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Abstract—In-network traffic classification is a new paradigm in
developing accurate and early-stage traffic classification solutions.
However, despite having good accuracy, the one-fit machine
learning model becomes outdated as the traffic pattern changes
over time. This changing traffic pattern leads to misclassification,
i.e., incorrect mapping of traffic flows to the Quality of Service
(QoS) classes, resulting in a service quality violation and the im-
position of a penalty. This paper proposes a profit-aware adaptive
traffic classification approach in the data plane. We particularly
design an economic model to measure the impact of per-class
misclassification rate on the infrastructure provider’s profit and
use an adaptive method to handle misclassification directly inside
a programmable data plane. The evaluation result shows that
optimal path allocation for various traffic classes determines the
targeted revenue, while improving classifier accuracy reduces
penalty and maintains the maximum profit.

Index Terms—In-Network traffic classification, misclassifica-
tion, QoS, programmable data plane.

I. INTRODUCTION

With a surge in latency-sensitive services and applications
in the Internet of Things (IoT) domain, applying diversified
Quality of Service (QoS) policies and efficiently utilizing
network resources is crucial. Network Slicing (NS) emerged
as a promising solution for resource orchestration to achieve
QoS isolation by overlaying multiple virtual networks on top
of a shared network domain [1]. It enables efficient usage
and management of network resources and provides differen-
tiated services at scale. Hence, a particular service can use
a dedicated network slice to facilitate the QoS requirements
[2]. Along with this, network traffic classification is also an
essential task in computer network management. It enables
the provision of application-specific QoS guarantees [3] by
mapping the incoming traffic flows to the appropriate QoS
slice and thereby simplifies the enforcement of Service Level
Agreements (SLAs).

Recently, in-network traffic classification turned out to be
the key enabler in accurate and early-stage traffic classification
solutions [4]. However, in IoT domain, the traffic presently
includes a variety of behaviours such as communication types,
events, sources, patterns and volumes etc [5], [6]. These
behaviours considerably impact traffic patterns, management,
and control. As a result, based on the number and type of
active devices in the network, the devices’ behaviour might
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generate a variety of characteristics, i.e., variability in data
transmission period and payload size. Machine learning (ML)
has rapidly become a viable option for identifying the source
devices and application types from Internet traffic. Despite
having a traffic classifier with good accuracy, a single-time
trained ML-model becomes outdated as the traffic pattern
changes over time [7]. This changing traffic pattern leads to
misclassification, i.e., incorrect mapping of traffic flows to the
QoS class.

The work in [8] approaches misclassification from a cost-
aware model training perspective, having a minimal risk of
inaccuracy. The authors argue that a solution for device
identification (or classification) should priorly consider feature
extraction’s cost (computational and memory). They partic-
ularly define budget constraints for features and perform a
combinatorial search over the solution space to obtain the
optimal (i.e., cost-effective) features. Similarly, another work
in [9] considers a cost-sensitive learning strategy to ensure
the robustness of traffic classifiers against unbalanced datasets.
They consider the misclassification cost during the training
process and subsequently minimize the training model’s cost.
However, despite having a cost-effective model with good
classification accuracy, the one-fit ML model loses relevance
over time as the traffic pattern changes. This loss of accuracy
leads to incorrect mapping of traffic flows to the QoS class,
which further results in SLA violations and affects customer
satisfaction in return. As a result, on the one hand, the service
provider tries to increase revenue through priority-based traffic
scheduling [10]. On the other hand, incorrect QoS class
mapping by the classifier leads to SLA violations, resulting in
penalties that negatively impact the provider’s profit. A signif-
icant challenge for Infrastructure Providers (InPs) is ensuring
multi-priority traffic demands while maintaining maximum
profit.

Changing traffic patterns are the root cause of a trained ML
model’s accuracy degradation. Therefore, it is essential to in-
vestigate the impact of misclassified flows and handle the mis-
classification problem while streaming data is being collected.
In this work, we investigate the impact from an economic
perspective on the provider’s profit and propose an adaptive
traffic classification approach to handle misclassification inside
the data plane. In particular, we first specify the service quality
requirements boundaries for a few emerging applications and
formulate the problem for multi-priority traffic scheduling
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TABLE I: Service quality requirements of a few emerging applications [11]
Use case / Applications Traffic Class Data rate(γ) E2E Latency(φ) Priority (α)
Personalized BAN Non-real-time/Critical rate (XtRa) 1-100 Mbps ≤ 1000 ms α1

Internet of Everything Non real-time/Non-critical rate (XtXa) 100-1000 Mbps ≤ 100 ms α2

Smart Grid 2.0 Real-time/Critical rate (RtRa) 100-2000 Mbps ≤ 10 ms α3

Live streaming HD real-time/Highly critical rate (HRtHRa) 2000-4000Mbps ≤ 1 ms α5

TABLE II: Table of notations
Notation Description
N Set of nodes
L Set of links
S Set of network slices
K Set of paths between source and destination pairs
C Set of priority class (i.e., QoS group)
F Set of traffic flows
fc
i Traffic flow i of class c

φc
p,i Associated delay with packet p belongs to fc

i
γc
l,i Data rate of link l on flow i belongs to class c

bl Bandwidth of link l
xs
k Traffic volume of slice s on path k

αc
i Service priority of flow i belongs to class c

β Monetary penalty unit
δ The selling price for a unit of bandwidth
λc Misclassification rate of a particular class c

to increase the provider’s revenue. We then put forth an
economic model to quantify traffic misclassification’s impact
on the InP’s profit and use an adaptive traffic classification
method to handle misclassification. Improving the classifier’s
accuracy ensures that multi-priority traffic demands are met
while maximum profit is maintained. Our contributions, in
particular, are as follows:

• We characterize the traffic demands from end users into
various QoS classes for priority-based traffic scheduling;

• We design an economic model that uses penalty cal-
culation and revenue generation functions to generate
maximum revenue by guaranteeing multi-priority user
demands. Also, we investigate the impact of per-class
misclassification on the provider’s profit;

• We propose a profit-aware adaptive traffic classification
approach to handle misclassification directly inside a
programmable data plane.

The remaining of this paper is organized as follows. Section
II presents the problem definition and network model. Section
III represents the proposed solution. The evaluation results
are shown in Section IV. Finally, Section V represents the
concluding remarks and future directions.

II. PROBLEM FORMULATION AND NETWORK MODEL

A. Toward traffic characterization
We begin by discussing the motivation for categorizing

Internet traffic. Regarding service quality metrics such as
latency φ and data rate γ, we translated the QoS requirements
of a few emerging applications to various priority classes.
TABLE I depicts the set of traffic priority classes, along with
their appropriate service quality requirements. Each class has
its own characteristics, such as high definition HD, real-time
Rt or non-real-time traffic Xt - indicating the bandwidth and
latency requirements; critical Ra or non-critical data rate Xa

- expressing the level of delay tolerance [12].

Fig. 1: Service priority factor calculation

B. Problem definition
Let c ∈ C be the set of priority classes, each with its service

quality parameters, namely the latency φ and data rate γ. Here,
the latency φ is defined in terms of end-to-end packet delay on
the chosen route, and the data rate γ is given in bits per second
as specified by the user capacity requirement. As a result, each
class c is bounded by threshold values of latency φc

max and
data rate γc

min. All the defined variables are summarized in
Table II.

Further, the priority of a class c to be privileged in data
delivery is defined in terms of its service quality requirements.
The service priority factor, αc

i defines the initial priority value
of the flow i belongs to class c for allocating resources. The
αc
i increases as the required data rate and latency require-

ments tighten. Therefore, we grouped the multi-priority traffic
demands into different classes and assigned a priority value α
to each class c (see TABLE I). We defined α as being based
on the criticality level, i.e., the service quality requirements
of the classes, and that it is proportional to the amount of
required data rate and inverse of latency. The blue line in
Fig. 2 highlights the criticality level of each class and shows
how it expands with the increase in data rate and decrease in
latency requirements. Since α reflects the relative importance
of the classes, it is then used to define the penalty and revenue
generation functions.

Substrate network and constraints: We represent the under-
lying physical infrastructure as a directed graph G = (N,L)
with a set of nodes n ∈ N and links l ∈ L, each link with a
bandwidth bl > 0 (measured in bps). On top of the substrate
network, we consider the co-existence of multiple network
slices indexed by s ∈ S = {1, ..., S}. For clarity and simplicity,
we focus on a scenario where each slice s serves network
traffic from a single traffic class c with a single source to a
single destination pair [13] having different service parameters
in terms of φ and γ. Hence, we represent a slice by a source-
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destination (S/D) pair (u, v) where the following constraints
must be respected for traffic flows between any pair:

φc
p,i ≤ φc

max, ∀p ∈ f c
i ∈ F c (1)

γc
l,i ≥ γc

min, ∀l ∈ L, ∀f c
i ∈ F c (2)

The above constraint (1) ensures an end-to-end delay thresh-
old along the multi-hop route. The associated end-to-end delay
φ with a packet p across the multi-hop route between source
node u and destination node v, in particular, shall not exceed
the maximum latency limit for a given class c, i.e., φc

max.
Furthermore, constraint (2) assures that the data rate γ at any
link l ∈ L should be sufficient to meet the capacity demand
of passing flow i belongs to class c.

In addition, the paths between (u, v) pairs over links L
are indexed by k ∈ K = {1., , ,K}. We further denote the
traffic volume each slice s generates as xs

k going through
path k. Since multiple slices share the same physical network,
the bandwidth consumption at each link may not exceed the
available bandwidth. Thus, we also define the link’s bandwidth
constraint:

∑
s∈S

∑
k∈K

xs
k ≤ bl, ∀l ∈ L (3)

Provider’s revenue: The service provider generates rev-
enue by optimal resource allocation to heterogeneous traf-
fic demands. The revenue mainly depends on the resources
requested by the service. That is the product of the selling
price of a bandwidth unit and a class’s service priority factor.
The pricing policy determines the charge per unit bandwidth
for each substrate link l ∈ L. A differential pricing policy
is considered based on the class’s criticality level. Thus, the
revenue gained by the provider at the time t by selling the
bandwidth resource can be expressed as:

σ(t) =
∑
c∈C

∑
f∈F c

∑
s∈S

∑
k∈K

δ ∗ αc
f ∗ xs

k(t) (4)

The selling price for a unit of bandwidth is denoted as δ.
The priority of flow f of class c (i.e., service quality priority)
is represented as αc

f , and xs
k(t) stands for satisfying bandwidth

over a path k between (u, v) pairs of slices s ∈ S.
Network traffic classifier: The InP increases revenue by

allocating resources to various classes of traffic. While a traffic
classifier at the network’s edge assigns the incoming traffic
flows to the correct traffic class, i.e., QoS slice. In the case
of incorrect traffic class mapping, the InP would be unable to
implement the appropriate QoS policies, which would impact
the CSL. In order to maintain good classification accuracy,
it is crucial to regularly check the classifier’s prediction and
penalize the classifier for inaccurate mappings.

Let C be the classifier that classifies the incoming traffic
flows fi to the corresponding class. Any misclassification,

i.e., incorrect QoS slice mapping, might result in an SLA
violation, adding a penalty that can be calculated as the per-
class criticality level.

Misclassification rate: We use f1-score as a performance
metric to measure the per-class misclassification rate. f1-score
assesses the classification model’s performance starting from
the confusion matrix; it aggregates Precision and Recall
measures under the concept of harmonic mean [14]. The
formula of f1-score can be interpreted as a weighted average
between Precision and Recall:

f1 = 2 ∗ (Precision ∗Recall)

(Precision+Recall)
(5)

where

Precision =
TP

(TP + FP )
(6)

Recall =
TP

(TP + FN)
(7)

TP means the observation is positive, and the sample is
predicted to be positive. FN is that the observation is positive,
but the sample is predicted to be negative. TN describes that
observation is negative, and the sample is predicted to be
negative. And FP represents that observation is negative, but
the sample is predicted to be positive.

The f1-score reaches its best value at 1 and the worst score
at 0. Hence, the misclassification rate of a particular class c
can be defined as:

λc = 1− f1c, ∀c ∈ C (8)

Penalty: The provider is required to return the penalty
incurred due to the misclassification. The penalty ρ for a
particular class c over time t can be calculated as a product
of the monetary penalty unit, the class’s priority, and the mis-
classification rate of that class. The total penalty ρ associated
with each class c at the time t can be computed as follows:

ρ(t) =
∑
t∈T

∑
c∈C

β ∗ αc ∗ λc
(9)

where β is the monetary penalty unit, αc is the class priority
and λc is the misclassification rate of class c.

Objective function: The objectives are to maximize the
provider’s profit and minimize SLA violations. Maximizing
the provider’s profit can be achieved by maximizing σ and
minimizing ρ. The objective function P can therefore be
written as follows:

max
P

∑
t∈T

(σ(t) − ρ(t)) (10)

Subject to constraint (1), (2) and (3).
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III. PROPOSED SOLUTION

This section discusses the system design and outlines the
steps needed to increase revenue while maintaining maximum
profit. Fig. 2 explains the high-level system design, mainly
consisting of two phases: (i) offline training of the ML model
and determining the optimal routing path at the control plane;
(ii) traffic class identification and network slice allocation in
the data plane.

Fig. 2: System design

In the first phase, the control counterpart determines the
optimal routing paths for multi-priority traffic demands to meet
the traffic demands and maximize the provider revenue. The
revenue function takes traffic demands and available routes
with bandwidth capacity as inputs, resulting in maximum
revenue as an output. Thus, the optimal allocation of traffic
demands to routing paths between source and destination
networks is determined by formulating the optimization prob-
lem as an Integer Linear Program (ILP). In addition, the
control plane trains the ML model on a given dataset. A
decision tree classifier is used to train the model based on
the sequential packet size information. The resulting output
(i.e., if-else conditions) is translated into a P4-enabled switch
[15] to identify the flow class at runtime in the data plane and
apply the corresponding traffic forwarding rules.

The following step is correctly mapping incoming traffic
flows to the appropriate QoS class. Once the switch receives
the first few packets for an individual flow, it extracts relevant
features such as five tuples (IP address, ports, and protocol)
and sequential packet size information and determines the
corresponding class for that flow. The switch then directs
the flow’s subsequent packets to the determined slice for that
specific class. We refer to [4] for more details about traffic
flow classification inside a programmable data plane.

The next step is calculating the per-class misclassification
rate from the classifier’s prediction and periodically updating
the ML model to maintain classification accuracy. We period-
ically monitor the classifier’s performance by calculating the
f1-score from the data plane’s prediction. Because of changes
in traffic patterns, the deployed model loses accuracy over
time, resulting in flows being mapped to the incorrect QoS
class. The traffic flows from a set of classes C are to be
mapped to a set of slices S; therefore, the traffic engineering

module is to create a separate tunnel for each slice. As shown
in Fig. 2, for example, the arrows coloured as red, green, and
blue represent three different slices with distinct bandwidth
capacities and propagation delays. The first arrow shows that
misclassification causes 8% flows of c2 and 5% flows of
c3 to be routed through slice s1. Likewise, 5% flows of c1
and 2% flows of c2 are routed via s2 and s3, respectively.
The desired QoS policies are not applied to that fraction
of flows, resulting in a service quality violation and penalty
accumulation. Therefore, we regularly fit newly received data
into the existing model to maintain an updated model inside
the data plane, ensuring that flows are predicted correctly, and
misclassification rates are kept to a minimum.

Algorithm 1: Maximizing InP’s profit
Input: C, K, F
// C: A list of classes with varying traffic demands
// K: A list of capacity-varying routes connecting source and

destination networks
// F: Network traffic flows from different class of traffic (C)
Output: P
// P: Profit
P = 0;
for t ∈ T do

σ(t) = Scheduling(C, K) ; // Algorithm 2
ρ(t) = Misclassification(F) ; // Algorithm 3
P (t)= σ(t) - ρ(t) ; // Profit over period ′t′

Algorithm 2: Scheduling
Input: C, K
Output: max revenue
max revenue = 0;
for c ∈ C do

for k ∈ K do
for each feasible solution do

σ =
∑

c∈C

∑
k∈K δ ∗ αc ∗ xc

k;
if σ > max revenue then

max revenue = σ;

return max revenue

Algorithm 3: Misclassification
Input: F
Output: ρ
penalty = 0;
for c ∈ C do

λc = 1 - f1cF ;
ρ += β * αc * λc;

return ρ

Algorithm 1-3 outlines the entire InP profit maximization
process. First, the scheduling function takes traffic demands
and network resources, such as route bandwidth capacity,
as input and returns the maximum revenue resulting from
optimal path allocation. The misclassification function is then
periodically called to compute the per-class misclassification
rate and the associated penalty. The revenue and penalty are
essentially calculated by multiplying the class priority factor
to service quality requirements and the misclassification rate
of that specific class, respectively. In other words, the revenue
and penalty will increase in proportion to the criticality level
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of the class. Finlay, the penalty is periodically subtracted from
the targeted revenue and the maximum profit is obtained over
time.

IV. EVALUATION RESULTS

The evaluation section consists of two parts: meeting multi-
priority traffic demands for maximizing revenue and measur-
ing the misclassification impact on the InP’s profit.

A. Satisfying multi-priority traffic demands

Fig. 3: Network topology

We consider the performance requirements for various
classes of traffic defined in TABLE I. The InP makes revenue
by meeting the traffic demands with distinct service quality
parameters. The selling price for a single unit of bandwidth is
supposed to be $5. As the optimal allocation of traffic demands
to routing paths between source and destination networks is
formulated as an optimization problem, we let the solver find
the optimal paths over a network topology (See Fig. 3). The
provider then allocates the routing paths to meet the traffic
demands. Based on the satisfiable traffic demands, the provider
calculates the targeted revenue using the revenue generation
function defined in Section II. The generated revenue for the
specified classes in Table I is, for example, shown in Fig.
4. The bar graph demonstrates that the correlation between
bandwidth demand and revenue is more robust when a class
has a high criticality level, such as class-4. Class-2 exhibits
the opposite behaviour due to its lower criticality level. So,
the InP finds the optimal route for each traffic class to meet
the demands with maximum revenue.

B. Impact of misclassification
The next step is measuring the misclassification’s impact on

the provider’s profit. Since the networks traffic pattern evolves
rather than staying constant, this phenomenon is referred to as
concept drift [6]. As a result, a model’s accuracy deteriorates
over time as the traffic pattern changes. Therefore, a trained
model could be updated continuously or infrequently while
streaming data is being collected [16].

In our evaluation, we use packet capture (PCAP) traces of
IoT devices released by [5] as our dataset. From the available
dataset instances, we selected the PCAP files for seven days

Fig. 4: Per-class revenue determined by optimal path allocation

(from 23 to 29 Sep 2016), containing flows related to four
applications comprising different IoT devices. The devices
have been divided into several classes with varying degrees of
priority. We selected devices that can be assigned to various
QoS groups: from high bandwidth and low latency to best
effort. The devices belonging to the same class share the same
traffic characteristics. Therefore, we selected a single device
from each class for evaluation purposes. TABLE III shows a
summary of the dataset for these chosen devices.

TABLE III: Dataset summary
Class Device type # of flows # of packets

C1(XRa) Sensor 6411 233329
C2(XX) Appliance 5439 23561

C3(RtRa) Controller 16788 270840
C4(HRtHRa) Camera 1601 144187

TABLE IV: Per-class f1-score
Class Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Class-1 1.00 0.95 0.98 0.98 0.97 0.99 1.00
Class-2 0.99 0.50 0.91 0.97 0.99 1.00 0.95
Class-3 0.98 0.93 0.93 0.95 0.94 0.98 1.00
Class-4 0.93 0.84 0.82 0.98 0.94 0.98 1.00

The dataset is divided into multiple chunks to evaluate
model drift identification and adaptation (i.e., to learn the
newly received data samples), each one representing the daily
streaming data. The first data chunk has been used for training,
while the subsequent fragments have been used for testing
purposes. To identify the model drift, we inspected new data
patterns on the 2nd day and sporadically monitored how well
the model performed on contemporary data patterns. As shown
in TABLE IV, the f1-score decreased to 50% on the 2nd day
due to input changes in the source data.

The similarities between the input data, which resulted in
the incorrect mapping of the incoming traffic to the QoS class,
caused accuracy degradation, resulting in QoS degradation.
Based on per-class’s misclassification rate and priority factor,
we calculated the penalty, which is supposed to be $50 for
each % of f1-score loss. Due to the distinct priority factor of
various traffic classes, the inaccuracy of each class contributed
to the penalty at a different rate. For instance, it is clear
from TABLE IV that class-2’s f1-score of the 2nd day is
significantly lower than class-4. However, the penalty added
by class-4 is considerably higher. (see Fig. 5). Therefore,
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Fig. 5: Per-class misclassification rate vs. penalty variation

Fig. 6: Per-class misclassification rate vs. total penalty

Fig. 7: Impact of improving accuracy on the InP’s profit

the impact of the misclassification rate on the total penalty
depends on the significance of traffic class, as shown in Fig
6.

We periodically fitted the newly received patterns to the
existing model to reduce the impact of misclassification. It
is evident from Fig. 7 that accuracy is gradually improved
over time, directly affecting the overall profit. In other words,
increasing classifier accuracy resulted in accurate QoS class
mapping of incoming traffic, lowering penalties while main-
taining a higher profit.

V. CONCLUSION & FUTURE DIRECTION

In this paper, we propose an approach to investigate the
impact of misclassification from an economic perspective and

use an adaptive classification method to handle the misclassifi-
cation problem. We evaluated the proposed method by charac-
terizing multi-priority traffic to various QoS classes, optimally
allocating routing paths to traffic classes, and mapping the
incoming flows to the appropriate QoS class. The evaluation
results show that the misclassification results in adding a
penalty, where the penalty rate varies as per-class criticality
level. The adaptive behaviour of the classifier improved the
prediction’s accuracy, resulting in accurate QoS class map-
ping of the incoming traffic flows, lowering penalties while
maintaining a higher profit. This work can be extended to
measure the impact of misclassified flows on the utilization of
network resources and quantify the effect on QoS and Quality
of Experience (QoE).
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