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Controllability with one scalar control of a system of interaction between the Navier-Stokes system and a damped beam equation

Rémi Buffe, Takéo Takahashi

Introduction

In this article, we study the controllability property of a fluid-structure interaction system, in the case where the fluid is incompressible and viscous and in the case where the structure is a deformable beam corresponding to a part of the boundary of the fluid domain. The fluid motion is bidimensional and the elastic displacement of the structure is one-dimensional. To be more precise, let us define the configuration of reference:

I := R/(2πZ), Ω := I × (0, 1), Γ 0 = I × {0}, Γ 1 = I × {1}.
With this notation, Ω corresponds to the fluid domain if there is no displacement of the structure; Γ 1 represents the beam domain that is transformed into

Γ 1+ζ := {(x 1 , 1 + ζ(x 1 )) ; x 1 ∈ I} (1.1)
for an elastic deformation ζ : I → (-1, ∞). The fluid domain becomes (see, Figure 1).

Ω ζ := {(x 1 , x 2 ) ∈ I × R ; x 2 ∈ (0, 1 + ζ(x 1 ))} . (1.2)
1
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               ∂ t w + (w • ∇)w -div T(w, π) = 1 ω f e 1 t > 0, x ∈ Ω ζ(t) , div w = 0 t > 0, x ∈ Ω ζ(t) , w(t, x 1 , 1 + ζ(t, x 1 )) = (∂ t ζ)(t, x 1 )e 2 , t > 0, x 1 ∈ I, w = 0 t > 0, x ∈ Γ 0 , ∂ tt ζ + α 1 ∂ 4 x1 ζ -α 2 ∂ 2 x1 ζ -α 3 ∂ t ∂ 2 x1 ζ = -H ζ (w, π) t > 0, x 1 ∈ I, w(0, •) = w 0 in Ω ζ 0 1 , ζ(0, •) = ζ 0 1 , ∂ t ζ(0, •) = ζ 0 2 in I, (1.3) 
where α 1 > 0, α 2 ⩾ 0, α 3 > 0.

In the above system, the Cauchy stress tensor and the symmetric gradient are defined as follows:

T(w, π) = 2µD(w) -πI 2 , D(w) = 1 2 (∇w + (∇w) * ) ,

with a viscosity µ > 0, whereas the force of the fluid applied on the beam is given by

H ζ (w, π)(t, x 1 ) = (1 + |∂ x1 ζ| 2 ) 1/2 [T(w, π)ν] (t, x 1 , 1 + ζ(t, x 1 )) • e 2 .
(1.5)

In the above formula, ν is the unit exterior normal to Ω ζ(t) . The first four equations of (1.3) are the Navier-Stokes system satisfied by the velocity w and the pressure π of the fluid. We have assumed the standard no-slip boundary conditions at the boundaries of the fluid domain. We also assume that the beam satisfies the damped beam corresponding to the fifth equation of (1.3). Finally the last line of (1.3) gives the initial conditions for this coupled nonlinear system. We want to control (1.3) by using the distributed control f localized in ω and that acts only in the e 1 direction. In order to show the local null controllability of (1.3), a standard strategy consists in applying a change of variables to write the fluid system into the cylindrical domain (0, T ) × Ω, and then in linearizing the transformed system. Then one can show that the corresponding linear system

               ∂ t w -µ∆w + ∇π = 1 ω f e 1 in (0, T ) × Ω, div w = 0 in (0, T ) × Ω, w = 0 on (0, T ) × Γ 0 , w = (∂ t ζ)e 2 on (0, T ) × Γ 1 , ∂ 2 t ζ + α 1 ∂ 4 x1 ζ -α 2 ∂ 2 x1 ζ -α 3 ∂ t ∂ 2 x1 ζ = -T(w, π)ν • e 2 in (0, T ) × I, w(0, •) = w 0 in Ω, ζ(0, •) = ζ 0 1 , ∂ t ζ(0, •) = ζ 0 2 in I, (1.6) 
is null-controllable. Using a general result in [START_REF] Liu | Single input controllability of a simplified fluid-structure interaction model[END_REF], one can deduce the null-controllability of above system with the source terms. Then, we can estimate the coefficients coming from the change of variables and use a fixedpoint argument to conclude. We are thus reduced to show the null-controllability of ( 

                 ∂ t u -∆u + ∇p = 0 in (0, T ) × Ω, div u = 0 in (0, T ) × Ω, u = 0 on (0, T ) × Γ 0 , u = ∂ t ηe 2 on (0, T ) × Γ 1 , ∂ 2 t η + ∂ 4 x1 η -∂ 2 x1 ∂ t η = p |Γ 1 in (0, T ) × I, u(0, •) = u 0 in Ω, η(0, •) = η 0 1 , ∂ t η(0, •) = η 0 2 in I.
(1.7)

In the above system, we have assumed that

α 1 = 1, α 2 = 0, α 3 = 1, µ = 1
since theses constants will not play any role in our study. On the right-hand side of the beam equation, we should have

-T(u, p)ν • e 2 = -∂ x2 u 2 + p instead of p, but for regular solutions, on Γ 1 , -∂ x2 u 2 = ∂ x1 u 1 = 0.
Moreover, for regular solutions, we have also the following computations:

0 = Ω div u dx = d dt 2π 0 η dx 1 so that 2π 0 η(t, x 1 ) dx 1 = 2π 0 η 0 1 (x 1 ) dx 1 (t ⩾ 0).
To simplify, we assume that η 0 1 , η 0 2 ∈ L 2 0 (I) where

L 2 0 (I) := f ∈ L 2 (I) ; 2π 0 f (x 1 ) dx 1 = 0
so that for any t ⩾ 0, η(t, •), ∂ t η(t, •) ∈ L 2 0 (I). Using these properties, and integrating the beam equation in (1.7) in I yield the following condition on the pressure:

2π 0 p(t, x 1 , 1) dx 1 = 0 (t ∈ (0, T )).
(1.8)

Let us consider the following operators associated with the beam equation:

D(A 1 ) := H 4 (I) ∩ L 2 0 (I), A 1 η := ∂ 4 x1 η, (1.9) 
D(A 2 ) := H 2 (I) ∩ L 2 0 (I), A 2 η := -∂ 2 x1 η. (1.10)
We also define the Hilbert space of states for our system:

H := (u, η 1 , η 2 ) ∈ L 2 (Ω) × D(A 1/2 1 ) × L 2 0 (I) ; u 2 = η 2 on Γ 1 , u 2 = 0 on Γ 0 , div u = 0 in Ω , (1.11) 
endowed with the canonical scalar product of L 2 (Ω) × D(A

1/2 1 ) × L 2 (I).
As we recall it in the next section, for any [u 0 , η 0 1 , η 0 2 ] ∈ H, (1.7) admits a unique (weak) solution [u, η, ∂ t η] ∈ C 0 ([0, T ]; H). Our main result is the final-state observability for the system (1.7):

Theorem 1.1. Assume T > 0 and ω is a nonempty open set such that ω ⋐ Ω. There exists C > 0 such that for any [u 0 , η 0 1 , η 0 2 ] ∈ H, the solution of (1.7) satisfies

∥[u(T, •), η(T, •), ∂ t η(T, •)]∥ 2 H ⩽ Ce C/T (0,T )×ω |u 1 | 2 dx dt.
(1.12)

Remark 1.2. The above theorem is one of the first results concerning the observability of a fluid-structure interaction system with a deformable structure. It implies (see Theorem 1.4 below) the local null-controllability of the system (1.6) with a control acting only on the fluid. We also manage to control only on one component of the fluid. It is worth noting that we obtain an optimal cost of the form e C/T , whereas in the literature, even without any structure, the cost for the controllability of fluid systems with controls with vanishing components is of the form e C/T m with m > 1 (see the references in Remark 1.3 below). Our method is quite general and could be applied to other systems: for instance one can replace the damped beam equation in (1.6) by a wave equation without damping. In fact in that case, the underlying semigroup is also analytic (see [START_REF] Badra | Maximal regularity for the Stokes system coupled with a wave equation: application to the system of interaction between a viscous incompressible fluid and an elastic wall[END_REF]). We could also extend our result in the three-dimensional case with a control acting on two components of the fluid velocity (see [START_REF] Aicha | On the existence of strong solutions to a fluid structure interaction problem with Navier boundary conditions[END_REF] for the well-posedness of a similar system).

In a previous article [START_REF] Buffe | Controllability of a fluid-structure interaction system coupling the Navier-Stokes system and a damped beam equation[END_REF] by the authors, we have obtained the final state observability

∥[u(T, •), η(T, •), ∂ t η(T, •)]∥ 2 H ⩽ Ce C/T 2 (0,T )×ω |u| 2 dx dt + (0,T )×J |∂ t η| 2 dx 1 dt , (1.13) 
where J ⋐ I is a nonempty open set. The result obtained here improve this previous result by using only one scalar observation instead of three. By duality, we only need one scalar control in (1.6) instead of three scalar controls in [START_REF] Buffe | Controllability of a fluid-structure interaction system coupling the Navier-Stokes system and a damped beam equation[END_REF]. We have also improved the estimate of the cost of the control.

Remark 1.3. There are several other results in the literature concerning the controllability of N -dimensional Stokes or Navier-Stokes systems with N -1 scalar controls, see for instance [START_REF] Coron | Null controllability of the N -dimensional Stokes system with N -1 scalar controls[END_REF], [START_REF] Carreño | Local null controllability of the N -dimensional navier-stokes system with N -1 scalar controls in an arbitrary control domain[END_REF], [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF], etc. Here due to the geometry of Ω, the above observability inequality (1.12) does not hold if we replace u 1 by u 2 . This fact can be seen in the Fourier decomposition described below.

We can obtain from Theorem 1.1 a local null-controllability of (1.3). To state this result, we first recall the notion of strong solutions for (1.3). Since ω ⋐ Ω, there exists ε > 0 small enough such for any ζ ∈ H 3 (I) with

∥ζ∥ H 3 (I) ⩽ ε, (1.14) 
then ω ⋐ Ω ζ and there exists a diffeomorphism

X ζ : Ω → Ω ζ such that X ζ (ω) = ω. Now, if ζ ∈ L 2 (0, T ; H 4 (I)) ∩ C 0 ([0, T ]; H 3 (I)) ∩ H 1 (0, T ; H 2 (I)) ∩ C 1 ([0, T ]; H 1 (I)) ∩ H 2 (0, T ; L 2 (I)) (1.15)
is small enough (in the above space), ζ(t, •) satisfies (1.14) for all t ∈ [0, T ] and we can define the following spaces as follows

w ∈ L 2 (0, T ; H 2 (Ω ζ )) if w • X ζ ∈ L 2 (0, T ; H 2 (Ω)) w ∈ H 1 (0, T ; L 2 (Ω ζ )) if w • X ζ ∈ H 1 (0, T ; L 2 (Ω)) π ∈ L 2 (0, T ; H 1 (Ω ζ )) if π • X ζ ∈ L 2 (0, T ; H 1 (Ω)). A triplet (w, π, ζ) is a strong solution of (1.3) if ζ satisfies (1.15), if w ∈ L 2 (0, T ; H 2 (Ω ζ )) ∩ H 1 (0, T ; L 2 (Ω ζ )), π ∈ L 2 (0, T ; H 1 (Ω ζ ))
and if all the equations in (1.3) are satisfies a.e. in time and space. The existence and uniqueness of strong solutions have been obtained in [START_REF] Lequeurre | Existence of strong solutions to a fluid-structure system[END_REF] and [START_REF] Grandmont | Existence of global strong solutions to a beam-fluid interaction system[END_REF] (see also [START_REF] Raymond | Feedback stabilization of a fluid-structure model[END_REF]) for small data, that is if

ζ 0 1 H 3 (I) + ζ 0 2 H 1 (I) + w 0 H 1 Ω ζ 0 1 + ∥f ∥ L 2 (0,T ;L 2 (ω)) (1.16)
is small enough. We are now in a position to state the following local null-controllability result for (1.3):

Theorem 1.4. Assume T > 0 and ω is a nonempty open set such that ω ⋐ Ω. There exists R 0 > 0 such that for any

(ζ 0 1 , ζ 0 2 , w 0 ) ∈ D(A 3/4 1 ) × D(A 1/4 1 ) × H 1 (Ω ζ 0 1 ) with the compatibility conditions div w 0 = 0 in Ω ζ 0 1 , w 0 = 0 on Γ 0 , w 0 (x 1 , 1 + ζ 0 1 (x 1 )) = ζ 0 2 (x 1 )e 2 (x 1 ∈ I), (1.17) 
and with the smallness assumption

ζ 0 1 H 3 (I) + ζ 0 2 H 1 (I) + w 0 H 1 Ω ζ 0 1 ⩽ R 0 , (1.18) 
there exists a control f ∈ L 2 (0, T ; L 2 (ω)) such that the solution of (1.3) satisfies

ζ(T, •) = ∂ t ζ(T, •) = 0 in I, w(T, •) = 0 in Ω ζ(T,•) .
The proof of Theorem 1.4 is quite standard from Theorem 1.1 and is done in [START_REF] Buffe | Controllability of a fluid-structure interaction system coupling the Navier-Stokes system and a damped beam equation[END_REF], we thus skip its proof here and only show Theorem 1.1.

The system (1.3) (without controls) has been introduced in [START_REF] Quarteroni | Computational vascular fluid dynamics: problems, models and methods[END_REF] to model the blood flow in vessels and has been studied by many authors. We can quote the following articles that are only a part of the literature on the subject: [START_REF] Chambolle | Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate[END_REF] (existence of weak solutions), [START_REF] Veiga | On the existence of strong solutions to a coupled fluid-structure evolution problem[END_REF], [START_REF] Lequeurre | Existence of strong solutions to a fluid-structure system[END_REF], [START_REF] Grandmont | Existence of global strong solutions to a beam-fluid interaction system[END_REF] and [START_REF] Maity | L p theory for the interaction between the incompressible Navier-Stokes system and a damped plate[END_REF] (existence of strong solutions), [START_REF] Raymond | Feedback stabilization of a fluid-structure model[END_REF] (stabilization of strong solutions), [START_REF] Badra | Feedback boundary stabilization of 2D fluid-structure interaction systems[END_REF] (stabilization of weak solutions around a stationary state). In some works, the authors remove the damping on the structure (that is α 3 = 0): [START_REF] Grandmont | Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate[END_REF], [START_REF] Muha | Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls[END_REF], [START_REF] Čanić | Fluid-structure interaction in hemodynamics: modeling, analysis, and numerical simulation[END_REF] (weak solutions), [START_REF] Grandmont | Existence of local strong solutions to fluidbeam and fluid-rod interaction systems[END_REF], [START_REF] Badra | Gevrey regularity for a system coupling the Navier-Stokes system with a beam equation[END_REF], [START_REF] Badra | Gevrey regularity for a system coupling the Navier-Stokes system with a beam: the non-flat case[END_REF], [START_REF] Badra | Maximal regularity for the Stokes system coupled with a wave equation: application to the system of interaction between a viscous incompressible fluid and an elastic wall[END_REF] (strong solutions). There are also many studies on more complex models: [START_REF] Lengeler | Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell[END_REF][START_REF] Lengeler | Weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic Koiter type shell[END_REF] (linear elastic Koiter shell), [START_REF] Muha | Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls[END_REF] (dynamic pressure boundary conditions), [START_REF] Muha | A nonlinear, 3D fluid-structure interaction problem driven by the timedependent dynamic pressure data: a constructive existence proof[END_REF][START_REF] Muha | Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy[END_REF] (3D cylindrical domain with nonlinear elastic cylindrical Koiter shell), [START_REF] Trifunović | Existence of a weak solution to the fluid-structure interaction problem in 3D[END_REF] and [START_REF] Trifunović | Weak solution to the incompressible viscous fluid and a thermoelastic plate interaction problem in 3D[END_REF] (nonlinear elastic and thermoelastic plate equations), [START_REF] Maity | Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation[END_REF], [START_REF] Maity | Existence and uniqueness of strong solutions for the system of interaction between a compressible Navier-Stokes-Fourier fluid and a damped plate equation[END_REF] (compressible fluids), etc. Concerning the controllability of fluid-structure interaction systems, note that several works have been done in the case where the structure is a rigid body in [START_REF] Boulakia | Local null controllability of a fluid-solid interaction problem in dimension 3[END_REF], [START_REF] Boulakia | Local null controllability of a two-dimensional fluid-structure interaction problem[END_REF], [START_REF] Doubova | Some control results for simplified one-dimensional models of fluid-solid interaction[END_REF], [START_REF] Imanuvilov | Exact controllability of a fluid-rigid body system[END_REF], [START_REF] Roy | Local null controllability of a rigid body moving into a Boussinesq flow[END_REF]. The only result we know about the controllability of the system (1.6) is [START_REF] Buffe | Controllability of a fluid-structure interaction system coupling the Navier-Stokes system and a damped beam equation[END_REF] where we obtain a result with controls on the fluid and on the structure. Here we improve this result as explained in Remark 1.2. We can also mention [START_REF] Sourav | Observability and unique continuation of the adjoint of a linearized simplified compressible fluid-structure model in a 2D channel[END_REF] devoted to an observability inequality for the adjoint of a linearized simplified compressible fluid-structure model similar to our system. Another work in the same topic is [START_REF] Buffe | Controllability of a Stokes system with a diffusive boundary condition[END_REF], where we replace the damped beam equation by a heat equation and we obtain the null-controllability of the corresponding system. As in our previous works, [START_REF] Buffe | Controllability of a Stokes system with a diffusive boundary condition[END_REF] and [START_REF] Buffe | Controllability of a fluid-structure interaction system coupling the Navier-Stokes system and a damped beam equation[END_REF], our strategy consists in considering the Stokes system as heat equations where the pressure is a source term, (in the same spirit as [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF] or as [START_REF] Fabre | Unique continuation property for solutions of Stokes' equations[END_REF]). The pressure is estimated by using that it satisfies a Laplace equation, but the difficulty for these estimates is coming from the fact that for this Laplace equation, we don't have any boundary condition. The idea is that, for low frequencies, it is possible to obtain an estimate without boundary conditions. Then, one has to handle the high frequencies of the solution. It was done by using the microlocal analysis in [START_REF] Buffe | Controllability of a fluid-structure interaction system coupling the Navier-Stokes system and a damped beam equation[END_REF], in the same spirit as in many other works on Carleman estimates near boundaries and interfaces (see, for instance, [START_REF] Bellassoued | Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems[END_REF][START_REF] Bellassoued | Carleman estimates for elliptic operators with complex coefficients. Part II: Transmission problems[END_REF][START_REF] Buffe | Stabilization of the wave equation with Ventcel boundary condition[END_REF][START_REF] Jérôme | Controllability of a parabolic system with a diffuse interface[END_REF][START_REF] Rousseau | Carleman estimates for anisotropic elliptic operators with jumps at an interface[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF] Rousseau | Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF] and the recent books [START_REF] Jérôme | Elliptic Carleman estimates and applications to stabilization and controllability[END_REF][START_REF] Jérôme | Elliptic Carleman estimates and applications to stabilization and controllability[END_REF] for elliptic counterparts).

In this article, we follow a different approach corresponding to the method of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] for the heat equation. Such a strategy has been used successfully in a similar problem with a free boundary: the Stefan problem with surface tension, in the same geometry as here, see [START_REF] Geshkovski | Control of the stefan problem in a periodic box[END_REF]. In particular, we use the same idea that consists to obtain first the observability for an horizontal strip of Ω instead of ω. Then using the Lebeau-Robbiano method and the Lebeau-Robbiano result for the heat equation on the torus I, we can conclude to the observability in ω. Note that our method of proof, by separating the high frequencies and the low frequencies with Fourier series is similar to the method in [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF] (see in particular Theorem 2.1 in this reference).

The outline of the article is as follows: in the next section, we present the functional framework and in particular the decomposition in high and low frequency of the solutions of (1.7) by using the Fourier decomposition in the x 1 variable. We also show a uniform exponential decay of the high-frequency part of the solution. Section 3 is devoted to the Carleman estimates of the low frequency part of the solution. We use the low frequency hypothesis to handle the fact that the pressure satisfies a Laplace equation with no boundary conditions. In this section, we have an observation in an horizontal strip of Ω and with several observations that can be expressed in terms of the derivatives of u 1 . Then in Section 4, we show the main result, that is, Theorem 1.1, by removing the additional observations and by reducing the region of control. Then we combine the estimates for low frequencies and high frequencies with a Lebeau-Robbiano strategy to deduce the result.

Notation. In the whole paper, we use C as a generic positive constant that does not depend on the other terms of the inequality. The value of the constant C may change from one appearance to another. We also use the notation X ≲ Y if there exists a constant C > 0 such that we have the inequality X ⩽ CY . The notation X ≲ k Y stands for X ⩽ CY , where C is a positive constant depending on k.

2 Functional framework and Fourier decomposition

Functional framework

In the introduction, we have already introduced the operators A 1 and A 2 in (1.9) and (1.10) and the Hilbert space H in (1.11). We define the orthogonal projection on the space H:

P : L 2 (Ω) × D(A 1/2 1 ) × L 2 0 (I) → H. We recall (see, for instance, [1, Proposition 3.1]) that the orthogonal of H in L 2 (Ω) × D(A 1/2 1 ) × L 2 0 (I) is
given by

H ⊥ = (∇p, 0, -p |Γ1 ) ; p ∈ H 1 (Ω), 2π 0 p(x 1 , 1) dx 1 = 0 . (2.1)
Then we define the space

V := (u, η 1 , η 2 ) ∈ H 1 (Ω) × D(A 3/4 1 ) × D(A 1/4 1 ) ; u = η 2 e 2 on Γ 1 , u = 0 on Γ 0 , div u = 0 in Ω ,
and the unbounded operator A associated with (1.7):

D(A) := V ∩ H 2 (Ω) × D(A 1 ) × D(A 1/2 1 ) , A   u η 1 η 2   := P   ∆u η 2 -A 1 η 1 -A 2 η 2   . (2.2) 
More precisely, we can write (1.7) in the form

d dt   u η ∂ t η   = A   u η ∂ t η   (t ⩾ 0),   u η ∂ t η   (0) =   u 0 η 0 1 η 0 2   . (2.3)
It is shown (see, for instance, [1, Proposition 3.4 and Proposition 3.11]) that A is the infinitesimal generator of an analytic semigroup of contractions on H and this shows the existence and uniqueness of a weak solution

[u, η, ∂ t η] ∈ C 0 ([0, T ]; H) of (1.7) for any [u 0 , η 0 1 , η 0 2 ] ∈ H. Moreover, it is shown in [1] the existence of δ ∈ 0, π 2 such that ρ(A) ⊂ Σ := λ ∈ C * ; |arg λ| < π 2 + δ ∪ {0} (2.4) and (λI -A) -1 L(H) ≲ 1 |λ| (λ ∈ Σ δ \ {0}). (2.5) 
We need this property for the study of the exponential decay of the high frequencies of the solutions of (1.7). Finally, we have the following result:

Proposition 2.1. The operator A defined above satisfies for any k ⩾ 1,

D(A k ) ⊂ H 2k (Ω) × H 2(k+1) (I) × H 2k (I) and ∥u∥ H 2k (Ω) + ∥η 1 ∥ H 2(k+1) (I) + ∥η 2 ∥ H 2k (I) ≲ k ∥(u, η 1 , η 2 )∥ D(A k ) ((u, η 1 , η 2 ) ∈ D(A k )).
Proof. The proof can be done by induction, we have already the case k = 1.

If (u, η 1 , η 2 ) ∈ D(A k+1 ), then (f, g 1 , g 2 ) := -A(u, η 1 , η 2 ) ∈ D(A k )
In particular, from (2.1) and (2.2),

               -∆u + ∇p = f in Ω div u = 0 in Ω u |Γ 0 = 0 on Γ 0 u |Γ 1 = η 2 e 2 on Γ 1 -η 2 = g 1 in I A 2 η 2 + A 1 η 1 = p + g 2 in I.
We thus deduce that η 2 ∈ D A (k+1)/2 1 ⊂ H 2(k+1) (I), and applying the elliptic regularity of the Stokes system (see, [55, Proposition 2.2, p. 33]), we deduce u ∈ H 2k+2 (Ω), p ∈ H 2k+1 (Ω). From the last equation of the above system, we finally obtain

A 1 η 1 ∈ D(A k/2 1 ) and thus η 1 ∈ D A (k+2)/2 1 .
To complete this functional framework, we introduce the space U := L 2 (ω) and the observation operator

C ∈ L(H, U) defined by C   u η 1 η 2   := u 1|ω .
Then our main result, that is Theorem 1.1 writes

e T A   u 0 η 0 1 η 0 2   H ⩽ Ce C/T T 0 Ce T A   u 0 η 0 1 η 0 2   U dt     u 0 η 0 1 η 0 2   ∈ H   . (2.6) 
As it is standard, we are going to prove the above observability inequality for

(u 0 , η 0 1 , η 0 2 ) ∈ k⩾1 D A k that is
dense in H (see, for instance, [58, Proposition 2.3.6, p.30]) and we obtain the result by using the continuity of the operators involved in the inequality. With this choice, we deduce from Proposition 2.1 that the corresponding solution of (1.7) (or equivalently (2.3)) satisfies for any k, ℓ ∈ N,

u ∈ C ℓ ([0, ∞); H 2k (Ω)), η ∈ C ℓ ([0, ∞); H 2k (I)).

Fourier series

In order to show Theorem 1.1, we decompose the solution of (1.7) using the Fourier series: we set for all n ∈ Z,

E n (x 1 ) := e inx1 √ 2π , (2.7) 
and

u (n) (t, x 2 ) = (u(t, •, x 2 ), E n ) L 2 (I) , p (n) (t, x 2 ) = (p(t, •, x 2 ), E n ) L 2 (I) , η (n) (t) = (η(t, •), E n ) L 2 (I) ,
where (•, •) L 2 (I) is the standard hermitian product. We can check that (η

(n) , u (n) , p (n) ) satisfies, for n ∈ Z, the following system                  ∂ t u (n) + n 2 u (n) -∂ 2 x2 u (n) + inp (n) ∂ x2 p (n) = 0 in (0, T ) × (0, 1), inu (n) 1 + ∂ x2 u (n) 2 = 0 in (0, T ) × (0, 1), u (n) (t, 0) = 0 t ∈ (0, T ), u (n) (t, 1) = ∂ t η (n) (t)e 2 t ∈ (0, T ), ∂ 2 t η (n) + n 4 η (n) + n 2 ∂ t η (n) = p (n) (•, 1) in (0, T ).
(2.8)

In the case n = 0, using (1.11) and the above system yields

η (0) ≡ 0, u (0) 
2 ≡ 0, p (0) ≡ 0, (2.9) whereas u (0)

1 satisfies the heat equation:

∂ t u (0) 1 -∂ 2 x2 u (0) 1 = 0 in (0, T ) × (0, 1), u (0) 
1 = 0 in (0, T ) × {0, 1}.

(2.10) Therefore, we can write

u(t, x 1 , x 2 ) = n∈Z u (n) (t, x 2 )E n (x 1 ), p(t, x 1 , x 2 ) = n∈Z * p (n) (t, x 2 )E n (x 1 ), (2.11) 
η(t, x 1 ) = n∈Z * η (n) (t)E n (x 1 ).
(2.12)

Remark 2.2. This decomposition and in particular (2.10) justify that one can not expect to obtain an observability inequality such as (1.12) with u 2 instead of u 1 (see Remark 1.3).

In order to study (1.7), we are going to decompose the solution into low and high frequencies: for

N ∈ N * , we set u -(t, x 1 , x 2 ) = |n|⩽N u (n) (t, x 2 )E n (x 1 ), p -(t, x 1 , x 2 ) = 0<|n|⩽N p (n) (t, x 2 )E n (x 1 ), (2.13) 
η -(t, x 1 ) = 0<|n|⩽N η (n) (t)E n (x 1 ), (2.14) 
u + (t, x 1 , x 2 ) = |n|>N u (n) (t, x 2 )E n (x 1 ), p + (t, x 1 , x 2 ) = |n|>N p (n) (t, x 2 )E n (x 1 ), (2.15) 
η + (t, x 1 ) = |n|>N η (n) (t)E n (x 1 ).
(2.16)

We will show the observability for the low frequency part, and obtain an exponential decay for the high-frequency part. Let us set for all n ∈ Z,

Π n f := (f, E n ) L 2 (I) E n .
(2.17)

In particular, Π n is an orthogonal projection in L 2 (I) and in L 2 (Ω). We keep the notation Π n to denote the following orthogonal projection

Π n : L 2 (Ω) × D(A 1/2 1 ) × L 2 0 (I) → L 2 (Ω) × D(A 1/2 1 ) × L 2 0 (I), Π n (f, g, h) := (Π n f, Π n g, Π n h).
We have the preliminary result

Lemma 2.3. For all n ∈ Z, Π n (H) ⊂ H, Π n (H ⊥ ) ⊂ H ⊥ .
In particular,

Π n P = PΠ n . Proof. Assume (u, η 1 , η 2 ) ∈ D(A) (see (2.2)). Then one can check that (Π n u, Π n η 1 , Π n η 2
) satisfies all the conditions in (1.11). Then, since Π n is a bounded operator in L 2 (Ω) × H 2 (I) × L 2 (I) and since H is a closed subspace of L 2 (Ω) × H 2 (I) × L 2 (I), we deduce that Π n (H) ⊂ H. The remaining properties can be obtained from this one from standard algebra results.

Let us set H n := Π n H. We deduce from the above lemma the following result:

Lemma 2.4. Assume n ∈ Z. Then, we have

A(D(A) ∩ H n ) ⊂ H n , U ∈ D(A) =⇒ Π n U ∈ D(A) and AΠ n U = Π n AU, (λ I -A) -1 Π n = Π n (λ I -A) -1 (λ ∈ ρ(A)
), e tA Π n = Π n e tA (t ⩾ 0).

For N ∈ N * , we define

Π [N ] := |n|⩽N Π n (2.18)
and we deduce from the above lemma that for t ⩾ 0 and λ ∈ ρ(A)

(λ I -A) -1 Π [N ] = Π [N ] (λ I -A) -1 , e tA Π [N ] = Π [N ] e tA .
(2.19)

Exponential decay of the high-frequency solutions

The aim of this section is to show the following results

Theorem 2.5. There exists a constant C > 0 such that for any N ∈ N * , t ⩾ 0 and U ∈ H,

e tA (I -Π [N ] )U H ⩽ 1 C e -C(N +1) 2 t (I -Π [N ] )U H .
(2.20)

The theorem will be a direct consequence of Proposition 2.7 below and of (2.19). First, we use Lemma 2.3 to define

D(A n ) := D(A) ∩ H n , A n : D(A n ) → H n , U → AU. Moreover, ρ(A) ⊂ ρ(A n ) and (λI -A) -1 Π n = (λI -A n ) -1 Π n (λ ∈ ρ(A)). (2.21) 
Let us show the following result on A n :

Proposition 2.6. There exists ε > 0 such that for all n ∈ Z * , if |λ| ⩽ εn 2 then

λ ∈ ρ(A n ) and (λI -A n ) -1 L(Hn) ≲ 1 n 2 . ( 2 

.22)

Proof. From [1, Proposition 3.5], for any (u, η 1 , η 2 ) ∈ D(A), we have that (2.22) holds. This concludes the proposition.

  u η 1 η 2   H 2 (Ω)×D(A1)×D(A 1/2 1 ) ≲ A   u η 1 η 2   H . In particular, if (u (n) , η (n) 1 , η (n) 2 ) ∈ D(A n ) then n 2    u (n) η (n) 1 η (n) 2    H ≲ A n    u (n) η (n) 1 η (n) 2    H . This shows that A -1 n L(H) ≲ 1/n 2 . Moreover, by writing λI -A n = A n λA -1 n -I we deduce that if λA -1 n L(H) ⩽ 1/2, then λ ∈ ρ(A n ) and
We deduce from the above result that Proposition 2.7. There exists C > 0 such that for any n ∈ Z * , t ⩾ 0 and U ∈ H,

e tA Π n U H ⩽ 1 C e -Cn 2 t ∥Π n U ∥ H . (2.23)
Proof. We recall that the operator A satisfies (2.4) and (2.5). Applying [51, Theorem 7.7, p.30], we can write for any t > 0

e tA Π n = 1 2πi γ1 e λt (λI -A) -1 Π n dλ + γ0 e λt (λI -A) -1 Π n dλ + γ-1 e λt (λI -A) -1 Π n dλ (2.24)
where

γ 1 := re i(π/2+δ/2) ; r ∈ [εn 2 , ∞) , γ -1 := re -i(π/2+δ/2) ; r ∈ [εn 2 , ∞) , γ 0 := εn 2 e iθ ; θ ∈ - π + δ 2 , π + δ 2 ,
with ε > 0 given by Proposition 2.6. First, we use (2.5) to obtain that

γ1 e λt (λI -A) -1 Π n dλ L(H) ≲ ∞ εn 2 e -r sin δ 2 t dr r ≲ 1 εn 2 sin δ 2 t e -εn 2 sin δ 2 t .
In particular, for t ⩾

1 n 2 , γ1 e λt (λI -A) -1 Π n dλ L(H) ≲ 1 ε sin δ 2 e -εn 2 sin δ 2 t . (2.25) 
We 

constant C = C(ε, δ) > 0 such that for all t ⩾ 1 n 2 , e tA Π n L(H) ⩽ 1 C e -Cn 2 t .
On the other hand, using standard properties on strongly continuous semigroups, there exists a constant C > 0 such that for any t ∈ [0, 1], e tA Π n L(H) ⩽ e tA L(H) ⩽ C. Combining the last two estimates, we deduce (2.23).

Carleman estimates with an horizontal strip observation

We are going to show Carleman estimates for the low frequency part of the solutions of (1.7). More precisely, for N ∈ N * , we consider here (η -, u -, p -) given by (2.13), (2.14). It is the solution of (1.7) associated with the initial condition Π [N ] u 0 , η 0 1 , η 0 2 where Π [N ] is defined by (2.18). Using Lemma 2.4, we can assume that the above initial condition is in k⩾1 D A k and thus, with Proposition 2.1, that (η -, u -, p -) is a smooth solution of (1.7). For sake of clarity, we drop here the exponent " -" and assume that (η, u, p) is a smooth solution of (1.7) with initial data of the form

u 0 (x 1 , x 2 ) = |n|⩽N u 0,(n) (x 2 )E n (x 1 ), η 0 1 (x 1 ) = 0<|n|⩽N η 0,(n) 1 E n (x 1 ), (3.1) 
η 0 2 (x 1 ) = 0<|n|⩽N η 0,(n) 2 E n (x 1 ). (3.2)
In this section, we consider that the region of observation is an horizontal strip: since ω is nonempty open subset of Ω and we can assume the existence of a 1 , a 2 ∈ I and b

1 , b 2 ∈ (0, 1) such that a 1 < a 2 , b 1 < b 2 and (a 1 , a 2 ) × (b 1 , b 2 ) ⊂ ω (3.3) We also consider b 1 , b 2 ∈ (b 1 , b 2 ), b 1 < b 2
and we set

I := I × (b 1 , b 2 ), I := I × ( b 1 , b 2 ). (3.4) 
Let us introduce the corresponding Carleman weights. We consider

ψ ∈ C ∞ ([0, 1], [0, 1]), ψ > 0 in (0, 1), ψ ′ (x 2 ) = 0 =⇒ x 2 ∈ ( b 1 , b 2 ), ψ(x 2 ) = x 2 x 2 ∈ 0, b 1 2 , ψ(x 2 ) = 1 -x 2 x 2 ∈ 1 + b 2 2 , 1 .
Then we set for λ ⩾ 1 

φ(t,
φ 0 (t) ⩽ φ(t, x 2 ) ⩽ φ 1 (t) and ξ 0 (t) ⩽ ξ(t, x 2 ) ⩽ ξ 1 (t) (t ∈ (0, T ), x 2 ∈ (0, 1)). (3.7)
Assume s 0 > 0. Then, for any s ⩾ s 0 N T 2 , we have

sλξ 0 (t) ⩾ 4s 0 N. (3.8)
Notation. In all that follows, we use s 0 , λ 0 as generic positive constants that may change from one appearance to another, but always in an increasing way.

If (η, u, p) is a strong solution of (1.7), then u 1 and p satisfy the following equations

∂ t u 1 -∆u 1 = -∂ x1 p in (0, T ) × Ω, u 1 = 0 on (0, T ) × ∂Ω, ∂ 2 t u 1 -∆∂ t u 1 = -∂ x1 ∂ t p in (0, T ) × Ω, ∂ t u 1 = 0 on (0, T ) × ∂Ω, (3.9) 
∆p = 0 in (0, T ) × Ω, ∆∂ t p = 0 in (0, T ) × Ω.

(3.10)

Let us introduce

I 1 (s, λ, u, η) := (0,T )×Ω e 2sφ (sλξ) 8 |u 1 | 2 + (sλξ) 6 |∇u 1 | 2 + (sλξ) 4 ∇ 2 u 1 2 + |∂ t u 1 | 2 dt dx + (0,T )×Ω e 2sφ (sλξ) 2 |∇∂ t u 1 | 2 + ∇ 2 ∂ t u 1 2 + ∂ 2 t u 1 2 dt dx + (0,T )×Ω e 2sφ0 (sλξ 0 ) 6 |u 2 | 2 + |∂ x2 u 2 | 2 + (sλξ 0 ) 2 |∂ t u 2 | 2 + |∂ x2 ∂ t u 2 | 2 dt dx + (0,T )×I e 2sφ0 (sλξ 0 ) 6 |∂ t η| 2 + (sλξ 0 ) 2 ∂ 2 t η 2 dt dx 1 . (3.11)
We also recall that I is introduced in (3.4). We first estimate the velocities of the fluid and on the structure.

Lemma 3.1. There exist λ 0 , s 0 > 0 such that for any T > 0, λ ⩾ λ 0 , s ⩾ s 0 (T + T 2 ) and for any strong solution (η, u, p) of (1.7), we have

I 1 (s, λ, u, η) ≲ (0,T )× I (sλξ) 8 e 2sφ |u 1 | 2 dt dx + (0,T )× I (sλξ) 2 e 2sφ |∂ t u 1 | 2 dt dx + (0,T )×Ω e 2sφ s 5 λ 4 ξ 5 |∂ x1 p| 2 + sξ|∂ x1 ∂ t p| 2 dt dx. (3.12)
Proof. We can apply a standard parabolic Carleman estimates on (3.9) (see, for instance, [START_REF] Fursikov | Controllability of evolution equations[END_REF] or [START_REF] Fernández | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF]): there exist λ 0 , s 0 > 0 such that for any From the trace theorem and the boundary conditions of (1.7), we also deduce

T > 0, λ ⩾ λ 0 , s ⩾ s 0 (T + T 2 ) (0,T )×Ω e 2sφ (sλξ) 8 |u 1 | 2 + (sλξ) 6 |∇u 1 | 2 + (sλξ) 4 ∇ 2 u 1 2 + |∂ t u 1 |
(0,T )×Γ1 e 2sφ0 (sλξ 0 ) 6 |∂ t η| 2 dt dx 1 ≲ (0,T )×Ω e 2sφ s 5 λ 4 ξ 5 |∂ x1 p| 2 dt dx + (0,T )× I e 2sφ (sξλ) 8 |u 1 | 2 dt dx.
Gathering (3.13), (3.14), the above relation and similar relations for the time derivatives of u and ∂ t η, we deduce (3.12).

On the other hand, we have the following Carleman estimate for the Laplace operator Lemma 3.2. Assume r ∈ R. There exist λ 0 , s 0 > 0 such that for any T > 0, λ ⩾ λ 0 , s ⩾ s 0 (T + T 2 ) and for any p ∈ L 2 (0, T ; H 2 (Ω)),

λ (0,T )×Ω e 2sφ (sλξ) 2r+3 |p| 2 + (sλξ) 2r+1 |∇p| 2 dt dx + (0,T )×∂Ω e 2sφ0 (sλξ 0 ) 2r+1 (sλξ 0 ) 2 |p | ∂Ω | 2 -2 ∂ x1 p | ∂Ω 2 dt dx 1 ≲ (0,T )×Ω |-∆p| 2 (sλξ) 2r e 2sφ dt dx + (0,T )× I e 2sφ (sλξ) 2r+3 |p| 2 dx. (3.15)
Proof. We set q = (sλξ) r e sφ p (3.16)

and we perform standard computations (see, for instance, [START_REF] Fernández-Cara | Null controllability of the heat equation with boundary Fourier conditions: the linear case[END_REF], [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], [31, pp.106-117]), to obtain the existence of positive constants C, s 0 such that for s ⩾ s 0 (T + T 2 ),

(0,T )×Ω

s 3 λ 4 ξ 3 |q| 2 + sλ 2 ξ |∇q| 2 + 1 sξ |∆q| 2 dt dx + Re (0,T )×∂Ω s 3 λ 3 ξ 3 0 |q| 2 -2sλ 2 ξ 0 ∂q ∂n q + 2sλξ 0 ∂q ∂n 2 -sλξ 0 |∇q| 2 dt dx 1 ⩽ C (0,T )×Ω |-∆p| 2 (sλξ) 2r e 2sφ dt dx + (0,T )× I s 3 λ 4 ξ 3 |q| 2 dx . (3.17) 
In particular, there exists s 0 > 0 such that for s ⩾ s 0 (T + T 2 ),

2sλ 2 ξ 0 ∂q ∂n q ⩽ 1 2 s 3 λ 3 ξ 3 0 |q| 2 + 1 2 sλξ 0 |∂ x2 q| 2
and combining this with (3.17) yields

C

(0,T )×Ω

s 3 λ 4 ξ 3 |q| 2 + sλ 2 ξ |∇q| 2 + 1 sξ |∆q| 2 dt dx + (0,T )×∂Ω 1 2 s 3 λ 3 ξ 3 0 |q| 2 + 1 2 sλξ 0 |∂ x2 q| 2 -sλξ 0 |∂ x1 q| 2 dt dx 1 ⩽ C (0,T )×Ω |-∆p| 2 (sλξ) 2r e 2sφ dt dx + (0,T )× I s 3 λ 4 ξ 3 |q| 2 dx . (3.18) 
Using (3.16) in the above estimate, we obtain (3.15).

The main result of this section is the following Carleman estimate for low-frequencies solutions with respect to the horizontal variable. In this frequency regime, we can handle the boundary terms of the pressure in Lemma 3.2. Theorem 3.3. There exist λ 0 , s 0 > 0 such that for any

T > 0, N ∈ N * , λ ⩾ λ 0 , s ⩾ s 0 (T + N T 2 )
and for any strong solution (η, u, p) of (1.7) with (3.1)-(3.2), we have

I 1 (s, λ, u, η) + (0,T )×I e 2sφ (sλξ 0 ) 2 ∂ 4 x1 η 2 dt dx 1 ≲ (0,T )× I (sλξ) 8 e 2sφ |u 1 | 2 dt dx + (0,T )× I e 2sφ s 7 λ 6 ξ 7 |∂ t u 1 | 2 + ∂ 2 x1 u 1 2 + ∂ 2 x2 u 1 2 dt dx + (0,T )× I e 2sφ s 3 λ 2 ξ 3 ∂ 2 t u 1 2 + ∂ t ∂ 2 x1 u 1 2 + ∂ t ∂ 2 x2 u 1 2 dt dx. (3.19) Proof. From Lemma 2.4, if (u 0 , η 0 1 , η 0 2 ) ∈ H [N ]
, then the solution (η, u, p) of (1.7) satisfies

(u(t, •), η(t, •), ∂ t η(t, •)) ∈ H [N ] t ⩾ 0.
We thus deduce that (η, u, p) satisfies (2.13) and (2.14). Then, using (3.8), we obtain the existence of s 0 > 0 such that if s ⩾ s 0 N T 2 , then a.e. in (0, T ), From the first equation of (2.8), we have for 0 < |n| ⩽ N ,

∂Ω ∂ x1 p | ∂Ω (t, x 1 ) 2 dx 1 ⩽ N 2 ∂Ω p | ∂Ω (t, x 1 ) 2 dx 1 ⩽ 1 4 ∂Ω (sλξ 0 ) 2 p | ∂Ω (t, x 1 ) 2 dx 1 . ( 3 
p (n) = i n ∂ t u (n) 1 + n 2 u (n) 1 -∂ 2 x2 u (n) 1
and thus

I |p| 2 dx 1 ⩽ I |∂ t u 1 | 2 + ∂ 2 x1 u 1 2 + ∂ 2 x2 u 1 2 dx 1 .
We have a similar estimate for ∂ t p and combining these relations with (3.25), we deduce (3.19).

Proof of the main result

To obtain Theorem 1.1, we need to remove in (3.19) the observations associated with derivatives of u 1 . This is done in the next section by using the parabolic regularity of the system. Then, we reduce the region of control to ω by using a spectral inequality for sums of eigenfunctions of the one-dimensional Laplace operator on the torus. Finally, we use a Lebeau-Robbiano strategy combined with Theorem 2.5 to prove the main result.

Parabolic regularity

Using (3.6), there exists λ 0 > 0 such that for λ ⩾ λ 0 ,

2φ 1 -φ 0 < 0. (4.1) 
We assume below that λ ⩾ λ 0 . There exists s 0 > 0 such that for s ⩾ s 0 T ,

|∂ t φ 0 | + |∂ t φ 1 | + |∂ t ξ 0 | ≲ sξ 2 0 in (0, T ). (4.2) 
In particular, there exists s 0 > 0 such that for s ⩾ s 0 (T + T 2 ) and for any r ∈ R,

d dt [(sξ 0 ) r e sφ0 ] ≲ r (sξ 0 ) r+2 e sφ0 . (4.3) 
Now, we set ρ 0 := sλξ 0 e sφ0 (4.4)

and we show in this section the following result:

Proposition 4.1. There exist λ 0 , s 0 > 0 such that for any

T > 0, N ∈ N * , λ ⩾ λ 0 , s ⩾ s 0 (T + N T 2 )
and for any strong solution (η, u, p) of (1. 

+ (0,T )× I e 2sφ1 s 7 λ 6 ξ 7 1 |∂ t u 1 | 2 + ∂ 2 x1 u 1 2 + ∂ 2 x2 u 1 2 dt dx + (0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ 2 t u 1 2 + ∂ t ∂ 2 x1 u 1 2 + ∂ t ∂ 2 x2 u 1 2 dt dx. (4.6)
Then we set ρ 1 := λ(sξ 0 ) -1 e sφ0 , ρ 2 := λ(sξ 0 ) -3 e sφ0 , ρ 3 := λ(sξ 0 ) -5 e sφ0 , ρ 4 := λ(sξ 0 ) -7 e sφ0 .

We deduce from (4.3) that ρ ′ j+1 ≲ ρ j (j ∈ {0, . . . , 3}) and we can use the maximal regularity of (2.3) and (4.6) to deduce that

4 j=0 j i=0 ρ j ∂ i t (u, η, ∂ t η) L 2 (0,T ;D(A j-i )) ≲ (0,T )× I (sλξ 1 ) 8 e 2sφ1 |u 1 | 2 dt dx + (0,T )× I e 2sφ1 s 7 λ 6 ξ 7 1 |∂ t u 1 | 2 + ∂ 2 x1 u 1 2 + ∂ 2 x2 u 1 2 dt dx + (0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ 2 t u 1 2 + ∂ t ∂ 2 x1 u 1 2 + ∂ t ∂ 2 x2 u 1 2 dt dx. (4.7)
Now we integrate by parts to estimate the right-hand side of the above relation:

(0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ 2 t u 1 2 dt dx = (0,T )× I 1 2 d 2 dt 2 e 2sφ1 s 3 λ 2 ξ 3 1 |∂ t u 1 | 2 dt dx -Re (0,T )× I d dt e 2sφ1 s 3 λ 2 ξ 3 1 ∂ 3 t u 1 u 1 dt dx -Re (0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ 4 t u 1 u 1 dt dx. (4.8)
In particular, for any ε > 0,

(0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ 2 t u 2 dt dx ≲ (0,T )× I e 2sφ1 s 7 λ 2 ξ 7 1 |∂ t u 1 | 2 dt dx + 1 ε (0,T )× I e 2s(2φ1-φ0) λ 2 (sξ 1 ) 20 |u 1 | 2 dt dx + ε ρ 3 ∂ 3 t u 2 L 2 (0,T ;L 2 (Ω)) + ρ 4 ∂ 4 t u 2 L 2 (0,T ;L 2 (Ω)) . (4.9) Similarly, (0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ t ∂ 2 x1 u 1 2 dt dx = Re (0,T )× I 1 2 d 2 dt 2 e 2sφ1 s 3 λ 2 ξ 3 1 ∂ 4 x1 u 1 u 1 dt dx -Re (0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ 2 t ∂ 4 x1 u 1 u 1 dt dx. (4.10)
In particular, for any ε > 0,

(0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ t ∂ 2 x1 u 1 2 dt dx ≲ 1 ε (0,T )× I e 2s(2φ1-φ0) λ 2 (sξ 1 ) 20 |u 1 | 2 dt dx + ε ρ 2 ∂ 4 x1 u 2 L 2 (0,T ;L 2 (Ω)) + ρ 4 ∂ 2 t ∂ 4 x1 u 2 L 2 (0,T ;L 2 (Ω)) . (4.11) We also consider κ ∈ C ∞ (R, [0, 1]), κ ≡ 1 in ( b 1 , b 2 ) with compact support in (b 1 , b 2 ). Then (0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ t ∂ 2 x2 u 1 2 dt dx = (0,T )×I κe 2sφ1 s 3 λ 2 ξ 3 1 ∂ t ∂ 2 x2 u 1 2 dt dx
and integrating by parts as above, we find for any ε > 0,

(0,T )× I e 2sφ1 s 3 λ 2 ξ 3 1 ∂ t ∂ 2 x2 u 1 2 dt dx ≲ 1 ε (0,T )×I e 2s(2φ1-φ0) λ 2 (sξ 1 ) 20 |u 1 | 2 dt dx + ε ρ 1 ∂ 2 x2 u 2 L 2 (0,T ;L 2 (Ω)) + ρ 2 ∂ 4 x2 u 2 L 2 (0,T ;L 2 (Ω)) + ρ 3 ∂ 2 t ∂ 2 x2 u 2 L 2 (0,T ;L 2 (Ω)) + ρ 4 ∂ 2 t ∂ 4 x1 u 2 L 2 (0,T ;L 2 (Ω)) . (4.12) 
Proceeding similarly for all the other terms, we deduce (4.5) after standard but technical computations (see for instance [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF]). 

Reducing the observation domain

∥(u(T, •), η(T, •), ∂ t η(T, •))∥ 2 H ⩽ Ce C( 1 T +N ) (0,T )×ω |u| 2 dt dx. (4.13) 
Proof. We apply Proposition 4.1 and take λ = λ 0 , s = s 0 (T + N T 2 ). Then, we have Using [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF] and the fact that E n are eigenvectors of the Laplace operator on I with eigenvalues n 2 , there exists a constant C > 0 such that for a.e. x 2 ∈ (0, 1) and a.e. t ∈ (0, T ), 

The Lebeau-Robbiano method

In order to prove Theorem 1.1, it remains to combine Proposition 4.2 and Theorem 2.5. This can be done in a general way by following the method developed in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] for the controllability heat equation. More precisely, we consider the dual version of this method written in [START_REF] Miller | A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups[END_REF] where the author shows directly the final state observability and make explicit the dependency of the cost of control with respect to the time and we adapt it to our case. Let us point out that a similar abstract result is done in [START_REF] Beauchard | Null-controllability of hypoelliptic quadratic differential equations[END_REF].

We assume that H and U are Hilbert spaces, that A is the infinitesimal generator of a C 0 semigroup e tA t⩾0 , and that C ∈ L(H, U) an observation operator. We also suppose that for any N ∈ N * , there exists a continuous projection Π [N ] Proof. First, we consider ε > 0 small enough such that for any τ ∈ (0, T ), Now we take k ∈ N and we apply the above result to

C 2 0 4C 1 C 2 ∥C∥ 2 L(H,U ) ετ e 2C1 1 ετ -C2 1-ε ε 2 τ + 2 C 2 e -C2
T 1 := T 2 k+1 , T 2 := T 2 k , τ := T 2 k+1 .
We obtain

f ε T 2 k e T 2 k A U 2 H ⩽ T 2 k T 2 k+1 Ce tA U 2 U dt + f ε T 2 k+1 e T 2 k+1 A U 2 H . (4.22) 
Summing the above relation over k ∈ N, we deduce the result.
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