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Figure 1: Our technique uses corrected curvature measures on (quasi-)random triangles to estimate differential quantities on oriented point
clouds: stable and accurate estimations (mean curvature here) are achieved with few neighbors (50) and triangles (2).

Abstract
The estimation of differential quantities on oriented point cloud is a classical step for many geometry processing tasks in
computer graphics and vision. Even if many solutions exist to estimate such quantities, they usually fail at satisfying both a
stable estimation with theoretical guarantee, and the efficiency of the associated algorithm. Relying on the notion of corrected
curvature measures [LRT22, LRTC20] designed for surfaces, the method introduced in this paper meets both requirements.
Given a point of interest and a few nearest neighbours, our method estimates the whole curvature tensor information by gen-
erating random triangles within these neighbours and normalising the corrected curvature measures by the corrected area
measure. We provide a stability theorem showing that our pointwise curvatures are accurate and convergent, provided the noise
in position and normal information has a variance smaller than the radius of neighbourhood. Experiments and comparisons
with the state-of-the-art confirm that our approach is more accurate and much faster than alternatives. The method is fully
parallelizable, requires only one nearest neighbour request per point of computation, and is trivial to implement.

CCS Concepts
• Computing methodologies → Shape analysis; Point-based models; • Theory of computation → Computational geometry;

1. Introduction

Point clouds data representing 3D shapes are now extremely com-
mon due to the developments of LiDAR technology or photogram-
metry, which offer now affordable devices to capture quite accu-
rately the 3D geometry of real shapes, from small objects to build-
ings or even reliefs. As a shape representation, raw point clouds are
not reliable enough nor structured enough for most targeted appli-
cations, hence they are usually first processed and then transformed
into other representations. It is worthy to note that point clouds can
be massive with up to billions of points, present generally uneven

sampling and their lack of structure prevent simple parameteriza-
tion, hence signal processing techniques are difficult to apply.

Point cloud processing often relies on the extraction of local
invariant features within point clouds, and is used in many appli-
cations like segmentation [KSNS07, KHS10, KLM∗13, TGDM18,
PCDKC20], registration [GMGP05, MDS15, YZLB21], static
[Lia21] or dynamic compression [YSY∗22], to quote a few. These
features are most often related to recognizable geometric features
like edges, ridges, valleys, peaks, creases, depressions, etc. Since
all of them can be computed from curvature information, this ob-
jective is met by inferring the second order differential geometry of
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the real-world shape that was acquired by the scanning device. Ide-
ally, the inferred curvature information should offer convergence
guarantees according to the density of the sampling, while being
robust to both perturbations in position and normal data. Finally,
from a practical point of view, computing robust and precise curva-
ture information should be fast and parallelizable to accommodate
massive data, while keeping a small memory footprint.

This paper proposes a new method to infer the local curvature
information from oriented point clouds (collection of points in R3

equipped with normal vectors). It relies on the recent notion of
Corrected Normal Current (CNC) [LRT22], which is a theoretical
setting that induces curvature measures on very general surfaces,
and for instance simple formulae to approximate area and curva-
ture measures within a triangle [LRTC20].

Contributions. Our key idea is to notice that measures do not re-
quire a surface topology to provide consistent results. It suffices
then to generate arbitrary triangles in the neighborhood of the point
of interest to collect area and curvature measures. When summed
consistently, these measures reinforce their estimations. Dividing
any one of the curvature measures (mean, Gaussian, anisotropic) by
the area measure over the same triangles provides accurate point-
wise estimation of the corresponding curvature.

We provide a theoretical result that bounds the pointwise mean
curvature error even in presence of position and normal perturba-
tions. The error is essentially constituted by a constant times the
neighborhood radius, plus a stochastic term with zero expectancy
and variance going to zero as the number of triangles increases.
Otherwise said, when perturbations are small, a small radius with
few points induces precise estimations, while when perturbations
increase, a bigger radius authorizes more triangles and stabilizes
the estimations, with a small loss in precision.

We then propose several strategies to generate triangles within
the neighborhood of the point of interest. As a comparison basis,
we have tested a local Delaunay triangulation reconstruction, which
induces accurate results at the highest computational cost. We show
after that the simplest uniform random triangle generation leads to
the same accuracy with faster computations. We finally exhibit two
variants that only generate two triangles, one is extremely fast yet
accurate when data is not too noisy, the other is also fast and yet
remains robust to noise. Finally, we present extensive experiments
and comparisons with other state-of-the-art methods for computing
curvatures of point clouds. It appears that our method is both accu-
rate and robust to noise in practice, requires smaller neighborhoods
for the same accuracy compared to the current best method, and is
way faster in most practical cases.

2. Related works

There is an abundant literature on the problem of curvature estima-
tion from point clouds. We discuss here the main approaches and
especially the ones that come with some theoretical guarantees. A
more complete review can be found in the recent paper [LCBM21],
which seems to be the state-of-the-art for now.

Polynomial fitting and learning methods. Osculating jets (or Jet-
Fitting) [CP05] fits a bi-variate polynomial matching neighbors

over a tangent plane. Wave jets proposed by Béarzi et al. [BDC18]
does a similar job but with radial polynomials. Results are pre-
cise for perfect data, with some guarantees, but these methods col-
lapse in the presence of noise in practice, and are computationally
costly. Besides, as noted by Khameneifar and Ghorbani [KG19],
the choice of the neighborhood is important when fitting surfaces.
Learning methods fits non-linear simple functions to the data. Guer-
rero et al. [GKOM18] introduced PCPNet for curvature estima-
tions. Based on PointNet [QSMG17], these architectures are not
designed to process massive point clouds. They compare favorably
to JetFitting in presence of noise, but with no theoretical bounds.

Point Set Surfaces and extensions. Point Set Surfaces
[ABCO∗01] use Moving Least Squares regression to locally
approach scattered data with a smooth manifold. Many variants
have been proposed over the years, e.g. to improve efficiency,
genericity, principal curvature computation, robustness to uneven
sampling, etc. Algebraic Point Set Surfaces [GG07] directly fits
algebraic spheres in order to avoid the estimation of a reference
plane, but remains limited to mean curvature estimation. Its
multiscale formulation makes it useful for multiscale analysis of
points clouds [MGB∗12], and it was shown recently by Lejemble
et al. that the whole curvature tensor information can be estimated
with scale differentiation [LCBM21]. This latter work not only is
accurate in practice, but it also provides theoretical guarantees of
accuracy in presence of perturbation in noise position.

Integral invariants. Since Weyl’s tube formula, we know that sur-
face geometry is related to integral quantities. Integral invariants
are classical formula relating curvatures at a point of interest with
a local volume or tensor [YLHP06, PWY∗07, PWHY09], and are
shown to provide more accurate results than PCA. Although more
designed for mesh analysis, they can be adapted to point cloud anal-
ysis using weights or kernels [DM14]. However, there is no stabil-
ity theorem for noisy data.

Distance function and covariance measures. A generic approach
to analyze the local geometry of compact sets was proposed by
Mérigot et al. [MOG10], with the elegant idea of analyzing the dis-
tance function to the set. They show that the Voronoi Covariance
Measure is stable in the presence of Hausdorff noise. Its diagonal-
ization provides stable characterization of edges or ridges, but does
not provide pointwise curvature convergence. This work was ex-
tended by Cuel et al. [CLMT15] to be robust even to outliers, using
a distance to a measure formulation.

Curvature measures. Generalizing curvatures to non-smooth ge-
ometry dates to the works of Federer [Fed59]. They have been
generalized progressively to include triangulations [Win82, Zäh87,
Fu94], and stability results have been established for meshes when
vertex positions and normals are close to the smooth manifold
cite [Fu93, CSM03, CSM06]. These works were recently extended
to piecewise smooth surfaces whose normal vector field is not con-
vergent [LRT22]. Curvature measures were also extended to cloud
of points using offsets [CCSLT09], with some stability results, at
the price of costly computations.

Varifolds. Introduced first for solving abstract shape optimization
problems [Alm66], varifolds constitute another approach to define
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a geometry on a wide class of objects, e.g. it includes cloud of
points with normals. Buet et al. have shown how to extract mean
curvature information [BLM17] and recently a weak second funda-
mental form [BLM18, BLM19]. This general framework does not
yet provide easy and explicit stability or convergent rates.

Grassmannian embedding. A few works in computer graphics
have also extended the Euclidean space with the Gaussian sphere
to carry out some specialized tasks. We may quote the works of
[PSH∗04, LZH∗06, LB13], who use this trick to define a metric on
surfaces that is dependent on features: indeed a feature implies a
strong change in the normal vector, hence paths in this metric are
much longer across features. This approach is quite useful to do
feature-aware surface processing, but it cannot be used directly to
estimate quantitatively curvatures.

3. Randomized corrected curvature measures for point clouds

Summary. Let us assume we have a point cloud of N points with
positions and normals (x̂m, ûm)m=1...N . Our curvature estimates are
computed per point of interest independently of the others and the
method is thus completely parallel. For a given point, we compute
its nearest neighbors at distance less than some user parameter δ/2.
Then L triangles are built randomly by picking points within these
neighbors. Curvature measures are evaluated for every triangle and
summed up. The same is done with area measures, also summed
up. Pointwise curvatures (mean, Gaussian, principal curvatures and
directions) are estimated by dividing the corresponding curvature
measure with the area measure. This procedure is detailed below.

Interpolated corrected curvature measures on a triangle. We
start by recalling the simple closed-form expressions, detailed in
[LRTC20], that associate different measures of the area and cur-
vatures to a single triangle τi jk, with vertices (xi,x j,xk) and unit
normals (ui,u j,uk) at these vertices.

Property 1 The interpolated corrected curvature measures take the
following values on a triangle τi jk, with vertices i, j, k:

µ(0)u (τi jk)=
1
2
〈
ū |(x j−xi)×(xk−xi)

〉
,

µ(1)u (τi jk)=
1
2
〈
ū |(uk−u j)×xi+(ui−uk)×x j+(u j−ui)×xk

〉
,

µ(2)u (τi jk)=
1
2
〈
ui |u j×uk

〉
,

µ(X,Y)
u (τi jk)=

1
2
〈
ū | ⟨Y |uk−ui⟩X×(x j−xi)

〉
− 1

2
〈
ū |

〈
Y |u j−ui

〉
X×(xk−xi)

〉
,

where ⟨· | ·⟩ denotes the usual scalar product, ū = 1
3 (ui +u j +uk).

All these scalar values associated to a triangle (τi jk) are in some
sense the integration of well-known geometric quantities over the
triangle. Measure µ(0)u , called corrected area density, is easily spot-
ted as the area of the triangle, however, weighted by the align-
ment between the geometric normals and the provided normals u.
This correction comes from the computation of this measure in the
Grassmannian (more details will be given in Section 4).

The other measures are all related to integrals of curvatures,

and mix positions and normal information. Measure µ(1)u is the
corrected mean curvature density and measure µ(2)u the corrected
Gaussian curvature density of this triangle. The (anisotropic) mea-
sure µ(X,Y)

u is the trace of the corrected second fundamental form
along directions X and Y. While the smooth second fundamental
form is naturally a symmetric 2-tensor, there is no easy way to de-
fine tangent directions at a vertex, so the anisotropic measure de-
pends on two 3D vectors; when X and Y are tangent, µ(X,Y)

u is close
to the second fundamental form applied to these vectors, while its
value along normal direction tends to zero asymptotically.

Randomized local measures of curvatures. Of course, our data is
constituted of unrelated points, and does not form a triangle mesh.
The method is parameterized by a length δ/2 (or equivalently by
an integer K) such that the ball of radius δ/2 centered on the point
of interest x̂ contains approximately K points. Let (x̂i)i∈I be the
points near x̂, with I ⊂ {1, . . . ,N} and #(I)≈ K.

We randomly build L triangles (τ̂l)l=1...L from these K points
among the possible

(K
3
)

triangles. This random generation can be
made uniformly, or with smarter sampling strategy (see Section 5).
Each triangle τ̂l with vertices (x̂i, x̂ j, x̂k) must be oriented consis-

tently with its average normal vector ¯̂u, i.e. µ(0)û (τ̂i jk) must be non-
negative. If not, we simply switch the role of x̂ j and x̂k.

We then add measures on every triangle for each kind of mea-
sure. We also build a 3×3 tensor from the anisotropic measure, by
choosing for X and Y the basis vectors ei:

Â(0) :=
L

∑
l=1

µ(0)û (τ̂l) Â(1) :=
L

∑
l=1

µ(1)û (τ̂l) Â(2) :=
L

∑
l=1

µ(2)û (τ̂l)

Â(M) :=
L

∑
l=1

µ(e1,e1)
û (τ̂l) µ(e1,e2)

û (τ̂l) µ(e1,e3)
û (τ̂l)

µ(e2,e1)
û (τ̂l) µ(e2,e2)

û (τ̂l) µ(e2,e3)
û (τ̂l)

µ(e3,e1)
û (τ̂l) µ(e3,e2)

û (τ̂l) µ(e3,e3)
û (τ̂l)


Estimations of curvatures for the point of interest. We divide
each curvature measure by the area measure to get a pointwise esti-
mate for each kind of curvature. The mean curvature estimate Ĥ(x̂)
and the Gaussian curvature estimate Ĝ(x̂) at point x̂ are then:

Ĥ(x̂) :=Â(1)/Â(0) Ĝ(x̂) :=Â(2)/Â(0).

To get principal curvatures and directions, we proceed similarly as
in [LRTC20]. The anisotropic measure tensor is not symmetric in
general, although it tends asymptotically to the second fundamental
form. We symmetrizes it and forces the orthogonality of tangent
vectors (C is a big constant, chosen as 1000δ in all experiments):

P̂ :=
1

Â(0)

(
1
2

(
Â(M)+ Â(M)⊺

)
+Cû⊗ û

)
.

Then the first and second principal curvature estimates, κ̂1 and
κ̂2 at x̂, and their associated principal direction estimates v̂1 and v̂2
at point x̂ are respectively defined as:

κ̂1(x̂) :=−λ2(P̂), v̂1(x̂) := z2(P̂), (1)

κ̂2(x̂) :=−λ1(P̂), v̂2(x̂) := z1(P̂), (2)
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where λ1(P̂) ≤ λ2(P̂) ≤ λ3(P̂) are the eigenvalues of P̂ and
(z1(P̂),z2(P̂),z3(P̂)) their associated eigenvectors.

4. Stability of curvature estimates

This section is devoted to the proof of the accuracy of our curva-
ture estimators. We focus on the mean curvature estimator Ĥ, but
similar arguments lead to the convergence of the Gaussian curva-
ture estimator Ĝ as well as principal curvatures κ̂1 and κ̂2. Princi-
pal directions v̂1 and v̂2 are also convergent except around umbilic
points, using results from matrix perturbation theory.

4.1. Background

Invariant and anisotropic forms. Curvature measures µ(k) are
obtained by integrating a normal current against canonical in-
variant 2-forms ω

(k) defined on the Grassmannian R3 × S2 (for
k ∈ {0,1,2}). For any point (x,u) ∈ R3 × S2 and tangent vec-
tors ζζζ,ννν ∈ T(x,u)(R3 ×S2), we write ζζζ = (ζζζp,ζζζn) and ννν = (νννp,νννn)

in R3 ×R3 (separating position and velocity). Then the invariant
forms are given by:

ω
(0)
(x,u)(ζζζ,ννν) = det(u,ζζζp,νννp), ω

(2)
(x,u)(ζζζ,ννν) = det(u,ζζζn,νννn),

ω
(1)
(x,u)(ζζζ,ννν) =

1
2
(det(u,ζζζp,νννn)+det(u,ζζζn,νννp)) .

Similarly, the anisotropic curvature form (for the directions X,Y)
is given by [CSM06]

ω
(X,Y)
(x,u) = (u×X,0)♭∧ (0,Y)♭,

where w♭ denotes the linear map ⟨w | ·⟩ dual to vector w.

Curvatures and curvature measures on a surface. Let S be some
oriented connected smooth enough (C3) surface in R3, and for any
point q in S, let n(q) be the unit normal vector at q. The reach of
S is the distance of S to its medial axis, and we assume that it is
strictly positive. For any vector field u defined on some subset X
of R3, let Γu be the map x 7→ (x,u(x)). For instance, if we choose
the normal vector field n for u, Γn(S) embeds the surface S into
the Grassmannian. For any Borel set B and any vector field u of
support X , let:

∀k ∈ {0,1,2}, µ(k)u (B∩X) :=
∫

B∩X
Γ
∗
uω

(k). (3)

In the smooth case and when choosing u = n, the current is ex-
actly the normal bundle, so we derive the Lipschitz–Killing curva-
ture forms, which measure the area, the mean curvature density and
the Gaussian curvature density (for a consistent orientation):

µ(0)n (B∩S) =
∫

B∩S
da = Area(B∩S), (4)

µ(1)n (B∩S) =
∫

B∩S
Hda, µ(2)n (B∩S) =

∫
B∩S

Gda, (5)

where H and G denote the mean and Gaussian curvature, and da is
the area form.

S

xi

x j

xk

τS

τ

πS

Figure 2: Main notations: S is the underlying smooth surface; xi,
x j, xk are three points of S; τ is their convex hull, i.e. the planar
triangle joining them; τS := πS(τ) is the projection of τ onto S.

4.2. Relating measures on a triangle and on its projection on S

Figure 2 illustrates the notations we will use throughout the proof.
The cloud of points is for now assumed to sample a C3-smooth sur-
face S. Let xi,x j,xk be three points of the cloud on S such that the
triangle τ spanned by these vertices stays within the reach of S. Let
πS be the orthogonal projection on S (which exists within the reach
and which maps any point within the reach to its closest point on
S), and let τS := πS(τ). The order of vertices is chosen such that it
is consistent with the orientation of the normal vector. Let us now
choose 3 unit vectors ui, u j and uk at vertices xi, x j, and xk respec-
tively. We linearly interpolate them within the triangle to build a
vector field u on τ. Missing proofs can be found in Appendix A.

Area measure. If δ bounds the distance between points xi,x j,xk
and if α bounds the difference between true normals n and interpo-
lated normals u, i.e. supτ ∥n◦πS −u∥ ≤ α, then the area measures
of τ and τS are close:

|µ(0)n (τS)−µ(0)u (τ)| ≤ Area(τ)
(

O(δ2)+α

)
. (6)

Mean curvature measure. Now assume β bounds the difference
between the differentials of u and n, i.e. supτ ∥D(n◦πS)−Du∥≤ β.
Then mean curvature measures of τ and τS are close:

|µ(1)n (τS)−µ(1)u (τ)| ≤ O(Lnδ
4)+O(βδ

2)+O(Luαδ
2), (7)

if Ln and Lu are respectively the Lipschitz constants of n and u.

Relation with pointwise mean curvature. If q is a point of S at
distance less than δ to any point of τS, and let LH be the Lipschitz
constant of mean curvature H, then it holds:

|µ(1)n (τS)−Area(τS)H(q)| ≤ LHArea(τS)δ. (8)

Bounds induced by equality of vector fields at sample points. If
we assume that u = n on each vertex of the triangle τ, then these
quantities can be bounded above as follows:

α ≤ βδ+O(δ2), β ≤ O(δ), Lu ≤ Ln. (9)
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Local relations. Using equations (6) and (9) for the area measure,
and (7), (8) and (9) for the mean curvature measure, it holds:

|µ(0)u (τ)−Area(τS)| ≤ Area(τ)O(δ2), (10)

|µ(1)u (τ)−Area(τS)H(q)| ≤ O(δ3). (11)

4.3. Introducing perturbations on positions and normals

Our input data is a collection X of points (x̂i)i=1...N in the space,
and a collection U of associated oriented unit normal ûi with each
point. They represent a perturbated sampling of a smooth surface
S with some normal information. We can write x̂i := xi + εi and
ûi := ui + ξi, where the εi form a sequence of independent and
identically distributed (i.i.d.) random variables drawn from a distri-
bution of expected value 0 and variance σ

2
ε Id, and where the ξi form

a sequence of i.i.d. random variables drawn from a distribution of
expected value 0 and variance σ

2
ξ
Id.

Summing up measures on multiple triangles. Let q̂ be a point of
interest (e.g. some x̂∈X) and let q be its projection on S. Let (x̂i)i∈I
be the points in the ball centered on q̂ and of radius δ/2, with I ⊂
{1, . . . ,N}. Let (τ̂l)l=1...L be L triangles with vertices in (x̂i)i∈I .
Order of vertices within triangle τ̂l is chosen so as µ(0)û (τ̂l) is a non-
negative number. To each triangle τ̂l corresponds an unperturbated
triangle τl with vertices on the surface S.

Let Â(0) := ∑
L
l=1 µ(0)û (τ̂l), A(0) := ∑

L
l=1 µ(0)u (τl), Â(1) :=

∑
L
l=1 µ(1)û (τ̂l), A(1) := ∑

L
l=1 µ(1)u (τl). Let also A be the total area

of triangles τl and AS be the total area of projected triangles πS(τl).

Summing relation (10) and triangular inequality gives the first
relation below, while summing relations (8) and (11) and applying
triangular inequality gives the second one:

|A(0)−AS| ≤AO(δ2), (12)

|A(1)−ASH(q)| ≤LHASδ+O(Lδ
3). (13)

Finally, dividing both summed measures provide the mean cur-
vature estimation, i.e. Ĥ(q̂) := Â(1)/Â(0). We achieve the following
stability result for this curvature estimator.

Theorem 1 If we assume that we have generated enough triangles
within the ball around q̂ so that AS/L = Θ(δ2), then

|Ĥ(q̂)−H(q)|

≤
∣∣∣O(δ)+Θ(δ−2)

(
Z̄(1)

L − Z̄(0)
L H(q)

)∣∣∣/∣∣∣1+Θ(δ−2)Z̄(0)
L

∣∣∣ ,
where Z̄(0)

L is the error law 1
L (Â

(0)−A(0)) and Z̄(1)
L is the error law

1
L (Â

(1)−A(1)).

Proof It is essentially a computation where we use previous stabil-
ity results, like (12), (13):

|Ĥ(q̂)−H(q)|=

∣∣∣∣∣ Â(1)− Â(0)H(q)
Â(0)

∣∣∣∣∣
=

∣∣∣∣∣ (A(1)−A(0)H(q))/L+ Z̄(1)
L − Z̄(0)

L H(q)

A(0)/L+ Z̄(0)
L

∣∣∣∣∣

≤

∣∣∣∣∣∣ (LHASδ/L+O(δ3))+AO(δ2)H(q)/L+ Z̄(1)
L − Z̄(0)

L H(q)

AS/L
(

1+O(δ2)+L/ASZ̄(0)
L

)
∣∣∣∣∣∣

(using (12) and (13))

≤
∣∣∣∣LHδ+

L
AS

O(δ3)+
A
AS

H(q)O(δ2)+
L

AS

(
Z̄(1)

L − Z̄(0)
L H(q)

)∣∣∣∣/∣∣∣1+L/ASZ̄(0)
L

∣∣∣
Now the sum of areas A is almost AS with a precision O(δ2), and
H(q) is bounded. It follows that the third term is negligible with
respect to the first term. Secondly the quantity AS/L tends to the
average size of a random triangle on S within the ball centered on q̂
with radius δ/2. If L is big enough or if triangles are chosen within
the ball to cover a reasonable area, then AS/L = Θ(δ2). Gathering
remaining terms together gives the result.

Studying error laws. We provide the expectations and variances
of both error laws, which comes from the linearity of the scalar
product and cross product (see supplementary for the proof).

Property 2 The error laws Z̄(0)
L and Z̄(1)

L have both null expecta-
tions. Their variance follows, for C and C′ some constants:

V
[
Z̄(0)

L

]
≤ C

L

(
(σ2

ξδ
2 +σ

2
ε)δ

2 +σ
2
εσ

2
ξδ

2 +σ
4
ε(1+σ

2
ξ)
)

V
[
Z̄(1)

L

]
≤ C′

L

(
σ

2
ξδ

2 +σ
2
ε +σ

2
εσ

2
ξ +σ

4
ξδ

2 +σ
2
εσ

4
ξ

)
.

Theorem 1 and Property 2 explain the balance between several
kinds of errors. When perturbations are small, it is advantageous
to take the smallest possible δ (or K), with the sole constraint that
the average triangle size must not be too small. Picking K in 15–50
leads to very accurate results. When perturbations increase, aug-
menting the number L of triangles reduces the variance of error
laws, but it requires a larger neighborhood δ (or larger K) to get
more independent samples. Summing up, there is an optimal bal-
ance between decreasing δ and increasing L, which gets higher as
the noise variance gets larger.

5. Strategies for generating triangles

As shown before, we have to generate triangles around the point
of interest with a few constraints in mind. First the average size
A/L of triangles must be of the order Θ(δ2). This guarantees the
accuracy of the curvature estimates in expectation. Second the more
independent triangles we generate, the smaller is the variance of the
error. There are at most ⌊K

3 ⌋ independent triangles within the K-
neighborhood of the point of interest. To improve the accuracy and
efficiency in practice, we present and compare here four different
strategies to generate triangles within the K-neighborhood around
a sample (x̂i, ûi). Every one of them fit reasonably in the theoretical
setting, while giving better results in practice. These four strategies
are illustrated on Figure 3, while comparative accuracy and timings
can be found in Figure 4 and Figure 5. Let ρ be the average radius
to get K neighbors.

CNC-Uniform This strategy picks randomly L triangles among
the possible

(K
3
)

triangles. These triangles are not perfectly inde-
pendent, but this elementary variant is very close to the theoret-
ical setting, produces good results, while its accuracy increases
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(a) Neighborhood of x̂ (b) CNC-Delaunay (c) CNC-Uniform (d) CNC-Hexagram (e) CNC-Avg-Hexagram

Figure 3: This figure illustrates the different strategies for generating the random triangles around the point of interest (see text).

when augmenting L. Its drawback is that its complexity per point
is essentially proportional with the number L of triangles.

CNC-Delaunay This strategy builds first around each point its lo-
cal Delaunay triangulation umbrella as proposed in [SC20], and
then, for the point x̂, assembles all such triangles that have ver-
tices in the K-neighborhood of x̂. This variant is more alike a
non-manifold local triangulated reconstruction of the cloud of
points, and its accuracy is more related to the stability theorem
in [LRTC20], since triangles are not really independent. It is
given as a comparison basis for best possible accuracy, and its
drawback is certainly its computation time.

CNC-Hexagram This strategy builds only two triangles forming
an approximate hexagram. It builds six points (p j) j=1...6 form-
ing a regular hexagon on the plane orthogonal to ûi at dis-
tance ρ/2 from x̂i. Then the closest point x̂i j to each p j is
computed, and the two generated triangles are (x̂i1 , x̂i3 , x̂i5) and
(x̂i2 , x̂i4 , x̂i6). Although this variant indeed satisfies that the av-
erage area is some Θ(δ2), it does not allow decreasing the error
variance. It is the fastest variant and is quite accurate when the
data present little perturbations.

CNC-Avg-Hexagram This strategy also builds only two triangles.
However it partitioned the K neighbors of x̂ according to the
Voronoi regions of (p j) j=1...6 (obtained using simple nearest
neighbors queries in ambient space). Within each region, po-
sitions and normal vectors are averaged to build six new (vir-
tual) sample points (ŷ j) with six associated normal vectors (v̂ j).
Thanks to the linearity of all curvature measure, averaging nor-
mal vectors and positions yields to better estimates than the static
CNC-Hexagram approach (see supplementary). The two gener-
ated triangles are (ŷi1 , ŷi3 , ŷi5) and (ŷi2 , ŷi4 , ŷi6). This variant has
a complexity proportional to K but remains the fastest variant
except for CNC-Hexagram. It is also the most accurate variant.

6. Experimental evaluation

As a first experiment, we consider point clouds sampling implicit
surfaces, namely goursat and torus, on which ground-truth
curvatures can be obtained (goursat: 0.03x4+0.03y4+0.03z4−
2x2 −2y2 −2z2 −8 = 0, which fits in [−9,9]3, torus: (x2 + y2 +
z2+36−4)2−144(x2+y2) = 0, with big radius 6 and small radius
2). The initial samples are obtained using a Lloyd relaxation algo-
rithm restricted to the zero level set of the implicit functions, for
various sample counts N ∈ {10000,25000,50000,75000,100000}.
Perturbations on the samples position (resp. normal vector) are
performed using a centered Gaussian perturbation parameterized
by a global standard deviation σε ∈ {0.0,0.1,0.2} (resp. σξ ∈
{0.0,0.1,0.2}). As a baseline for comparisons with prior works, we
have considered the Monge form from jet fitting approach (named

JetFitting for short) [CP05] as a representative of polynomial based
fitting approach, and the recent algebraic shape operator of Lejem-
ble et al. (ASO for short) [LCBM21]. Note that we use a similar ex-
perimental setting as Lejemble et al., who have already shown that
ASO outperforms many existing approaches from the related works
(such as algebraic point set surfaces [GG07], wavejets [BDC18]).
As the JetFitting approach returns absolute curvature values, inter-
vals are clamped to zero for this estimator.

For performance evaluations, timings have been measured after
the neighbors have been retrieved for the NN data structure, i.e. af-
ter the K-NN search for JetFitting, ASO, CNC-Delaunay (skipping
the local Delaunay construction as well), CNU-Uniform, and CNC-
Avg-Hexagram, and the six NN requests for CNC-Hexagram. Note
that for all methods, we have used the same number of neighbors
K. For the JetFitting approach, a polynomial surface of degree 4
has been considered. Timings in µs have been measured on a single
core, Apple M1. Code is available at https://github.com/
JacquesOlivierLachaud/PointCloudCurvCNC.

6.1. Convergence and Stability

Figures 4 and 5 detail estimation errors for the mean and Gaussian
curvatures, as the number of neighbors K increases, averaged for all
N, σε and σξ. When comparing the CNC variants, the best results
are obtained with CNC-Avg-Hexagram. Even if CNC-Hexagram
upper bounds the estimation errors of all CNC variants (quality de-
creases as the noise parameters increase), this approach provides
visually good results (see Figures 6 and 8) using only six NN re-
quests, and is several order of magnitude faster than existing ap-
proaches. Compared to ASO and JetFitting, the proposed approach
outperforms prior work both in terms of estimation errors and tim-
ings.

6.2. Additional results

Figures 7 and 8 illustrate the stability and the efficiency of our
approach on point clouds from scans of historical pieces. Figure
7 displays results computed with CNC-Avg-Hexagram from 50
to 300 neighbors only (K = 50 for the first two objects of 500k
points, K = 300 for the third one with 1.7M points). Overall timings
(NN requests and curvature measure estimation) for these three
point clouds are respectively 10.2s, 4.6s and 85.5s with a non-
optimized NN data structure. Focusing on the curvature estimation
only, timings are respectively 252ms, 258ms and 3991ms (2.5% to
5.6% of the total time). Figure 8 shows results computed by CNC-
Hexagram, in order to evaluate the quality of the estimation using
only six NN requests on a real dataset. As we increase K, which
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Figure 4: Accuracy and timings of mean and Gaussian curvature estimation: we evaluate the accuracy and timings of CNC variants as K
increases for various values L for the goursat, first row, and the torus shapes, second row (average and standard deviation of the error
are computed from all N, ε and ξ values). Errors and timings are given in logscale and timings represent the average computation time per
point in microseconds to estimate all differential quantities.
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Figure 5: Accuracy and timings of mean and Gaussian curvature estimation: : we compare the CNC-Uniform, the CNC-Hexagram and the
CNC-Avg-Hexagram variants with two existing approaches, JetFitting [CP05] and ASO [LCBM21] (for respectively the goursat and the
torus shapes). Errors and timings are given in logscale and timings represent the average computation time per point in microseconds to
estimate all differential quantities.

only scales the hexagram, this extremely fast variant still provides
highly relevant differential quantities.

In supplementary material, we provide more results and com-
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ground truth JetFitting ASO CNC-Uniform CNC-Hexagram CNC-Avg-Hexagram
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Figure 6: Visual comparisons with K = 50 on point clouds sampling the zero level set surface of goursat (N = 25000), without or with
noise (σε = σξ = 0.1). We compare JetFitting [CP05], ASO [LCBM21], CNC-Uniform (L = 100), CNC-Hexagram and CNC-Avg-Hexagram.
The colormap range for mean curvature (resp. Gaussian curvature) values is [−0.107,0.345] (resp. [−0.034,0.119]).

parisons (for goursat and torus with different neighborhood
sizes). We also show results when the point cloud does not sample
the underlying surface with uniform density (a stochastic rejection
test and a highly anisotropic sampling mimicking LIDAR devices).

7. Discussion

We have presented a new method to estimate locally the whole cur-
vature tensor information on oriented point clouds. We have pro-
vided quantitative theoretical guarantees of pointwise accuracy of
curvature estimates, even in the presence of noise in point position
and normal vector. In practice, our method is the most accurate and
requires the smallest computation window, it is also faster and fully
parallelizable, and is elementary to implement. An open-source im-
plementation of the method is publicly available.

To sum up our experiments, JetFitting collapses as soon as tiny
noise is added. Hence JetFitting is pertinent only if your data is per-
fect, yet remains costly to compute. ASO is experimentally more
robust to a stronger noise than CNC but you must choose a big
window of computation with many samples. For small to moderate
noise, CNC clearly outperforms all other methods with much fewer
samples (or equivalently a smaller computation window).

Currently, the main limitation of our method is that it requires
oriented normals. The method itself allows reorienting normals lo-

cally with respect to the normal of the point of interest, but it may
lead to output the opposite of curvatures. If there are unreliable
or no normal information, our method can take as input the out-
put of recent techniques that reorient normal vectors or even com-
pute good oriented normal vector field for point clouds. As future
works, we wish to estimate a priori the best radius δ/2 or the
best K as a function of the sampling and of the noise amplitude.
We would also like to relax the independence hypothesis in our
theoretical guarantees, so that more triangle generation strategies
would fit our setting. This would help to find better random gen-
eration techniques than CNC-Hexagram and CNC-Avg-Hexagram.
Finally, the same idea could be extended to compute higher-order
differential quantities. For instance, for point clouds approaching a
3D curve, one could complete the Grassmannian with another R3

vector space representing the tangent direction. Then differential
forms approaching curvature and torsion of the curve are definable
and a method similar to the one presented here would induce stable
measures of 3D torsions.
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Figure 7: Curvature estimations using the CNC-Avg-Hexagram approach on scanned data (from https://threedscans.com, points
and normal vectors from the dense reconstructed surfaces, and filtered LIDAR data from [LCBM21]): from left to right, initial point cloud,
Gaussian curvature, mean curvature, first and second principal curvatures (K = 50 for the first two objects —499500 and 494999 points
respectively—, then K = 300 —1759781 points— and K = 300 —2506407 points— for the last two rows ).
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κ̂
1

κ̂
2

Figure 8: First and second principal curvature values obtained using CNC-Hexagram for K values in
{20,50,80,100,200,300,1000,2000,3000} (same colormap for all figures). As the scale of the hexagram increases, large scale dif-
ferential features emerge.

and by the StableProxies project (ANR-22-CE46-0006) and gifts
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Appendix A: Proofs of some properties

Proof of area measure relation (6).

|µ(0)n (τS)−µ(0)u (τ)| ≤ Area(τ)
(

O(δ2)+α

)
.

Proof We recall that the Jacobian of πS satisfies [Fed59], for y in
the reach of S:

JπS(y) = | ⟨n(πS(y)) | nτ⟩ |(1+O(∥y−πS(y)∥))

= ⟨n(πS(y)) | nτ⟩ (1+O(δ2)),

where nτ is the unit normal to τ. The last line comes from the fact
that ∥y−πS(y)∥= O(δ2) and ⟨n(πS(y)) | nτ⟩> 0. Since µ(0)n is the
area (cf. (4)), we also get by the change of variable formula

µ(0)n (τS) =
∫

τS

da =
∫

τ

JπS da =
∫

τ

⟨n(πS(y)) | nτ⟩(1+O(δ2))da.

From the relation Γ
∗
uω

(0) = ⟨u | nτ⟩da which is proved in [LRT22],
we also have

µ(0)u (τ) =
∫

τ

Γ
∗
uω

(0) =
∫

τ

⟨u(y) | nτ⟩da,

which implies∣∣∣µ(0)n (τS)−µ(0)u (τ)
∣∣∣
=

∣∣∣∣∫
τ

〈
nτ |

[
u(y)−n(πS(y))(1+O(δ2))

]〉
da

∣∣∣∣
≤Area(τ)sup

y∈τ

(
∥u(y)−n(πS(y))∥+O(δ2)

)
≤Area(τ) (α +O(δ2)).

Proof of mean curvature measure relation (7)

|µ(1)n (τS)−µ(1)u (τ)| ≤ O(Lnδ
4)+O(βδ

2)+O(Luαδ
2).

Proof Let ∆ be the standard 2-simplex and, for (s, t) ∈ ∆, let
x(s, t) := xi + s(x j − xi) + t(xk − xi), which spans the triangle τ.
The vector field u is built by linear interpolation over τ, so can
be written as u ◦ x(s, t) := ui + s(u j −ui)+ t(uk −ui). Let finally
p(s, t) := πS(x(s, t)). We then proceed to express the two terms of
the difference as determinants, with a parameterization (s, t) ∈ ∆:

µ(1)n (τS) =
∫

τS

Γ
∗
nω

(1) =
∫

τ

π
∗
S Γ

∗
nω

(1) =
∫

∆

x∗π
∗
S Γ

∗
nω

(1)

=
1
2

∫
∆

det
(

n◦p, ∂p
∂s

,
∂n◦p

∂t

)
+det

(
n◦p, ∂n◦p

∂s
,

∂p
∂t

)
dsdt

=
1
2

∫
∆

(
det

(
n◦p,x j −xi,

∂n
∂x

(xk −xi)

)
+det

(
n◦p, ∂n

∂x
(x j −xi),xk −xi

))
(1+O(δ2))dsdt.

µ(1)u (τ) =
∫

τ

Γ
∗
uω

(1)

=
1
2

∫
∆

det
(

u, ∂x
∂s

,
∂u
∂t

)
+det

(
u, ∂u

∂s
,

∂x
∂t

)
dsdt

=
1
2

∫
∆

det
(
u,x j −xi,uk −ui

)
+det

(
u,u j −ui,xk −xi

)
dsdt.

Let us bound the difference of the two measures as we did above,
bounding ∥ ∂n

∂x (x j −xi)∥ by Lnδ :

|µ(1)n (τS)−µ(1)u (τ)|

≤O(Lnδ
4)

+
∫

∆

∣∣∣∣det
(

n◦p,x j −xi,
∂n
∂x

(xk −xi)− (uk −ui)

)
+det

(
n◦p−u,x j −xi,uk −ui

)
+det

(
n◦p, ∂n

∂x
(x j −xi)− (u j −ui),xk −xi

)
+det

(
n◦p−u,u j −ui,xk −xi

)∣∣∣∣dsdt.
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Denoting Lu the Lipschitz constant for u, bounding ∥ ∂n
∂x (x j −xi)−

(u j −ui)∥ by βδ, and using triangular inequality, it follows that

|µ(1)n (τS)−µ(1)u (τ)| ≤ O(Lnδ
4)+O(βδ

2)+O(Luαδ
2).

Proof of relation with pointwise mean curvature (8)

|µ(1)n (τS)−Area(τS)H(q)| ≤ LHArea(τS)δ.

Proof If q and r are two points of S, and assume S is C3-smooth. Let
LH be the Lipschitz constant of H, so |H(r)−H(q)| ≤ LH∥r−q∥.
We integrate the mean curvature on a triangle τS ⊂ S∩B(q,δ/2),
using first relation (5) then (4):

|µ(1)n (τS)−Area(τS)H(q)|=
∣∣∣∣∫

τS

H(r)−H(q)dr
∣∣∣∣

≤
∫

τS

LH∥r−q∥dr

≤ LHArea(τS)δ.

Proof of bounds induced by equality of vector fields at sample
points (9)

α ≤ βδ+O(δ2), β ≤ O(δ), Lu ≤ Ln.

Proof Let y be any point of triangle τ, with vertices x0,x1,x2 (say).
Since n and πS are C2 and u is linear, we can write using Taylor
expansion:

n◦πS(y) = n0 +D(n◦πS)|x0
(y−x0)+O(∥y−x0∥2)

u(y) = u0 +Du|x0
(y−x0).

Noticing that u0 = n0, and using the linearity of differentials, it
holds:

n◦πS(y)−u(y) = D(n◦πS −u)|x0
(y−x0)+O(∥y−x0∥2).

Using the definition of β and the fact that ∥y− x0∥ ≤ δ within the
triangle concludes for the first relation.
For the second relation, we proceed also by Taylor expansion at x0
of u and n◦πS, but we apply this expansion to determine values at
x1 and x2:

D(n◦πS)|x0
(x1 −x0) = n1 −n0 +O(δ2),

D(n◦πS)|x0
(x2 −x0) = n2 −n0 +O(δ2),

Du|x0
(x1 −x0) = u1 −u0,

Du|x0
(x2 −x0) = u2 −u0.

Again using the hypothesis that u = n at sample points, we get:

D(n◦πS −u)|x0
(x1 −x0) = O(δ2),

D(n◦πS −u)|x0
(x2 −x0) = O(δ2).

Since the two vectors x1 − x0 and x2 − x0 are not colinear and
are both bounded by δ, the linearity of the differential induces
∥D(n◦πS −u)|x0

∥ = O(δ). Since we assume that the boundary of

S is C3, the differential D(n◦πS) is C1 over the triangle τ. The

differential Du is constant. Hence for any y ∈ τ, Taylor expansion
gives:

D(n◦πS)|y = D(n◦πS)|x0
+O(∥y−x0∥)

D(u)|y = D(u)|x0
.

It follows that, using also triangular inequality:

∥D(n◦πS −u)|y∥ ≤∥D(n◦πS)|y −D(n◦πS)|x0
∥

+∥D(n◦πS)|x0
−Du|x0

∥+∥Du|x0
−D(u)|y∥

≤O(δ)+O(δ)+0,

which proves that β = O(δ).
For the last relation Lu ≤ Ln, it suffices to establish this relation
within a triangle τ. We have:

Lu = sup
y,z∈τ

∥u(y)−u(z)∥
∥y− z∥

= max
(
∥u1 −u0∥
∥x1 −x0∥

,
∥u2 −u1∥
∥x2 −x1∥

,
∥u0 −u2∥
∥x0 −x2∥

)
= max

(
∥n1 −n0∥
∥x1 −x0∥

,
∥n2 −n1∥
∥x2 −x1∥

,
∥n0 −n2∥
∥x0 −x2∥

)
≤ Ln.
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