experiments in
various regimes.

In order to design a well-balanced approximation for (1.2)-(1.3), we consider an equivalent reformulation
where we define a potential ¥ = ¢ — ¢, and replace the electrical potential ¢ in the equation, it yields
that p; is now replaced by the quantities at equilibrium as follows,

5atf + Uazf - 8x¢ooavf - 8x¢avf = iav (Uf + Toavf) )

(1.6) 0
_8§wzp_poo» p(t,l’):/Rf(t,J),U)dU,

coupled with the condition on v,

(1.7) /Tw(t,:n) dz = 0.

The equilibrium to (1.6)-(1.7) is now characterized by (fso, %oo) Where 1o, = 0.
The key-estimate to prove the trend to equilibrium of solutions to (1.6)-(1.7) is given by

d 1
where H(f, foo) denotes the free energy
W fo) = [ o <f> Fdodv + (000 e, -
xR \Joo 2Ty
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and Z(f, f~) is the entropy dissipation
2

“f]; foodzdv.

The free energy estimate is said to be ”hypocoercive” since we have
I(f(t) fx) = 0 = f(t,o,v) = p(t,o) M(v), V(z,v) €T xR,

meaning that the entropy dissipation Z controls at most the distance between f and its associated local
equilibrium p M, giving no straightforward information on the long time behavior of p.

In the linear case, corresponding to ¢» = 0 in (1.6), L. Desvillettes and C. Villani have proposed a general
method, based on the latter relative entropy estimate and logarithmic Sobolev inequalities, to overcome
this degeneracy in the position variable [16]. This approach has been widely explored in the last decade
[38, 17]. However, when the Vlasov-Fokker-Planck equation is coupled with the Poisson equation for the
electrical potential, a different functional framework, based on weighted L? spaces, is applied motivated by
the following estimate when f is near equilibrium [29, 30]. Indeed, plugging the following formal expansion

into the free energy
f ) [f = fol?
1 ~ — _|- [ S S
and using that mass is conserved for solutions to (1.6)-(1.7), we define a new functional, named the
linearized free energy, as

(1) E®) = 176) = fooagrary + 7 1080 e

Unfortunately, this functional is not dissipated for the solution to the nonlinear system (1.6)-(1.7), but
only for its linearized version given by

O+ 0Onf — Dutoo Oof — Ogth Dyfoo = Tloav (wf + Toduf) .

I(f, fo) = ATy /

TxR

(1.9)
—321/) = p—pPoo, ptz) = /Rf(t’$7v)dv

coupled with the condition on v,

(1.10) / Ot ) do =

This yields for the solution (f,%) to (1.9)-(1.10) (see Proposition 2.1 for a complete proof)

de- 2 ()]

1.11 - —&(t
( ) 2 dt ( ) ETO JTxR

The purpose of this paper is to design a numerical scheme for the nonlinear Vlasov-Poisson-Fokker-
Planck system (1.6)-(1.7) for which such estimate occurs on its linearized version (1.9)-(1.10). To this aim,
we propose a simple time splitting scheme, where the first stage consists in solving the linearized system
(1.9)-(1.10), whereas the second stage solves the remaining quadratic part of (1.6)-(1.7), that is

eof — 0¥ 0u(f — fo) = 0,

foodzdv.

for which % is unchanged.

This approach has several advantages from the computational and stability point of view. Indeed, both
steps will be fully implicit in time allowing to use a large time step, uniformly with respect to the parameter
€. Moreover, the linearized equation is autonomous, hence it requires to solve the same linear system at
each time step, which can be done using a direct solver. Furthermore, solving the time dependent implicit
second step is in fact negligible in terms of computational costs since the associated system is trivially
invertible due to the Hermite discretization. Finally, the numerical approximation of the linearized system
allows to capture a consistent asymptotic profile when € — 0 and it also preserves the free energy estimate
as in [7], which treats the case of a Vlasov-Fokker-Planck equation without a coupling with Poisson.

In Section 2 we propose a numerical discretization of the full model (1.6)-(1.7) based on Hermite’s
decomposition in the velocity space and finite volume scheme for the space discretization. Then, in Section
3, we prove quantitative properties on its linearized version (1.9)-(1.10). More precisely, we first prove a

discrete version of the free energy estimate (1.11) and then, using discrete hypocoercive methods, we prove
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the exponential trend to equilibrium with rate 1/e, this uniformly with respect to discretization parameters.
This result constitutes a theoretical proof of the asymptotic-preserving properties of the method at the
linearized level. Finally, in Section 4, we carry out numerical experiments which illustrate the robustness
of our scheme in a wide variety of situations ranging from near-to-collisionless regime 1 < 7y to the stiff
limit € ~ 0 and including inhomogeneous ionic background. In particular, we highlight the asymptotic
preserving properties of the method. Furthermore, we observe formation of nonlinear echoes and study
their suppression in weakly collisional settings as well as simultaneous vortex/filamentation formation for
inhomogeneous ionic background. These phenomena have drawn intense mathematical interest in the
kinetic community over the past decade [2, 26, 12]. With this work, we aim at taking part in these efforts
by proposing numerical methods capable to capture these phenomena efficiently.

2. NUMERICAL SCHEME

In this section, we will introduce our numerical method. We follow the lines of our previous work for
the linear Vlasov-Fokker-Planck equation [7] and then propose a discretization of the Poisson equation
allowing to preserve the energy estimate for the linearized problem (1.9)-(1.10). Finally, the nonlinear part
is discretized using an implicit scheme.

2.1. Hermite’s decomposition for the velocity variable. Let us first focus on the discretization of the
velocity variable. It consists in performing a spectral decomposition of the distribution f into its Hermite
modes (¥y),cy defined as

Uy(v) = Hy (

and which constitute an orthonormal system for the inverse Gaussian weight since it holds

/R U (v) Uy (v) ML (v)do = 6y,

where M is the Maxwellian corresponding to the stationary state of the Fokker-Planck operator (1.4) and
0k, the Kronecker symbol (6z; = 1 when k = [ and d;; = 0 otherwise). In the latter definition, (Hy);cy
stands for the family of Hermite polynomials defined recursively as follows H_; = 0, Hy = 1 and

EH(E) = VEH, 1(§) + VE+THea(§), Yk >0.

Let us also point out that Hermite’s polynomials verify the following relation
Hi(6) = VkH-1(€), Yk = 0.

The Hermite system arises naturally in our context since it offers a simple discrete reformulation of the
L? ( fo_ol)-norm which appears in the key estimate (1.11), indeed it holds

I1f(#) HL2 = > lCk(t) HLz (o)

keN
where C' = (Cy);cn stand for the Hermite components of f

f(t z,v) Z Ck (t,z) Ug(v).
keN
As one can see in the latter relation, each term of the sequence C' = (C});cy naturally belongs to the
weighted space L? (pgol). From the numerical point of view, working in weighted spaces induces difficulties
when it comes to integro/differential manipulation such as integration by part. This is the reason why

rather than discretizing coefficients C' = (C},);cny, We consider their re-normalized versions D = (Dy);cn
defined as

(2.1) Fltaw) = Vou(@) S Dilta) Uyv).
keN
According to latter considerations, renormalized Hermite coefficients D = (Dy); o verify
IF @72 (szry = D NDeB 2y -
keN

To sum up, renormalized Hermite coefficients play a fundamental role in our analysis for two reasons: they

offer a discrete reformulation of the key quantity £(¢) given by (1.8) and they belong to the unweighted

L?-Lebesgue space over T. Moreover, there is another benefit coming out of this choice: thanks to the
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properties of Hermite polynomials, one can see that Hermite functions diagonalize the Fokker-Planck
operator since it holds

aU[U\I/k + Toav\llk] = —kVU,.

Therefore, following [7], we substitute the decomposition (2.1) in the first line of (1.6) : using the identities
Es = 01000 and poo Foo = T Ozpoo, we get that D = (Dy)ren satisfies the following system

k k

e Dy + VEADy | — VE+ 1A Dy + 4/~ 0xb D1 = —— Dy,  VkeEN,

(2.2) T 0
Dy(t=0)=D)°, VkeN,

where we set D_; = 0. Due to our unweighted L2-framework, the latter formulation enjoys a nice duality
structure since A and A* are adjoint operators in L? (T). More precisely, A and A* are given by

E
Au = +/Tp o — —2 i,
v Voo 2\/Tou

F

Fu = —/Ty 0pu — )
\.Au 0 Ozt 2mu

Notice that both operators A and A* may also be rewritten as follows

( u
Au = +/T OO@C( ) ,
0p Ve
To

o0

To conclude, we denote by Dy, the Hermite decomposition of the equilibrium f... It is determined for all

k € N by

(2.3) D s =

)

VP, itk=0,
0, else.

2.2. Poisson equation formulated in the Hermite framework. To compute the electrical potential
1, we will reformulate the Poisson equation in such a way that the free energy estimate (1.11) for the
linearized system (1.9)-(1.10) is satisfied. The main idea to preserve such estimate is to construct a scheme
for which it is possible to perform at the discrete level analogous calculations as the ones needed at the
continuous level to derive the free energy estimate (1.11). To this aim, we introduce a modified potential

w given by
VP,

— o0
w = T, Y.
Using the definition of the operator A, the electric field £ = —3d,% is now given by

VI E = —\/py 0wt = —/Tp Aw

and the modified potential w solves the modified Poisson equation

(2.4) (A* pot A)w = Dy —/p,, -
This new formulation will allow us to easily construct a numerical scheme for the Poisson equation pre-
serving the key energy estimate (1.11), where in this framework, the linearized system (1.9)-(1.10) rewrites

1 k
oDy + - (VEAD: = VE+ 1A' Dy + Awdiy) = ——— Dy, VheN,
0

(2.5) (A* psd A) w = Dy — \/p, »

Dy(t=0)=D)°, VkeN,

completed with the condition

(2.6) /Tr \/‘;OO dz = 0,



and where the linearized free energy £ reads

(27) 5<t>=;(|D<t>— Daollfs + H

2 )
L2(T) ’

where || - || 2 stands for the overall L2-norm with no weight
IDIF2 = > I1DxllFer -
keN

From this reformulated equation, we first prove the free energy estimate on the linearized system (1.9)-
(1.10).

Proposition 2.1. Consider a formal solution (Dy)ken to (2.5) such that for all t > 0,
Y kIDk®)F2 < oo
k>0
The following free energy estimate holds for allt >0

d
(23) GEO + o 3 kDO = 0.
keN*

Proof. We multiply equation (2.5) by Dy — Dy , sum over all k € N, integrate in € T and then rearrange
all the terms, this yields

GIP=Dalts + £ [ AwDide = —— 3 KIDul g

2 dt et

We rewrite the integral term in the latter estimate using the duality structure and the equation on Dy

/Aledx = /wA*Dldx =c /wat(Do —V/Py) da.
T T

T
Using the reformulated Poisson equation in (2.5) and the duality structure again, we deduce

s/wat(Dg—\/ﬁ )dx = s/w&g (A pd A wda = edHAw
T o T 2 dt

It finally yields the free energy estimate

d

GEO = = 3 kDO Eaqr
keN*

O

Let us now draw two conclusions from these considerations. On the one hand, we observe that the
estimate given in Proposition 2.1 is not sufficient to prove convergence of the solution to the linearized
system (2.5) towards the stationary state (2.3) because of the lack of coercivity. To bypass this difficulty,
we will define a modified relative energy H as

(2.9) H(t) = E(t) + Bo (A"D1(t), u(t)) 2(ry
where By > 0 is a small free parameter and u is solution to

.A*.AU = D(]—\/Z)

0 ?

/u\/ﬁoodm =0.
T

To get the convergence to the solution to the linearized system (2.5) to the stationary state, the strategy
consists in proving that H and £ are equivalent and that there exists a constant x > 0 such that

d
dt

We do not detail these results in the continuous case since they constitute the object of Section 3 in the
discrete framework.

—H(t) < —g min (70,761) H(t).
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On the other hand, from the reformulated Poisson equation for the linearized system (1.6)-(1.7), we are
now able to write the Hermite method for the full Vlasov-Poisson-Fokker-Planck system, which reads

( [k k
0Dy + VEAD,_ 1 — VE+1A* Dy + p—AwD,H =——Dy, VYkeN,
0

(e 9]

(A" 9! A) @ = Do /.

Dy(t=0)=D)*, VkeN,

completed with the condition

w
—— dz = 0.
/T\/ﬁoo

This latter formulation is equivalent to the initial system (2.2). The Hermite spectral method now consists

in considering a finite number of modes Ng. Therefore we solve for k =0,..., Ny,
(
[k k
€Dy + \/%.ADk_l — Vk+1A*Dyq + pi-AWDk—l = —?Dk,
[e'¢) 0
(2.10)

(A" pss A) w = Do = /p, s

Dk(t = 0) = Dg’a s

where we set D_1 = Dy, 4+1 = 0. It is worth to mention that Proposition 2.1 also holds true for (2.10).
Indeed, this truncation does not modify the above computations on the free energy estimate.

In the following subsection, we design a well-balanced finite volume discretization of the nonlinear system
(2.10) such that the associated approximation of the linearized system (2.5) satisfies the estimate given in
Proposition 2.1 (Section 3).

\

2.3. Finite volume discretization for the space variable. We now turn to the phase space and time
discretization of the system (2.10) and propose a well-balanced time splitting scheme.

To discretize the phase space domain, we fix a number of Hermite modes Ny € N*. Then, we consider an
interval (a,b) of R and for N, € N*, introduce the set J = {1,..., N;} and a family of control volumes
(Kj)jej such that K; = }azj_l/% xj+1/2[ with z; the middle of the interval K; and

a =T/ <z < T3/2 < ... < Tj—1/2 <z; < Tjy1/2 <...<zpn, < TN,+1/2 = b.
Let us set )
Azj=xj 19— Tj_1/9, for j€T,
Azjii/0 =i — x5, for 1< j< N, —1.
We also introduce the parameter h such that

h = max Az, .
JjeT
To discretize the time variable, we fix a time step At and we set t” = nAt¢ with n € N. Our time dis-
cretization of RT is then given by the increasing sequence of (t"),en.

Dn+1/2 _pn 1

- N 1 _|_AhD6L+1/2 B \/§A2D2"+1/2 —|—Ahw2+l/2 _ _?OD?HQ’
Dyt _ pp 1/2 1/2 k 1/2

ek Tk 4 VEA, DI - VR 1AL D = — S DY fork £ 1,

(2.11) At 70
(G ot An) ™% = DT =

+1/2 —
> Ay pll =0,
JjeJ

for k € {0,..., Ny} and DZH/Q = 0 when k > Ny and k = —1. Moreover, operator Ay, (resp. Aj) is an
approximation of the operator A (resp. A*) given by

(2.12) Ap = (Aj)jes and A} = (Af)jer
8

0 ?




and where for D = (Dj),ec7 it holds

Dy —Djor Ewy .
> D,
2Ax; 2Ty i J€T,

Djy1—Dj Ey .
AD = —\/Ty 2L ol p e,
; " " 9Ag, >vTo jeJ
whereas the discrete electric field Fy, ; is given by
Poojt1 — Pooj-1 _ 270 VPosjt1 ™ VPooj-1
QAIL’]' \/ﬁoo,j 2 Al‘j ’

A;D = /T,
(2.13)

(2.14) Eoj = —

where po j is an approximation of the stationary density p on the cell K;. This latter formula is consistent
with the definition of \/p__ = exp (—¢oo/(270)) and the fact that
1 Ours = 1 9
2Ty "% b, "V Poo
furthermore, our discretization of the field E., allows to preserve the equilibrium since it ensures
VPooji1 ~ VPoo j-1
2.15 = \/Tp —2 S
( ) 0 2Ax] \/7 foo ]

This first step requires the numerical resolution of a linear system which does not depend on the time index
n+1 /2)

=0, VjeJ.

n. Hence a direct solver based on LU factorization is applied to get the solution (D"+1/ 2 wy,

On the other hand, we solve the nonlinear part using again a fully implicit Euler scheme

n+l _ pyn+1/2
DO - DO ’

1/2
wn-l—l _ wn+ /

(2.16) he The
prtl _ pntl/2 3
g% b =A™ (DY) — Dooi1) =0, ifk>1,
At Poo ’
n+1 . n+1/2 n+1/2
for k € {0,...,Ng} and D;"" = 0 when k > Np. Observe that since w, and D, do not change

during this second step, the latter system is trivially invertible and hence does not require any linear solver.
In the next section we analyze the linearized step (2.11) for which we prove exponential relaxation towards
equilibrium in the long time regime. Then, in Section 4, we will perform numerical simulations on the full
nonlinear scheme (2.11)-(2.16).

3. TREND TO EQUILIBRIUM OF THE DISCRETE LINEARIZED SYSTEM

In this section, we only consider the numerical scheme applied to the linearized system (2.5) correspond-
ing to the first step in the splitting method (2.11)-(2.16), that is,

Dn+1 _D{L 1 1 1 1 1
51T + AhD8+ - \/iAZDS+ + AthJr — —?D?+ )
0
Dn+1 _Dn k
&'kT‘i‘\/».Ath—‘rl \/k"‘lA*DZj_—ll :_7Dz+1’f0rk7£17
70

(3.1)
( hpoo Ah) s ‘Dg—i_l_\/ﬁoo’

+1 _
ZAQ:] m OOJ—O,
jeT

for k € {0,..., Ny} and DZ'H = 0 when k > Ny and kK = —1. Moreover, we define the discrete free energy
of the solution D" = (D}})xen to (3.1) as follows

| )

12(T) 7

|

OO

(3.2) & = (HD" Deolliz +



where

Ny
2 2 2
IDIE = > Dy »  and (| Dellipmy = > 1Dr Ay,
k=0 JjeTJ
and where D, is defined as
VP, if k=0,
Doo,k = =

0, else,

and recall [7, Lemma 3.3] that Aj, and A}, are adjoint operators in *(T).

Then, we prove that the solution to the fully discrete system (3.1) converges exponentially fast to its
discrete equilibrium, which is consistent with the continuous system.

Theorem 3.1. Consider the solution (D")nen to (3.1). Then the following discrete energy estimate holds
for alln >0

e <3 (145 min(m,75") At) €,
€
where k > 0 depends only on p;, Ty and |b — al.

To show this result, we couple a discrete version of the free energy estimate in Proposition 2.1 with
hypocoercive estimates for the discrete version of the modified relative entropy functional defined in (2.9).

Before to give the proof, let us comment this result. On the one hand, we emphasize that the rate of
convergence is uniform with respect to discretization parameters. On the other hand, the convergence rate
is proportional to 1/e, regardless of discretization parameters. This last property ensures that the scheme
for the linearized model is asymptotic preserving in the long time regime. It also ensures that our method
applied to the linearized model is unconditionally stable, regardless of both scaling and discretization
parameters. To conclude, we emphasize that the explicit dependence with respect to 7y is coherent with
the results for the continuous model [30].

3.1. A priori estimates. In this section, we prove a discrete free energy estimate on (€"),cn analogous
to the one in Proposition 2.1.

Proposition 3.2. Consider the solution (D")nen to (3.1). The following discrete energy estimate holds
for alln >0

5n+1 _&n

1 X 2
A T ARE = kZlk 1D iz »

where Ry, is the following positive remainder due to numeric dissipation

Ry =

1 | D"+t = Dn
2 H At

At p..

? HAh (wit! —wp)
l2

12(T)

Proof. To compute the variations of | D™ — D||7 between time step n and n + 1, we take the [%(T) scalar

product between the first line in (3.1) and D?'H — Do 1, the second and DZ'H — Dy, and sum over all
k €{0,...,Ng}, this yields

1 2 2
5 (107 = D[l = 10" = Dol + [ D74 = D) = T + T,
where 77 and Zy are given by
(3.3)
1 & ) 1 &
L= = 3k DF g — > (Ve Dt — VE+14; DL D —Doo,k>l2m ,
k=0 k=0
To = — 1 <A wn+1 Dn+1>
2 = - h Wy, ) 1 12(T) °

where 7o stands for the contribution of the electric field and Z; gathers all the other terms.
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First, we rewrite Z; using that A, and Aj are adjoint in I2(T) and that Ay, Do0 = 0 according to (2.15)
1 X 2 1
_ 1 1 1 o +1 +1
L =- £To Zk HDZJF Hz?(T) e Z\/E<Ah DZ: ’ DZJF >z2(1r) —vk+1 <DZ+1 » AnDy; >l2('[r) :
k=0 k=0

Hence, splitting and re-indexing the second sum in the latter relation, we see that it is in fact zero.

Therefore, Z; rewrites as follows
Ny

1 2
_ +1
o = T l;)k HDZ HZQ(T) :
Furthermore, considering the case k¥ = 0 in the second equation of system (3.1), we deduce that Z,
rewrites as follows "
n
Iy = — <w2+1 Dy” =Dy _D6L> )
Then, we replace Dg'H — Dy in the latter relation using the third line in (3.1), it yields
Wit —n
I = - <WZLH’ ( ch;lAh)hh> :
At
12(T)

Using that 4;, and AF are adjoint in I2(T), we deduce the following relation
h
2

R
24t \/ﬁoo 12(T) \/'Boo 12(T) \/ﬁoo 12(T)
which concludes the proof. U

3.2. Proof of Theorem 3.1. We are now ready to proceed to the proof of Theorem 3.1. To do so, we
develop a discrete hypocoercive technique which consists in introducing the analog H"™ of the continuous
modified entropy functional defined in (2.9). It reads as follows

(3.4) H" = E" + Bo (A} D up)izry
where (3 is a positive constant and where uj is solution the solution to
Ay Anf = DY — Vo
ZA:rj u \/ﬁoo’j =0.

JjeT

Let us first recall useful estimates on u} [7, Lemma 3.5]

(3.5)

Lemma 3.3. For each n € N, the solution uj to (3.5) satisfies

IR whllizcry + [Maubllizery < CIDG — Vool
Dyttt — D

utt — (1 n
Ap (W) < min ( HD1+1H12(T) , C H Al
() :

for some constant C' > 0 only depending on p; and Tp.

(3.6)

z2<1r>> ’

Among other, the latter Lemma ensures that the modified relative entropy functional H™ is in fact
equivalent to the energy £" for By small enough.

Lemma 3.4. For all p; and Ty > 0, there exists a positive constant B, such that for all By € (0, B,), one
has

1
(3.7) angmgzsn, Vn e N,
where E™ and H™ are given by (3.2) and (3.4).

Proof. Since Ay, and Aj are adjoint in [*(T), applying Cauchy-Schwarz inequality and the first line in (3.6),
we obtain
(A5, DY, up)pp | < C D" — Deolliz s
which allows to bound the additional term in the definition of H™ and therefore conclude the proof. O
11



Building on the latter lemmas, we now prove that H" verifies a dissipation relation

Proposition 3.5. Consider the solution (D"),en to (3.1). The modified relative entropy functional defined
by (3.4) wverifies for all m > 0

an—H — " K ) . i1
— < - mln(To,TO )7—[" ,

for some positive constant k depending only on p; and Ty and |b — al.

Proof. We first focus on the additional term (Aj DY, uj), (1) In the definition of H™. We write its discrete
time derivative as follows

1 . Dt _ pr ul ™t —
- Dn+1 n+1 o XD n _ * 1 1 n+l * Dn h h
At <<Ah LY >l2(T) (ALDY uh>l2(T)> A At »Uh 12(T) A AL At 12(T)

and replace the discrete time derivative of D} in the latter right-hand side thanks to the first line in (3.1)

1 n n n n
(3.8) A7 (<AZD1+1,uh+1>ZQ(T) — (A5, 1,uh>12m) =N+ %+ T,
where J1, J2 and J3 are given by
( 1 * n n
Jo= - - (AR An (D5 = V/po) uh+1>12(11‘) ’
1 * n n
Jo = = - <Ah Ahn wh+17 uh+1>l2(T) ’
1 *\2 yn+1 1 * yn+1  n+l * N uZJrl 7“2
T3 = +g V2 (Af)? Dy — 7AhD1 ) Up, + (A}, DY, A .
( 0 B(m 2(T)

First, Ji is the desired dissipation term: since Aj, and A} are adjoint in [?(T) and according to (3.5), it
holds

1 n * n 1 m 2
J = e <Do+1 = VPoo hAhuh+1>l2('ﬂ') - e HD0+1 _\/ﬁoole(T) ’

Then, J> takes into account the contribution of the electric field. As it turns out, it is also a dissipation
term: thanks to (3.1) (third line) and (3.5), we have A} Ay up ™ = (A} pot Ap) wi ™, which yields

[e.e]
2
1 1| Apwpt?
Ty = — L™ (A A gy = — 2| |
c 9] 12(T) c \/ﬁoo -
Finally, J3 gathers all terms without good sign. Since A;, and Aj are adjoint in {*(T), it rewrites
V2 +1 2, n+l 1 +1 +1
j?) :7 <D§ ) (-Ah) UZ >l2(']l') - % <D? ) Ah ’U,Z >l2(']I')

n+1 n n+1 n
D+l Up — — Up pr _ pn+l Up — — Uy .
+ < 1 3 Ah < At + 1 1 5 .Ah At
12(T) 12(T)

We estimate the first two terms in the latter right-hand side using Young inequality and the first line in
(3.6). The last two terms are estimated applying Cauchy-Schwarz inequality and the second line in (3.6).
Hence, we get

1C n+1 2 c n+12 1 n+1)2 ¢ n+1 n||2
Js < E;OUHDO — Dosollizmy + e 1Dy li2ery + = 1D Mlizery ) + A7 19" = D"z -
for any positive 7, for some positive constant C' depending only on p; and Ty and with 79 = min(1, 79).
Taking the sum between (3.8) multiplied by By and the estimate in Proposition 3.2 and replacing J1, J2

and J3 with the latter estimates, it yields

Hn+1 _ Hn
= b At(1- h <
N + At (1-Cpy) Ry <
Ny n+1
1 C 2 c Anw
- (1-= S|yt L= —n ) |ID§*" = Docoll: —
ETo < nTo Bo TO) k=1 H k HZZ(T) +Aomo < Ton> 15 ’OHP(T) * oo VP 12(T)
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Choosing n = 79/(2C) and Boro = 273/(72 + 4C?) it holds

1—£5T %HDn+1H2 + Bor 1_2 DI+ — Do ol[2my = 75 D™ — Do |?
70 070 = k 12(T) 070 %On 0 0,0 172(T) 402_'_7,_(2) S ED

hence the latter inequality becomes

H L —H" 273 1 27
— + At (1-C—5 O R < —— O gt
At * ( To(F2+4C2)) " T erg 402 + 72

According to Lemma 3.4 and since Sy = 273/(7% + 4C?), we may replace £" with H" for C' > 0 great
enough in the latter estimate. Hence, after simple computations, we deduce the result

an—H —H"
T < —g min (TO, To_l)Hn+1 5
for some k > 0 depending only on p; and Ty and |b — a. O

We now conclude the proof of Theorem 3.1. First, from Proposition 3.5, it is straightforward to obtain
—n
H" < (1 + % min (TO,T(;I) At) HO.
€
Then, we apply Lemma 3.4 on each side of the latter inequality and obtain the result.

4. NUMERICAL SIMULATIONS

For numerical experiments, we apply a slight modification of the scheme (2.11)-(2.16) since a Strang
splitting scheme with a second order implicit Runge-Kutta scheme is used to get second order accuracy in
time.

In our simulations, we fix the the temperature Ty to 1 and numerical parameters as follows: N, = 128,
At = 0.1 and we adapt the number of Hermite modes depending on the collisional regime. In Section 4.1
we highlight the asymptotic preserving properties of our scheme and investigate the behavior of solutions
when ¢ < 1 and 79 is fixed. Then, from Section 4.2 to Section 4.4, we will fix ¢ = 1 in (2.11)-(2.16)
and investigate the robustness of the scheme in different collisional regimes ranging from weakly collisional
regime when 79 > 1 to strongly collisional plasmas when 75 ~ 1.

4.1. Asymptotic-preserving properties. In this first test, we illustrate the robustness and the asymp-
totic preserving property of the scheme in the limit € — 0. To do so, we keep At = 0.1 fixed and perform
numerical simulations with ¢ = 107", for k ranging from 0 to 6. Since ¢ only appears in front of the time
derivative, it can be interpreted as a time scaling parameter. We emphasize that the extreme case e = 1076
corresponds to taking time step of the order At/e = 10 : we expect that the solution approaches fs, in
one time step! In this study, the numerical parameters are fixed and we only consider a few number of
Hermite modes taking Ny = 80.

We choose the following spatially inhomogeneous equilibrium

Poo() = Coo €xP(—¢oo(®)), € (-L,L),
where the potential ¢, is given by
doo(z) = 0.2 sin(kzx), ze€(—L,L),

with k = 7/L and L = 6 whereas the constant ¢, ensures that

1 L
— Poo(x)da = 1.
2L ) ;7
Thus, we take the initial distribution function as a perturbation of this steady state, that is,
1 v?
t=0,z,v) = — x) + dcos(kx)) exp|—— ), (x,v)€(—L,L) xR,
6 =0.0:0) = = (o) + S ostho) exp (= ) o (@) € (-L.D)

where § = 0.01 and consider the case 79 = 10, which corresponds to a weakly collisional regime.
On Figure 4.1, we represent the time evolution of the potential energy and the quantity

(4.1) La(t) = 1F (1) = fooll L2 (1)
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FIGURE 4.1. Asymptotic-preserving properties: time development of (a) the potential energy (b) || f — f°°”L2 (f‘l)
(in log scale).

As predicted by our analysis of the linearized model, we observe exponential relaxation towards equi-
librium at a rate which is proportional to 1/e. The scheme is uniformly stable with respect to ¢ and the
solution converges to the discrete equilibrium fo, when € — 0.

Potential energy in log scale Potential energy in log scale
0.001 * ?
e=10° —108
£=10" —— 1605 3 s10t —
e=107 £e=10% @
0.0001 e=10% @ e-10% ©
1e-10 -
1e-05 A
1e-15 4
y o
1e-06 A
1e-20 4
1e-07 A
1e-25
0 20 40 gt 60 80 100 0 20000 40000 ¢ ¢ 60000 80000 100000

FIGURE 4.2. Asymptotic-preserving properties: re-scaled time development (s <— €t) of the potential energy (in log
scale).

The left chart in Figure 4.2 represents the time evolution of the potential energy in log-scale for t/e €
[0,100]. We plot the approximations corresponding to e = 10~*, for k ranging from 0 to 3 and, in each case,
re-scale the time variable as (s < t/¢) to compare solutions. We can see that the case ¢ = 10~} (which
corresponds to taking a time step At/e = 1) fits very well with the approximation obtained when ¢ = 1.
Both the first phase for t/e € [0, 20] corresponding to fast oscillations and steep descent and the second
phase for t/e € [20,100] corresponding to slower oscillations without damping are transcribed correctly in
this case. When £ = 1072, we do not expect the solution to be precise during the first phase t/¢ € [0, 20]
since the corresponding time step At/e = 10, is greater than the time period of the oscillations. However,
we see that in the second phase t/e € [20,100], the approximation catches up and even seems to capture
the oscillatory behavior of the solution, despite the fact that time step and oscillation period have the same
order of magnitude (~ 10). To conclude, the case ¢ = 1072 corresponds to taking a time step At/e = 100.
Therefore, the approximation at time ¢/ = 100 is surprisingly accurate considering that it was calculated
in only a single iteration !

The right chart in Figure 4.2 represents the time evolution of the potential energy in log-scale for
t/e € [0,10°]. We plot the approximations corresponding to ¢ = 107%, for k ranging from 3 to 6 and
once again, in each case, re-scale the time variable as (s < t/¢) to compare solutions. We do not observe

14



oscillations anymore since collisions effects take over transport phenomena at this time scale. Therefore,
we compare the exponential decay rate of our approximations in order to validate at the nonlinear level
our theoretical result, which holds for the linearized scheme. We observe that in all cases k£ = 3,...,6,
approximations present similar decay rate, even when k = 6, which is surprising considering the fact that
in this case the approximation at time ¢/ = 10° was obtained in one iteration only. All these results are
very satisfying! Indeed, for the differents regimes, corresponding to the values of €, our numerical schemes
is able to describe correctly the different phases: an oscillatory behavior when ¢ > 1072 and an exponential
decay to equilibrium when ¢ < 1073,

To conclude this section, it is worth to mention that in this test only, we tuned the expert options of
the Super LU library [33] used as a direct solver in our code. More precisely, for small values of ¢, the
system associated to (2.11) may be ill conditioned, hence we disabled the equilibration option and tuned
the threshold used for a diagonal entry to be an acceptable pivot in the factorization.

4.2. Perturbation of non uniform density. For this second numerical test, we consider the same initial
condition as in the preceding Section 4.1. However, we now fix € to 1 and perform simulations with variable
79. To enforce numerical convergence, we have chosen a large number of Hermite modes Ny = 400 when
the plasma is weakly collisional, that is when 79 > 102, since filamentation may occur in phase space
whereas Ny = 50 is enough when collisions dominate.

On the one hand, we take 79 = 10* corresponding to the weakly collisional regime and compare two
solutions, one is obtained using (3.1) corresponding to the linearized Vlasov-Poisson-Fokker-Planck system
(1.9) and the second one is given by (2.11)-(2.16) corresponding to the nonlinear Vlasov-Poisson-Fokker-
Planck system (1.2). Our results show that both solutions have the same behavior, which means that,
for such a small perturbation, the linear regime governs the dynamics. To illustrate this observation, we
report in Figure 4.3 the time evolution of the potential energy

E(t) ::/T|8x1[)(t,:c)|2 dz

obtained using (3.1) in (a) and (2.11)-(2.16) in (b). Both solutions first produce fast damped oscillations
up to time ¢t < 20 and then oscillate with a lower frequency while converging exponentially fast to zero
with the same convergence rate 7 ~ 0.004.

0.001 - Potential energy 0.001 - Potential energy
0.0001 + 0.0001

1e-05 4 1e-05 -

yL =-0.004 YL =-0.004
_'—-—-_._____ _'_'—-_._____

1e-06 1e-06 -+

1e-07 A 1e-07

1e-08 1e-08

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

(a) (b)

FIGURE 4.3. Perturbation of non uniform density for 1o = 10* (weakly collisional regime): time development of
the potential energy in log scale (for (a) the linearized Viasov-Poisson-Fokker-Planck system and (b) the nonlinear
Vlasov-Poisson-Fokker-Planck system.

In Figure 4.4, we show several snapshots of the difference between the distribution function f and its
equilibrium f for ¢t € [4,70]. As expected, thin filaments propagate in phase space for large velocities
but surprisingly we also observe that a vortex is generated in the region where |v| < 1. For large time,
this vortex remains and continues to rotate around the point (z¢,vc) = (—3,0). For such a regime, where
collisions are almost negligible, the amplitude of the perturbation does not vanish even when ¢ ~ 70 and
transport phenomena dominate.
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FIGURE 4.4. Perturbation of non uniform density (weakly collisional regime, 7o = 10%): snapshots of the difference
between the solution f and the equilibrium foo at time t =4, 8, 16, 30, 40 and 70.

On the other hand, we study the influence of the collision frequency 79 and perform several numerical
simulations for the nonlinear Vlasov-Poisson-Fokker-Planck system (1.2) with the same initial data for
10 = 10F, with k = 0,...,4 (see Figure 4.5). For a weakly collision regime, that is k > 3, we again
observe oscillations of the potential energy and an exponential decay. However, when collisions dominate,
fast oscillations only occur for short time, then the potential energy decays rapidly to zero without any
oscillations. This trend to equilibrium can be also viewed on the distribution function as shown on Figure
4.5-(b), where we present the time evolution of the quantity Lo defined in (4.1).

Finally in Figure 4.6, we again present snapshots of f — f at different time when 79 = 102. In this
situation, collisions dissipate thin filaments generated by the transport term and the amplitude of the
perturbation vanishes. As a consequence, we do not detect anymore the vortex structure on the difference
f — foo and the solution converges exponentially fast to the equilibrium as it has been shown in Theorem
3.1 for the linearized system.

16



Potential energy in log scale - e Il 2

0.0001 0.1
1e-06 "VWWWYWYWYYWYYYYYYWYW“ 0.01 4
16-08 1 0.001 1
0.0001 4
1e-10 1
1e-05 1
1e-12 ;
1e-06 4
1e-14 ;
1e-07 1
Tg=10% —— =104 ——
1e-16 4 14=10° 16-08 1 To=103
1'0=102 — T0=102 —
1e-18 1 Tg=10! —— 1e-09 1 T0=10! ——
To=100 —— To=100 ——
: 1e-10 :

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

FIGURE 4.5. Perturbation of non uniform density: time development of (a) the potential energy (b) Hf*foonLg (f_l)

for various 1o = 1,...,10%* (in log scale).

4.3. Plasma echo. We now investigate a much more intricate problem where the non-linearity plays the
main role. Following the work [25, 35] or more recently [2, 26|, we will consider a perturbation of an
homogeneous Maxwellian distribution fo(x,v) := M(v) where

1 v?
M(v) = \/ﬂexp <—2> , veR,

on the space interval [—L, L], with L = 6. Of course, this homogeneous Maxwellian is stable: for a small
perturbation in high order Sobolev norms, we expect to observe the well known Landau damping on the
macroscopic quantities. However, our aim is to investigate a transient regime where a plasma echo occurs
for a well chosen perturbation. This echo appears when two waves with distinct frequencies interact. For
a large time period, the effect is very small but at certain particular times, the interaction becomes strong;:
this is known in plasma physics as the plasma echo, and can be thought of as a kind of resonance [25, 35].

In all this section, we fix £ to 1. To build our initial condition, we proceed in two steps [22]. We first solve
numerically the Vlasov-Poisson system with almost no collisions (79 = 10°) on the time interval [—30, 0]
with an initial data at time tg = —30 given by

fin(x,v) = (146 cos(krx)) M(v),

where § = 0.01 and k; = w/L. This choice induces an exponential decay of the potential energy by Landau
damping at the rate associated to the perturbed mode ki, hence it gives a distribution function which is
almost space homogeneous with small and fast oscillations in velocity. Then, at ¢t = 0, we consider this
solution, denoted by f (0), and choose it as initial data with a perturbation of the mode ko := 2k;. More
precisely, we take

fo(z,v) = f(0,z,v) + § cos(kax) M(v).
This initial data is represented in Figure 4.9. Then, starting from fy, we solve the Vlasov-Poisson-Fokker-
Planck system on the time interval [0, 120].

On the one hand, we take 79 = 10%, which corresponds to a weakly collisional regime generating an
oscillatory solution in velocity. For this reason, we choose a large number of Hermite modes Ny = 8000
in such a way that our numerical results are not anymore sensitive to the numerical parameters. Let us
emphasize that we compare our numerical results with those obtained using a semi-Lagrangian method
[22, 37, 20], which also requires such a large number of points in order to reach convergence. The phenomena
is so intricate that we want to be sure that numerical parameters do not produce any artefact...

Now let us comment our numerical results. In this weakly collisional regime, we expect that this initial
data will induce a first Landau damping phenomena due to the perturbation of the second mode ko.
However, after a time much longer than the inverse Landau damping rate, a new wave, called ”echo” will
appear as a modulation of the density at the wave number kqcpo = ko — k1 = k1. This echo is due to the
interaction between modes and is essentially a phenomenon of beating between two waves. First, we will
see that the nonlinearity is crucial here. Indeed, in Figure 4.7, we show the time evolution of the potential
energy and the first modes of the electric field obtained by applying the scheme (3.1) corresponding to

the linearized Vlasov-Poisson-Fokker-Planck system and the scheme (2.11)-(2.16) corresponding to the
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FIGURE 4.6. Perturbation of non uniform density (moderate collisional regime, 7o = 102): snapshots of the difference
between the solution f and the equilibrium foo at time t =4, 8, 16, 30, 40 and 70.

nonlinear system. The numerical solution corresponding to the linearized system exhibits a simple Landau
damping, when t > 5, with a decay rate corresponding to the predicted value v;, = 0.355, whereas the
numerical solution corresponding to the nonlinear system differs completely. It exhibits a first fast decay
as for the linearized system, but when ¢ > 15, it produces an echo on the potential energy and the first
mode (see right-hand side of Figure 4.7). The echo reaches its maximal amplitude at t = 30 for which we
report the snapshots of the f — fo, in Figure 4.9. The first damping of the perturbed mode k2 for short
time ¢ < 5 and the subsequent echo are accurately reproduced. From [22], the echo wave number is indeed
expected to be kecno = k1 the first echo time is predicted at
techo = to + ﬁ(o — to) = 30,
which corresponds very well with the numerical value we obtain here. From time ¢ = 0 to ¢t ~ 20, the
second wave corresponding to the mode ko has no effect on the first mode ki of the electric field, but
18



at time t = 30, it is strongly perturbed by the echo effect. Actually, our numerical results illustrate the
complexity of these phenomena.

On the one hand, we notice that echoes are repeated through time. On the potential energy (see
the top right chart of Figure 4.7), a Landau damping is observed when 30 < ¢ < 80, then we again discern
a new echo around time ¢t = 90 followed by a new damping. We also remark that this second damping
(t > 90) unfolds with a smaller decay rate than the first one (30 < ¢ < 80). This repetition of echoes can
be also perceived on the modes of the electric field (see the bottom right chart of Figure 4.7).

On the other hand, we report the time evolution of the first modes of the electric field (see the bottom
right chart of Figure 4.7) and notice that other modes are also subjected to echoes but at times
which differ from the ”macroscopic” echo time t..n, = 30. These echoes are not visible on the potential
energy since their amplitude is smaller than the one of the potential energy by several order of magnitude.
However, we point out that the third mode is subjected to a dramatic echo whose maximal amplitude,
reached at time ¢ = 15, is greater than the initial amplitude by a factor almost 10°. A careful inspection
allows to distinguish the effect of this echo on the overall amplitude of the potential energy (compare
bottom and top right charts of Figure 4.7). It is worth to mention that all modes corresponding to the
linearized system are subjected to the classical Landau damping without any echo. This is a nice example
where nonlinear effects, even small, induce intricate oscillatory behaviors.
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FIGURE 4.7. Plasma echo for o9 = 10° (weakly collisional regime): time development of the potential energy (top)
and square of the k-th mode of the electric field for k = ki, ...,4k1 in log scale (bottom) for (a) the linearized Vlasov-
Poisson-Fokker-Planck system and (b) the nonlinear Vlasov-Poisson-Fokker-Planck system.

For this weakly collisional regime (1o = 10°), we also report (on Figure 4.8) the time evolution of the
quantity
Lo(t) = |If - fOOHLZ(ngl)-
First, we point out that unlike for potential energies, we do not observe any difference between the behavior
of the linearized (3.1) and the nonlinear (2.11)-(2.16) solutions at the level of distribution functions on these

charts. Second, we notice that on this time interval, collisions are negligible and we clearly see that the
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distribution function f does not yet converge to f. Figure 4.8 also shows that unlike in the case of strong
Landau damping, variations of the spatial distribution occurs at an amplitude which is way smaller than
the error between kinetic distributions.
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FIGURE 4.8. Plasma echo for 1o = 106 (weakly collisional regime): time development of ||f — f‘x’”L?(f*l) ,
IIf— pM||L2(f—1) and ||p — p°°||L2(p_1) in log scale for (a) the linearized Vlasov-Poisson-Fokker-Planck system and

(b) the nonlinear Viasov-Poisson-Fokker-Planck system.

This can be also viewed in Figure 4.9, where we report the snapshots of the difference between the
distribution function f solution to the nonlinear system (2.11)-(2.16) and the equilibrium f.. We first
observe the projection of the initial data which exhibits oscillations in velocity and a smooth perturbation
in = with a small amplitude of order 1073. At time ¢t = 30 when the echo occurs, we clearly see that the
first mode k1 = 1 dominates, then the solution continues to oscillate due to the transport operator in a
periodic domain in space.

A natural question in physics is "how to cancel plasma echo?” for which a natural answer is that
collisions may play a role, as shown in several recent articles [2, 12]. To illustrate this phenomenon, we
perform new numerical simulations passing from weakly to strongly collisional regime and again compare
the two solutions corresponding to the the linearized system (3.1) and the nonlinear one (2.11)-(2.16). The
results are now reported in Figure 4.10. Roughly speaking, when 7y > 102, the nonlinear system exhibits
a plasma echo whereas when collisions dominate, the electric field is rapidly damped and the solution
converges to its equilibrium f,, exponentially fast as predicted by our analysis. It is worth to mention
again that at the level of the distribution function, the Lo time evolution of linearized (3.1) and nonlinear
(2.11)-(2.16) solutions are globally the same for various regimes independently of the plasma echo.

4.4. Two-stream. In this last experiment, we fix € to 1 and consider the equilibrium
Poo(z) =0.1 (1 —cos(kz)), x€(-L,L),
with k = /L with L = 6. The equilibrium is therefore given by

uln) = e exp (—omla) = 1)

2
where ¢g is renormalizing constant. Furthermore, we consider the initial distribution function as
1 v?
t=0,2,v) = 1+ dcos(kz)) (14 50%) ex <—>, x,v) € (—L,L) xR,
1A )= Jon ( (k) ( ) exp | = (z,v) € ( )

where § = 1072, These conditions can be viewed as a perturbation of data leading to the well-known
two-stream instability when ¢, = 0. For this case, we fix the number of Hermite modes at Ny = 800 and
consider the solution f to the nonlinear scheme (2.11)-(2.16). The purpose of this experiment is to com-
pare our results with the classical two-stream instability which is usually performed with an homogeneous
background distribution and to study the influence of collisions on our results.

Our first comment is that unlike in the classical two-stream instability [4], it is not clear that the electric
field develops an exponential growth in this case. This may be observed on the left plot of Figure 4.11
considering the curves of the quantity ||E'— Ex | r2(r) in weak and intermediate collisional regimes 7o = 10%,
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FIGURE 4.9. Plasma echo for 1o = 108 (weakly collisional regime): snapshots of the difference between the solution f
and the equilibrium foo at time t = 0, 20, 30, 40 and 50.

with 2 < k£ < 6, and also on the bottom charts of Figure 4.12 considering the blue curves which represent

the time development of ||p — poo||L2(pgo1) when 79 = 10%, with k = 2,3.

However, similarly to classical two-stream instabilities, we remark that in weakly collisional regimes

(10 = 10*, with 3 < k < 6), the electric field is not damped over time since collisions are negligible

on the timescale of our experiments (see Figure 4.11). When collisions are extremely weak k = 4,6, we

even distinguish oscillations of the electric field (see Figure 4.11).

This similarity with the classical two-stream instability may also be noticed at the level of kinetic distribu-

tions, as we may see on the left-hand side of Figure 4.13 where are represented snapshots of f at different

times when 79 = 10*. Indeed, we witness the formation of a vortex persisting over time.

When collisions are intense enough, that is 7o = 10%, with k < 2, we perceive exponential relaxation towards

equilibrium at the level of the electric field (see left chart of Figure 4.11), kinetic distribution (see right

chart of Figure 4.11), spatial density and higher Hermite modes (see Figure 4.12). This relaxation may
21
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FIGURE 4.10. Plasma echo for 7o = 1,...,10% (various regimes): time development of the potential energy (top)

and ||f — f‘””L?(f*l) (bottom) in log scale for (a) the linearized Vlasov-Poisson-Fokker-Planck system and (b) the
nonlinear Vlasov-Poisson-Fokker-Planck system.

also be observed on Figure 4.13, columns (b) and (c), where the vortex structure is affected by collisions
and even canceled completely when 75 = 102.

Our last comment on this experiment concerns the strongly collisional regime 79 = 10*¥ when k=0, 1. A
somehow surprising phenomena unfolds since new oscillations appear on all the quantities of interest: elec-
tric field (see left chart of Figure 4.11), kinetic distribution (see right chart of Figure 4.11), spatial density
and higher Hermite modes (see Figure 4.12, plots (a) and (b)). We have already discerned oscillations in a
similar setting [7, Section 4.1] where a non-constant stationary force field was applied in strongly collisional
settings. However we deal here with a self induced force field whereas [7] focuses on the linear case. These
oscillations seem robust enough to persist in the present situation.

5. CONCLUSION AND PERSPECTIVES

In this work, we proposed a numerical scheme for the Vlasov-Poisson-Fokker-Planck model. On the one
hand, we proved that our method is asymptotic preserving in the long time regime for the linearized model.
To do so, we derived the exponential relaxation of the numerical solution towards its equilibrium with rates
independent of scaling and discretization parameters. On the other hand, we tested the robustness of the
method in various numerical experiments. These experiments show the accuracy of our method in both
weakly collisional regime where small scales of the system are captured, allowing to reproduce filamen-
tation, vortex formation as well as fine nonlinear phenomena such as plasma echoes but also in strong
collisional regime, where we witness exponential trend to equilibrium, as predicted by our analysis of the
linearized model.

Many interesting perspectives arise from this work. On the theoretical view point, an important contin-
uation consists in extending our theoretical results, which apply for a linear coupling with the Poisson
22
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equation, to the nonlinear scheme (2.11)-(2.16) by proving its asymptotic preserving properties and expo-
nential trend towards equilibrium of discrete solutions. This might be doable in a perturbative setting by
controlling the nonlinear contribution using discrete Sobolev inequalities. Carrying such proof in higher
dimensions d = 2,3 would be a great challenge and would probably require new theoretical tools. Indeed,
equivalent studies on the continuous model in the literature rely on propagation of regularity [29, 31, 34, 30].
In our case it would require to propagate regularity at the discrete level. The groundwork towards such
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FIGURE 4.13. Two-stream : snapshots of the distribution function f at time t =8, 16, 30 and 60 for various 7¢.

result has been laid in [7], where we propagated discrete H! norms in the linear setting.
Another important continuation of this work is to incorporate nonlinear collisions to the model. Let us first
observe that in [21], the Hermite spectral method is applied to a nonlinear Fokker-Planck operator conserv-
ing mass, momentum and energy. However, extending our analysis of the longtime regime at the discrete
level to this case may require modifications and further investigations have to be done. L2-hypocoercivity
methods have been applied in the case of nonlinear BGK and linearized Boltzmann operators at the con-
tinuous level [28, 1], however such analysis at the discrete level is not available in the literature in the
framework of Hermite decomposition.
Regarding simulations, the study of echoes also raises interesting perspectives. In [26] were constructed
theoretical solutions to the Vlasov-Poisson equation which display infinite cascades of echoes and for which
Landau damping is therefore not verified. Furthermore, sharp joint conditions on the collision frequency
and the size of the initial data were obtained in order to ensure suppression of these echoes in [2, 12].
Constructing such numerical solutions and illustrating the threshold obtained in these analysis would be of
great interest. Another possible continuation would consist in finding a non-homogeneous background con-
figuration where damping phenomena occur as in the homogeneous case, and then construct an experiment
where nonlinear effect play the main role, even for small perturbation as for plasma echoes.
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