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Abstract

We consider the controllability of a fluid-structure interaction system, where the fluid is modeled by the
Navier-Stokes system and where the structure is a damped beam located on a part of its boundary. The
motion of the fluid is bi-dimensional whereas the deformation of the structure is one-dimensional and we use
periodic boundary conditions in the horizontal direction. Our result is the local null-controllability of this
free-boundary system by using only one scalar control acting on an arbitrary small part of the fluid domain.
This improves a previous result obtained by the authors where three scalar controls were needed to achieve
the local null-controllability. In order to show the result, we prove the final-state observability of a linear
Stokes-beam interaction system in a cylindrical domain. This is done by using a Fourier decomposition,
proving Carleman inequalities for the corresponding system for the low-frequencies solutions and in the case
where the observation domain is an horizontal strip. Then we conclude this observability result by using a
Lebeau-Robbiano strategy for the heat equation and a uniform exponential decay for the high-frequencies
solutions. Then, the result on the nonlinear system can be obtained by a change of variables and a fixed-point
argument.

Keywords: Null controllability, Navier-Stokes systems, Carleman estimates, fluid-structure interaction systems
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1 Introduction
In this article, we study the controllability property of a fluid-structure interaction system, in the case where
the fluid is incompressible and viscous and in the case where the structure is a deformable beam corresponding
to a part of the boundary of the fluid domain. The fluid motion is bidimensional and the elastic displacement
of the structure is one-dimensional. To be more precise, let us define the configuration of reference:

I := R/(2πZ), Ω := I × (0, 1), Γ0 = I × {0}, Γ1 = I × {1}.

With this notation, Ω corresponds to the fluid domain if there is no displacement of the structure; Γ1 represents
the beam domain that is transformed into

Γ1+ζ := {(x1, 1 + ζ(x1)) ; x1 ∈ I} (1.1)

for an elastic deformation ζ : I → (−1,∞). The fluid domain becomes (see, Figure 1).

Ωζ := {(x1, x2) ∈ I × R ; x2 ∈ (0, 1 + ζ(x1))} . (1.2)
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Figure 1: Our geometry

Note that we work with the torus I in order to have periodic boundary conditions in the e1 direction, if (e1, e2)
denotes the canonical basis of R2.

Let us consider an arbitrary small nonempty open subset ω of Ω. Our aim is to show the local null-
controllability of the following fluid-structure interaction system

∂tw + (w · ∇)w − divT(w, π) = 1ωfe1 t > 0, x ∈ Ωζ(t),
divw = 0 t > 0, x ∈ Ωζ(t),

w(t, x1, 1 + ζ(t, x1)) = (∂tζ)(t, x1)e2, t > 0, x1 ∈ I,
w = 0 t > 0, x ∈ Γ0,

∂ttζ + α1∂
4
x1
ζ − α2∂

2
x1
ζ − α3∂t∂

2
x1
ζ = −H̃ζ(w, π) t > 0, x1 ∈ I,

w(0, ·) = w0 in Ωζ01 , ζ(0, ·) = ζ01 , ∂tζ(0, ·) = ζ02 in I,

(1.3)

where
α1 > 0, α2 ⩾ 0, α3 > 0.

In the above system, the Cauchy stress tensor and the symmetric gradient are defined as follows:

T(w, π) = 2µD(w)− πI2, D(w) =
1

2
(∇w + (∇w)∗) , (1.4)

with a viscosity µ > 0, whereas the force of the fluid applied on the beam is given by

H̃ζ(w, π)(t, x1) =
[
(1 + |∂x1ζ|2)1/2 [T(w, π)ν] (t, x1, 1 + ζ(t, x1)) · e2

]
. (1.5)

In the above formula, ν is the unit exterior normal to Ωζ(t). The first four equations of (1.3) are the Navier-
Stokes system satisfied by the velocity w and the pressure π of the fluid. We have assumed the standard no-slip
boundary conditions at the boundaries of the fluid domain. We also assume that the beam satisfies the damped
beam corresponding to the fifth equation of (1.3). Finally the last line of (1.3) gives the initial conditions for
this coupled nonlinear system. We want to control (1.3) by using the distributed control f localized in ω and
that acts only in the e1 direction.

In order to show the local null controllability of (1.3), a standard strategy consists in applying a change of
variables to write the fluid system into the cylindrical domain (0, T )×Ω, and then in linearizing the transformed
system. Then one can show that the corresponding linear system

∂tw − µ∆w +∇π = 1ωfe1 in (0, T )× Ω,
divw = 0 in (0, T )× Ω,

w = 0 on (0, T )× Γ0,
w = (∂tζ)e2 on (0, T )× Γ1,

∂2t ζ + α1∂
4
x1
ζ − α2∂

2
x1
ζ − α3∂t∂

2
x1
ζ = −T(w, π)ν · e2 in (0, T )× I,

w(0, ·) = w0 in Ω, ζ(0, ·) = ζ01 , ∂tζ(0, ·) = ζ02 in I,

(1.6)
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is null-controllable. Using a general result in [41], one can deduce the null-controllability of above system with
the source terms. Then, we can estimate the coefficients coming from the change of variables and use a fixed-
point argument to conclude. We are thus reduced to show the null-controllability of (1.6) or equivalently (see,
for instance, [58, Theorem 11.2.1, p.357]) to show the final-state observability of the following system (see, [12,
Section 2.1] for more details)

∂tu−∆u+∇p = 0 in (0, T )× Ω,
div u = 0 in (0, T )× Ω,

u = 0 on (0, T )× Γ0,
u = ∂tηe2 on (0, T )× Γ1,

∂2t η + ∂4x1
η − ∂2x1

∂tη = p|Γ1
in (0, T )× I,

u(0, ·) = u0 in Ω, η(0, ·) = η01 , ∂tη(0, ·) = η02 in I.

(1.7)

In the above system, we have assumed that

α1 = 1, α2 = 0, α3 = 1, µ = 1

since theses constants will not play any role in our study. On the right-hand side of the beam equation, we
should have

−T(u, p)ν · e2 = −∂x2u2 + p

instead of p, but for regular solutions, on Γ1, −∂x2
u2 = ∂x1

u1 = 0. Moreover, for regular solutions, we have
also the following computations:

0 =

∫
Ω

div u dx =
d

dt

∫ 2π

0

η dx1

so that ∫ 2π

0

η(t, x1) dx1 =

∫ 2π

0

η01(x1) dx1 (t ⩾ 0).

To simplify, we assume that η01 , η
0
2 ∈ L2

0(I) where

L2
0(I) :=

{
f ∈ L2(I) ;

∫ 2π

0

f(x1) dx1 = 0

}
so that for any t ⩾ 0, η(t, ·), ∂tη(t, ·) ∈ L2

0(I). Using these properties, and integrating the beam equation in
(1.7) in I yield the following condition on the pressure:∫ 2π

0

p(t, x1, 1) dx1 = 0 (t ∈ (0, T )). (1.8)

Let us consider the following operators associated with the beam equation:

D(A1) := H4(I) ∩ L2
0(I), A1η := ∂4x1

η, (1.9)

D(A2) := H2(I) ∩ L2
0(I), A2η := −∂2x1

η. (1.10)

We also define the Hilbert space of states for our system:

H :=
{
(u, η1, η2) ∈ L2(Ω)×D(A

1/2
1 )× L2

0(I) ; u2 = η2 on Γ1, u2 = 0 on Γ0, div u = 0 in Ω
}
, (1.11)

endowed with the canonical scalar product of L2(Ω)×D(A
1/2
1 )×L2(I). As we recall it in the next section, for

any [u0, η01 , η
0
2 ] ∈ H, (1.7) admits a unique (weak) solution [u, η, ∂tη] ∈ C0([0, T ];H).

Our main result is the final-state observability for the system (1.7):
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Theorem 1.1. Assume T > 0 and ω is a nonempty open set such that ω ⋐ Ω. There exists C > 0 such that
for any [u0, η01 , η

0
2 ] ∈ H, the solution of (1.7) satisfies

∥[u(T, ·), η(T, ·), ∂tη(T, ·)]∥2H ⩽ CeC/T
∫∫

(0,T )×ω
|u1|2 dx dt. (1.12)

Remark 1.2. The above theorem is one of the first results concerning the observability of a fluid-structure
interaction system with a deformable structure. It implies (see Theorem 1.4 below) the local null-controllability
of the system (1.6) with a control acting only on the fluid. We also manage to control only on one component
of the fluid. It is worth noting that we obtain an optimal cost of the form eC/T , whereas in the literature, even
without any structure, the cost for the controllability of fluid systems with controls with vanishing components is
of the form eC/T

m

with m > 1 (see the references in Remark 1.3 below). Our method is quite general and could
be applied to other systems: for instance one can replace the damped beam equation in (1.6) by a wave equation
without damping. In fact in that case, the underlying semigroup is also analytic (see [4]). We could also extend
our result in the three-dimensional case with a control acting on two components of the fluid velocity (see [18]
for the well-posedness of a similar system).

In a previous article [12] by the authors, we have obtained the final state observability

∥[u(T, ·), η(T, ·), ∂tη(T, ·)]∥2H ⩽ CeC/T
2

(∫∫
(0,T )×ω

|u|2 dx dt+

∫∫
(0,T )×J

|∂tη|2 dx1 dt

)
, (1.13)

where J ⋐ I is a nonempty open set. The result obtained here improve this previous result by using only one
scalar observation instead of three. By duality, we only need one scalar control in (1.6) instead of three scalar
controls in [12]. We have also improved the estimate of the cost of the control.

Remark 1.3. There are several other results in the literature concerning the controllability of N -dimensional
Stokes or Navier-Stokes systems with N − 1 scalar controls, see for instance [16], [14], [17], etc. Here due to
the geometry of Ω, the above observability inequality (1.12) does not hold if we replace u1 by u2. This fact can
be seen in the Fourier decomposition described below.

We can obtain from Theorem 1.1 a local null-controllability of (1.3). To state this result, we first recall the
notion of strong solutions for (1.3). Since ω ⋐ Ω, there exists ε > 0 small enough such for any ζ ∈ H3(I) with

∥ζ∥H3(I) ⩽ ε, (1.14)

then ω ⋐ Ωζ and there exists a diffeomorphism Xζ : Ω → Ωζ such that Xζ(ω) = ω. Now, if

ζ ∈ L2(0, T ;H4(I)) ∩ C0([0, T ];H3(I)) ∩H1(0, T ;H2(I)) ∩ C1([0, T ];H1(I)) ∩H2(0, T ;L2(I)) (1.15)

is small enough (in the above space), ζ(t, ·) satisfies (1.14) for all t ∈ [0, T ] and we can define the following
spaces as follows

w ∈ L2(0, T ;H2(Ωζ)) if w ◦Xζ ∈ L2(0, T ;H2(Ω))

w ∈ H1(0, T ;L2(Ωζ)) if w ◦Xζ ∈ H1(0, T ;L2(Ω))

π ∈ L2(0, T ;H1(Ωζ)) if π ◦Xζ ∈ L2(0, T ;H1(Ω)).

A triplet (w, π, ζ) is a strong solution of (1.3) if ζ satisfies (1.15), if

w ∈ L2(0, T ;H2(Ωζ)) ∩H1(0, T ;L2(Ωζ)), π ∈ L2(0, T ;H1(Ωζ))

and if all the equations in (1.3) are satisfies a.e. in time and space. The existence and uniqueness of strong
solutions have been obtained in [40] and [27] (see also [53]) for small data, that is if∥∥ζ01∥∥H3(I) +

∥∥ζ02∥∥H1(I) +
∥∥w0

∥∥
H1

(
Ω

ζ01

) + ∥f∥L2(0,T ;L2(ω)) (1.16)

is small enough. We are now in a position to state the following local null-controllability result for (1.3):
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Theorem 1.4. Assume T > 0 and ω is a nonempty open set such that ω ⋐ Ω. There exists R0 > 0 such that
for any (ζ01 , ζ

0
2 , w

0) ∈ D(A
3/4
1 )×D(A

1/4
1 )×H1(Ωζ01 ) with the compatibility conditions

divw0 = 0 in Ωζ01 , w0 = 0 on Γ0, w0(x1, 1 + ζ01 (x1)) = ζ02 (x1)e2 (x1 ∈ I), (1.17)

and with the smallness assumption∥∥ζ01∥∥H3(I) +
∥∥ζ02∥∥H1(I) +

∥∥w0
∥∥
H1

(
Ω

ζ01

) ⩽ R0, (1.18)

there exists a control f ∈ L2(0, T ;L2(ω)) such that the solution of (1.3) satisfies

ζ(T, ·) = ∂tζ(T, ·) = 0 in I, w(T, ·) = 0 in Ωζ(T,·).

The proof of Theorem 1.4 is quite standard from Theorem 1.1 and is done in [12], we thus skip its proof
here and only show Theorem 1.1.

The system (1.3) (without controls) has been introduced in [52] to model the blood flow in vessels and
has been studied by many authors. We can quote the following articles that are only a part of the literature
on the subject: [15] (existence of weak solutions), [6], [40], [27] and [44] (existence of strong solutions), [53]
(stabilization of strong solutions), [1] (stabilization of weak solutions around a stationary state). In some works,
the authors remove the damping on the structure (that is α3 = 0): [26], [47], [59] (weak solutions), [28], [2], [3],
[4] (strong solutions). There are also many studies on more complex models: [39, 38] (linear elastic Koiter shell),
[48] (dynamic pressure boundary conditions), [49, 50] (3D cylindrical domain with nonlinear elastic cylindrical
Koiter shell), [56] and [57] (nonlinear elastic and thermoelastic plate equations), [42], [43] (compressible fluids),
etc. Concerning the controllability of fluid-structure interaction systems, note that several works have been
done in the case where the structure is a rigid body in [9], [10], [19], [29], [54]. The only result we know about
the controllability of the system (1.6) is [12] where we obtain a result with controls on the fluid and on the
structure. Here we improve this result as explained in Remark 1.2. We can also mention [46] devoted to an
observability inequality for the adjoint of a linearized simplified compressible fluid-structure model similar to
our system. Another work in the same topic is [13], where we replace the damped beam equation by a heat
equation and we obtain the null-controllability of the corresponding system. As in our previous works, [13] and
[12], our strategy consists in considering the Stokes system as heat equations where the pressure is a source term,
(in the same spirit as [23] or as [20]). The pressure is estimated by using that it satisfies a Laplace equation,
but the difficulty for these estimates is coming from the fact that for this Laplace equation, we don’t have any
boundary condition. The idea is that, for low frequencies, it is possible to obtain an estimate without boundary
conditions. Then, one has to handle the high frequencies of the solution. It was done by using the microlocal
analysis in [12], in the same spirit as in many other works on Carleman estimates near boundaries and interfaces
(see, for instance, [8, 7, 11, 30, 33, 34, 35] and the recent books [31, 32] for elliptic counterparts).

In this article, we follow a different approach corresponding to the method of [36] for the heat equation.
Such a strategy has been used successfully in a similar problem with a free boundary: the Stefan problem with
surface tension, in the same geometry as here, see [25]. In particular, we use the same idea that consists to
obtain first the observability for an horizontal strip of Ω instead of ω. Then using the Lebeau-Robbiano method
and the Lebeau-Robbiano result for the heat equation on the torus I, we can conclude to the observability in ω.
Note that our method of proof, by separating the high frequencies and the low frequencies with Fourier series
is similar to the method in [5] (see in particular Theorem 2.1 in this reference).

The outline of the article is as follows: in the next section, we present the functional framework and in
particular the decomposition in high and low frequency of the solutions of (1.7) by using the Fourier decompo-
sition in the x1 variable. We also show a uniform exponential decay of the high-frequency part of the solution.
Section 3 is devoted to the Carleman estimates of the low frequency part of the solution. We use the low fre-
quency hypothesis to handle the fact that the pressure satisfies a Laplace equation with no boundary conditions.
In this section, we have an observation in an horizontal strip of Ω and with several observations that can be
expressed in terms of the derivatives of u1. Then in Section 4, we show the main result, that is, Theorem 1.1,
by removing the additional observations and by reducing the region of control. Then we combine the estimates
for low frequencies and high frequencies with a Lebeau-Robbiano strategy to deduce the result.
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Notation. In the whole paper, we use C as a generic positive constant that does not depend on the other terms
of the inequality. The value of the constant C may change from one appearance to another. We also use the
notation X ≲ Y if there exists a constant C > 0 such that we have the inequality X ⩽ CY . The notation
X ≲k Y stands for X ⩽ CY , where C is a positive constant depending on k.

2 Functional framework and Fourier decomposition

2.1 Functional framework
In the introduction, we have already introduced the operators A1 and A2 in (1.9) and (1.10) and the Hilbert
space H in (1.11). We define the orthogonal projection on the space H:

P : L2(Ω)×D(A
1/2
1 )× L2

0(I) → H.

We recall (see, for instance, [1, Proposition 3.1]) that the orthogonal of H in L2(Ω)×D(A
1/2
1 )× L2

0(I) is given
by

H⊥ =

{
(∇p, 0,−p|Γ1

) ; p ∈ H1(Ω),

∫ 2π

0

p(x1, 1) dx1 = 0

}
. (2.1)

Then we define the space

V :=
{
(u, η1, η2) ∈ H1(Ω)×D(A

3/4
1 )×D(A

1/4
1 ) ; u = η2e2 on Γ1, u = 0 on Γ0, div u = 0 in Ω

}
,

and the unbounded operator A associated with (1.7):

D(A) := V ∩
[
H2(Ω)×D(A1)×D(A

1/2
1 )

]
, A

 uη1
η2

 := P

 ∆u
η2

−A1η1 −A2η2

 . (2.2)

More precisely, we can write (1.7) in the form

d

dt

 u
η
∂tη

 = A

 u
η
∂tη

 (t ⩾ 0),

 u
η
∂tη

 (0) =

u0η01
η02

 . (2.3)

It is shown (see, for instance, [1, Proposition 3.4 and Proposition 3.11]) that A is the infinitesimal generator
of an analytic semigroup of contractions on H and this shows the existence and uniqueness of a weak solution
[u, η, ∂tη] ∈ C0([0, T ];H) of (1.7) for any [u0, η01 , η

0
2 ] ∈ H. Moreover, it is shown in [1] the existence of δ ∈

(
0,
π

2

)
such that

ρ(A) ⊂ Σ :=
{
λ ∈ C∗ ; |arg λ| < π

2
+ δ
}
∪ {0} (2.4)

and ∥∥∥(λI −A)
−1
∥∥∥
L(H)

≲
1

|λ|
(λ ∈ Σδ \ {0}). (2.5)

We need this property for the study of the exponential decay of the high frequencies of the solutions of (1.7).
Finally, we have the following result:

Proposition 2.1. The operator A defined above satisfies for any k ⩾ 1,

D(Ak) ⊂ H2k(Ω)×H2(k+1)(I)×H2k(I)

and
∥u∥H2k(Ω) + ∥η1∥H2(k+1)(I) + ∥η2∥H2k(I) ≲k ∥(u, η1, η2)∥D(Ak) ((u, η1, η2) ∈ D(Ak)).
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Proof. The proof can be done by induction, we have already the case k = 1. If (u, η1, η2) ∈ D(Ak+1), then

(f, g1, g2) := −A(u, η1, η2) ∈ D(Ak)

In particular, from (2.1) and (2.2), 

−∆u+∇p = f in Ω
div u = 0 in Ω
u|Γ0

= 0 on Γ0

u|Γ1
= η2e2 on Γ1

−η2 = g1 in I
A2η2 +A1η1 = p+ g2 in I.

We thus deduce that η2 ∈ D
(
A

(k+1)/2
1

)
⊂ H2(k+1)(I), and applying the elliptic regularity of the Stokes system

(see, [55, Proposition 2.2, p. 33]), we deduce u ∈ H2k+2(Ω), p ∈ H2k+1(Ω). From the last equation of the above
system, we finally obtain A1η1 ∈ D(A

k/2
1 ) and thus η1 ∈ D

(
A

(k+2)/2
1

)
.

To complete this functional framework, we introduce the space U := L2(ω) and the observation operator
C ∈ L(H,U) defined by

C

 uη1
η2

 := u1|ω.

Then our main result, that is Theorem 1.1 writes∥∥∥∥∥∥eTA

u0η01
η02

∥∥∥∥∥∥
H

⩽ CeC/T
∫ T

0

∥∥∥∥∥∥CeTA

u0η01
η02

∥∥∥∥∥∥
U

dt

u0η01
η02

 ∈ H

 . (2.6)

As it is standard, we are going to prove the above observability inequality for (u0, η01 , η
0
2) ∈

⋂
k⩾1

D
(
Ak
)

that is

dense in H (see, for instance, [58, Proposition 2.3.6, p.30]) and we obtain the result by using the continuity of the
operators involved in the inequality. With this choice, we deduce from Proposition 2.1 that the corresponding
solution of (1.7) (or equivalently (2.3)) satisfies for any k, ℓ ∈ N,

u ∈ Cℓ([0,∞);H2k(Ω)), η ∈ Cℓ([0,∞);H2k(I)).

2.2 Fourier series
In order to show Theorem 1.1, we decompose the solution of (1.7) using the Fourier series: we set for all n ∈ Z,

En(x1) :=
einx1

√
2π

, (2.7)

and

u(n)(t, x2) = (u(t, ·, x2), En)L2(I) , p(n)(t, x2) = (p(t, ·, x2), En)L2(I) , η(n)(t) = (η(t, ·), En)L2(I) ,

where (·, ·)L2(I) is the standard hermitian product. We can check that (η(n), u(n), p(n)) satisfies, for n ∈ Z, the
following system 

∂tu
(n) + n2u(n) − ∂2x2

u(n) +

[
inp(n)

∂x2
p(n)

]
= 0 in (0, T )× (0, 1),

inu
(n)
1 + ∂x2

u
(n)
2 = 0 in (0, T )× (0, 1),

u(n)(t, 0) = 0 t ∈ (0, T ),

u(n)(t, 1) = ∂tη
(n)(t)e2 t ∈ (0, T ),

∂2t η
(n) + n4η(n) + n2∂tη

(n) = p(n)(·, 1) in (0, T ).

(2.8)
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In the case n = 0, using (1.11) and the above system yields

η(0) ≡ 0, u
(0)
2 ≡ 0, p(0) ≡ 0, (2.9)

whereas u(0)1 satisfies the heat equation:{
∂tu

(0)
1 − ∂2x2

u
(0)
1 = 0 in (0, T )× (0, 1),

u
(0)
1 = 0 in (0, T )× {0, 1}.

(2.10)

Therefore, we can write

u(t, x1, x2) =
∑
n∈Z

u(n)(t, x2)En(x1), p(t, x1, x2) =
∑
n∈Z∗

p(n)(t, x2)En(x1), (2.11)

η(t, x1) =
∑
n∈Z∗

η(n)(t)En(x1). (2.12)

Remark 2.2. This decomposition and in particular (2.10) justify that one can not expect to obtain an observ-
ability inequality such as (1.12) with u2 instead of u1 (see Remark 1.3).

In order to study (1.7), we are going to decompose the solution into low and high frequencies: for N ∈ N∗,
we set

u−(t, x1, x2) =
∑

|n|⩽N

u(n)(t, x2)En(x1), p−(t, x1, x2) =
∑

0<|n|⩽N

p(n)(t, x2)En(x1), (2.13)

η−(t, x1) =
∑

0<|n|⩽N

η(n)(t)En(x1), (2.14)

u+(t, x1, x2) =
∑

|n|>N

u(n)(t, x2)En(x1), p+(t, x1, x2) =
∑

|n|>N

p(n)(t, x2)En(x1), (2.15)

η+(t, x1) =
∑

|n|>N

η(n)(t)En(x1). (2.16)

We will show the observability for the low frequency part, and obtain an exponential decay for the high-frequency
part. Let us set for all n ∈ Z,

Πnf := (f,En)L2(I)En. (2.17)

In particular, Πn is an orthogonal projection in L2(I) and in L2(Ω). We keep the notation Πn to denote the
following orthogonal projection

Πn : L2(Ω)×D(A
1/2
1 )× L2

0(I) → L2(Ω)×D(A
1/2
1 )× L2

0(I), Πn(f, g, h) := (Πnf,Πng,Πnh).

We have the preliminary result

Lemma 2.3. For all n ∈ Z,
Πn(H) ⊂ H, Πn(H⊥) ⊂ H⊥.

In particular, ΠnP = PΠn.

Proof. Assume (u, η1, η2) ∈ D(A) (see (2.2)). Then one can check that (Πnu,Πnη1,Πnη2) satisfies all the
conditions in (1.11). Then, since Πn is a bounded operator in L2(Ω) ×H2(I) × L2(I) and since H is a closed
subspace of L2(Ω) × H2(I) × L2(I), we deduce that Πn(H) ⊂ H. The remaining properties can be obtained
from this one from standard algebra results.

Let us set Hn := ΠnH. We deduce from the above lemma the following result:
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Lemma 2.4. Assume n ∈ Z. Then, we have

A(D(A) ∩Hn) ⊂ Hn,

U ∈ D(A) =⇒ ΠnU ∈ D(A) and AΠnU = ΠnAU,

(λ I−A)
−1

Πn = Πn (λ I−A)
−1

(λ ∈ ρ(A)), etAΠn = Πne
tA (t ⩾ 0).

For N ∈ N∗, we define
Π[N ] :=

∑
|n|⩽N

Πn (2.18)

and we deduce from the above lemma that for t ⩾ 0 and λ ∈ ρ(A)

(λ I−A)
−1

Π[N ] = Π[N ] (λ I−A)
−1
, etAΠ[N ] = Π[N ]etA. (2.19)

2.3 Exponential decay of the high-frequency solutions
The aim of this section is to show the following results

Theorem 2.5. There exists a constant C > 0 such that for any N ∈ N∗, t ⩾ 0 and U ∈ H,∥∥∥etA(I−Π[N ])U
∥∥∥
H

⩽
1

C
e−C(N+1)2t

∥∥∥(I−Π[N ])U
∥∥∥
H
. (2.20)

The theorem will be a direct consequence of Proposition 2.7 below and of (2.19). First, we use Lemma 2.3
to define

D(An) := D(A) ∩Hn, An : D(An) → Hn, U 7→ AU.

Moreover, ρ(A) ⊂ ρ(An) and

(λI −A)
−1

Πn = (λI −An)
−1

Πn (λ ∈ ρ(A)). (2.21)

Let us show the following result on An:

Proposition 2.6. There exists ε > 0 such that for all n ∈ Z∗, if |λ| ⩽ εn2 then

λ ∈ ρ(An) and
∥∥∥(λI −An)

−1
∥∥∥
L(Hn)

≲
1

n2
. (2.22)

Proof. From [1, Proposition 3.5], for any (u, η1, η2) ∈ D(A), we have that∥∥∥∥∥∥
 uη1
η2

∥∥∥∥∥∥
H2(Ω)×D(A1)×D(A

1/2
1 )

≲

∥∥∥∥∥∥A
 uη1
η2

∥∥∥∥∥∥
H

.

In particular, if (u(n), η(n)1 , η
(n)
2 ) ∈ D(An) then

n2

∥∥∥∥∥∥∥
u

(n)

η
(n)
1

η
(n)
2


∥∥∥∥∥∥∥
H

≲

∥∥∥∥∥∥∥An

u
(n)

η
(n)
1

η
(n)
2


∥∥∥∥∥∥∥
H

.

This shows that
∥∥A−1

n

∥∥
L(H)

≲ 1/n2. Moreover, by writing λI − An = An

(
λA−1

n − I
)

we deduce that if∥∥λA−1
n

∥∥
L(H)

⩽ 1/2, then λ ∈ ρ(An) and (2.22) holds. This concludes the proposition.

We deduce from the above result that
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Proposition 2.7. There exists C > 0 such that for any n ∈ Z∗, t ⩾ 0 and U ∈ H,∥∥etAΠnU∥∥H ⩽
1

C
e−Cn

2t ∥ΠnU∥H . (2.23)

Proof. We recall that the operator A satisfies (2.4) and (2.5). Applying [51, Theorem 7.7, p.30], we can write
for any t > 0

etAΠn =
1

2πi

(∫
γ1

eλt (λI −A)
−1

Πn dλ+

∫
γ0

eλt (λI −A)
−1

Πn dλ+

∫
γ−1

eλt (λI −A)
−1

Πn dλ

)
(2.24)

where
γ1 :=

{
rei(π/2+δ/2) ; r ∈ [εn2,∞)

}
, γ−1 :=

{
re−i(π/2+δ/2) ; r ∈ [εn2,∞)

}
,

γ0 :=

{
εn2eiθ ; θ ∈

[
−π + δ

2
,
π + δ

2

]}
,

with ε > 0 given by Proposition 2.6. First, we use (2.5) to obtain that∥∥∥∥∫
γ1

eλt (λI −A)
−1

Πn dλ

∥∥∥∥
L(H)

≲
∫ ∞

εn2

e−r sin
δ
2 t
dr

r
≲

1

εn2 sin δ
2 t
e−εn

2 sin δ
2 t.

In particular, for t ⩾
1

n2
, ∥∥∥∥∫

γ1

eλt (λI −A)
−1

Πn dλ

∥∥∥∥
L(H)

≲
1

ε sin δ
2

e−εn
2 sin δ

2 t. (2.25)

We have a similar estimate for γ−1.
From (2.21), we have ∫

γ0

eλt (λI −A)
−1

Πn dλ =

(∫
γ0

eλt (λI −An)
−1

dλ

)
Πn (2.26)

and from Proposition 2.6, we can write∫
γ0

eλt (λI −An)
−1

dλ =

∫
γ̃0

eλt (λI −An)
−1

dλ (2.27)

where
γ̃0 :=

{
−εn2 sin δ

2
+ ir ; r ∈

[
−εn2 cos δ

2
, εn2 cos

δ

2

]}
.

Combining this with (2.22) and (2.26), we deduce that∥∥∥∥∫
γ0

eλt (λI −A)
−1

Πn dλ

∥∥∥∥
L(H)

≲ 2ε cos
δ

2
e−εn

2 sin δ
2 t. (2.28)

Gathering (2.24) and (2.25) with the above estimate, we deduce the existence of a constant C = C(ε, δ) > 0

such that for all t ⩾
1

n2
, ∥∥etAΠn∥∥L(H)

⩽
1

C
e−Cn

2t.

On the other hand, using standard properties on strongly continuous semigroups, there exists a constant C > 0
such that for any t ∈ [0, 1], ∥∥etAΠn∥∥L(H)

⩽
∥∥etA∥∥L(H)

⩽ C.

Combining the last two estimates, we deduce (2.23).
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3 Carleman estimates with an horizontal strip observation
We are going to show Carleman estimates for the low frequency part of the solutions of (1.7). More precisely,
for N ∈ N∗, we consider here (η−, u−, p−) given by (2.13), (2.14). It is the solution of (1.7) associated with the
initial condition Π[N ]

(
u0, η01 , η

0
2

)
where Π[N ] is defined by (2.18). Using Lemma 2.4, we can assume that the

above initial condition is in
⋂
k⩾1

D
(
Ak
)

and thus, with Proposition 2.1, that (η−, u−, p−) is a smooth solution

of (1.7). For sake of clarity, we drop here the exponent “−” and assume that (η, u, p) is a smooth solution of
(1.7) with initial data of the form

u0(x1, x2) =
∑

|n|⩽N

u0,(n)(x2)En(x1), η01(x1) =
∑

0<|n|⩽N

η
0,(n)
1 En(x1), (3.1)

η02(x1) =
∑

0<|n|⩽N

η
0,(n)
2 En(x1). (3.2)

In this section, we consider that the region of observation is an horizontal strip: since ω is nonempty open
subset of Ω and we can assume the existence of a1, a2 ∈ I and b1, b2 ∈ (0, 1) such that a1 < a2, b1 < b2 and

(a1, a2)× (b1, b2) ⊂ ω (3.3)

We also consider b̃1, b̃2 ∈ (b1, b2), b̃1 < b̃2 and we set

I := I × (b1, b2), Ĩ := I × (̃b1, b̃2). (3.4)

Let us introduce the corresponding Carleman weights. We consider

ψ ∈ C∞([0, 1], [0, 1]), ψ > 0 in (0, 1), ψ′(x2) = 0 =⇒ x2 ∈ (̃b1, b̃2),

ψ(x2) = x2

(
x2 ∈

(
0,
b̃1
2

))
, ψ(x2) = 1− x2

(
x2 ∈

(
1 + b̃2

2
, 1

))
.

Then we set for λ ⩾ 1

φ(t, x2) :=
eλ(2+ψ(x2)) − e4λ

t(T − t)
, ξ(t, x2) :=

eλ(2+ψ(x2))

t(T − t)
. (3.5)

We set

φ0(t) :=
e2λ − e4λ

t(T − t)
, φ1(t) :=

e3λ − e4λ

t(T − t)
, ξ0(t) :=

e2λ

t(T − t)
, ξ1(t) :=

e3λ

t(T − t)
(3.6)

so that from (3.5)

φ0(t) ⩽ φ(t, x2) ⩽ φ1(t) and ξ0(t) ⩽ ξ(t, x2) ⩽ ξ1(t) (t ∈ (0, T ), x2 ∈ (0, 1)). (3.7)

Assume s0 > 0. Then, for any s ⩾ s0NT
2, we have

sλξ0(t) ⩾ 4s0N. (3.8)

Notation. In all that follows, we use s0, λ0 as generic positive constants that may change from one appearance
to another, but always in an increasing way.

If (η, u, p) is a strong solution of (1.7), then u1 and p satisfy the following equations{
∂tu1 −∆u1 = −∂x1p in (0, T )× Ω,

u1 = 0 on (0, T )× ∂Ω,

{
∂2t u1 −∆∂tu1 = −∂x1

∂tp in (0, T )× Ω,
∂tu1 = 0 on (0, T )× ∂Ω,

(3.9)
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∆p = 0 in (0, T )× Ω, ∆∂tp = 0 in (0, T )× Ω. (3.10)

Let us introduce

I1(s, λ, u, η) :=

∫∫
(0,T )×Ω

e2sφ
(
(sλξ)

8 |u1|2 + (sλξ)
6 |∇u1|2 + (sλξ)

4
[∣∣∇2u1

∣∣2 + |∂tu1|2
])

dt dx

+

∫∫
(0,T )×Ω

e2sφ
(
(sλξ)

2 |∇∂tu1|2 +
∣∣∇2∂tu1

∣∣2 + ∣∣∂2t u1∣∣2) dt dx

+

∫∫
(0,T )×Ω

e2sφ0

(
(sλξ0)

6
(
|u2|2 + |∂x2

u2|2
)
+ (sλξ0)

2
(
|∂tu2|2 + |∂x2

∂tu2|2
))

dt dx

+

∫∫
(0,T )×I

e2sφ0

(
(sλξ0)

6 |∂tη|2 + (sλξ0)
2 ∣∣∂2t η∣∣2) dt dx1. (3.11)

We also recall that Ĩ is introduced in (3.4). We first estimate the velocities of the fluid and on the structure.

Lemma 3.1. There exist λ0, s0 > 0 such that for any T > 0, λ ⩾ λ0, s ⩾ s0(T + T 2) and for any strong
solution (η, u, p) of (1.7), we have

I1(s, λ, u, η) ≲
∫∫

(0,T )×Ĩ
(sλξ)

8
e2sφ|u1|2 dt dx+

∫∫
(0,T )×Ĩ

(sλξ)
2
e2sφ|∂tu1|2 dt dx

+

∫∫
(0,T )×Ω

e2sφ
(
s5λ4ξ5|∂x1p|2 + sξ|∂x1∂tp|2

)
dt dx. (3.12)

Proof. We can apply a standard parabolic Carleman estimates on (3.9) (see, for instance, [24] or [22]): there
exist λ0, s0 > 0 such that for any T > 0, λ ⩾ λ0, s ⩾ s0(T + T 2)∫∫

(0,T )×Ω

e2sφ
(
(sλξ)

8 |u1|2 + (sλξ)
6 |∇u1|2 + (sλξ)

4
[∣∣∇2u1

∣∣2 + |∂tu1|2
])

dt dx

≲
∫∫

(0,T )×Ω

e2sφs5λ4ξ5|∂x1
p|2 dt dx+

∫∫
(0,T )×Ĩ

e2sφ(sξλ)8|u1|2dt dx. (3.13)

Then, using that ∂x2
u2 = −∂x1

u1, (3.7) and the Poincaré inequality, we deduce that∫∫
(0,T )×Ω

e2sφ0 (sλξ0)
6
(
|u2|2 + |∂x2u2|

2
)
dt dx

≲
∫∫

(0,T )×Ω

e2sφs5λ4ξ5|∂x1
p|2 dt dx+

∫∫
(0,T )×Ĩ

e2sφ(sξλ)8|u1|2dt dx. (3.14)

From the trace theorem and the boundary conditions of (1.7), we also deduce∫∫
(0,T )×Γ1

e2sφ0 (sλξ0)
6 |∂tη|2 dt dx1 ≲

∫∫
(0,T )×Ω

e2sφs5λ4ξ5|∂x1
p|2 dt dx+

∫∫
(0,T )×Ĩ

e2sφ(sξλ)8|u1|2dt dx.

Gathering (3.13), (3.14), the above relation and similar relations for the time derivatives of u and ∂tη, we deduce
(3.12).

On the other hand, we have the following Carleman estimate for the Laplace operator

12



Lemma 3.2. Assume r ∈ R. There exist λ0, s0 > 0 such that for any T > 0, λ ⩾ λ0, s ⩾ s0(T + T 2) and for
any p ∈ L2(0, T ;H2(Ω)),

λ

∫∫
(0,T )×Ω

e2sφ
(
(sλξ)

2r+3 |p|2 + (sλξ)
2r+1 |∇p|2

)
dt dx

+

∫∫
(0,T )×∂Ω

e2sφ0 (sλξ0)
2r+1

(
(sλξ0)

2 |p|∂Ω
|2 − 2

∣∣∂x1
p|∂Ω

∣∣2) dt dx1

≲
∫∫

(0,T )×Ω

|−∆p|2 (sλξ)2r e2sφ dt dx+

∫∫
(0,T )×Ĩ

e2sφ (sλξ)
2r+3 |p|2 dx. (3.15)

Proof. We set
q = (sλξ)

r
esφp (3.16)

and we perform standard computations (see, for instance, [21], [36], [31, pp.106–117]), to obtain the existence
of positive constants C, s0 such that for s ⩾ s0(T + T 2),

1

C

∫∫
(0,T )×Ω

(
s3λ4ξ3|q|2 + sλ2ξ |∇q|2 + 1

sξ
|∆q|2

)
dt dx

+Re

∫∫
(0,T )×∂Ω

(
s3λ3ξ30 |q|2 − 2sλ2ξ0

∂q

∂n
q + 2sλξ0

∣∣∣∣ ∂q∂n
∣∣∣∣2 − sλξ0 |∇q|2

)
dt dx1

⩽ C

(∫∫
(0,T )×Ω

|−∆p|2 (sλξ)2r e2sφ dt dx+

∫∫
(0,T )×Ĩ

s3λ4ξ3|q|2 dx

)
. (3.17)

In particular, there exists s0 > 0 such that for s ⩾ s0(T + T 2),∣∣∣∣2sλ2ξ0 ∂q∂nq
∣∣∣∣ ⩽ 1

2
s3λ3ξ30 |q|2 +

1

2
sλξ0 |∂x2q|

2

and combining this with (3.17) yields

1

C

∫∫
(0,T )×Ω

(
s3λ4ξ3|q|2 + sλ2ξ |∇q|2 + 1

sξ
|∆q|2

)
dt dx

+

∫∫
(0,T )×∂Ω

(
1

2
s3λ3ξ30 |q|2 +

1

2
sλξ0 |∂x2q|

2 − sλξ0 |∂x1q|
2

)
dt dx1

⩽ C

(∫∫
(0,T )×Ω

|−∆p|2 (sλξ)2r e2sφ dt dx+

∫∫
(0,T )×Ĩ

s3λ4ξ3|q|2 dx

)
. (3.18)

Using (3.16) in the above estimate, we obtain (3.15).

The main result of this section is the following Carleman estimate for low-frequencies solutions with respect
to the horizontal variable. In this frequency regime, we can handle the boundary terms of the pressure in
Lemma 3.2.

Theorem 3.3. There exist λ0, s0 > 0 such that for any

T > 0, N ∈ N∗, λ ⩾ λ0, s ⩾ s0(T +NT 2)
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and for any strong solution (η, u, p) of (1.7) with (3.1)–(3.2), we have

I1(s, λ, u, η) +

∫∫
(0,T )×I

e2sφ (sλξ0)
2 ∣∣∂4x1

η
∣∣2 dt dx1 ≲

∫∫
(0,T )×Ĩ

(sλξ)
8
e2sφ|u1|2 dt dx

+

∫∫
(0,T )×Ĩ

e2sφs7λ6ξ7
(
|∂tu1|2 +

∣∣∂2x1
u1
∣∣2 + ∣∣∂2x2

u1
∣∣2) dt dx

+

∫∫
(0,T )×Ĩ

e2sφs3λ2ξ3
(∣∣∂2t u1∣∣2 + ∣∣∂t∂2x1

u1
∣∣2 + ∣∣∂t∂2x2

u1
∣∣2) dt dx. (3.19)

Proof. From Lemma 2.4, if
(u0, η01 , η

0
2) ∈ H[N ],

then the solution (η, u, p) of (1.7) satisfies

(u(t, ·), η(t, ·), ∂tη(t, ·)) ∈ H[N ] t ⩾ 0.

We thus deduce that (η, u, p) satisfies (2.13) and (2.14). Then, using (3.8), we obtain the existence of s0 > 0
such that if s ⩾ s0NT

2, then a.e. in (0, T ),∫
∂Ω

∣∣∂x1
p|∂Ω

(t, x1)
∣∣2 dx1 ⩽ N2

∫
∂Ω

∣∣p|∂Ω
(t, x1)

∣∣2 dx1 ⩽
1

4

∫
∂Ω

(sλξ0)
2 ∣∣p|∂Ω

(t, x1)
∣∣2 dx1. (3.20)

Applying Lemma 3.2 to p with r = 2 and using (3.10), we deduce∫∫
(0,T )×Ω

e2sφ
(
s7λ6ξ7|p|2 + s5λ4ξ5 |∇p|2

)
dt dx

+

∫∫
(0,T )×∂Ω

e2sφ0s5λ3ξ50

(
(sλξ0)

2 |p|∂Ω
|2 − 2

∣∣∂x1p|∂Ω

∣∣2) dt dx1 ≲
∫∫

(0,T )×Ĩ
e2sφs7λ6ξ7|p|2 dt dx. (3.21)

Combining the above estimate with (3.20), we obtain∫∫
(0,T )×Ω

e2sφ
(
s7λ6ξ7|p|2 + s5λ4ξ5 |∇p|2

)
dt dx+

∫∫
(0,T )×∂Ω

e2sφ0s7λ5ξ70 |p|∂Ω
|2 dt dx1

≲
∫∫

(0,T )×Ĩ
e2sφs7λ6ξ7|p|2 dt dx. (3.22)

Similarly, applying Lemma 3.2 to ∂tp with r = 0 and using (3.10), we deduce∫∫
(0,T )×Ω

e2sφ
(
s3λ2ξ3|∂tp|2 + sξ |∇∂tp|2

)
dt dx+

∫∫
(0,T )×∂Ω

e2sφ0s3λξ30 |∂tp|∂Ω
|2 dt dx1

≲
∫∫

(0,T )×Ĩ
e2sφs3λ2ξ3|∂tp|2 dt dx. (3.23)

Combining (3.12), (3.22) and (3.23) gives

I1(s, λ, u, η) ≲
∫∫

(0,T )×Ĩ
(sλξ)

8
e2sφ|u1|2 dt dx+

∫∫
(0,T )×Ĩ

(sλξ)
2
e2sφ|∂tu1|2 dt dx

+

∫∫
(0,T )×Ĩ

e2sφs7λ6ξ7|p|2 dt dx+

∫∫
(0,T )×Ĩ

e2sφs3λ2ξ3|∂tp|2 dt dx. (3.24)

It remains to estimate η, without time derivatives as in I1(s, λ, u, η) (see (3.11)). For this, we use the beam
equation in (1.7)

∂4x1
η(t, x1) = p(t, x1, 1)− ∂2t η(t, x1) + ∂2x1

∂tη(t, x1), t ∈ (0, T ), x1 ∈ I.
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Combining this equation and (3.8), we obtain∫∫
(0,T )×Γ1

e2sφ0 (sλξ0)
2 ∣∣∂4x1

η
∣∣2 dt dx1 ≲

∫∫
(0,T )×I

e2sφ0

(
(sλξ0)

6 |∂tη|2 + (sλξ0)
2 ∣∣∂2t η∣∣2) dt dx1.

+

∫∫
(0,T )×Γ1

e2sφ0 (sλξ0)
2 |p|Γ1

|2 dt dx1.

Then, from (3.11), (3.12), (3.22) and (3.24), we find

I1(s, λ, u, η) +

∫∫
(0,T )×Γ1

e2sφ0 (sλξ0)
2 ∣∣∂4x1

η
∣∣2 dt dx1

≲
∫∫

(0,T )×Ĩ
(sλξ)

8
e2sφ|u1|2 dt dx+

∫∫
(0,T )×Ĩ

(sλξ)
2
e2sφ|∂tu1|2 dt dx

+

∫∫
(0,T )×Ĩ

e2sφs7λ6ξ7|p|2 dt dx+

∫∫
(0,T )×Ĩ

e2sφs3λ2ξ3|∂tp|2 dt dx. (3.25)

From the first equation of (2.8), we have for 0 < |n| ⩽ N ,

p(n) =
i

n

(
∂tu

(n)
1 + n2u

(n)
1 − ∂2x2

u
(n)
1

)
and thus ∫

I
|p|2 dx1 ⩽

∫
I

(
|∂tu1|2 +

∣∣∂2x1
u1
∣∣2 + ∣∣∂2x2

u1
∣∣2) dx1.

We have a similar estimate for ∂tp and combining these relations with (3.25), we deduce (3.19).

4 Proof of the main result
To obtain Theorem 1.1, we need to remove in (3.19) the observations associated with derivatives of u1. This is
done in the next section by using the parabolic regularity of the system. Then, we reduce the region of control
to ω by using a spectral inequality for sums of eigenfunctions of the one-dimensional Laplace operator on the
torus. Finally, we use a Lebeau-Robbiano strategy combined with Theorem 2.5 to prove the main result.

4.1 Parabolic regularity
Using (3.6), there exists λ0 > 0 such that for λ ⩾ λ0,

2φ1 − φ0 < 0. (4.1)

We assume below that λ ⩾ λ0. There exists s0 > 0 such that for s ⩾ s0T ,

|∂tφ0|+ |∂tφ1|+ |∂tξ0| ≲ sξ20 in (0, T ). (4.2)

In particular, there exists s0 > 0 such that for s ⩾ s0(T + T 2) and for any r ∈ R,∣∣∣∣ ddt [(sξ0)resφ0 ]

∣∣∣∣ ≲r (sξ0)r+2esφ0 . (4.3)

Now, we set
ρ0 := sλξ0e

sφ0 (4.4)

and we show in this section the following result:
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Proposition 4.1. There exist λ0, s0 > 0 such that for any

T > 0, N ∈ N∗, λ ⩾ λ0, s ⩾ s0(T +NT 2)

and for any strong solution (η, u, p) of (1.7) with (3.1)–(3.2), we have

∥ρ0 (u, η, ∂tη)∥2L2(0,T ;H) ≲
∫∫

(0,T )×I
λ12 (sξ1)

20
e4sφ1−2sφ0 |u1|2 dt dx. (4.5)

Proof. Combining (4.4), (3.7) and (3.11), and applying Theorem 3.3, we first obtain

∥ρ0 (u, η, ∂tη)∥2L2(0,T ;H) ≲
∫∫

(0,T )×Ĩ
(sλξ1)

8
e2sφ1 |u1|2 dt dx

+

∫∫
(0,T )×Ĩ

e2sφ1s7λ6ξ71

(
|∂tu1|2 +

∣∣∂2x1
u1
∣∣2 + ∣∣∂2x2

u1
∣∣2) dt dx

+

∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31

(∣∣∂2t u1∣∣2 + ∣∣∂t∂2x1
u1
∣∣2 + ∣∣∂t∂2x2

u1
∣∣2) dt dx. (4.6)

Then we set
ρ1 := λ(sξ0)

−1esφ0 , ρ2 := λ(sξ0)
−3esφ0 ,

ρ3 := λ(sξ0)
−5esφ0 , ρ4 := λ(sξ0)

−7esφ0 .

We deduce from (4.3) that ∣∣ρ′j+1

∣∣ ≲ ρj (j ∈ {0, . . . , 3})

and we can use the maximal regularity of (2.3) and (4.6) to deduce that

4∑
j=0

j∑
i=0

∥∥ρj∂it(u, η, ∂tη)∥∥L2(0,T ;D(Aj−i))
≲
∫∫

(0,T )×Ĩ
(sλξ1)

8
e2sφ1 |u1|2 dt dx

+

∫∫
(0,T )×Ĩ

e2sφ1s7λ6ξ71

(
|∂tu1|2 +

∣∣∂2x1
u1
∣∣2 + ∣∣∂2x2

u1
∣∣2) dt dx

+

∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31

(∣∣∂2t u1∣∣2 + ∣∣∂t∂2x1
u1
∣∣2 + ∣∣∂t∂2x2

u1
∣∣2) dt dx. (4.7)

Now we integrate by parts to estimate the right-hand side of the above relation:∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31
∣∣∂2t u1∣∣2 dt dx

=

∫∫
(0,T )×Ĩ

1

2

d2

dt2
(
e2sφ1s3λ2ξ31

)
|∂tu1|2 dt dx− Re

∫∫
(0,T )×Ĩ

d

dt

(
e2sφ1s3λ2ξ31

)
∂3t u1u1 dt dx

− Re

∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31∂
4
t u1u1 dt dx. (4.8)

In particular, for any ε > 0,∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31
∣∣∂2t u∣∣2 dt dx

≲
∫∫

(0,T )×Ĩ
e2sφ1s7λ2ξ71 |∂tu1|

2
dt dx+

1

ε

∫∫
(0,T )×Ĩ

e2s(2φ1−φ0)λ2(sξ1)
20 |u1|2 dt dx

+ ε
(∥∥ρ3∂3t u∥∥2L2(0,T ;L2(Ω))

+
∥∥ρ4∂4t u∥∥2L2(0,T ;L2(Ω))

)
. (4.9)
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Similarly,∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31
∣∣∂t∂2x1

u1
∣∣2 dt dx = Re

∫∫
(0,T )×Ĩ

1

2

d2

dt2
(
e2sφ1s3λ2ξ31

)
∂4x1

u1u1 dt dx

− Re

∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31
(
∂2t ∂

4
x1
u1
)
u1 dt dx. (4.10)

In particular, for any ε > 0,∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31
∣∣∂t∂2x1

u1
∣∣2 dt dx ≲

1

ε

∫∫
(0,T )×Ĩ

e2s(2φ1−φ0)λ2(sξ1)
20 |u1|2 dt dx

+ ε
(∥∥ρ2∂4x1

u
∥∥2
L2(0,T ;L2(Ω))

+
∥∥ρ4∂2t ∂4x1

u
∥∥2
L2(0,T ;L2(Ω))

)
. (4.11)

We also consider κ ∈ C∞(R, [0, 1]), κ ≡ 1 in (̃b1, b̃2) with compact support in (b1, b2). Then∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31
∣∣∂t∂2x2

u1
∣∣2 dt dx =

∫∫
(0,T )×I

κe2sφ1s3λ2ξ31
∣∣∂t∂2x2

u1
∣∣2 dt dx

and integrating by parts as above, we find for any ε > 0,∫∫
(0,T )×Ĩ

e2sφ1s3λ2ξ31
∣∣∂t∂2x2

u1
∣∣2 dt dx ≲

1

ε

∫∫
(0,T )×I

e2s(2φ1−φ0)λ2(sξ1)
20 |u1|2 dt dx

+ ε
(∥∥ρ1∂2x2

u
∥∥2
L2(0,T ;L2(Ω))

+
∥∥ρ2∂4x2

u
∥∥2
L2(0,T ;L2(Ω))

+
∥∥ρ3∂2t ∂2x2

u
∥∥2
L2(0,T ;L2(Ω))

+
∥∥ρ4∂2t ∂4x1

u
∥∥2
L2(0,T ;L2(Ω))

)
. (4.12)

Proceeding similarly for all the other terms, we deduce (4.5) after standard but technical computations (see
for instance [23]).

4.2 Reducing the observation domain
Proposition 4.2. There exists C > 0 such that for any T > 0, N ∈ N∗ and for any strong solution (η, u, p) of
(1.7) with (3.1)–(3.2), we have

∥(u(T, ·), η(T, ·), ∂tη(T, ·))∥2H ⩽ CeC(
1
T +N)

∫∫
(0,T )×ω

|u|2 dt dx. (4.13)

Proof. We apply Proposition 4.1 and take λ = λ0, s = s0(T +NT 2). Then, we have∫∫
(0,T )×I

λ12 (sξ1)
20
e4sφ1−2sφ0 |u|2 dt dx ≲

∫∫
(0,T )×I

|u|2 dt dx

and there exists a constant C such that

e−C(
1
T +N) ∥(u(T, ·), η(T, ·), ∂tη(T, ·))∥2H ≲ ∥ρ0 (u, η, ∂tη)∥2L2(T/4,3T/4;H) ⩽ ∥ρ0 (u, η, ∂tη)∥2L2(0,T ;H) .

We deduce from the above estimate and (4.5) that

∥(u(T, ·), η(T, ·), ∂tη(T, ·))∥2H ⩽ CeC(
1
T +N)

∫∫
(0,T )×I

|u|2 dt dx. (4.14)
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From (3.4) and (2.13), ∫∫
(0,T )×I

|u|2 dt dx =

∫
(0,T )×(b1,b2)

∑
|n|⩽N

∣∣∣u(n)(t, x2)∣∣∣2 dt dx2. (4.15)

Using [37] and the fact that En are eigenvectors of the Laplace operator on I with eigenvalues n2, there exists
a constant C > 0 such that for a.e. x2 ∈ (0, 1) and a.e. t ∈ (0, T ),

∑
|n|⩽N

∣∣∣u(n)(t, x2)∣∣∣2 ⩽ CeCN
∫
(a1,a2)

∣∣∣∣∣∣
∑

|n|⩽N

u(n)(t, x2)En(x1)

∣∣∣∣∣∣
2

dx1.

Gathering (4.14), (4.15) and the above equation yields (4.13).

4.3 The Lebeau-Robbiano method
In order to prove Theorem 1.1, it remains to combine Proposition 4.2 and Theorem 2.5. This can be done in
a general way by following the method developed in [36] for the controllability heat equation. More precisely,
we consider the dual version of this method written in [45] where the author shows directly the final state
observability and make explicit the dependency of the cost of control with respect to the time and we adapt it
to our case. Let us point out that a similar abstract result is done in [5].

We assume that H and U are Hilbert spaces, that A is the infinitesimal generator of a C0 semigroup
(
etA
)
t⩾0

,
and that C ∈ L(H,U) an observation operator. We also suppose that for any N ∈ N∗, there exists a continuous
projection Π[N ] of H such that ∥∥∥(I −Π[N ])

∥∥∥
L(H)

⩽ C0

for some constant C0 > 0 independent of N . Finally, we assume the existence of two positive constants C1, C2

such that for any N ∈ N∗, t ⩾ 0, T > 0 and for any U ∈ H,∥∥∥Π[N ]eTAU
∥∥∥2
H

⩽ C1e
C1( 1

T +N)
∫ T

0

∥∥∥CΠ[N ]etAU
∥∥∥2
U
dt (4.16)

and ∥∥∥(I−Π[N ])etAU
∥∥∥2
H

⩽
1

C2
e−C2(N+1)2t

∥∥∥(I−Π[N ])U
∥∥∥2
H
. (4.17)

Then we have the following result:

Lemma 4.3. Assume the above hypotheses and in particular (4.16), (4.17). Then we have the following final
state observability: there exists C > 0 such that for any T > 0, and for any U ∈ H,

∥∥eTAU
∥∥
H ⩽ eC/T

∫ T

0

∥∥CetAU∥∥2U dt. (4.18)

Proof. First, we consider ε > 0 small enough such that for any τ ∈ (0, T ),

C2
0

(
4C1

C2
∥C∥2L(H,U) ετe

2C1
1
ετ −C2

1−ε

ε2τ +
2

C2
e−C2

1
ε2τ

)
⩽ e−

2C1
ετ . (4.19)

Assume
T1 > 0, τ > 0, T2 := T1 + τ

and let us take
N =

⌊
1

ετ

⌋
.
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Then, using (4.16) and (4.17), we deduce

∥∥eT2AU
∥∥2
H ⩽ 2

∥∥∥Π[N ]eT2AU
∥∥∥2
H
+ 2

∥∥∥(I−Π[N ])eT2AU
∥∥∥2
H

⩽ 4C1e
2C1

1
ετ

∫ T2

T2−ετ

∥∥CetAU∥∥2U dt

+

(
4C1

C2
∥C∥2L(H,U) ετe

2C1
1
ετ −C2

1−ε

ε2τ +
2

C2
e−C2

1
ε2τ

)
C2

0

∥∥eT1AU
∥∥2
H . (4.20)

We set
fε(τ) :=

1

4C1
e−

4C1
ετ

so that
fε(τ)

fε(2τ)
= e−

2C1
ετ

and we deduce from (4.19) and (4.20) that

fε(2τ)
∥∥eT2AU

∥∥2
H ⩽

∫ T2

T1

∥∥CetAU∥∥2U dt+ fε(τ)
∥∥eT1AU

∥∥2
H . (4.21)

Now we take k ∈ N and we apply the above result to

T1 :=
T

2k+1
, T2 :=

T

2k
, τ :=

T

2k+1
.

We obtain

fε

(
T

2k

)∥∥∥e T

2k
AU
∥∥∥2
H

⩽
∫ T

2k

T

2k+1

∥∥CetAU∥∥2U dt+ fε

(
T

2k+1

)∥∥∥e T

2k+1 AU
∥∥∥2
H
. (4.22)

Summing the above relation over k ∈ N, we deduce the result.
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