Introduction to Quantum Computing:

A demo with IBM
Qiskit
V2 - Benoît Prieur - CC0 - BarCamp Yerevan - 24-25 June 2023

Quantum Physics

- Physics of the infinitely small
- Counter-intuitive, as opposed to classical physics/mechanics
- Probabilistic world (not determinist)

Subatomic world, few particles

- Atom
- Nucleus: Neutron, Proton (+1)
- Electron (-1)
- Light: Wave-particle duality, Photon

1st counter-intuitive phenomenon: levels of energy "quanta"

- Electron absorption or emit is done according to quantified energy
levels
- Etymology: "Quanta"

Understand Quantum Computing

Understand (at least) Three concepts:

- Superposition
- Measurement
- Entanglement

Heisenberg's uncertainty principle

- If we know (precisely) the position of a particle, we cannot know (precisely) its speed. And reciprocally
- First approach to quantum superposition
- The measurement disturbs the measured value (conventional mechanical counter-analogy)

Schrödinger's cat

Cristineagoe sur Wikipédia anglais, CC BY-SA 3.0
https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Spiros1976, CC BY-SA 4.0
https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

Wave function

Classical Mechanics
Newton's laws of motion
Quantum Mechanics
Schrödinger equation

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle
$$

Quantum superposition and bracket notation

$|\Psi\rangle=25 \%|V 1\rangle+45 \%|V 2\rangle+30 \%$ IV3 \rangle

 V2 (45 \%)
 V3 (30 \%)
 Quantum Measurement

Quantum superposition and bracket notation (II)

Qubit 1

$$
\text { |qubit1 }\rangle=a .|0\rangle+b .|1\rangle
$$

Qubit 2

$$
|q u b i t 1\rangle=a .|00\rangle+b .|10\rangle+c .|01\rangle+\text { d. }|11\rangle
$$

|qubit 1$\rangle=\mathrm{a} .|000\rangle+\mathrm{b} .|001\rangle+\mathrm{b} .|010\rangle+\mathrm{c} .|100\rangle+$ d. $|110\rangle+\mathrm{e} .|011\rangle+\mathrm{f} .|101\rangle+\mathrm{g} .|111\rangle$

Logic Gates analogy

Quantum gates

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Quantum circuit and Quantum gates

Quantum simulator vs Quantum computer

- Quantum computers: Photon polarization, Electron Spin, Cold atoms (quantum state: energy levels)
- Quantum simulators: combinatorial use, about 16 GB of RAM for 30 qubits
- Qiskit, Microsoft Quantum, Cirq (Google), myQLM
- HPC approach: business already a reality (NP-complete Problems Instances, Combinatorics industry).

Quantum entanglement

- Phenomenon: Two particles form a bound system, quantum states dependent on each other regardless of the distance between them.
- Paradox EPR (speed of light)

Quantum entanglement (II)

- Bohr-Einstein debates:
- Local deterministic theory with hidden variables (Einstein)
- Bell's inequalities, violated if no hidden variables
- Aspect's experiment (1982, absence of hidden variables)
- An application in quantum computing: quantum teleportation

IBM Qiskit, a demo

- IBM Quantum solution, using a Python-like language
- Cloud: https://quantum-computing.ibm.com/
- Online: code, composer, access to various Quantum Simulators \& Real computers queues

Bell States,
maximum 2-qubits intrication

$$
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)(1)
$$

$$
\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}-|1\rangle_{A} \otimes|1\rangle_{B}\right)(2)
$$

$$
\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}+|1\rangle_{A} \otimes|0\rangle_{B}\right)(3)
$$

$$
\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}-|1\rangle_{A} \otimes|0\rangle_{B}\right)(4)
$$

import qiskit

from qiskit import (
IBMQ,
ClassicalRegister,
QuantumCircuit,
QuantumRegister,
QuantumCircuit,
execute,
Aer)
import numpy as $n p$
from qiskit.visualization import plot_histogram
circuit $=$ QuantumCircuit $(2,2)$
circuit.h(0)
circuit.cx(0, 1)
circuit.measure ([0,1], $[0,1]$)
\# Circuit
circuit.draw()
print(circuit)
circuit.draw(output='mpl', filename='circuit.png')


```
Entrée [29
simulator = Aer.get_backend('qasm_simulator')
job = execute(circuit, simulator, shots=1000)
result = job.result()
counts = result.get_counts(circuit)
print("\nRésultats :", counts)
plot_histogram(counts)
```

Résultats : \{'11': 472, '00': 528\}

Quantum teleportation: an example of usage of the previous Bell State

Questions, discussion

cuun zlunnhwluwnnıpjnılu :)

