



# Evolution microstructurale d'un superalliage base cobalt de fonderie à haute température

**Conséquences sur ses propriétés thermomécaniques** 

Sylvain MICHON, Lionel ARANDA, Patrice BERTHOD, Pierre STEINMETZ

Laboratoire de Chimie du Solide Minéral (UMR 7555) Université Henri Poincaré Nancy 1 BP 239 – 54506 Vandoeuvre-les-Nancy Cedex, FRANCE

# **Problématique**

Superalliage base cobalt de solidification renforcé TaC exposition prolongée à haute température ⇒ évolution de la fraction volumique des TaC ⇒ évolution morphologique (fragmentation des TaC)





**Conséquences sur les comportements thermiques et mécaniques ?** 

### Essais réalisés

Elaboration par fonderie de 4 alliages à  $\neq$  populations de TaC

| % en  | Со    | Ni   | Cr     | C (visé) | Та   | W    |
|-------|-------|------|--------|----------|------|------|
| masse |       |      | 10月1日前 |          |      |      |
| Co2   | reste | 8,90 | 28,72  | 0,37     | 4,86 |      |
| Co1   | reste | 8,80 | 29,1   | 0,22     | 3,15 | 6,95 |
| Co3   | reste | 8,49 | 29,0   | 0,37     | 5,72 | 6,27 |
| Co4   | reste | 8,59 | 29,3   | 0,49     | 8,20 | /    |

Expositions à T suffisante (1200°C) pendant 25, 100 et 400 h

Quantification surfacique des carbures TaC ; analyses EDS

Calculs Thermo-Calc (v. N) suivant composition pour 1200°C ; comparaisons

Duretés à l'ambiante

Coefficients de dilatation thermique

Essais de traction à 900, 1000 et 1100°C (Rm, Rp0,2, E, allgt)

# **Expositions à haute température**

différents effets sur les TaC : Co1 : raréfaction

Co2 et Co3 : fragmentation

Co4 : peu d'effet



Co1 à l'état brut



Co3 à l'état brut



**T4** 

Co3 brut grossi 2 fois

Co3 100h à 1200°C



Co4 à l'état brut



Co3 brut grossi 2 fois



### **Comparaison avec la modélisation thermodynamique**

analyse d'images (photos MEB)
+ analyses EDS au MEB
↓
globalement, pour les 4 alliages :
convergence vers les fractions TaC
et vers les compositions de matrice
(Cr, Ta) prévues par Thermo-Calc





$$f_{mass}(\phi_j) = \frac{\rho_{\phi_j} \cdot f_{vol}(\phi_j)}{\sum_i (\rho_{\phi_i} \cdot f_{vol}(\phi_i))}$$



#### Résultats de dureté

La dureté Vickers 30kg est :

fonction croissante du %surf. de TaC

augmentée par le t. th. initial (Co2)

diminue avec la durée à 1200°C (Co2)



(microdureté Hv32g matrice : grande influence du dense réseau de carbures)





**T6** 

### **Résultats dilatométriques (1/2)**

Courbes au chauffage : effet de la durée d'exposition à 1200°C



**T7** 

# **Résultats dilatométriques (2/2)**

#### Coefficients de dilatation (10<sup>6</sup> . $\alpha$ en °C<sup>-1</sup>) :

#### Il existe deux zones sur chaque courbe : 100-600°C et 600-1200°C

| 0-600°C                              | Co1                     | Co2                     | Co3                     | Co4                     | × | 600-1200°C                           | Co1                     | Co2                     | Co3                     | Co4                     |
|--------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---|--------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| état brut<br>(ou traité<br>pour Co2) | 8,57                    | 8,90                    | 7,38                    | 7,61                    |   | état brut<br>(ou traité<br>pour Co2) | alpha<br>non<br>mesuré  | 10,71                   | alpha<br>non<br>mesuré  | alpha<br>non<br>mesuré  |
| exposé<br>25h<br>à 1200°C            | 8,17                    | essai<br>non<br>réalisé | 7,45                    | 7,70                    |   | exposé<br>25h<br>à 1200°C            | 8,45                    | essai<br>non<br>réalisé | 9,91                    | 9,27                    |
| exposé<br>100h<br>à 1200°C           | 8,45                    | essai<br>non<br>réalisé | 7,70                    | 8,17                    |   | exposé<br>100h<br>à 1200°C           | 9,02                    | essai<br>non<br>réalisé | 10,82                   | 9,37                    |
| exposé<br>400h<br>à 1200°C           | essai<br>non<br>réalisé | 7,43                    | essai<br>non<br>réalisé | essai<br>non<br>réalisé |   | exposé<br>400h<br>à 1200°C           | essai<br>non<br>réalisé | 9,95                    | essai<br>non<br>réalisé | essai<br>non<br>réalisé |

**Coefficient de dilatation**  $\uparrow$  **lorsque :** 

\* T mesure ↑

\* % surf. TaC↓

\* durée à 1200°C↑

### Essais mécaniques (1/2)

caractéristiques de traction de Co2 à 900°C

effet de la durée d'exposition à 1200°C

Rm ↑, Rp0,2 ↑, Allgt ↓ quand %TaC ↑ Évolution Rm et Rp

≅ celle de la fraction de TaC
Rôle du t.th. de durcisst et de Ta en sol.
Durcissement par Ta

de la solution solide Co



| traction 900°C | Co1 | Co2 | Co3 | Co4 |
|----------------|-----|-----|-----|-----|
| Rm (MPa)       | 247 | 261 | 293 | 278 |
| Rp0,2 (MPa)    | 183 | 220 | 226 | 248 |
| Allgt (%)      | 38  | 27  | 28  | 27  |



### Essais mécaniques (2/2)

caractéristiques de traction de Co2 à plus haute T

effet d'une exposition de 400h à 1200°C : peu sur Rm, Rp et Allgt











# Synthèse / interprétations (1/2)

#### microstructure

\* %surfacique et intégrité des TaC évoluent à 1200°C, de ≠ manières : convergence vers l'équilibre thermodyn. 1200°C minimisation de l'énergie interfaciale

#### dureté

\* ↑ quand % TaC ↑ (entre alliages) mais peu d'effet de la fragmentation : dureté phase TaC (≅ 3000Hv ) >> celles des matrice et alliages dilatation thermique

\* ∃ 2 régimes pour 2 intervalles en température : hérités du cobalt 13 (25-500°C) à 23.10<sup>-6</sup> °C<sup>-1</sup> (500-1000°C)
\* α ↑ quand % TaC ↓ et le degré de fragmentation ↑ : les TaC imposent +/- leur faible α (= 6.10<sup>-6</sup> °C<sup>-1</sup> sur 20-1100°C)

### Synthèse / interprétations (2/2)

#### traction à chaud

\* Rm ↑, Rp0,2 ↑, Allg<sup>L</sup>↓ quand % TaC ↑ (entre alliages, à 900°C) importance mécanique des TaC ∀ leur morphologie

 \* Rm, Rp0,2, Allg<sup>t</sup> évoluent légèr<sup>t</sup> avec expo 1200°C (Co2, 900<T<1100°C) la fragmentation est sans conséquence sensible (essais à court terme) comportem<sup>ts</sup> en ductilité et fissuration indép<sup>ts</sup> de la morphologie TaC

 \* E est sensiblement diminué avec expo 1200°C (Co2, 900<T<1100°C) la rigidité ↓ avec la perte croissante de continuité du réseau TaC (E=285GPa à 20°C)

### Conclusion

Travail à très haute température des alliages base Co renforcés TaC

⇒ changements TaC possibles
 ⇒ s'il y en a : chg<sup>t</sup> surtout morphologiques
 ⇒ peu de conséquences sur le comportement en traction à chaud
 ⇒ effets sur la dilatation thermique et sur la rigidité de l'alliage

Pas de perte de propriétés mécaniques à chaud (traction statique) Augmentation des risques associés aux chocs thermiques ou aux hétérogénéités fortes en température Incidence sur le fluage ?