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Abstract—This work proposes a two-layered coded caching
scheme to resolve the cache-load imbalance bottleneck of the
coded caching in a stochastic shared-cache network where the
association between users and shared caches is random, i.e., for
the scenario where each user can appear within the coverage area
of – and subsequently is assisted by – a specific cache-enabled
helper node based on a uniform probability distribution. To
insightfully capture the effectiveness of our scheme in mitigating
the adverse effect of randomness in shared-cache networks, we
derive the exact scaling laws of the average delivery time. In the
scenario of an error-free broadcast channel of bounded capacity
per unit of time where the delivery involves K users and Λ

cache-enabled helper nodes, we show that empowering users
with an additional layer of caching can significantly mitigate,
and in certain memory regimes completely nullify the adverse
effects of the cache-load imbalance bottleneck.

Index Terms—Coded caching, shared caches, heterogeneous
networks, femtocaching.

I. INTRODUCTION

The persistent and exponential growth of mobile data traffic

has highlighted the need for the solutions that can complement

the serving capacities of limited network bandwidth resources.

In this context, cache-enabled wireless networks have emerged

as one of the most viable solutions that can transform the

storage capabilities of the network nodes into a new and

powerful resource. The main idea of cache-enabled wireless

networks is to bring content objects closer to the users by

proactively storing the content during the off-peak hours at

the network edge [1], including at wireless communication

stations as well as at end-user devices such that upon the user’s

request the content is provided locally by neighboring cache-

enabled network edge, without or with minimally utilizing the

backhaul communication.

Within the framework of cache-enabled wireless networks,

an innovative concept of coded caching introduced in [1] has

revealed that an unbounded number of cache-aided users can

be served with a bounded amount of network resources. The

key to this caching approach is a carefully designed cache

placement algorithm that enables transmitting independent

content to multiple users at a time. This delivery speedup

due to multicasting transmissions is referred to as the coding

gain, and it scales with the total storage capacity of the
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network. Since then, many extensions of the basic coded

caching setting have been studied. This includes the study

of coded caching in heterogeneous networks (HetNets) [2],

[3], in D2D networks [4], in settings with arbitrary popularity

distributions [5], [6], and other settings as well [7]–[13].

A. Cache-Load Imbalance Bottleneck of Shared-Cache Net-

works

Despite the fact that there exist several studies that prove

the massive gains coded caching offers in a wide range of

network settings, there is still need of further exploration

of its applicability in realistic settings. Among them, the

shared-cache setting in which many users have access to the

same cache content is of great importance. Such setting can

be found in the context of cache-enabled HetNets, where a

macrocell (base station) covering a larger area delivers the

content to a set of users with the help of cache-enabled

femtocells (helper nodes or small base stations) each covering

smaller cells. In this scenario, any user that appears in a

particular femtocell, can benefit from the cache-content of the

helper node covering that femtocell.

The first study of coded caching in a shared-cache setting

with uniform user-to-cache association – where each helper

node serves an equal number of users – can be found in [2].

The work in [3] generalized this setting to the case where an

arbitrary number of users are assisted by each helper node,

and characterized the optimal worst-case delivery time for the

case when the cache placement is uncoded, and when the

cache placement is agnostic to the user-to-cache association.

This work proved that, for a setting where a base station serves

K users with the help of Λ cache-enabled helper nodes each

equipped with a normalized storage capacity of γ, uniform

user-to-cache association leads to the minimum worst-case

delivery time of
K(1−γ)
1+Λγ

, consequently achieving a coding gain

of 1 + Λγ. However, in practice, it is possible that user-to-

cache association can be non-uniform.

Recently, the work in [9] studied the cache-load imbalance

bottleneck of coded caching in the shared-cache setting by

extending the deterministic user-to-cache association setting

in [3] to the stochastic network setting, where the cache

populations (i.e., number of users associated to a cache)

follow a given probability distribution. This work revealed

that the cache-load imbalance due to randomness in user-to-

cache association can lead to a significant deterioration in



coding gains, especially when cache populations probability

distribution is skewed. The very same work also shows that

when the cache populations follow a uniform probability

distribution, multiplicative deterioration in coding gain due to

randomness — as compared to the well-known deterministic

uniform user-to-cache association case — can in fact be

unbounded, and scales as Θ
(

log Λ
log log Λ

)

when K = Θ(Λ), and

that this scaling vanishes when K = Ω(Λ log Λ). Moreover,

the same work has also revealed that unlike the case of

uniform cache population probability distribution – where the

deterioration can be avoided as long as K = Ω(Λ log Λ) – the

existence of skewness in cache population densities leads to an

unbounded deterioration irrespective of the relation between

K and Λ. Therefore, it is crucial to look for the solutions that

can resolve the cache-load imbalance bottleneck in shared-

cache settings. There are a few works that aim to alleviate this

adverse effect of cache-load imbalance bottleneck where one

approach focuses on uniformizing the cache loads by applying

load balancing techniques [9], and another one that offers

a novel scheme to carefully tune the cache sizes by using

optimization tools [14].

In this work, we aim to mitigate the adverse effect of cache-

load imbalance bottleneck by adding an additional layer of

cache in the shared-cache setting. The main idea is that in

addition to the cache-enabled helper nodes, each user is also

equipped with its own cache. This will enable the overpop-

ulated femtocells to have higher collective storage capacity

compared to the less populated femtocells, and eventually

alleviate the detrimental performance deterioration due to

randomness.

B. Notations

Throughout the paper, we use the following asymptotic

notation: i) f(x) = O(g(x)) means that there exist constants

a and c such that f(x) ≤ ag(x), ∀x > c, ii) f(x) = o(g(x))

means that limx→∞
f(x)
g(x) = 0, iii) f(x) = Ω(g(x)) if g(x) =

O(f(x)), iv) f(x) = ω(g(x)) means that limx→∞
g(x)
f(x) = 0,

v) f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).
We use the term polylog(x) to denote the class of functions
⋃

k≥1 O((log x)k) that are polynomial in log x. Unless other-

wise stated, logarithms are assumed to have base 2.

II. NETWORK SETTING & PROBLEM STATEMENT

We consider a shared-cache network setting which consists

of a base station (BS) with a content library of N unit-

sized files F = [F1, F2, . . . , FN ], Λ cache-enabled helper

nodes H = [1, 2, . . . ,Λ], and K cache-enabled users U =
[1, 2, . . . ,K]. Each helper node λ ∈ H is equipped with a

normalized storage capacity of γ , Mh

N
∈
[

1
Λ ,

2
Λ , . . . , 1

]

(i.e.,

can store the content equal to the size of Mh files) and each

user k ∈ U is equipped with a normalized storage capacity of

γu , Mu

N
∈
[

1
Λ ,

2
Λ , . . . , 1

]

(i.e., can store the content equal to

the size of Mu files). The BS delivers content via an error-

free broadcast link of bounded capacity per unit of time to

K users, with the assistance of helper nodes. We assume that

in addition to its own cache, each user within the coverage

Fig. 1: An instance of a cache-aided heterogeneous network.

area of any helper node λ ∈ H can download the content

stored in that helper node’s cache at zero cost. In this setting,

the storage regime of γu + γ ≥ 1 is trivial as in this case

any user could retrieve the complete content that it requests

at zero cost. Therefore, in this work, we are only interested

in the storage regime of γu + γ < 1. Henceforth, each helper

node will be referred to a cell.

The communication process consists of three phases; the

content placement phase, the user-to-cell association phase,

and the content delivery phase. The first phase involves the

placement of the content in the users’ and cells’ caches. We

assume that this phase is oblivious to the outcome of the

next two phases. The second phase is the association phase

where each user appears within the coverage area of any

particular cell λ ∈ H from which it can download content

at zero cost. We assume that this phase is also oblivious to

the other two phases. The final phase involves the process

of the BS delivering the content to K users, where users

simultaneously request files from the library. This phase is

aware of the outcome of the first two phases.

Content Placement: We consider a library partition pa-

rameter α, where 0 ≤ α ≤ 1, which divides each file Fi ∈ F
into two parts F 1

i and F 2
i , such that Fi = [F 1

i , F
2
i ], where

∣

∣F 1
i

∣

∣ = α unit-sized, and
∣

∣F 2
i

∣

∣ = (1 − α) unit-sized. We

adopt the uncoded content placement scheme of [1], where

the first part of the files F1 = [F 1
1 , F

1
2 , . . . , F

1
N ] to be

stored in the cells’ caches, and the second part of the files

F2 = [F 2
1 , F

2
2 , . . . , F

2
N ] to be cached in the users’ caches.

User-to-cell association: We consider a uniformly ran-

dom user-to-cell association process, where each user can

appear in the coverage area of any particular cell with

equal probability. For any given instance, we observe a cell

population vector V = [v1, v2, . . . , vΛ], where vλ denotes

the number of users that are within the coverage area of

cell λ ∈ H. In addition, we denote the profile vector L =
[l1, l2, . . . , lΛ] = sort(V) as the sorted version of V, where

sort(V) denotes the sorting of vector V in descending order.



Figure 1 depicts an instance of cache-aided heterogeneous

network setting for L = [5, 4, 3, 2].

Content Delivery: The delivery phase begins when the

BS receives the requests of all users, where each user k ∈ U
requests a single file Fdk

that is indexed by dk ∈ [1, 2, . . . , N ]
from the content library F . We denote d = [d1, d2, . . . , dK ]
as the request vector of K users. We assume that each user

requests a different file, which is a common assumption in

coded caching works [1], [3] as it leads to the worst-case

delivery time. Once the BS is aware of users’ request vector

d, it commences delivery over an error-free broadcast link of

bounded capacity of one unit-sized file per time slot.

A. Problem Formulation

The stochastic nature of the user-to-cell association leads to

randomness in cell population vector V. Thus, our measure

of interest is the average delay given by

T (γ, γu)=min
α

EV[T (V, α)]=min
α

∑

V

P (V)T (V, α), (1)

where T (V, α) is the worst-case delivery time needed to

complete the delivery of any request vector d corresponding

to a specific cell population vector V, and P (V) is the

probability of observing the cell population vector V. The

BS delivers the content in two phases. In the first phase, the

BS adopts the delivery scheme proposed in [3], where each

user k ∈ U retrieves the first part of its request F 1
dk

using the

content received from the BS and the content stored in the

cell’s cache that it is associated with. We know from [3] that

for any V such that sort(V) = L, the BS needs to transmit

the data equivalent to a total of

Th(L, α) =

Λ−t
∑

λ=1

lλ

(

Λ−λ
t

)

(

Λ
t

) (2)

partitioned files, where t = Λγ
α

, and the size of each parti-

tioned file is
∣

∣F 1
i

∣

∣ = α. Then, in the second phase, the BS

adopts the delivery scheme proposed in [1], where each user

k ∈ U retrieves the second part of its request F 2
dk

using the

content received from the BS and the content stored in its

own cache. This phase of delivery is independent of the user-

to-cell association. We know from [1] that in this phase, the

BS has to transmit the data equivalent to a total of

Tu(K,α) =
K(1− γu

1−α
)

1 + Kγu

1−α

(3)

partitioned files, where the size of each partitioned file is
∣

∣F 2
i

∣

∣ = (1 − α). Consequently, for a fixed partition param-

eter α, the worst-case delivery time for any V such that

sort(V) = L is given as

T (L, α) = αTh(L, α) + (1− α)Tu(K,α), (4)

and the average delay takes the form of

T (γ, γu, α) = αEL[Th(L, α)] + (1− α)EL[Tu(K,α)]

= α
∑

L∈L

P (L)

Λ−t
∑

λ=1

lλ

(

Λ−λ
t

)

(

Λ
t

) + (1− α)
K(1− γu

1−α
)

1 + Kγu

1−α

, (5)

where L is the set of all possible profile vectors L and

P (L) ,
∑

V:sort(V)=L

P (V), (6)

is simply the cumulative probability over all V for which

sort(V) = L. Then, our metric of interest takes the form of

T (γ, γu)=min
α

T (γ, γu, α). (7)

In this work, we focus on the asymptotic analysis of the

performance of the proposed two-layered shared-cache set-

ting. In the next section, we provide the scaling laws of the

performance as well as the order-optimal partition parameter

α which leads to the minimum average delay in a simple and

insightful form.

III. MAIN RESULTS

In this section we present our main results on the perfor-

mance of our proposed two-layered shared-cache setting. Our

first result provides the scaling law of the average delivery

time T (γ, γu, α) for any given partition parameter α, in the

limit of large Λ.

Theorem 1. In a Λ-cell, K-user shared-cache setting with

each user equipped with a normalized storage capacity γu
and each cell equipped with a normalized storage capacity of

γ, the average delay for any given partition parameter α and

a random user-to-cell association scales as

T (γ, γu, α) = Θ

(

α2(cγu + γ)

γγu
+

α(−cγγu + γuγ − 2γ) + γ − γγu

γγu

)

. (8)

where

c =







log Λ

log( Λ
K

log Λ)
if K ∈

[

Λ
polylog(Λ) , o (Λlog Λ)

]

K
Λ if K = Ω(Λ log Λ) .

(9)

Proof. The proof can be found in Appendix A.

Now, we proceed with the following lemma that provides

the order-optimal α̂ which leads to minimum average delay

T (γ, γu, α).

Lemma 1. The order-optimal partition parameter α̂ that

minimizes the average delay T (γ, γu, α) is given as

α̂ =

{

γ if γu ≥ 2−2γ
1+c

cγγu−γuγ+2γ
2(cγu+γ) otherwise,

(10)

where

c =







log Λ

log( Λ
K

log Λ)
if K ∈

[

Λ
polylog(Λ) , o (Λlog Λ)

]

K
Λ if K = Ω(Λ log Λ) .

(11)

Proof. The proof can be found in Appendix B.

With Lemma 1 at hand, we are ready to to present our final

result which is the scaling law of our performance metric.

Theorem 2. In a Λ-cell, K-user shared-cache setting with

each user equipped with a normalized storage capacity γu
and each cell equipped with a normalized storage capacity of



γ, the minimum average delay corresponding to the order-

optimal partition parameter α̂ and a random user-to-cell

association scales as

T (γ, γu)=







Θ
(

(1− γ) 1−γu−γ
γu

)

if γu ≥ 2−2γ
1+c

Θ
(

c(1−γ−γu)
cγu+γ

− γγu(c−1)2

4cγu+4γ

)

otherwise
(12)

where

c =







log Λ

log( Λ
K

log Λ)
if K ∈

[

Λ
polylog(Λ) , o (Λlog Λ)

]

K
Λ if K = Ω(Λ log Λ) .

(13)

Proof. The proof can be found in Appendix C.

Remark 1. For the case of γu = 0, our proposed two-

layered shared-cache setting is exactly equal to the original

stochastic shared-cache setting studied in [9], and the scaling

of the average delay in Theorem 2 is exactly equal to the one

presented in [9, Theorem 3].

Theorem 2 provides different memory regimes, and it

hints out that adding an additional layer of cache in the

shared-cache setting can be useful to resolve the cache-load

imbalance bottleneck. In order to better understand the impact

of the additional layer, we proceed to present the following

lemma which characterizes the performance of our proposed

shared-cache setting for the well-known deterministic uniform

user-to-cache association, which leads to the minimum worst-

case delivery time [9].

Lemma 2. In a Λ-cell, K-user shared-cache setting with

each user equipped with a normalized storage capacity of γu
and each cell equipped with a normalized storage capacity

of γ, the minimum worst-case delivery time corresponding to

a uniform user-to-cell association evaluated at corresponding

order-optimal partition parameter α̂ scales as

Tmin(γ, γu) =







Θ
(

(1− γ) 1−γu−γ
γu

)

if γu ≥ 2−2γ
1+c

Θ
(

c(1−γ−γu)
cγu+γ

− γγu(c−1)2

4cγu+4γ

)

otherwise,

(14)

where c = K
Λ .

Proof. The proof can be found in Appendix D.

In identifying the exact scaling laws of the problem, The-

orem 2 nicely captures the following points.

• It identifies the system parameter regime K =
Ω(Λ log Λ) which is consistent with the observation of

[9], where there is no performance deterioration due to

randomness as the multiplicative gap between the average

delivery time and the minimum worst-case delivery time

is equal to one i.e.,
T (γ,γu)

Tmin(γ,γu)
= 1.

• For the system parameter regimes where the perfor-

mance deterioration due to the cache-load imbalance

is unbounded, it identifies a memory regime of γu ≥
2−2γ

1+ log Λ

log( Λ
K

log Λ)
for the additional cache layer that can

completely nullify the impact of the cache-load imbal-

ance such that multiplicative gap between the average

0.05 0.1 0.15 0.2 0.25 0.3 0.35

2

3

4

Fig. 2: Multiplicative gap G(γ, γu) between T (γ, γu) from

(16) and Tmin(γ, γu) from (17).

delivery time and the minimum worst-case delivery time

is equal to one.

IV. NUMERICAL VALIDATION

We know from (5) that it is computationally expensive to

numerically evaluate the exact average delay even for small

system parameters. Therefore, we proceed to numerically

evaluate the effectiveness of our proposed approach in mitigat-

ing the effect of the cache-load imbalance bottleneck by using

the sampling-based numerical (SBN) approximation method,

where we generate a sufficiently large set L1 of randomly

generated profile vectors L, and approximate T (γ, γu, α) for

a fixed α as

T (γ, γu, α) ≈
1

|L1|

∑

L∈L1

T (L, α), (15)

where T (L, α) is given in (4). Then, we numerically find the

approximate optimal partition parameter α̂ that minimizes the

T (γ, γu, α) in (15) and approximate T (γ, γu) as

T (γ, γu) ≈
1

|L1|

∑

L∈L1

T (L, α̂). (16)

Following the same approach, for the uniform user-to-cell

association, we numerically find the approximate optimal

partition parameter α̂ that minimizes the T (Luni, α̂) in (4),

where Luni is a uniform profile vector, and approximate

Tmin(γ, γu) as.

Tmin(γ, γu) ≈ T (Luni, α̂) (17)

The corresponding approximate performance gap is then eval-

uated by dividing T (γ, γu) by Tmin(γ, γu). For |L1| = 10000,

and K = Λ = 500, Figure 2 compares the SBN approximation

of multiplicative performance gap G(γ, γu) = T (γ,γu)
Tmin(γ,γu)

between the average delivery time T (γ, γu) for a random

user-to-cell association and the minimum worst-case delivery

time Tmin(γ, γu) for a uniform user-to-cell association. This

figure highlights the effectiveness of our proposed two-layered

shared-cache setting in mitigating the impact of the cache-load

imbalance. We see that even for small γu, the performance gap

G(γ, γu) is significantly less than the case of γu = 0 i.e., the

original stochastic shared-cache setting [9].



V. CONCLUSIONS

The work explored the effectiveness of the two-layered

coded caching scheme in resolving the cache-load imbalance

bottleneck of the coded caching in a stochastic shared-cache

network, where each user can appear within the coverage

area of one of Λ cache-enabled cells with equal probability.

We identified the exact scaling laws of the average delivery

time of our proposed two-layered coded caching scheme,

and showed that this scheme significantly mitigates, and in

certain memory regimes completely nullifies the detrimental

performance deterioration due to randomness. In a nutshell,

empowering users with an additional layer –even a modest

amount– of caching in stochastic shared-cache networks can

be a viable solution to resolve the cache-load imbalance

bottleneck.

APPENDIX

A. Proof of Theorem 1

We know from [9, Theorem 3] that EL[Th(L, α)] corre-

sponding to the delivery of the first part of each requested file

is given as

EL[Th(L, α)] =






Θ
(

K
1− γ

α

1+Λ γ
α

Λ log Λ

K log Λ log Λ
K

)

if K∈
[

Λ
polylog(Λ) , o (Λlog Λ)

]

Θ
(

K
1− γ

α

1+Λ γ
α

)

if K = Ω(Λ log Λ) .
(18)

Then, for the case when K ∈
[

Λ
polylog(Λ) , o (Λlog Λ)

]

, the

average delay T (γ, γu, α) scales as

T (γ, γu, α) = Θ

(

αK
α− γ

α+ Λγ

Λ

K

log Λ

log
(

Λ
K

log Λ
)

+(1− α)K
1− α− γu

1− α+Kγu

)

(a)
= Θ

(

α
α−γ

γ

log Λ

log
(

Λ
K

log Λ
)+(1−α)

1−α−γu

γu

)

, (19)

where in step (a), we used the fact that Λγ = ω(α) and

Kγu = ω(1− α). Let c1 = log Λ

log( Λ
K

log Λ)

T (γ, γu, α) = Θ

(

c1α
2−c1αγ

γ
+
α2+α(γu−2) + 1− γu

γu

)

= Θ

(

c1α
2γu−c1αγγu+α2γ+α(γu − 2)γ+γ − γγu

γγu

)

= Θ

(

α2(c1γu+γ)+α(γuγ−c1γγu−2γ)+γ−γγu

γγu

)

. (20)

Similarly, for the case K = Ω(Λ log Λ), the average delay

T (γ, γu, α) is bounded by

T (γ, γu, α) = Θ

(

αK
α− γ

α+ Λγ
+ (1− α)K

1− α− γu

1− α+Kγu

)

(b)
= Θ

(

α
α− γ

γ

K

Λ
+ (1− α)

1− α− γu

γu

)

. (21)

where in step (b), we used the fact that Λγ = ω(α) and

Kγu = ω(1− α). Let c2 = K
Λ , then we have

T (γ, γu, α) = Θ

(

α2(c2γu + γ)

γγu

+
α(−c2γγu + γuγ − 2γ) + γ − γγu

γγu

)

. (22)

This concludes the proof of Theorem 1.

B. Proof of Lemma 1

The order-optimal partition parameter α̂ is the solution to

the following optimization problem

min
α

T (γ, γu, α) (23a)

subject to

γ ≤ α ≤ 1− γu. (23b)

We use the Lagrangian method to solve the problem in (23).

We start with the first case when K ∈
[

Λ
polylog(Λ) , o (Λlog Λ)

]

,

using (20), the corresponding Lagrange function Y(α, δ, σ) is

Y(α, δ, σ) =
α2(c1γu + γ) + α(−c1γγu + γuγ − 2γ)

γγu

+
γ − γγu

γγu
+ δ (α− 1 + γu)− σ(α− γ) (24)

where σ, δ ∈ R and c1 = log Λ

log( Λ
K

log Λ)
. The Karush-Kuhn-

Tucker (KKT) conditions for (23) are then given by

∂Y(α̂, δ̂, σ̂)

∂α
= 0, (25)

σ̂(α̂− γ) = 0, (26)

δ̂ (α̂− 1 + γu) = 0, (27)

δ̂ ≥ 0, (28)

σ̂ ≥ 0, (29)

where α̂, δ̂, and σ̂ represent the optimized values. Then from

(25), we have

∂Y(α̂, δ̂, σ)

∂α
=

2α̂(c1γu + γ)

γγu

+
(−c1γγu + γuγ − 2γ)

γγu
+ δ̂ − σ̂ = 0. (30)

We obtain the solution by dividing the operating domain of

the partition parameter into the following three regimes:

• Regime I: γ < α̂ < 1− γu
• Regime II: α̂ = 1− γu
• Regime III: α̂ = γ.

First, for Regime I, when γ < α̂ < 1−γu, we have δ̂ = σ̂ = 0
and from (30), we obtain

α̂ =
(c1γγu − γuγ + 2γ)

2(c1γu + γ)
(31)

Next, for Regime II, when α̂ = 1 − γu, we have σ̂ = 0 and

from (30), we obtain

δ̂ = −
2(1− γu)(c1γu + γ) + (−c1γγu + γuγ − 2γ)

γγu

= −
2c1γu + 2γ − 2c1γ

2
u − 2γγu − c1γγu + γuγ − 2γ

γγu



= −
2c1 − 2c1γu − γ − c1γ

γ

= 1−
c1(2− 2γu − γ)

γ
. (32)

We know from (28) that δ̂ ≥ 0, thus α̂ = 1− γu is a feasible

solution only if

c1(2− 2γu − γ) ≤ γ

γu + γ ≥ 2−
γ

c1
− γu.

However under our assumption that γu+γ ≤ 1 is not possible

as we know that when K ∈
[

Λ
polylog(Λ) , o (Λlog Λ)

]

, c1 > 1.

Thus α̂ = 1 − γu is not a feasible solution as it does not

satisfy (28).

Finally, for Regime III, when α̂ = γ, we have δ̂ = 0 and

from (30), we obtain

σ̂ =
2γ(c1γu + γ)− c1γγu + γuγ − 2γ

γγu

=
2(c1γu + γ)− c1γu + γu − 2

γu

=
c1γu + 2γ + γu − 2

γu
. (33)

We know from (29) that σ̂ ≥ 0, thus α̂ = γ is a fea-

sible solution only if c1γu + 2γ + γu − 2 ≥ 0. Finally,

(31) and (33) concludes the proof of (10) for the case of

K ∈
[

Λ
polylog(Λ) , o (Λlog Λ)

]

.

Next, we solve the problem (23) for the case of K =
Ω(Λ log Λ). We can see that if we replace c1 with c2 in

(20), we obtain (22), which is the average delay for the case

of K = Ω(Λ log Λ). Since both c2 and c1 are constants

and do not depend on α, the optimal solution for the case

of K = Ω(Λ log Λ) is obtained using the same approach

by simply replacing c1 with c2. This concludes the proof of

Lemma 1.

C. Proof of Theorem 2

We begin with the case for γu ≥ 2−2γ
1+c

, from (10), we have

α̂ = γ. Then, inserting α̂ into (8) yields

T (γ, γu) = T (γ, γu, α̂)

= Θ

(

γ2(cγu + γ) + γ(−cγγu + γuγ − 2γ) + γ − γγu

γγu

)

= Θ

(

cγuγ + γ2 − cγγu + γuγ − 2γ + 1− γu

γu

)

= Θ

(

(1− γ)
1− γu − γ

γu

)

. (34)

Next for the case for γu < 2−2γ
1+c

, from (10), we have α̂ =
cγγu−γuγ+2γ

2(cγu+γ) . Then, inserting α̂ into (8) yields

T (γ, γu) = T (γ, γu, α̂)

= Θ





(cγγu−γuγ+2γ)2

4(cγu+γ) − (cγγu−γuγ+2γ)2

2(cγu+γ) + γ − γγu

γγu





= Θ

(

−
(cγγu − γuγ + 2γ)2

4(cγu + γ)γγu
+

1− γu

γu

)

= Θ

(

2cγγu − c2γuγ − γγu

4cγu + 4γ
+

c(1− γ − γu)

cγu + γ

)

= Θ

(

−
γγu(−2c+ c2 + 1)

4cγu + 4γ
+

c(1− γ − γu)

cγu + γ

)

= Θ

(

c(1− γ − γu)

cγu + γ
−

γγu(c− 1)2

4cγu + 4γ

)

. (35)

This concludes the proof of Theorem 2.

D. Proof of Lemma 2

We know from [9, Equation (5), (6)] and (4) that for a

fixed partition parameter α, the worst-case delivery time for

a uniform user-to-cell association is

Tmin(γ, γu, α) = Θ

(

αK
1− γ

α

1 + Λ γ
α

+ (1− α)
K(1− γu

1−α
)

1 + Kγu

1−α

)

.

(36)

From (21), we can see that Tmin(γ, γu, α) is exactly equal

to the worst-case average delivery time for the case of K =
Ω(Λ log Λ). Therefore, the proof of Lemma 2 follows directly

from the proof of Lemma 1 and proof of Theorem 2 for the

case of K = Ω(Λ log Λ).
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