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In this work, we consider the two models: source-source and source-sink, where the two patches are coupled by asymmetrical migration terms, the populations grows logistically on source patch and decay logistically on sink patch. We study the effect of asymmetric dispersal on the dynamic of the total populations in two patches and on the coexistence of species. First, used the theory of singular perturbation and theorem of Tikhonov, in the case of perfect mixing, i.e. when the asymmetric dispersal tends to infinity, we calculate the equilibrium of the two models considered and we give a good approximations of the solutions in this case. Second, for the source-source patch-model, we give the conditions under which fragmentation associated with asymmetric dispersal is either favorable or unfavorable to total population. We show the existence of a new behavior of the total equilibrium population when the asymmetric dispersal varies from zero to infinity and migration rate is fixed. In particular, the existence of two values of the asymmetric dispersal which the total equilibrium population equal to the sum of two capacities. This last situation does not exist in the case where the rate of migration varies. For the second model, we compare the total equilibrium population with the carrying capacity of the source patch. Complete analysis on the models demonstrates a mechanism by which the dispersal asymmetry can lead to either an decreased total size of the species population in two patches, increased for small values of the dispersal asymmetry and decreased for large values, or even extinction in both patches. We end by giving some numerical examples that affirm and illustrate our results. We also give some numerical examples of the total equilibrium population as a function of two variables, the rate of migration and the dispersal asymmetry.

Influence of dispersal intensity and asymmetry on total biomass in two-patch environment There are many factors affecting the growth and the general dynamics of population. One such important factor is the dispersal amounts and in random ways. These dispersal can cause disturbances to the various ecosystems as well as to the persistence or extinction of organisms.

Bibliographies can be found in the work of Allen [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF][START_REF] Allen | Persistence and extinction in single-species reaction-diffusion models[END_REF][START_REF] Allen | Persistence, extinction, and critical patch number for island populations[END_REF], Hanski [START_REF] Hanski | Metapopulation Ecology[END_REF], Holt [START_REF] Holt | Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution[END_REF]and Levin [START_REF] Levin | Dispersion and population interactions[END_REF][START_REF] Levin | Spatial patterning and the structure of ecological communities[END_REF].

In 1977, Freedman and Waltman [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat[END_REF] considered a two-patch model with a single species in logistic population growth as follows:

       du 1 dt = r 1 u 1 1 - u 1 K 1 + ξ (u 2 -u 1 ), du 2 dt = r 2 u 2 1 - u 2 K 2 + ξ (u 1 -u 2 ), (1.1) 
where u i represents the population density in patch i, the parameter r i is the intrinsic growth rate, K i is carrying capacity and ξ is the dispersal rate. Freedman and Waltman show that under certain conditions, the total population abundance can be larger than the total carrying capacities

K 1 + K 2 .
For more details and information on the existence and stability of (1.1), see [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal I: Stability of two habitats with and without a predator[END_REF]. Holt [START_REF] Holt | Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution[END_REF] generalized these results to a source-sink system. In 2015, Arditi et al. [START_REF] Arditi | Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF] gave a full mathematical analysis of the model (1.1) of Freedman and Waltman with symmetric dispersal.

In 2018, Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] extended the model (1.1) by considering asymmetric dispersal, i.e.

the model:

       du 1 dt = r 1 x 1 1 - u 1 K 1 + ξ (γ 2 u 2 -γ 1 u 1 ), du 2 dt = r 2 u 2 1 - u 2 K 2 + ξ (γ 1 u 1 -γ 2 u 2 ), (1.2) 
where ξ γ 2 and ξ γ 1 with ξ γ i > 0, i = 1, 2 and ξ ≥ 0, are the migration terms which describe the flows of individuals from the patch 2 to the patch 1, and from the patch 1 to the patch 2 respectively. These flows can for example depend on the distance between the patches. By noting that the positive equilibrium (u * 1 , u * 2 ) of model (1.2) is the unique positive solution to

       r 1 u 1 1 - u 1 K 1 + r 2 u 2 1 - u 2 K 2 = 0, u 2 = 1 γ 2 γ 1 u 1 - r 1 ξ u 1 1 - u 1 K 1 ,
i.e. the intersection of an ellipse and a parabola. They used a graphical method to completely analyze model (1.2) in order to determine when dispersal is either favorable or unfavorable to total population abundance. In [START_REF] Elbetch | Effect of dispersal in Two-patch environment with Richards growth on population dynamics[END_REF], Elbetch generalizes the results of [START_REF] Arditi | Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] to a Two-patch environment with Richards growth. For more details and information on the properties of Verhulst's and Lotka's formulations of the logistic model and the perfect mixing paradox, see the debate in [START_REF] Arditi | The perfect mixing paradox and the logistic equation: Verhulst vs[END_REF][START_REF] Arditi | The perfect mixing paradox[END_REF][START_REF] Ramos-Jiliberto | The perfect mixing paradox and the logistic equation: Verhulst vs[END_REF].

Recently, , Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] considered the following n patches model:

du i dt = r i u i 1 - u i K i + ξ n ∑ j=1, j =i (γ i j u j -γ ji u i ), i = 1, • • • , n. (1.3)
where n is the number of patches in the system, u i represents the population density in the ith patch. The parameters r i and K i are respectively the intrinsic growth rate and the carrying capacity of patch i. The parameter ξ represents the dispersion rate of the population, γ i j ≥ 0 denote the flux between patches j and i for i = j. We denote Γ the matrix Γ := (γ i j ) n×n with

γ ii = - n ∑ j=1, j =i γ ji . (1.4)
They studied the total population at equilibrium, as a function of the migration rate ξ . They gave conditions on the system parameters that ensure that symmetric and asymmetric migration is beneficial or detrimental for some particular cases.

In 2019, Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] studied the following two-patch source-sink model:

       du 1 dt = r 1 u 1 1 - u 1 K 1 + ξ (u 2 -γu 1 ), du 2 dt = r 2 u 2 -1 - u 2 K 2 + ξ (γu 1 -u 2 ), (1.5) 
where u 1 and u 2 represent population densities of the species in patch 1 and 2, respectively.

Patch 1 is assumed to be the source (i.e., r 1 > 0) but patch 2 is the sink (i.e., r 2 > 0). α i = r i /K i the intraspecific competition degree. Parameter ξ represents the dispersal intensity and γ the dispersal asymmetry to the sink. The authors show that the dispersal asymmetry can lead to either an increased total size of the population in two patches, a decreased total size with persistence in the patches, or even extinction in both patches. They show also that for a large growth rate of the species in the source and a fixed dispersal intensity: (i) If the asymmetry is small, the population would persist in both patches and reach a density higher than that without dispersal and the population approaches its maximal density at an appropriate asymmetry, (ii)

If the asymmetry is intermediate, the population persists in both patches but reaches a density less than that without dispersal, (iii) If the asymmetry is large, the population goes to extinction in both patches.

Arino et al. [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source?Sink Metapopulation with Explicit Movement[END_REF] also studied a source-sink model of n patches, where the source patch follows a logistic growth rate, and the sink patch with exponential decay, i.e the model

     du i dt = r i u i 1 - u i K i + ξ ∑ n j=1, j =i γ i j u j , i = 1, . . . , s, du i dt = -r i u i + ξ ∑ n j=1, j =i γ i j u j , i = s + 1, . . . , n, (1.6) 
where u i represent population densities of the specie in the patch i. The parameter r i > 0 is both the growth rate in the case of source patches and the death rate in the case of sinks, K i > 0 is the carrying capacity of source patches. For the model (1.6), the authors proved the existence of a threshold number of source patches such that the population potentially becomes extinct below the threshold and established above the threshold. For general information of the effects of patchiness and migration in both continuous and discrete cases, and the results beyond the logistic model, the reader is referred to the following works and these references: [START_REF] Elbetch | Effect of dispersal in single-species discrete diffusion systems with source-sink patches[END_REF][START_REF] Elbetch | On the effect of density-dependent dispersal on total biomass in multi-patch environment[END_REF] and [START_REF] Elbetch | Nonlinear diffusion in the multi-patch logistic model[END_REF][START_REF] Elbetch | How does nonlinear asymmetric dispersal affect the dynamics of a population and the coexistence of species in Two-patch source-sink heterogeneous environment[END_REF] for effect of linear and nonlinear diffusion on the total biomass respectively, [START_REF] Elbetch | Effects of rapid population growth on total biomass in Multipatch environment[END_REF] for the effects of rapid population growth on total biomass, [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF] for some proprieties of generalized logistic equation in multi-patch and [START_REF] Gao | How does dispersal affect the infection size?[END_REF][START_REF] Gao | Fast diffusion inhibits disease outbreaks[END_REF][START_REF] Guo | Global stability of the endemic equilibrium of multigroup SIR epidemic models[END_REF] for susceptible-infected-susceptible (SIS) patch-model.

Our aim in this work is to study the model of two patches coupled by asymmetric migration terms. In particular, we are interested in studying the effect of dispersal asymmetry on the dynamics of population and coexistence of species for the source-source and also for sourcesink patch-model. The results obtained by Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] and Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF], when they studied the total equilibrium population as function of the migration rate with fixed dispersal asymmetry, motivate us to know the changes and the differences that could be in the case when the dispersal asymmetry varies and the migration rate is fixed. We have answered our question in the theorems 2.5 and 3.6.

This paper is organized as follows: In Section 2, we introduce the model of two patches with source-source dynamic, and we recall some essential results of Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] concerning the comparison between the total equilibrium population and the sum of the carrying capacities when the migration rate varies and the dispersal asymmetry is fixed. Next, in Subsection 2.2, we study the behavior of the system (2.1) in the case when the migration rate is fixed and dispersal asymmetry goes to 0. We study also the behavior of the model in the case when the dispersal asymmetry goes to infinity using singular perturbation arguments and Tykhonov's theorem [START_REF] Banasiak | A Note on the Tikhonov Theorem on an Infinite Interval[END_REF][START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] ( see Theorem 2.4). Our first main result is stated in Theorem 2.5, which we compare the total equilibrium population with the sum of the two carrying capacities for all parameter space of the model (2.1) when the migration rate ξ is fixed and the dispersal asymmetry γ varies from 0 to ∞, by using the graphical method of Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF]. In Section 3, we start by recalling some essential results of Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF], in particular, the global stability, the formula of perfect mixing and the comparison given in [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF]Proposition 5.11], between the total equilibrium population of (1.5) and carrying capacity of the source patch for fixed asymmetric dispersal γ. In Subsection 3.4, we study the behavior of the system (1.5) in the case when the migration rate ξ is fixed and dispersal asymmetry γ tends to infinity ( see Theorem 3.5). Our second main result is stated in Theorem 3.6, which we compare the total equilibrium population with the carrying capacity for all parameter space of the model (1.5), when the migration rate ξ is fixed and the dispersal asymmetry γ varies from 0 to ∞, by using the graphical method of Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF]. In Section 4, some numerical examples which illustrate, confirm and extend our results are given. Section 5 concludes the paper and describes the future works suggestion.

2 Two-patch source-source model we consider the two-patch source-source model (1.2). If we denote by γ = γ 1 γ 2 , then the system (1.2) can rewritten as:

       du 1 dt = r 1 u 1 1 - u 1 K 1 + ξ (u 2 -γu 1 ) , du 2 dt = r 2 u 2 1 - u 2 K 2 + ξ (γu 1 -u 2 ) .
(2.1)

The system (2.1) admits unique equilibrium which is globally asymptotically stable (GAS), in the interior of positive cone. In all of this section, this positive equilibrium point is denoted by: E * (ξ , γ) = (u * 1 (ξ , γ), u * 2 (ξ , γ)) and the sum of

u * i (ξ , γ) for i = 1, 2, is denoted by U * T (ξ , γ)
for all ξ ≥ 0 and γ > 0. We recall some essential results of Arditi et al. [START_REF] Arditi | Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] as function of the parameter γ and ξ . Note that, Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF], studied the model (2.1) as function of the parameters γ 1 and γ 2 and in [START_REF] Arditi | Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF], They studied (2.1) for the symmetric case γ 1 = γ 2 = 1. First of all, let's start by recalling the comparison between total equilibrium population and the sum of the carrying capacities K 1 + K 2 when the migration rate ξ varies and the dispersal asymmetry γ is fixed.

Total equilibrium population for fixed γ

In all of this section, we assume that γ is positive and fixed parameter and ξ varies from zero to infinity. The derivative of U * T (ξ , γ) with respect to ξ at ξ = 0 is given by:

dU * T dξ (0, γ) = (γK 2 -K 1 ) 1 r 1 - 1 r 2 . (2.2)
The perfect mixing formula of the model (2.1) (i.e when ξ → ∞) is given by:

U * T (+∞, γ) = (1 + γ) γr 1 + r 2 γ 2 α 1 + α 2 , (2.3) 
where α i = r i /K i . We consider the regions in the set of the parameter γ denoted J 0 , J 1 and J 2 , defined by:

                               If r 2 > r 1 then            J 1 = γ : γ > α 2 α 1 J 0 = γ : α 2 α 1 ≥ γ > K 1 K 2 J 2 = γ : K 1 K 2 > γ If r 2 < r 1 then            J 1 = γ : γ < α 2 α 1 J 0 = γ : α 2 α 1 ≤ γ < K 1 K 2 J 2 = γ : K 1 K 2 < γ . (2.4) 
We recall the following result of Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF], which gives the conditions for which patchiness is beneficial or detrimental in model (2.1).

Theorem 2.1. Assume that γ is fixed. The total equilibrium population of (2.1) satisfies the following properties

1. If r 1 = r 2 then U * T (ξ , γ) ≤ K 1 + K 2 for all ξ ≥ 0.
2. If r 1 = r 2 , let J 0 , J 1 and J 2 , be defined by (2.4). Then we have:

• if γ ∈ J 0 then U * T (ξ , γ) > K 1 + K 2 for any ξ > 0 • if γ ∈ J 1 then U * T (ξ , γ) > K 1 + K 2 for 0 < ξ < ξ 0 and U * T (ξ , γ) < K 1 + K 2 for ξ > ξ 0 , where ξ 0 = r 2 -r 1 γ α 2 -1 α 1 1 α 1 + α 2 . • if γ ∈ J 2 then U * T (ξ , γ) < K 1 + K 2 for any ξ > 0 • If γ = K 1 K 2 , then u * 1 (ξ , γ) = K 1 and u * 2 (ξ , γ) = K 2 for all ξ ≥ 0. Therefore U * T (ξ , γ) = K 1 + K 2 for all ξ ≥ 0.
The results proved by Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] show that, there are only three cases that can occur:

the case where the total equilibrium population is always greater than the sum of carrying capacities, the case where it is always smaller, and a third case, the total equilibrium population is greater than the sum of carrying capacities for lower values of the migration rate ξ and smaller for the higher values.

Total equilibrium population for fixed ξ

In the remainder of this section, we assume that ξ is fixed, and γ varies from 0 to ∞. Our goal is to study the total equilibrium population as function of the asymmetry dispersal γ. First, let's we start by the following case:

2.2.1
The model when γ → 0

We have the following result Proposition 2.2. Consider the system (2.1). Then,

lim γ→0 E * (ξ , γ) =    (K 1 , 0), i f ξ ≥ r 2 , 1 2 K 1 + 1 2α 1 r 2 1 + 4ξ α 1 1 -ξ r 2 K 2 , 1 -ξ r 2 K 2 i f ξ < r 2 .
(2.5)

Proof. Denote E * (ξ , 0 + ) = (u * 1 (ξ , 0 + ), u * 2 (ξ , 0 + )) := lim γ→0 E * (ξ , γ).
When γ → 0, the equilibrium equations of (2.1) take the following form:

       0 = r 1 u * 1 (ξ , 0 + ) 1 - u * 1 (ξ , 0 + ) K 1 + ξ u * 2 (ξ , 0 + ), 0 = r 2 u * 2 (ξ , 0 + ) 1 - u * 2 (ξ , 0 + ) K 2 -ξ u * 2 (ξ , 0 + ), (2.6) 
which implies

-α 1 (u * 1 (ξ , 0 + )) 2 + ξ u * 2 (ξ , 0 + ) + r 1 u * 1 (ξ , 0 + ) = 0, (r 2 -ξ )u * 2 (ξ , 0 + ) -α 2 (u * 2 (ξ , 0 + )) 2 = 0. (2.7) 
If ξ ≥ r 2 , then the system (2.7) admits (0, 0) and (K 1 , 0) as solutions. Since (0, 0) is unstable for (2.1), then E * (ξ , γ) → (K 1 , 0) as γ → 0. If ξ < r 2 , the second equation in (2.7) gives

u * 2 (ξ , 0 + ) = 0 or u * 2 (ξ , 0 + ) = r 2 -ξ α 2 .
If we replace u * 2 (ξ , 0 + ) = 0 in the first equation of (2.7) we get u * 1 (ξ , 0 + ) = 0 or u * 1 (ξ , 0 + ) = K 1 , and if we replace u * 2 (ξ , 0 + ) = r 2 -ξ α 2 in the first equation of (2.7) we obtain the following equation:

-α 1 (u * 1 (ξ , 0 + )) 2 + r 1 u * 1 (ξ , 0 + ) + ξ (r 2 -ξ ) α 2 = 0, (2.8) 
which admits as positive solution

u * 1 (ξ , 0 + ) = 1 2 K 1 + 1 2α 1 r 2 1 + 4ξ α 1 1 - ξ r 2 K 2 .
Therefore, if r 2 > ξ , then the system (2.7) admits three solutions: (0, 0), (K 1 , 0) and E * (ξ , 0 + )

given by the second equation of (2.5). Since, (0, 0), and (K 1 , 0) are unstable, so E * (ξ , γ) converge to E * (ξ , 0 + ) as γ → 0.

As corollary of the previous proposition we obtain the following result which describe the total equilibrium population U * T (ξ , γ) when γ → 0.

Corollary 2.3. we have:

lim γ→0 U * T (ξ , γ) := U * T (ξ , 0 + ) =    K 1 , i f ξ ≥ r 2 , 1 -ξ r 2 K 2 + 1 2 K 1 + 1 2α 1 r 2 1 + 4ξ α 1 1 -ξ r 2 K 2 , i f ξ < r 2 .
(2.9)

In the next theorem, we give the behavior of the model (2.1) when γ → ∞.

Theorem 2.4. Let (u 1 (t, γ), u 2 (t, γ)) be the solution of the system (2.1) with initial condition

(u 0 1 , u 0 2 ) satisfying u 0 i ≥ 0 for i = 1, 2. Let z(t) be the solution of the differential equation dX dt = r 2 X 1 - X K 2 , (2.10) 
with initial condition z(0) = u 0 1 + u 0 1 . Then, when γ → ∞, we have

u 1 (t, γ) + u 2 (t, γ) = z(t) + o γ (1), uniformly for t ∈ [0, +∞) (2.11)
and, for any t 0 > 0, we have

u 1 (t, γ) = o γ (1), u 2 (t, γ) = z(t) + o γ (1), uniformly for t ∈ [t 0 , +∞).
(2.12)

Proof. Let X(t, γ) = u 1 (t, γ) + u 2 (t, γ)
. We rewrite the system (2.1) using the variables (X, u 2 ).

One obtains:

       dX dt = r 2 u 2 1 - u 2 K 2 + r 1 (X -u 2 ) 1 - X -u 2 K 1 , du 2 dt = r 2 u 2 1 - u 2 K 2 + ξ (γ(X -u 2 ) -u 2 ) . (2.13) 
When γ → ∞, (2.13) is a slow-fast system, with one slow variable, X, and one fast variable u 2 .

According to Tikhonov's theorem [START_REF] Banasiak | A Note on the Tikhonov Theorem on an Infinite Interval[END_REF][START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] we consider the dynamics of the fast variable in the time scale τ = γt. One obtains

du 2 dτ = 1 γ r 2 u 2 1 - u 2 K 2 + ξ (X -u 2 ) - u 2 γ .
In the limit γ → ∞, we find the fast dynamics

du 2 dτ = ξ (X -u 2 ). (2.14)
The slow manifold is formed by the equilibrium points of the fast equation (2.14), which given by u * 2 = X. Since u * 2 is locally asymptotically stable (LAS) for the system (2.14), the theorem of Tikhonov ensures that after a fast transition toward the slow manifold, the solutions of (2.13) are approximated by the solutions of the reduced model which is obtained by replacing u * 1 into the dynamics of the slow variable, which gives the equation (2.10). The system (2.10) admits X * = K 2 as a positive equilibrium point, which is LAS in the positive axis. The approximation given by Tikhonov's theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t 0 > 0 for the fast variable, where t 0 is small as we want. Therefore, let z(t) be the solution of the reduced model (2.10) of initial condition z(0) = X(0, γ) = u 0 1 + u 0 2 , then, when γ → ∞, we have the approximations (2.11) and (2.12).

According to previous theorem, when γ → +∞, we have E * (ξ , ∞) := (0, K 2 ) and U * T (ξ , +∞) = K 2 for all ξ .

2.2.3

The model when γ varies from 0 to ∞ In this section, Our aim is to compare the total equilibrium population U * T (ξ , γ) of (2.1) with the sum of carrying capacities K 1 + K 2 , when the dispersal asymmetry γ varies from zero to infinity, by analyzing the stable positive equilibrium E * (ξ , γ). We study the effect of asymmetric dispersal on the total equilibrium population for the two-patch (2.1) by describing the position affects the equilibrium E * (ξ , γ) when the asymmetric dispersal varies from zero to infinity, we will give the condition whether U * T (ξ , γ) is greater or smaller than the sum of carrying capacities.

We state our first main result as follows:

Theorem 2.5. Consider the model (2.1) with ξ fixed. Denote

γ * = K 2 K 1 and γ * * = α 1 α 2 + α 1 (r 1 -r 2 ) ξ (α 1 +α 2 ) .
We have:

1. If r 2 ≤ ξ , then (a) If r 1 = r 2 , then U * T (ξ , γ) ≤ K 1 + K 2 for all γ > 0. Moreover, U * T (ξ , γ) = K 1 + K 2 if and only if, γ = γ * . (b) If r 1 = r 2 then, U * T (ξ , γ) = < K 1 + K 2 , i f γ ∈]0, min {γ * , γ * * }] ∪ [max {γ * , γ * * }, +∞[, > K 1 + K 2 , i f γ ∈ [min {γ * , γ * * } , max {γ * , γ * * }].
(2.15)

2. If r 2 > ξ , then (a) If r 1 = r 2 , then U * T (ξ , γ) ≤ K 1 + K 2 for all γ > 0. Moreover, U * T (ξ , γ) = K 1 + K 2 if and only if, γ = γ * . (b) If r 1 > r 2 then, U * T (ξ , γ) = < K 1 + K 2 , i f γ ∈]0, γ * ] ∪ [γ * * , +∞[, > K 1 + K 2 , i f γ ∈ [γ * , γ * * ].
(2.16)

(c) If r 1 < r 2 , then i. if 1 2 K 1 + 1 2α 1 r 2 1 + 4ξ α 1 1 -ξ r 2 K 2 < α 2 K 1 +K 2 α 1 +α 2 , then U * T (ξ , 0 + ) < K 1 + K 2 and U * T (ξ , γ) = < K 1 + K 2 , i f γ ∈]0, γ * ] ∪ [γ * * , +∞[, > K 1 + K 2 , i f γ ∈ [γ * , γ * * ]. (2.17) ii. if 1 2 K 1 + 1 2α 1 r 2 1 + 4ξ α 1 1 -ξ r 2 K 2 = α 2 K 1 +K 2 α 1 +α 2 , then U * T (ξ , 0 + ) = K 1 + K 2 and U * T (ξ , γ) = > K 1 + K 2 , i f γ ∈]0, γ * ], < K 1 + K 2 , i f γ ∈ [γ * , ∞[. (2.18) iii. if 1 2 K 1 + 1 2α 1 r 2 1 + 4ξ α 1 1 -ξ r 2 K 2 > α 2 K 1 +K 2 α 1 +α 2 , then U * T (ξ , 0 + ) > K 1 + K 2 and U * T (ξ , γ) = > K 1 + K 2 , i f γ ∈]0, γ * ], < K 1 + K 2 , i f γ ∈ [γ * , ∞[. (2.19)
Proof. The equilibrium of the system (2.1) is the solutions of the following algebraic system:

       0 = r 1 u 1 1 - u 1 K 1 + ξ (u 2 -γu 1 ), 0 = r 2 u 2 1 - u 2 K 2 + ξ (γu 1 -u 2 ).
(2.20)

The sum of the two equations of (2.20) shows that the equilibrium points are in a ellipse noted E 1 , which its equation is given by:

E 1 : ψ(u 1 , u 2 ) := r 1 u 1 1 - u 1 K 1 + r 2 u 2 1 - u 2 K 2 = 0. (2.21)
The ellipse E 1 passes through the points (0, 0), (K 1 , 0), (0, K 2 ) and A := (K 1 , K 2 ). Note that, it is independent of dispersal intensity ξ and asymmetric dispersal γ (shown in red in Fig. 1 and in others figures).

When γ → 0, the equilibrium E * (ξ , γ) tend to A +0 := (K 1 , 0) if r 2 ≤ ξ , and tend to

A ++ := 1 2 K 1 + 1 2α 1 r 2 1 + 4ξ α 1 1 -ξ r 2 K 2 , 1 -ξ r 2 K 2 if ξ < r 2 .
In the case when γ → ∞,

the equilibrium E * (ξ , γ) tend to A ∞ := (0, K 2 ).
To facilitate comparison between the total equilibrium population U * T (ξ , γ) and

K 1 + K 2 ,
we consider the line ∆ with Cartesian equation u 1 + u 2 = K 1 + K 2 , of slope -1 and passing through the point A = (K 1 , K 2 ) (shown in blue in Fig. 1 and in others figures). If the equilibrium

(u * 1 (γ, ξ ), u * 2 (γ, ξ )), is on or below the line ∆, then U * T (γ, ξ ) ≤ K 1 + K 2 , whereas if the equilib- rium is above the line ∆, then U * T (γ, ξ ) ≥ K 1 + K 2 .
We see very simply that dispersal asymmetry is favorable to the total equilibrium population if E * (γ, ξ ) is above ∆, unfavorable if below ∆.

The equilibrium point E * (γ, ξ ) is always in ellipse, then, for γ → 0, the equilibrium point start at A +0 = (K 1 , 0) if r 2 ≤ ξ or at A ++ if r 2 > ξ , and when γ increases, E * (γ, ξ ) describes an arc of the ellipse and ends at point A ∞ = (0, K 2 ). Suppose that r 2 ≤ ξ , so, the equilibrium E * (γ, ξ ) start at A +0 . Let we prove the items (a) and (b) of the item 1.

1. The equation of the tangent line to the ellipse E 1 at the point A is given by:

(u 1 -K 1 ) ∂ ψ ∂ u 1 (A) + (u 2 -K 2 ) ∂ ψ ∂ u 2 (A) = 0, (2.22) 
where the function ψ is given by the equation (2.21). Since

∂ ψ ∂ u 1 (A) = -r 1 and ∂ ψ ∂ u 2 (A) = -r 2 , Equation (2.22) becomes simply r 1 u 1 + r 2 u 2 = r 1 K 1 + r 2 K 2 .
(2.23)

If r 1 = r 2 in the equation (2.23), the tangent space to the the ellipse E 1 at A is the line ∆.

By the concavity of the ellipse, any point of ellipse lies below the line ∆. The equilibrium point E * (γ, ξ ) is always in ellipse, then, when γ increases, E * (γ, ξ ) describes an arc of the ellipse, start at A +0 and ends at point

A ∞ . Therefore E * (γ, ξ ) satisfies u * 1 (γ, ξ ) + u * 2 (γ, ξ ) ≤ K 1 + K 2 ,
for all γ > 0 ( see figure 1). At the point A, if we replace u * 1 (γ, ξ ) = K 1 and u * 2 (γ, ξ ) = K 2 in the system (2.20), we get γ * = K 2 K 1 , which completes the proof of item 1-(a).

2. We suppose now that r 1 = r 2 , then the line ∆ makes a second intersection with the ellipse

E 1 at a point noted C = α 2 K 1 +K 2 α 1 +α 2 , α 1 K 1 +K 2 α 1 +α 2 .
Therefore, we have two possibles cases according to the relative positions of the point C and the point A. In the case when Suppose that r 2 > ξ , so, the equilibrium E * (γ, ξ ) start at A ++ . Let we prove the items (a), (b) and (c) of the item 2. For the prove of items (a) and (b) is the same as in the previous items 1-a and 1-b, except, the equilibrium E * (ξ , γ) start at A ++ in stead of A +0 because r 2 > ξ (see In this section, we consider the two-patch system with source-sink dynamics given by (1.5).

r 1 < r 2 , O u 1 A +0 A ∞ u 2 ∆ A •
O u 1 A +0 A ∞ u 2 C ∆ • A • O u 1 A +0 A ∞ u 2 ∆ C • A •
figures 3). O u 1 A ++ A ∞ u 2 ∆ • A • O u 1 C • A ∞ u 2 ∆ A ++ • A •
This system is studied in [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF]. We recall some essential results of [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF]. First of all, let's start by recalling the global dynamics of System (1.5).

Global dynamics

We consider the following regions denoted D 0 , D 1 and D 2 defined by:

               D 0 = γ : γ ≥ r 1 r 2 , D 1 = γ : r 1 r 2 < γ < r 1 r 2 + ξ r 1 r 2 ξ , D 2 = γ : γ ≥ r 1 r 2 + ξ r 1 r 2 ξ . (3.1)
The global dynamic of System (1.5) is described as follows.

Theorem 3.1 (Prop. 5.5 in [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF]). Consider Model (1.5).

Then, if γ ∈ D 0 ∪ D 1 , System (1.5)
admits unique equilibrium in R 2 \{0} denoted E (γ, ξ ), which is GAS, and if γ ∈ D 2 , then the origin is GAS.

Total population abundance for fixed γ

In this section, we recall the comparison given in [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF]Proposition 5.11], between the total equilibrium population

U T (γ, ξ ) = u 1 (γ, ξ ) + u 2 (γ, ξ ), E (γ, ξ ) = (u 1 (γ, ξ ), u 2 (γ, ξ )),
of (1.5) and carrying capacity K 1 , by analyzing the stable positive equilibrium E (γ, ξ ). Note that, when there is no dispersal (i.e., ξ = 0), the total equilibrium population is U T (γ, 0) = K 1 .

We consider the regions defined by:

                           If r 2 ≥ r 1 then      L 0 = γ : γ ≥ r 1 r 2 , L 1 = γ : γ < r 1 r 2 . If r 2 < r 1 then            L 2 = γ : γ ≥ r 1 r 2 , L 3 = γ : r 1 r 2 > γ > r 1 -r 2 α 2 (K 1 +K 2 ) , L 4 = γ : γ ≤ r 1 -r 2 α 2 (K 1 +K 2 ) . (3.2) 
Theorem 3.2. The total equilibrium population described by (1.5) satisfies the following properties 1. If r 2 ≥ r 1 , let L 0 and L 1 be defined by (3.2). Then we have:

• if γ ∈ L 0 then U T (γ, ξ ) ≤ K 1 for all ξ ≥ 0.
More over, there is ξ * = r 1 r 2 γr 2 -r 1 , such that:

0 < U T (γ, ξ ) ≤ K 1 If ξ < ξ * , U T (γ, ξ ) = 0 If ξ ≥ ξ * . (3.3) 
• if γ ∈ L 1 then 0 < U T (γ, ξ ) ≤ K 1 for all ξ ≥ 0.
2. If r 2 < r 1 , let L 2 , L 3 and L 4 be defined by (3.2). Then we have:

(a) if γ ∈ L 2 then U T (γ, ξ ) > K 1 for ξ < ξ 0 and U T (γ, ξ ) < K 1 for all ξ > ξ 0 , where

ξ 0 = (r 1 -r 2 ) (K 1 + K 2 ) ((r 1 -r 2 ) + γα 1 (K 1 + K 2 )) (α 1 -1 + α 2 -1 )
, with α i = r i /K i .

(3.4)

Moreover, there is ξ * ≥ ξ 0 such that U T (γ, ξ ) = 0 for all ξ ≥ ξ * . (b) if γ ∈ L 3 then we have U T (γ, ξ ) ≥ K 1 If ξ ≤ ξ * , 0 < U T (γ, ξ ) < K 1 If ξ > ξ * . (3.5) (c) if γ ∈ L 4 , then U T (γ, ξ ) ≥ K 1 for all ξ ≥ 0.
Proof. All the results were established by Wu at al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF]Proposition 5.11]. Note that, the explicit expression (3.4) of ξ 0 was not given in [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF].

Perfect mixing

In the case of perfect mixing (i.e when ξ → ∞), we have the following result [32, Proposition 5.10]:

Proposition 3.3. We have:

U T (γ, ∞) =    (1 + γ) r 1 -γr 2 r 1 /K 1 + γ 2 r 2 /K 2 i f γ < r 1 /r 2 , 0 otherwise. (3.6) 
Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] proved that large dispersal intensity (i.e., ξ → ∞), the intermediate asymmetry γ can lead to population density higher than that without dispersal, and extremely small asymmetry is still favorable, while extremely large asymmetry is unfavorable: (i) When the dispersal asymmetry is small, the species can approach a density larger than that without dispersal, while it reaches its maximum value at an intermediate asymmetry γ = r 1 -r 2 2α 2 (K 1 +K 2 ) . (ii) When γ is extremely large, the species goes to extinction in both patches. Mathematically speaking, we can rewrite the following result [32, Proposition 5.10]:

Proposition 3.4. [32, Proposition 5.10] Assume that γ < r 1 r 2 . Consider the total equilibrium population for ξ → ∞ given by (3.6). We have:

U T (γ, +∞)        > K 1 i f γ < r 1 -r 2 α 2 (K 1 +K 2 ) , = K 1 i f γ = r 1 -r 2 α 2 (K 1 +K 2 ) , < K 1 i f γ > r 1 -r 2 α 2 (K 1 +K 2 ) . (3.7) 
Moreover, U T (+∞) approaches its maximum value r 2 K 1

K 1 +K 2 4(r 1 K 2 +γ 2 r 2 K 1 ) r 1 -r 2 α 2 (K 1 +K 2 ) 2 at γ = r 1 -r 2 2α 2 (K 1 +K 2 ) .

Total population equilibrium for fixed ξ

In this section, we assume that ξ is fixed. Note that, when γ → 0, the equilibrium E (ξ , γ) tend to (K 1 , 0).

The equilibrium point start at point A +0 and when γ increases from 0 to ∞, E (ξ , γ) moves along the ellipse E 1 ,passes through the point C for a γ and ends at the point A ∞ = O. To find the value of γ , just substitute the coordinates of C in one of the equations of the system (3.15).

The value of γ * deduced from Theorem 3.1, which completes the proof ( see figure 5).

O u 1 u 2 E 1 Case r 1 ≤ r 2 ∆ O u 1 E 1 C Case r 1 > r 2 • u 2 ∆ Figure 5:
The illustration of items 1 and 2 of Theorem 3.6. The ellipse E 1 is shown in red for some values of parameters and the straight line ∆ in blue. Left: case where r 1 ≤ r 2 and in the right case where r 1 > r 2 . The equilibrium E (ξ , γ) moves clockwise from (K 1 , 0) to O with increasing γ from 0 to ∞.

Speaking biologically, the result of the previous theorem show that, (i) the small values of asymmetric dispersal γ can lead to either an increased total size of the population in two patches, and the large values of γ can lead a decreased total size, with extinction in both patches, (ii) asymmetric dispersal can lead a decreased total equilibrium population, with extinction in both patches.

Numerical illustrations

In this section, first, we plot, for fixed ξ , the total equilibrium populations γ → U * T (ξ , γ) of (2.1) and γ → U T (ξ , γ) of (1.5), as a function of dispersal asymmetry γ for the sets of parameters choosing in Tables 1, 2 and 3. We give some examples of all the cases proven in Theorems 2.5 and 3.6.

In the figures 13 and 14, we plot, for some parameters of the model (2.1), the total equilibrium population (ξ , γ) → U * T (ξ , γ) ( surface shown in red) when the dispersal asymmetry γ and dispersal intensity ξ varies from 0 to ∞. In figure 15, we plot the total equilibrium population (ξ , γ) → U T (ξ , γ) of the model (1.5) for the parameters given in Table 3. Note that, the total equilibrium population U * T satisfies:

U * T (ξ , γ) = K 1 + K 2 + ξ (u * 2 (ξ , γ) -γu * 1 (ξ , γ)) 1 α 1 u * 1 (ξ , γ) - 1 α 2 u * 2 (ξ , γ) , (4.1) 
and U T :

U T (ξ , γ) = K 1 + ξ (u 2 (ξ , γ) -γu 1 (ξ , γ)) 1 α 1 u 1 (ξ , γ) - 1 r 2 + α 2 u 2 (ξ , γ) . (4.2)
Table 1: Parameters values of the three case used in Fig. 6, 7 and 8 for the case r 2 ≤ ξ in Theorem 2.5.

Figure Case

r 1 K 1 r 2 K 2 ξ U * T (ξ , 0 + ) U * T (ξ , ∞) Case A 1 1 1 3 2 1 3 Fig. 6 Case B 1 2 1 2 2 2 2 Case C 1 3 1 2 2 3 2
Case A 1 1 0. 6: Illustration of items 1 and 2 of Theorem 2.5. Total equilibrium population U * T (shown in red) of system (2.1) as a function of the dispersal asymmetry γ for the sets of the parameter values given in Table 1. The horizontal line shown in blue is K 1 + K 2 and in green is K 2 . For the three cases, the small values of asymmetric dispersal γ ≤ 3 can lead to either an increased total size of the population in two patches, and the large values of γ > 3 can lead a decreased total size. The point [START_REF] Allen | Persistence, extinction, and critical patch number for island populations[END_REF][START_REF] Arditi | The perfect mixing paradox and the logistic equation: Verhulst vs[END_REF] represents that the total equilibrium population U * T equal the sum of carrying capacities K 1 + K 2 = 4 at asymmetric dispersal γ = 3. The dispersal asymmetry is unfavorable for all γ > 0.

γ γ γ U * T U * T U * T Case A: K 1 < K 2 Case B: K 1 = K 2 Case C: K 1 > K 2 Figure
Case A: T (shown in red) of system (2.1) as a function of the dispersal asymmetry γ for the sets of the parameter values given in Table 1. The horizontal line shown in blue is K 1 + K 2 and in green is K 2 . For the three cases, the small values of asymmetric dispersal γ can lead to either an increased total equilibrium population U * T in two patches, and the large values of γ can lead a decreased U * T . There are two points γ 1 and γ 2 of the asymmetric dispersal, which the total equilibrium population U * T equal the sum of carrying capacities K 1 + K 2 = 4. The dispersal asymmetry is unfavorable for all γ < γ 1 and γ > γ 2 , while is favorable when γ 8: Illustration of item 1-b of Theorem 2.5 with r 1 < r 2 . Total equilibrium population U * T (shown in red) of system (2.1) as a function of the dispersal asymmetry γ for the sets of the parameter values given in Table 1. The horizontal line shown in blue is K 1 + K2 and in green is K 2 . There are two points γ 1 and γ 2 of the asymmetric dispersal, which the total equilibrium population U * T equal the sum of carrying capacities K 1 + K 2 = 4. The dispersal asymmetry is unfavorable for all γ < γ 1 and γ > γ 2 , while is favorable when γ

K 1 < K 2 Case B: K 1 = K 2 Case C: K 1 > K 2 γ γ γ U * T U * T U * T
1 ≤ γ ≤ γ 2 . γ γ γ U * T U * T U * T Case A: K 1 < K 2 Case B: K 1 = K 2 Case C: K 1 > K 2 Figure
1 ≤ γ ≤ γ 2 .
Table 2: Parameters values of the three case used in Fig. 9, 10 and 11 for the case r 2 > ξ in Theorem 2.5. 9: Illustration of item 2-a of Theorem 2.5. Total equilibrium population U * T (shown in red) of system (2.1) as a function of the dispersal asymmetry γ for the sets of the parameter values given in Table 2. The horizontal line shown in blue is K 1 + K2 and in green is K 2 . Table 3: Parameters values of the two cases used in Fig. 12. Case A: T (shown in red) system (2.1) as a function of the dispersal asymmetry γ for the sets of the parameter values given in Table 2. The horizontal line shown in blue is

r 1 K 1 r 2 K 2 ξ U * T (ξ , 0 + ) U * T (ξ , ∞) Case A 1 1 5 3 2 
γ γ γ U * T U * T U * T Case A: K 1 < K 2 Case B: K 1 = K 2 Case C: K 1 > K 2 Figure

Figure

r 1 K 1 r 2 K 2 ξ U * T (ξ , 0 + ) U * T (ξ , ∞)
K 1 < K 2 Case B: K 1 = K 2 Case C: K 1 > K 2 γ γ γ U * T U * T U * T
K 1 + K2 and in green is K 2 . γ γ γ U * T U * T U * T Case (i)
Case (ii) Case (iii) Figure 11: Illustration of item 2-c of Theorem 2.5. Total equilibrium population U * T (shown in red) of system (2.1) as a function of the dispersal asymmetry γ for the sets of the parameter values given in Table 2. The horizontal line shown in blue is K 1 + K 2 and in green is K 2 . For the cases (i) and (ii), the small values of asymmetric dispersal γ can lead to either an increased total equilibrium population U * T in two patches, and the large values of γ can lead a decreased U * T . In the case (iii), the total equilibrium population decreased for all γ. γ γ

U T U T

Case A

Case B Figure 12: Illustration of items 1 and 2 of Theorem 3.6. Total equilibrium population U T (shown in red) of the system (1.5) as a function of the dispersal asymmetry γ for the sets of the parameter values given in Table 3. The horizontal line shown in blue is K 1 . Case A, the dispersal asymmetry is unfavorable for all γ < γ 2.11 and U T = 0 for all γ ≥ 2.11. Case B, the point (3.14, 1) represents that the total equilibrium population U T equal the carrying capacity K 1 = 1 at asymmetric dispersal γ = 3.14. Therefore, the dispersal asymmetry is favorable as γ < γ * 3.11, while it is unfavorable as γ ≥ 3.11 and U T = 0 for all γ ≥ γ 7.11.

Case A Case B Case C Figure 13: Some example of Total equilibrium population U * T (ξ , γ) ( surface shown in red) of system (2.1) as a function of the dispersal asymmetry γ and dispersal intensity ξ . The horizontal plane shown in blue is K 1 +K 2 and in green is K 2 . Case A plotted for r 1 = 1, K 1 = 1, r 2 = 1, K 2 = 3, case B: r 1 = 1, K 1 = 1, r 2 = 0.5, K 2 = 3 and case C: r 1 = 0.5, K 1 = 3, r 2 = 1, K 2 = 1.

Case (i)

Case (ii) Figure 14: Total equilibrium population U * T of the system (2.1) as a function of the dispersal asymmetry γ and dispersal intensity ξ . The horizontal plane shown in blue is K 1 + K 2 and in green is K 2 . Case (i) plotted for the parameters r 1 = 7, r 2 = 4, K 1 = 1, K 2 = 3 and case (ii) for r 1 = 3, r 2 = 7.5, K 1 = 1, K 2 = 3.

Case A

Case B Figure 15: Total equilibrium population U T (ξ , γ) (shown in red) of the system (1.5) as a function of the dispersal asymmetry γ and dispersal intensity ξ for the sets of the parameter values given in Table 3. The horizontal plane shown in blue is K 1 .

The goal of this paper is to study the model of two patches coupled by asymmetric migration terms. In particular, we are interested in studying the effect of dispersal asymmetry on the dynamics of population and coexistence of species for the two-patch source-source and also for two-patch source-sink model. The ecological problem that has motivated this study is to find the conditions for which asymmetrical dispersal can lead to higher total equilibrium population than the sum of carrying capacities.

Rigorous analysis on the models demonstrates a mechanism by which the dispersal asymmetry can lead to either an increased total size of the species in two patches, a decreased total size with persistence in the patches, or even extinction in both patches. The analysis also provides new insights. Numerical simulations confirm and extend our results.

Finally, some question remains open: how do our results generalize to situations with more than two patches? If we consider a more general growth dynamic than logistic, this has an effect on the total equilibrium population. I think these questions are difficult to answer, and require a lot of work and mathematical tools.
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Figure 1 :

 1 Figure 1: The illustration of item 1-(a) of Theorem 2.5. The ellipse E 1 is shown in red for some values of parameters and the straight line ∆ in blue.The equilibrium E * (ξ , γ) moves clockwise from A +0 to A ∞ with increasing γ. The total equilibrium population is always smaller than K 1 + K 2 for all γ, because it belongs to the ellipse.

Figure 2 :

 2 Figure 2: The illustration of item 1-(b) of Theorem 2.5. The ellipse E 1 is shown in red for some values of parameters and the straight line ∆ in blue. Left: case where r 1 > r 2 and in the right case where r 1 < r 2 . The equilibrium E * (ξ , γ) moves clockwise from A +0 to A ∞ with increasing γ.

Figure 3 :

 3 Figure 3: The illustration of items 2-(a) and 2-(b) of Theorem 2.5. The ellipse E 1 is shown in red for some values of parameters and the straight line ∆ in blue. Left: case where r 1 = r 2 and in the right case where r 1 > r 2 . The equilibrium E * (ξ , γ) moves clockwise from A ++ to A ∞ with increasing γ.

2 Figure 4 :

 24 Figure 4: The illustration of item 2-(c) of Theorem 2.5 where r 1 < r 2 . The ellipse E 1 is shown in red for some values of parameters and the straight line ∆ in blue. The equilibrium E * (ξ , γ) moves clockwise from A ++ to A ∞ with increasing γ.

Figure 7 :

 7 Figure 7: Illustration of item 1-b of Theorem 2.5 with r 1 > r 2 . Total equilibrium population U *T (shown in red) of system (2.1) as a function of the dispersal asymmetry γ for the sets of the parameter values given in Table1. The horizontal line shown in blue is K 1 + K 2 and in green is K 2 . For the three cases, the small values of asymmetric dispersal γ can lead to either an increased total equilibrium population U * T in two patches, and the large values of γ can lead a decreased U * T . There are two points γ 1 and γ 2 of the asymmetric dispersal, which the total equilibrium population U * T equal the sum of carrying capacities K 1 + K 2 = 4. The dispersal asymmetry is unfavorable for all γ < γ 1 and γ > γ 2 , while is favorable when γ 1 ≤ γ ≤ γ 2 .

Fig. 12

 12 Fig. 12-A 3 1 7.5 3 2 3 0 Fig. 12-B 7.5 1 3 3 2 3 0

Figure 10 :

 10 Figure 10: Illustration of item 2-b of Theorem 2.5. Total equilibrium population U *T (shown in red) system (2.1) as a function of the dispersal asymmetry γ for the sets of the parameter values given in Table2. The horizontal line shown in blue is K 1 + K2 and in green is K 2 .

In the next theorem, we give the behavior of the model (1.5) when γ → ∞. Theorem 3.5. Let (u 1 (t, γ), u 2 (t, γ)) be the solution of the system (1.5) with initial condition (u 0 1 , u 0 2 ) satisfying u 0 i ≥ 0 for i = 1, 2. Let z(t) be the solution of the differential equation

with initial condition z(0) = u 0 1 + u 0 1 . Then, when γ → ∞, we have

and, for any t 0 > 0, we have

. We rewrite the system (2.1) using the variables (X, u 2 ).

One obtains:

When γ → ∞, (3.11) is a slow-fast system, with one slow variable, X, and one fast variable u 2 .

According to Tikhonov's theorem [START_REF] Banasiak | A Note on the Tikhonov Theorem on an Infinite Interval[END_REF][START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] we consider the dynamics of the fast variable in the time scale τ = γt. One obtains

In the limit γ → ∞, we find the fast dynamics

The slow manifold is formed by the equilibrium points of the fast equation (3.12), which given by u * 2 = X. Since u * 2 LAS for the system (3.12), the theorem of Tikhonov ensures that after a fast transition toward the slow manifold, the solutions of (3.11) are approximated by the solutions of the reduced model which is obtained by replacing u * 2 into the dynamics of the slow variable, which gives the equation (2.10). The system (2.10) admits X * = 0 as a equilibrium point, which is LAS in the positive axis. The approximation given by Tikhonov's theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t 0 > 0 for the fast variable, where t 0 is small as we want. Therefore, let z(t) be the solution of the reduced model (3.8) of initial condition z(0) = X(0, γ) = u 0 1 + u 0 2 , then, when γ → ∞, we have the approximations (3.9) and (3.10).

According to previous theorem, when γ → ∞, we have E * (ξ , ∞) = (0, 0) and U * T (ξ , +∞) = 0 for all ξ .

In this part, we compare the total equilibrium population U T (γ, ξ ) of (1.5) and carrying capacity K 1 , by analyzing the stable positive equilibrium E (γ, ξ ) when the dispersal asymmetry varies from 0 to ∞.

Theorem 3.6. Consider the model (1.5). We have,

, such that:

Moreover, U T (γ, ξ ) = 0 for all γ ≥ γ * .

Proof. The equilibrium of the system (1.5) is the solutions of the following algebraic system:

(3.15)

The sum of the two equations of (3.15) shows that the equilibrium points are in a ellipse noted E 1 , which its equation is given by:

The ellipse E 1 passes through the points (0, 0), A := (K 1 , 0), (0, -K 2 ) and (K 1 , -K 2 ). Note that, it is independent of dispersal intensity ξ and asymmetric dispersal γ (shown in red in Fig. 5).

When γ → 0, the equilibrium E (ξ , γ) tend to A +0 := (K 1 , 0). In the case when γ → ∞, the equilibrium E (ξ , γ) tend to, A ∞ = O.

To facilitate comparison between the total equilibrium population U * T (ξ , γ) and the carrying capacities K 1 , we proceed as in the case of two-patch source-source model. Indeed, we consider the line ∆ with Cartesian equation u 1 + u 2 = K 1 , of slope -1 and passing through the point A = (K 1 , 0) (shown in blue in Fig. 5). If the equilibrium (u 1 (γ, ξ ), u 2 (γ, ξ )), is on or below the line ∆, then U T (γ, ξ ) ≤ K 1 , whereas if the equilibrium is above the line ∆, then U T (γ, ξ ) ≥ K 1 .

The equilibrium point E (γ, ξ ) is always in ellipse, then, for γ → 0, the equilibrium point start at A +0 = (K 1 , 0) and when γ increases, E (γ, ξ ) describes an arc of the ellipse and ends at point

Suppose r 1 ≤ r 2 . Then the slope of the space tangent of the ellipse E 1 at A +0 equal -r 1 r 2 ≥ -1, which means that the ellipse E 1 is below the line ∆ in the first quadrant and U T (γ, ξ ) ≤ K 1 for all γ as shown in Fig. 5. In the case when r 1 > r 2 , direct calculation finds that the ellipse E 1 and the line ∆ have two intersections: