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La segmentation des images satellites permet d'extraire des métriques de haut-niveau telle que la superficie d'une région d'intérêt. Cependant, ces estimations sont rarement équipées d'intervalles de confiance, ce qui met en cause la fiabilité des algorithmes. Dans cette étude, nous proposons un nouveau modèle de segmentation, TriadNet, qui permet d'obtenir la segmentation de l'image associée à un intervalle de confiance concernant les superficies, en moins de 0.05s par image. L'intérêt de notre approche est démontré sur deux tâches distinctes : la segmentation de bâtiments et de routes, à partir d'images satellite.

Abstract -Segmentation of satellite images allows the obtention of high-level metrics such as the area of a region of interest. However, these estimations are rarely equiped with confidence intervals, which undermine the reliability of the algorithms. In this study, we propose a new segmentation model, TriadNet, which allows to obtain the segmentation of the image associated with a confidence interval on estimated areas, in less than 0.05s per image. The interest of our approach is demonstrated in two distinct tasks: the segmentatcion of buildings and roads, from satellite images.

MC Dropout

Introduction

L'imagerie satellitaire permet de couvrir de larges portions de la surface terrestre et offre une aide précieuse pour la surveillance de la déforestation [START_REF] David | An attention-based u-net for detecting deforestation within satellite sensor imagery[END_REF], des feux de forêt [START_REF] David | An attention-based u-net for detecting deforestation within satellite sensor imagery[END_REF] ou encore des catastrophes naturelles [START_REF] Dung | Building damage annotation on post-hurricane satellite imagery based on convolutional neural networks[END_REF]. Ces données de grande dimensionnalité peuvent être analysées avec des outils Deep Learning (DL), permettant de segmenter automatiquement les images en différentes régions d'intérêt (ROI) [START_REF] Bipul | Deep learning-based semantic segmentation of urban features in satellite images : A review and metaanalysis[END_REF]. À partir de la segmentation, une mesure de la superficie de la ROI peut facilement être obtenue en multipliant le nombre de pixels segmentés par la résolution du pixel. Cependant, cette approche ne permet pas d'obtenir directement un intervalle de confiance (IC) associé à cette mesure de superficie, ce qui peut mettre en cause la fiabilité de la prédiction.

Deux démarches méthodologiques ont été proposées afin d'obtenir des intervalles de confiance à partir d'un modèle DL : l'approche échantillonnage [START_REF] Zach | Towards safe deep learning : accurately quantifying biomarker uncertainty in neural network predictions[END_REF][START_REF] Zach | As easy as 1, 2... 4 ? uncertainty in counting tasks for medical imaging[END_REF], et l'approche régression [START_REF] Tim | High-quality prediction intervals for deep learning : A distributionfree, ensembled approach[END_REF][START_REF] Natasa | Singlemodel uncertainties for deep learning[END_REF]. Dans l'approche échantillonnage, divers masques de segmentation plausibles sont générés pour la même image d'entrée, à partir desquels une distribution sur la quantité d'intérêt est calculée (e.g superficie ou volume), dont la moyenne et l'écart-type peuvent être extraits pour définir un IC. Pour générer ces masques variés, des méthodes telles que le Monte Carlo Dropout [START_REF] Yarin | Dropout as a bayesian approximation : Representing model uncertainty in deep learning[END_REF] ou encore l'Augmentation de Données [START_REF] Guotai | Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks[END_REF] peuvent être employées. L'inconvénient est que le temps d'inférence est sensiblement augmenté, car plusieurs dizaines de prédictions pour la même image doivent être générées. Dans l'approche régression, un réseau de neurones auxiliaire est entraîné à prédire les 3 éléments de l'IC (médiane, borne inférieure et borne supérieure) à partir de l'image et/ou de sa segmentation. Cependant, cela nécessite d'entraîner un modèle auxiliaire de régression en plus du modèle de segmentation.

Pour résoudre les limitations respectives de ces deux ap- 

P (Y test ∈ Γ α (X test )) ≥ 1 -α (1) 
pour toute paire (Y test , X test ) suivant la même distribution que les (Y i , X i ). Cette propriété est appelée la couverture marginale, comme la probabilité est marginale sur l'entièreté de la base de test [START_REF] Anastasios | A gentle introduction to conformal prediction and distribution-free uncertainty quantification[END_REF]. Les méthodes d'estimation d'IC basées sur l'échantillonnage se basent sur l'hypothèse que X suit une loi normale. Sous cette hypothèse, la valeur médiane µ X ainsi que la déviation standard σ X de la distribution sont obtenus en échantillonnant différentes prédictions pour la même image d'entrée. Puis, l'IC est obtenue comme étant Γ α (X) = [µ X -zσ X , µ X + zσ X ], où z correspondant au nombre de déviation standard, 

Solution proposée

TriadNet est basé sur une architecture de segmentation du type U-Net [START_REF] Thorsten | U-net : deep learning for cell counting, detection, and morphometry[END_REF], composée initialement d'un encodeur suivi d'un décodeur. Nous modifions cette architecture en démultipliant les décodeurs, de manière à en obtenir 3, chacun relié au même encodeur (voir Figure 1). Pour une image donnée, TriadNet fournit trois masques de segmentation différents, utilisés pour extraire un IC : le masque inférieur, le masque médian, et le masque supérieur, construits de manière à ce que la superficie S de chaque masque soit croissante : S inférieur ≤ S médiane ≤ S supérieur . Pour obtenir ce résultat, le modèle est entraîné avec une nouvelle fonction de coût, que nous nommons fonction de coût triadique (FCT). 

Fonction de coût triadique

Matériel et Méthodes

Bases de données

Nous démontrons l'intérêt de notre solution pour deux problèmes de segmentation binaire d'images satellites. Tout d'abord, nous étudions la segmentation de bâtiments à l'aide de la base Inria Aerial Image Labeling [START_REF] Emmanuel | Can semantic labeling methods generalize to any city ? the inria aerial image labeling benchmark[END_REF] 1 . La partie en libre accès de cette base comporte 180 images satellites faisant 5000 × 5000 pixels, acquis avec une résolution de 0.3m, que nous avons sous-divisées en patchs de 1024 × 1024 pixels. Pour augmenter le nombre de patchs en vue de l'apprentissage, nous avons utilisé un recouvrement de 256 pixels entre les patchs. Pour les patchs de test, le recouvrement est de 0. Ce processus permet d'aboutir à 4176 patchs pour l'apprentissage, 504 pour la validation, et 800 pour le test. La seconde base de données, Deep Globe Road Extraction [START_REF] Ilke | Deepglobe 2018 : A challenge to parse the earth through satellite images[END_REF] 2 , se concentre sur la segmentation de routes. Les données en libre accès représentent 6226 images satellites de taille 1024 × 1024. Nous les avons réparties en 4657 images pour l'apprentissage, 569 pour la validation, et 1000 pour le test.

Méthodes comparées

Nous avons comparé TriadNet avec deux autres méthodes basées sur l'échantillonnage : le MC Dropout et l'Augmentation de données.

Monte Carlo Dropout est une technique populaire de quantification de l'incertitude d'un modèle DL [START_REF] Yarin | Dropout as a bayesian approximation : Representing model uncertainty in deep learning[END_REF]. Elle est basée sur l'utilisation du Dropout, qui consiste à éteindre une partie des paramètres du modèle pour éviter le sur-apprentissage. Pour implémenter cette technique, le Dropout est gardé actif au moment de l'inférence. En conséquence, plusieurs passages de la même image dans le réseau mènent à des prédictions différentes (et donc des estimations de superficies différentes), car les paramètres éteints changent de manière aléatoire à chaque itération.

Augmentation de données (AD) consiste à créer des versions alternatives d'une image en appliquant des transformations telles que les rotations ou encore les modifications de contraste. Chaque instance est ensuite analysée par le modèle de segmentation, ce qui mène à une estimation de la superficie. En répétant le processus, une distribution sur la superficie est obtenue, à partir de laquelle l'IC peut être dérivé.

Calibration des intervalles de confiance

En pratique, les intervalles de confiance sont souvent calibrés à l'aide d'une base de calibration [START_REF] Anastasios | A gentle introduction to conformal prediction and distribution-free uncertainty quantification[END_REF] (dans notre cas, les images de validation), de manière à s'assurer que la couverture marginale désirée est respectée. Cette étape a pour but de trouver une valeur corrective q, telle que les IC calibrés respectent la couverture désirée de (1-α)% sur la base de calibration. Dans le cas des IC estimés par échantillonnage, q prend la forme d'un facteur multiplicatif appliqué sur la déviation standard (Équation 3). Dans le cas des IC estimés directement (comme pour TriadNet), q correspond à un facteur additif appliqué sur les bornes inférieures et supérieures (Équation 4) :

Γ α,cal (X) = [µ X -qσ X , µ X + qσ X ] (3) Γ α,cal (X) = [l b -q, u b + q] (4) 

Évaluation

Nous menons nos expériences avec α = 0. 

FIGURE 1 :

 1 FIGURE 1 : Illustration du TriadNet sur un exemple de segmentation de bâtiment. Chacun des trois décodeurs fournit un masque respectif, permettant d'obtenir respectivement la borne inférieure, la médiane, et la borne supérieur de l'IC.

FIGURE 2 :

 2 FIGURE 2 : IC obtenus pour chaque méthode sur la tâche de segmentation de routes. Pour une visualisation plus aisée, nous relions les différentes superficies par une ligne continue.

  En d'autres termes, le décodeur médian est entraîné avec la fonction Dice standard. Pour obtenir un masque plus restrictif (et donc une superficie plus faible), le décodeur inférieur est entraîné à minimiser les FP au détriment d'un plus grand nombre de FN. De manière similaire, pour obtenir des masques plus permissifs (et des superficies plus importantes), le décodeur supérieur est entraîné à minimiser les FN au prix d'un plus grand nombre de FP.

	La fonction d'entraînement de TriadNet part du constat que le
	masque inférieur doit être plus restrictif (i.e. plus grande préci-
	sion et plus faible rappel) que le masque médian. De manière
	similaire, le masque supérieur doit être plus permissif (i.e. plus
	grand rappel et plus faible précision). Pour garantir cela, nous
	proposons de nous baser sur la fonction de coût Tversky [15],
	qui permet un contrôle direct sur le compromis entre précision
	et rappel. La fonction de coût Tversky T α,β est une extension
	de la populaire fonction Dice [12], très couramment utilisée
	en segmentation, avec 2 hyper-paramètres additionnels α et β

qui contrôlent respectivement le poids des faux positifs (FP) et faux négatifs (FN) dans la fonction de coût. À noter qu'avec α = β = 0.5, la fonction de coût est strictement équivalente à la fonction Dice.

En écrivant p infr , p med et p sup les sorties de chaque décodeur, et y le masque de segmentation de la vérité-terrain, la FCT est définie comme :

FCT = T 1-γ,γ (p inf,y )+T 0.5,0.5 (p med,y )+T γ,1-γ (p sup,y )

(2)

avec γ un hyper-paramètre fixé à 0.3 dans nos fexpériences.

TABLE 1 :

 1 1, signifiant que nous nous concentrons sur des IC à 90%. Pour évaluer la performance de segmentation, nous calculons le score Intersection sur Union (IoU) entre le masque prédit et la vérité terrain (pour TriadNet, le score IoU est calculé à partir du masque médian). Nous reportons également l'erreur absolue moyenne (AEM) entre la superficie estimée, et la vraie superficie. Des IC optimaux doivent respecter deux conditions. Tout d'abord, ils doivent atteindre la couverture marginale désirée de 90%. Secondement, les intervalles doivent être les plus étroits possible, de manière à être informatifs. Pour vérifier cela, nous calculons deux métriques sur les IC : la couverture empirique (f ) ainsi que la taille moyenne des intervalles (W )[START_REF] Zach | As easy as 1, 2... 4 ? uncertainty in counting tasks for medical imaging[END_REF]. f correspond à la proportion empirique de superficies vérité-terrain qui sont contenues dans les ICs prédits. W correspond à la distance moyenne entre les bornes supérieures et inférieures.Toutes nos expériences sont implémentées avec PyTorch, en utilisant un GPU RTX A5000 de Nvidia. Trois types de modèles de segmentation sont implémentés pour chacune des deux bases de données. Tout d'abord, le modèle Base correspond à un U-Net standard, implémenté avec la librairie MONAI[START_REF] Jorge | Monai : An opensource framework for deep learning in healthcare[END_REF], qui permet ensuite d'obtenir les IC avec la technique AD. Ensuite, pour implémenter la méthode MC, un second U-Net Dropout est entrainé avec un taux de Dropout de 10% dans chacune des couches de l'encodeur et du décodeur. Le dernier type de modèle correspond à notre TriadNet. Tous les modèles sont entrainés avec l'algorithme ADAM, avec un taux d'apprentissage de 1e -4, utilisant la fonction de coût Dice pour les modèles Base et Dropout, et la FCT pour TriadNet. Pendant l'apprentissage, les modèles analysent les images 4 par 4. Nous utilisons de l'augmentation de données modérée pendant l'apprentissage, consistant en des rotations et des altérations de contraste, implémenté avec la librairie Albumentation[START_REF] Alexander | Albumentations : Fast and flexible image augmentations[END_REF].Pour la méthode AD, 20 versions altérées de l'image d'entrée sont obtenues en application des rotations et des modifications de contraste, et le modèle Base est utilisé pour obtenir les prédictions. Pour la méthode MC Dropout, 20 inférences sont effectuées pour chaque image d'entrée avec le modèle Dropout. Tableau récapitulatif de performances Le tableau 1 présente les performances de segmentation (IoU), d'estimation de superficie (AEM) ainsi que la qualité des intervalles de confiance (f et W ), pour les deux bases de données testées. La Figure2propose une représentation visuelle des IC calculés sur la tâche de segmentation de routes. Il apparaît que notre approche, TriadNet, produit des IC qui sont les plus étroits, tout en approximant correctement la couverture marginale désirée de 90% (f atteint 89.8% sur la segmentation des bâtiments et 88.9% pour les routes). Par ailleurs, notre méthode se démarque nettement par sa rapidité, étant 10 fois plus rapide que MC Dropout, et environ 30 fois plus rapide que AD. Par ailleurs, les modifications d'architecture et de fonction de coût nécessaires pour entrainer TriadNet n'ont pas de répercussion négative sur la performance de segmentation, TriadNet surpassant même les autres modèles sur le dataset

	Pour terminer, nous reportons également le temps moyen de

https ://project.inria.fr/aerialimagelabeling/

https ://www.kaggle.com/datasets/balraj98/deepglobe-road-extractiondataset