

Effects of crustal assimilation on 238U-230Th disequilibria in continental arc settings

L.B. Kant, K.W.W. Sims, G.M. Yogodzinski, J.M. Garrison, Janne Blichert-Toft, M. Reagan, C.L. Waters, T.P. Mathews, S.R. Scott, P.A. Mothes, et al.

► To cite this version:

L.B. Kant, K.W.W. Sims, G.M. Yogodzinski, J.M. Garrison, Janne Blichert-Toft, et al.. Effects of crustal assimilation on 238U-230Th disequilibria in continental arc settings. Geochimica et Cosmochimica Acta, 2023, 354, pp.165-185. $10.1016/\rm{j.gca.}2023.05.022$. hal-04139666

HAL Id: hal-04139666 https://hal.science/hal-04139666

Submitted on 23 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Effects of crustal assimilation on ²³⁸U-²³⁰Th disequilibria in continental arc settings
- 2 L.B. Kant^{a,b,*}, K.W.W. Sims^{a,b}, G.M. Yogodzinski^c, J.M. Garrison^d, J. Blichert-Toft^e, M.
- 3 Reagan^f, C.L. Waters^{a,b}, T.P. Mathews^{a,b}, S.R. Scott^{a,b}, P.A. Mothes^g, M.L. Hall^g, P.
- 4 Ramon^g, E. Gaunt^g, M. Almeida^g, S. Hidalgo^g
- 5 a) Department of Geology and Geophysics, University of Wyoming, 1000 E. University
- 6 Avenue, Laramie, Wyoming, 82071, USA
- 7 b) Wyoming High Precision Isotope Laboratory, University of Wyoming, 1000 E.
- 8 University Avenue, Laramie, Wyoming, 82071, USA
- 9 c) School of Earth, Ocean, and Environment, University of South Carolina, 701 Sumter St.,
- 10 EWSC617, Columbia, South Carolina 29208, USA
- 11 d) Department of Geosciences and Environment, California State University, 5151 State
- 12 University Drive, Los Angeles, CA 90032-8530
- 13 e) Laboratoire de Géologie de Lyon, CNRS UMR 5276, Ecole Normale Supérieure de
- 14 Lyon, Université de Lyon, 46 Allée d'Italie, 69007 Lyon, France
- 15 f) Department of Geoscience, University of Iowa, Iowa City, Iowa, 52242 USA
- 16 g) Instituto Geofisico de la Escuela Politecnica Nacional, Ladrón de Guevara E11-253,
- 17 Facultad de Ingeniería Civil y Ambiental, 6to. Piso, Quito, Ecuador
- 18 * Corresponding Author. E-Mail Address: <u>lisa.kant@pnnl.gov</u> (L.B.Kant)

19 Abstract

20 Compositions of arc magmas depend on several factors and are often thought to 21 reflect conditions in the mantle wedge and at the slab-mantle interface. However, in 22 continental arc settings, magmas are also influenced by assimilation of continental crust. Here, we present measurements and modeling of ²³⁸U-²³⁰Th activity ratios, Sr, Nd, Hf, and 23 24 Pb isotopic compositions, and major and trace element concentrations in young, historic 25 lavas erupted from Reventador, an active stratovolcano in the Ecuadorian Andes. In arc lavas, ²³⁸U-²³⁰Th disequilibria are often assumed to reflect processes occurring in the 26 27 mantle wedge, as U and Th behave differently in this relatively oxidized and fluid-rich environment. Enhanced mobility of hexavalent U in aqueous fluids results in $(^{230}\text{Th}/^{238}\text{U}) <$ 28 1 and elevated $(^{238}U/^{232}Th)$, which are common in arc lavas. However, the majority of 29 Reventador lavas have $({}^{230}\text{Th}/{}^{238}\text{U}) = 1.0-1.1$ and $({}^{238}\text{U}/{}^{232}\text{Th}) = 0.94-1.12$, the latter of 30 which is considerably lower than the depleted mantle ($(^{238}U/^{232}Th) \sim 1.5$, Sims and Hart, 31 32 2006). While this Th enrichment could be due to melting of subducted oceanic crust, approximately linear trends between (²³⁰Th/²³²Th), wt. % SiO₂, and radiogenic isotope 33 34 ratios indicate otherwise. We argue that crustal assimilation lowers long-term, or timeintegrated, (²³⁸U/²³²Th) in Reventador magmas. To quantify the effects of assimilation we 35 36 modeled stepwise assimilation and fractional crystallization. Observed trends between $(^{230}\text{Th}/^{232}\text{Th})$, $^{87}\text{Sr}/^{86}\text{Sr}$, ε_{Nd} , ε_{Hf} , and $^{208}\text{Pb}/^{206}\text{Pb}$ can be reproduced by up to 10% 37 38 assimilation, which is consistent with previous regional studies. However, reproducing the 39 full spectrum of isotopic diversity among Reventador lavas requires heterogeneous basalt 40 compositions. In a broader context, this study emphasizes the need to consider crustal

processes when examining continental arcs. While ²³⁸U-²³⁰Th disequilibria develop in the
mantle wedge, they can be overwritten by subsequent interaction with continental crust.
Keywords: Arc Magmatism; Crustal Assimilation; ²³⁸U-series disequilibria

44

45 1. Introduction

46 Uranium-series disequilibria are an important tool for understanding the dynamics of 47 the melting process. Because mantle lithologies beneath ocean basins are relatively simple, 48 U-series measurements in mid-ocean ridge (MORB) and ocean island basalts (OIB) have 49 transformed our understanding of the timescales and mechanisms of melt generation and 50 magma transport (McKenzie, 1985; Spiegelman Elliott, 1993; Lundstrom et al., 1995; Sims 51 et al., 1995, 1999, 2002; Jull et al., 2002; Kokfeldt et al., 2005; Waters et al., 2011; Elkins 52 et al., 2011; Stracke and Bourdon, 2009). In stark contrast, arc magmas have several 53 potential source components, and their compositions record the addition of subducted, 54 altered oceanic crust and sediments to the peridotitic mantle wedge. Additionally, the way 55 materials are transported from the slab to the mantle (i.e., as fluids, melts, or mélange 56 diapirs) significantly affects the resulting magma chemistry (Kessel et al., 2005; Reubi et 57 al., 2014, Yogodzinski et al., 2015).

In arc lavas, positively sloped linear arrays on the (²³⁰Th/²³²Th) vs (²³⁸U/²³²Th) equiline diagram are often interpreted as isochrons with slopes suggesting that 10-80 Kyr have elapsed since metasomatism (Bourdon et al., 2003; Turner et al., 2003). Many arc lavas, particularly island arcs, have high (²³⁸U/²³²Th) and (²³⁰Th/²³⁸U) < 1, or ²³⁸U-excess (see Figure 1 in Reubi et al., 2014). Arc settings are typically oxidizing with relatively high fO₂ (Kelley and Cottrell, 2009); in this environment, U is hexavalent and mobile in aqueous

64	fluids, thereby explaining the observed high $(^{238}U/^{232}Th)$ and resulting ^{238}U -excess which
65	form the positively sloped arrays interpreted as isochrons. However, some arc lavas are
66	characterized by $(^{230}\text{Th}/^{238}\text{U}) > 1$, or ^{230}Th -excess. Because of the numerous potential
67	sources and processes involved in arc petrogenesis, ²³⁰ Th-excesses in arc magmas are
68	attributed to several possible causes: partial melting, rather than dehydration, of subducted
69	eclogite (Kuritani et al., 2008; Sigmarrson et al., 1998); melting in the garnet lherzolite
70	stability field (George et al., 2003; Thomas et al., 2002); or subducted sediments enriching
71	the mantle in Th (Reubi et al., 2014; Turner and Foden, 2001).
72	In continental arcs, another complication is interaction between ascending magmas
73	and the overlying crust, as assimilation of thickened and evolved continental crust can
74	modify magma compositions, overprinting metasomatic and deep mantle melting signals
75	(Ankney et al., 2013; Bourdon et al., 2000; Handley et al., 2018; Hora et al., 2009; Huang
76	et al., 2007; Jicha et al., 2007; Jicha et al., 2009; Garrison et al., 2006; Price et al., 2007;
77	Walker et la., 2007; Reubei et al., 2011; 2014). Fortunately, the non-unique interpretation
78	of 238 U- 230 Th disequilibria in arc magmas, specifically with regards to the cause of 230 Th-
79	excess, can be deconvolved by applying constraints from other geochemical parameters, in
80	particular radiogenic isotopes.
81	To investigate how interaction between ascending magmas and continental crust
82	impacts ²³⁸ U and ²³² Th abundances and their decay series systematics we measured ²³⁸ U-
83	²³⁰ Th disequilibria, Sr, Nd, Hf, and Pb isotopic compositions, and major and trace element
84	abundances in young lavas from Reventador, an active stratovolcano in the Northern
85	Volcanic Zone of the Andes (NVZ). Reventador Volcano makes an ideal natural laboratory

86 for studying continental arc magma genesis because: 1) it provides a record of young,

known-age lavas, an important requirement for studies utilizing ²³⁸U-series disequilibria; 87 88 2) unlike many arc lavas, which often have highly evolved compositions, Reventador is 89 erupting andesitic lavas and can thus provide information on the melting and magma 90 transport processes, without significant magma residence times that will result in U-Th 91 decay toward equilibrium, rendering this system uninterpretable in terms of melting and 92 magma transport processes; and, 3) Reventador is far inland of the arc and has thick crust, 93 providing an opportunity to study the potential effects of assimilation of thickened and 94 evolved continental crust on ascending magmas. As such, these lavas provide a unique and 95 unprecedented opportunity to study crustal assimilation in continental arc lavas and its 96 impact on U-series disequilibria.

97

98 2 Geologic Setting

99 2.1 The Northern Volcanic Zone of the Andes

Reventador is an active volcano in a region referred to the Northern Volcanic Zone 100 101 (NVZ) of the Andes. The NVZ stretches from 7°N-2°S (Figure 1A). In Colombia, from 7-102 1°N, the arc consists of a single row of calc-alkaline stratovolcanoes with traits that typify 103 arc lavas including large ion lithophile element (LILE) enrichment and high field strength 104 element (HSFE) depletion (Ancellin et al., 2017 and references therein). In Ecuador, from 105 1°N-2°S, the arc measures ~150 km from east to west, and at least 50 volcanoes have been 106 active since the Pleistocene (Hall et al., 2008). In the NVZ, the arc is subdivided into four 107 north-south running segments. From west to east these are: 1) the Cordillera Occidental or 108 Western Cordillera; 2) the Inter-Andean Valley, a transpressional basin with scattered 109 volcanic centers; 3) the Cordillera Real or Eastern Cordillera, the locus of Holocene

110 volcanism; and, 4) the back-arc, where Holocene volcanism is mostly alkalic and

- 111 characterized by higher FeO/MgO than the other three segments which comprise the main
- 112 arc (Hall et al., 2008 provides a detailed summary of these subdivisions).
- 113 Strontium and Nd isotopic variability between arc segments is well characterized
- 114 and reflects variable crustal assimilation both in terms of assimilant composition and
- amount of crust assimilated (Ancellin et al., 2017; Bryant et al., 2006; Hidalgo et al., 2012).
- 116 Western Cordillera and Inter-Andean Valley lavas have 87 Sr/ 86 Sr = 0.7038–0.7044 and
- 117 143 Nd/ 144 Nd = 0.51280–0.51295, or ε_{Nd} = +2.28 +5.21. In these arc segments, assimilation
- 118 of Late Cretaceous-Eocene arc volcanics and accreted oceanic terranes does not shift
- ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd because the assimilant and ascending magmas have similar
- 120 isotopic compositions (Chiaradia, 2009; Jaillard et al., 2009). In contrast, Eastern
- 121 Cordillera lavas have 87 Sr/ 86 Sr = 0.7041–0.7047 and 143 Nd/ 144 Nd = 0.51255–0.51285, or ε_{Nd}
- 122 = -2.59 +3.26. Here, magmas assimilate Paleozoic and Mesozoic metamorphic and
- 123 intrusive rocks with evolved isotopic compositions (Ancellin et al., 2017, and references
- 124 therein; Hammersley et al., 2022). Back-arc lavas have 87 Sr/ 86 Sr and ϵ_{Nd} values similar to
- 125 Western Cordillera and Inter-Andean Valley lavas due to minimal crustal assimilation by
- 126 ascending lavas (Garrison et al., 2018).

127 Lead isotope variability likely also reflects variable crustal assimilation.

128 Throughout the main arc, ${}^{206}Pb/{}^{204}Pb = 18.8-19.1$. However, Eastern Cordillera lavas have

 $129 \quad {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.6-15.7 \text{ and } {}^{208}\text{Pb}/{}^{204}\text{Pb} = 38.6-39.0, \text{ whereas Western Cordillera lavas}$

- exhibit approximately constant ${}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.6$ and ${}^{208}\text{Pb}/{}^{204}\text{Pb} = 38.5-39.8$, and Inter-
- 131 Andean Valley lavas fall into both groups. These results are also consistent with
- 132 assimilation of Paleozoic-Mesozoic metamorphic and intrusive basement in the east and

133 Cretaceous-Eocene accreted terranes and arc rocks in the west (Ancellin et al., 2017; 134 Chiaradia et al, 2004). In back-arc and Eastern Cordillera volcanoes, including Reventador, Pb isotopes define a third trend with ${}^{206}\text{Pb}/{}^{204}\text{Pb} < 18.9$, ${}^{207}\text{Pb}/{}^{204}\text{Pb} \sim 15.6$, and ${}^{208}\text{Pb}/{}^{204}\text{Pb}$ 135 136 < 38.8 (Ancellin et al., 2017). This trend requires a spatially restricted, non-radiogenic Pb 137 source such as mid-upper crustal Jurassic intrusions emplaced in the Sub-Andean zone 138 (Ancellin et al., 2017; Chiaradia et al., 2004; this study). This distinct Pb isotopic signature 139 could also be due to displacement of crustal blocks with non-radiogenic Pb along the 140 Cosanga Fault, part of the NE-SW running Chingual-Cosanga-Pallatanga-Puna shear zone 141 (CCPP; Figure 1A) (Baize et al., 2020). 142 The Carnegie Ridge, a 250-km-wide, 14-19 km thick aseismic ridge, subducts 143 roughly perpendicular to the trench between 0° and 2°S. This feature formed between 12 144 and 20 Ma during plume-ridge interaction between the Galapagos Plume and Spreading 145 Center (Figure 1A; Sallarès and Charvis, 2003). Although several studies examined the 146 influence of the Carnegie Ridge on magmatism in the NVZ, its effects are debated. One 147 area of disagreement is whether subduction of young crust leads to slab melting. The 148 primary support for this argument is geochemical; lavas with adakitic trace element 149 compositions, such as elevated Sr/Y and light/heavy rare earth element (LREE/HREE) 150 ratios, are ubiquitous in Ecuador, yet absent north of the ridge in Colombia (Ancellin et al., 151 2017; E. Bourdon et al., 2003; Defant and Drummond, 1990; Hidalgo et al., 2012; Narvaez 152 et al., 2018). Some authors also suggest that the onset of adaktic magmatism and ridge 153 subduction were roughly coincident (E. Bourdon et al., 2003; Gutscher et al., 2000; 154 Samaniego et al., 2005). However, estimates of the onset of ridge subduction vary from < 155 1-15 Ma, while adakite-like magmatism began between 0.1 and 1.6 Ma (Michaud et al.,

156 2009, and references within). Furthermore, thermal modeling predicts that subducting crust 157 dehydrates prior to crossing the wet basalt solidus, even in cases where the slab crust is 158 relatively young (Syracuse et al., 2010). To address this discrepancy, others propose that 159 the slab is flat or shallowly dipping, in which case the pressure-temperature path of the slab 160 would briefly intersect the wet basalt solidus and melt (Gutscher et al., 2000). Historically, 161 a lack of recorded Benioff-Wadati zone seismicity made it difficult to accurately 162 characterize slab dip beneath the arc and verify this hypothesis (Syracuse and Abers, 2006). 163 However, recent seismological studies with local networks suggest that the slab dips 25-164 35° (Yepes et al., 2016). Consequently, adakite-like trace element compositions may be 165 unrelated to the Carnegie Ridge. Instead, these traits could result from assimilation of 166 garnet-bearing lower crust (Chiaradia et al., 2011, 2020; Garrison et al., 2006; Michaud et 167 al., 2009), or stabilization of residual garnet during mantle melting, and subsequent 168 fractional crystallization of clinopyroxene, garnet, and amphibole in the lower crust (Bryant 169 et al., 2006; Bloch et al., 2017). 170 Alternatively, adakite-like trace element compositions may result from melting 171 along the Grijalva Fracture Zone (GFZ), an abandoned rift formed during Miocene break-172 up of the Farallon plate that enters the trench near 2.5°S (Figure 1A). The GFZ juxtaposes 173 oceanic crust of different ages, with older Farallon crust to the SE and younger Carnegie 174 Ridge crust to the NW (Yepes et al., 2016). This age difference (> 9 Myr) results in a 175 density contrast across the GFZ, which in turn could lead to flexing and tearing of the slab.

176 Mantle flow through this tear could cause melting along slab edges, generating the adakitic

traits that are prevalent in the NVZ (Narvaez et al., 2018; Rosenbaum et al., 2018; Yepes et

178 al., 2016; Yogodzinski et al., 2001).

179

180 2.2 Reventador Volcano

181 Reventador Volcano is located ~90 km northeast of Quito, Ecuador, in the eastern 182 foothills of the Andes, or the Sub-Andean Zone (Figure 1A). Although it is located in 183 between the main and back-arcs, we classify it as part of the main arc, since many of its 184 geochemical traits are more similar to main-arc volcanoes than back-arc volcanoes (see 185 Section 4.1). Reventador consists of an older horseshoe-shaped caldera which surrounds an 186 extinct cone and the currently active cone. Prior to the onset of activity in 2002, the altitude 187 of the active cone was 3560 m, a height of > 1500 m above the lowest part of the caldera 188 floor (2000 m), and slightly higher than the western rim of the caldera (Hall et al., 2004). 189 El Reventador translates to "The Exploder" and has a historical record of eruptive activity dating back to the 16th century. Because of its remote location and heavy 190 191 precipitation in the area surrounding the volcano, direct observation was historically 192 difficult. However, between 1541 and 2002 there were at least 29 eruptive phases. Periods of eruptive activity during the 20th century occurred in 1898-1912, 1926-1929, 1944, 1958-193 194 1960, 1972, 1973, 1974, and 1976, producing pyroclastic flows, lava flows, lahars, and 195 mm-sized ash fall deposits in the Inter-Andean Valley. The current phase of activity began 196 in November of 2002, when the initial VEI-4 eruption produced a Plinian column that 197 eventually reached a height of 16-17 km, resulting in closure of the international airport in 198 Quito and deposition of up to 5 mm of ash in the Inter-Andean Valley (Hall et al., 2004). 199 Activity has continued intermittently to the present (Almeida et al. 2019). 200 Previous geochemical studies of Reventador focused on the shallow plumbing 201 system of the volcano and conditions in the magma chamber immediately preceding

eruption (Ridolfi et al., 2008, Samaniego et al., 2008). Both studies reported textural
evidence for mixing, such as reverse zoning, resorption, and overgrowth. Additionally, they
observed that Reventador lavas contain phases such as olivine and orthopyroxene which
are not in equilibrium with andesitic magma. Both authors suggested that injection of
basaltic magma into a shallow andesitic magma chamber triggered eruption, consistent
with the occurrence of volcano-tectonic seismicity with focal depths of 10-11 km prior to
the 2002-2005 eruptions (Hall et al., 2004).

209

210 3. Materials and Methods

211 Twenty whole-rock volcanic samples of known age were analyzed: three erupted during the 20th century, four erupted in 2016, and 13 erupted between 2002 and 2010 212 213 (Figure 1B). Twentieth century and 2002-2010 samples were collected during expeditions 214 in 2008 and 2010. Samples from 2016 were collected inside the crater during aerial surveys 215 that same year. Isotopic compositions of three basement samples collected south of 216 Reventador were also analyzed; two hornblende biotite granodiorites (SU-11 and SU-112), 217 and one biotite schist containing trace < 1 mm garnet and pyrite (REV-130). Location data is given in supplementary Table S1. ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd isotope ratios of 218 219 granodiorite SU-11 were previously published by Garrison et al. (2018). Major and trace 220 elements were analyzed by X-ray fluorescence and inductively coupled plasma mass 221 spectrometry (ICPMS) at Washington State University, USA, according to procedures 222 outlined in Jarvis (1988) and Johnson et al. (1999). Strontium, Nd, Hf, Pb, and ²³⁸U-series 223 isotopic analyses of all samples were performed at University of Wyoming (UWYO), 224 USA, using a ThermoFisher NEPTUNE PLUS multi-collector inductively coupled plasma

mass spectrometer (MC-ICPMS). Additional Hf and Nd isotopic analyses were performed
at the Ecole Normale Supérieure in Lyon (ENSL), France; and additional Hf isotopic
analyses were conducted at University of South Carolina (USC), USA. However, since the
ENSL and USC data sets do not include all samples analyzed in this study, they are not
included in the main text. The supplementary text contains a comparison of all three data
sets, and a description of the analytical procedures followed at ENSL and USC.

231

232 **3.1 Sr, Nd, Hf and Pb isotope analysis**

233 Approximately one gram of sample powder was digested in Savillex beakers using 234 a mixture of concentrated trace metal grade HNO₃, HF, and HClO₄. After complete 235 digestion, samples were redissolved and stored in 3N HCl and trace (<1%) HBO₃ at a 236 concentration of 10 mg rock/ml solution. For each sample, four separate fractions were 237 aliquoted from the main solution accordingly: 1) approximately 5 ml for Sr, Nd, and Pb 238 isotopic compositions; 2) approximately 5 ml for Hf isotopic composition; 3) 239 approximately 1 ml for U and Th isotope dilution; and 4) approximately 1-2 ml for U and 240 Th isotopic compositions. 241 Strontium, rare earth element (REE), and Pb fractions were separated from the

242 whole rock solution using Bio-Rad AG50W-X8 (200-400 mesh) cation-exchange resin in

243 HCl. The Sr fraction was further purified using Sr-specific ion-exchanger Sr-Spec resin

244 (Eichrom Technologies), while Nd was separated from the other REE with the REE-

245 specific ion-exchanger Ln-Spec resin (Eichrom Technologies). Lead was purified with Bio-

Rad AG1-X8 (100-200 mesh) anion-exchange resin (Hart et al., 2004; Hart and Blusztajn,

247 2006; Sims et al., 2008a; 2013a). Hafnium was collected from a separate aliquot and

248 isolated from the whole rock solution using Ln-Spec resin (Münker et al., 2001). Prior to 249 isotope analysis, the purified Sr, Nd, and Hf fractions were dried down and then 250 redissolved in a 1N HNO₃ + trace HF solution. Samples were introduced into the plasma 251 using either the standard sample introduction system (a quartz dual cyclonic double pass 252 spray chamber) or an ESI Apex IR desolvating nebulizer to improve sensitivity for low-253 concentration samples. Measurements were conducted in static mode using Faraday collectors. Results were corrected for instrumental mass bias relative to 88 Sr/ 86 Sr = 254 8.375209, ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219, and ¹⁷⁹Hf/¹⁷⁷Hf = 0.7325 and then normalized relative to 255 the daily averages of NBS987 (87 Sr/ 86 Sr = 0.71024), JNdi-1 (143 Nd/ 144 Nd = 0.51207), and 256 Merck1 (176 Hf/ 177 Hf = 0.282155). Prior to analysis, the Pb fractions were dried down, 257 258 redissolved in a 1N HNO₃ + trace HF solution and spiked with Tl standard NBS997. Lead isotope compositions were corrected for instrumental mass bias relative to NBS/SRM 997 259 203 Tl/ 205 Tl = 0.41891 (White et al., 2000). Compositions were further normalized to the 260 daily average of Pb standard NBS981. NBS981 values from Thirwall (2002) (206 Pb/ 204 Pb = 261 16.9417, ${}^{207}Pb/{}^{204}Pb = 15.4996$, and ${}^{208}Pb/{}^{204}Pb = 36.7240$) were used so that results were 262 263 consistent with previous results produced at UWYO. Internal run precisions (2σ SE) for 87 Sr/ 86 Sr and 143 Nd/ 144 Nd were < 16 ppm, while 264 those for ${}^{176}\text{Hf}/{}^{177}\text{Hf}$ were ≤ 32 ppm, and ${}^{206}\text{Pb}/{}^{204}\text{Pb}$, ${}^{207}\text{Pb}/{}^{204}\text{Pb}$, and ${}^{208}\text{Pb}/{}^{204}\text{Pb}$ were ≤ 94 265 266 ppm. USGS reference materials AGV-2 and BCR-1 were analyzed for quality assurance 267 (Table 1). Our long-term mean and external reproducibility (2σ) plus literature values for these standards are listed in supplementary text 2. Total procedural blanks were ≤ 450 pg 268 269 for Sr, ≤ 120 pg for Nd, ≤ 190 pg for Hf, and ≤ 160 pg for Pb. In all cases, the blank/sample

270 ratio was ≤ 2 ‰ and did not affect results (average voltages of the most abundant isotopes

were 1-10 V for Nd, Hf, and Pb, and 10-20 V for Sr). The insignificance of the procedural
blanks on the data is demonstrated by the reproducibility of our reference material
measurements, both internally and when compared with other laboratories (Supplementary
Text).

275

276 **3.2**²³⁸U-series isotope analysis

277 Uranium and Th concentrations and isotope ratios were measured following 278 procedures outlined in Lane and Sims (2000); Sims et al. (2008b, 2013b), Ball et al. (2008), 279 and Scott et al. (2019). Concentrations were measured using isotope dilution. Each aliquot was spiked with ²³³U and ²²⁹Th. Uranium and Th were separated from the sample matrix 280 281 using Bio-Rad AG1-X8 (100-200 mesh) anion-exchange resin in HNO3 and analyzed together on Faraday detectors. The resulting ²³⁸U/²³³U and ²³²Th/²²⁹Th measurements were 282 corrected for mass bias by sample-standard bracketing with U010 using $^{235}U/^{238}U =$ 283 284 0.01014 (Richter and Goldberg, 2003). A separate aliquot was prepared for isotope ratio 285 measurements. Uranium and Th were separated from the sample matrix with Bio-Rad 286 AG1-X8 (200-400 mesh) anion-exchange resin in HNO₃, and then separated from each 287 other with Bio-Rad AG1-X8 (200-400 mesh) anion-exchange resin in HCl. Measurements 288 were conducted using the axial secondary electron multiplier (SEM) and retarding potential quadrupole (RPQ) in addition to the Faraday detectors. For $(^{234}U/^{238}U)$, ^{234}U was measured 289 with the SEM/RPQ, while ²³⁸U was measured on a Faraday collector. Measurements were 290 291 corrected for mass bias by sample-standard bracketing with U010, assuming ²³⁴U/²³⁸U=5.4483x10⁻⁵ (Richter and Goldberg, 2003). For ²³⁰Th/²³²Th, ²³⁰Th was measured 292 on the SEM/RPQ and ²³²Th was measured on a Faraday collector. An exponential tail 293

294	correction was used to remove ²³² Th tailing counts on ²³⁰ Th. Measurements were corrected
295	for mass bias by sample-standard bracketing with IRMM-035, using 230 Th/ 232 Th = 1.13810
296	⁵ (Sims et al., 2008b).
297	Uncertainties for U and Th concentrations (2σ) range from 1.1–1.6 and 1.1–1.3%,
298	respectively, and are dominated by the uncertainties in the spike concentrations, which are
299	1.4 and 1.2%, respectively. Procedural blanks were < 1000 pg for both U and Th, which is
300	well within the 2σ uncertainty. Internal run precisions (2σ SE) for ($^{234}U/^{238}U$) and
301	$(^{230}\text{Th}/^{232}\text{Th})$ are 0.05-0.15% and 1.05-1.15%, respectively. Analyses of USGS standards
302	BCR-1 and RGM-2 agree, within the uncertainties, with the recommended values from
303	Scott et al. (2019) (Table 2).
304	
305	4. Results
306	4.1 Major and trace elements
307	Reventador lavas range from basaltic andesite to andesite (52.38–59.41 wt. % SiO ₂)
308	and are calc-alkaline with medium K_2O , plotting near the medium-high K_2O dividing line
309	(Figure 2). Samples are characterized by traits that typify arc magmas, such as HFSE
310	depletion and LILE enrichment. They also are LREE enriched, which is common
311	throughout the NVZ (Figures 3 and 4; Ancellin et al., 2017; Bryant et al., 2006; Hidalgo et
312	al., 2012). LREE/HREE and light/middle REE (LREE/MREE) increase with increasing wt.
313	% SiO ₂ (Figure 4; complete major and trace element data are listed in Supplementary Table
314	S1).
315	Major and trace element concentrations of Reventador lavas vary depending on the

age of the sample. For instance, samples erupted in 2016 are among the most evolved,

317	having wt. % SiO ₂ = 57.02–58.07. Additionally, while 20^{th} century samples span the entire
318	range of wt. % SiO ₂ , they have lower levels of LREE/HREE enrichment compared to
319	younger samples (Figure 4A and B).
320	
321	4.2 Sr, Nd, Hf, and Pb isotopes
322	Reventador lavas have ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.704420 - 0.704589$, $\epsilon_{Nd} = +1.68 - +2.81$, $\epsilon_{Hf} = -1.68 - 1.000$
323	$+3.81 - +5.46$, ${}^{206}Pb/{}^{204}Pb = 18.576 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 15.607 - 15.612$, and ${}^{208}Pb/{}^{204}Pb = 18.576 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 15.607 - 15.612$, and ${}^{208}Pb/{}^{204}Pb = 16.576 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 15.607 - 15.612$, and ${}^{208}Pb/{}^{204}Pb = 16.576 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 15.607 - 15.612$, and ${}^{208}Pb/{}^{204}Pb = 16.576 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 15.607 - 15.612$, and ${}^{208}Pb/{}^{204}Pb = 15.607 - 15.612$, and ${}^{208}Pb/{}^{204}Pb = 16.576 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 15.607 - 15.612$, and ${}^{208}Pb/{}^{204}Pb = 16.576 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 15.607 - 15.612$, and ${}^{208}Pb/{}^{204}Pb = 16.576 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 16.640 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 16.640 - 18.640 - 18.640$, ${}^{207}Pb/{}^{204}Pb = 16.640 - 18.640 - $
324	= 38.482–38.525 (Table 2). 208 Pb/ 206 Pb = 2.067–2.072 in Reventador lavas are the highest
325	measured in the NVZ. The Hf isotope data are the first published for the NVZ. In
326	comparison to other volcanoes in the NVZ, Reventador lavas have relatively high ⁸⁷ Sr/ ⁸⁶ Sr
327	and low ϵ_{Nd} , with values similar to those observed at Eastern Cordillera volcanoes, but
328	distinct from back-arc volcanoes such as Sumaco (Figure 5; Ancellin et al., and references
329	therein; Hammersley et al., 2022; Garrison et al., 2018). Excluding ²⁰⁷ Pb/ ²⁰⁴ Pb, the isotopic
330	data form approximately linear trends in Sr-Nd-Pb-Hf isotope space (Figure 6). There are
331	also systematic trends between isotope ratios and wt. % SiO_2 (Figure 7) as well as
332	LREE/HREE such as La/Yb, as well as weaker trends between isotope ratios and
333	LREE/MREE such as La/Sm (Figure 8).
334	

335 **4.3 U-Th disequilibria**

In Reventador lavas, $(^{238}U/^{232}Th) = 0.929-1.181$ and $(^{230}Th/^{232}Th) = 0.979-1.118$. Most samples have ^{230}Th -excesses or are within error of equilibrium, with $(^{230}Th/^{238}U) =$ 0.989-1.131 (Figure 9; Table 2). Four samples have ^{238}U -excesses outside of error with equilibrium, $(^{230}Th/^{238}U) = 0.867-0.969$. Since all samples erupted in the 20th and 21st

340	centuries, these values are equivalent to the activity ratios at eruption. ²³⁸ U-series
341	disequilibria have been measured at two other volcanoes in the NVZ, Cotopaxi and Nevado
342	del Ruiz (Garrison et al., 2006; Schaeffer et al., 1994). Although lavas from these
343	volcanoes and Reventador have similar (²³⁰ Th/ ²³⁸ U), Reventador lavas extend to lower
344	$(^{238}\text{U}/^{232}\text{Th})$ (Figure 9).
345	$(^{230}\text{Th}/^{232}\text{Th})$ is positively correlated with ϵ_{Nd} , ϵ_{Hf} , $^{208}\text{Pb}/^{204}\text{Pb}$, and $^{206}\text{Pb}/^{204}\text{Pb}$;
346	negatively correlated with 87 Sr/ 86 Sr, 208 Pb/ 206 Pb, La/Yb, and wt. % SiO ₂ ; and weakly
347	correlated with La/Sm (Figure 10). Although samples with ²³⁸ U-excesses and samples with
348	230 Th-excesses have overlapping ranges of wt. % SiO ₂ , samples with 238 U-excesses are
349	generally more evolved with higher wt. % SiO ₂ , La/Sm and Pb/Ce (Figure 11). However,
350	there are no systematic differences in 87 Sr/ 86 Sr, ϵ_{Nd} , ϵ_{Hf} , 208 Pb/ 206 Pb, and La/Yb between
351	samples with ²³⁸ U-excesses and samples with ²³⁰ Th-excesses.
352	
353	4.4 Basement samples
354	We also analyzed three basement samples that were collected 50-70 km SW of
355	Reventador (Tables 1 and 2). These samples have ${}^{206}Pb/{}^{204}Pb = 18.043 - 18.456$, ${}^{208}Pb/{}^{204}Pb$
356	$= 37.841 - 38.264$, and 208 Pb/ 206 Pb $= 2.073 - 2.098$ (Figure 5), which are consistent with
357	previous measurements of the Sub-Andean basement (Chiaradia et al., 2004). 87 Sr/ 86 Sr, ϵ_{Nd} ,
358	and ε_{Hf} range from 0.7044–0.7057, -0.6 – +3.6, and +0.47 – +15.27, respectively. Although
359	$^{87}\text{Sr}/^{86}\text{Sr}$ and ϵ_{Nd} values reported here are within the range observed in previous studies,
360	87 Sr/ 86 Sr measurements are relatively low while ϵ_{Nd} is relatively high compared to
361	previously reported values for Eastern Cordillera basement samples (Hammersley et al.,
362	2022). Additionally, the ranges in 87 Sr/ 86 Sr and ε_{Nd} suggest that the Sub-Andean basement

is heterogeneous, containing some isotopically primitive rocks, which are compositionally
similar to the Western Cordillera basement, in addition to more evolved rocks. (²³⁸U/²³²Th)
is also highly variable, ranging from 0.6025–1.3142, but < 1 in the more evolved samples,
SU-11 and SU-112.

367

368 5 Discussion

369 5.1 Reventador is a main-arc volcano

370 Because of its location east of the Eastern Cordillera, some previous studies have 371 classified Reventador as a back-arc volcano (e.g., Garrison et al., 2018). However, we 372 prefer to include Reventador in the main arc, as Reventador lavas are calc-alkaline like 373 main-arc volcanoes, whereas back-arc lavas are characterized by higher FeO/MgO (Figure 374 2A). However, in some respects Reventador lavas are also distinct from main-arc lavas. For 375 instance, Reventador lavas are more mafic than other main-arc lavas, which are typically 376 andesitic to dacitic. Reventador lavas also have higher trace element concentrations than 377 other main-arc andesites and basaltic andesites (Figures 2 and 3). Nonetheless, these 378 differences are overshadowed by the differences between Reventador lavas and NVZ back-379 arc lavas, which have even lower wt. % SiO₂ (39–60), are typically alkaline, and have 380 higher trace element concentrations (Figure 3). Consequently, we classify Reventador as 381 part of the main arc, and posit that the melting regime beneath Reventador is more akin to 382 that of the Eastern Cordillera volcanoes than that of back-arc volcanoes such as Sumaco 383 (Garrison et al., 2018).

384

385 5.1 Crustal assimilation controls isotopic variability and LREE/HREE

386	Previous studies of isotopic diversity in the NVZ suggest that relatively high
387	$^{87}\text{Sr}/^{86}\text{Sr}$ and low ϵ_{Nd} in the Eastern Cordillera result from assimilation of geochemically
388	mature continental crust, which is absent in the Western Cordillera and Inter-Andean
389	Valley (Ancellin et al., 2017; Bryant et al., 2006; Hidalgo et al., 2012). Therefore, the
390	linear trends in Sr-Nd-Hf-Pb isotope space observed in Reventador lavas most likely reflect
391	crustal assimilation, and systematic variability between isotopic ratios and wt. % SiO_2
392	indicates that this process plays a pivotal role in magma evolution (Figures 6 and 7). In
393	addition, among samples erupted since 2002, LREE/HREE ratios (i.e., La/Yb) are
394	positively correlated with wt.% SiO ₂ , ⁸⁷ Sr/ ⁸⁶ Sr, and ²⁰⁸ Pb/ ²⁰⁶ Pb, while negatively correlated
395	with ϵ_{Nd} and ϵ_{Hf} , suggesting that crustal assimilation produces adakite-like trace element
396	ratios (Figures 4 and 8). This finding is consistent with previous studies proposing that
397	adakite-like characteristics in the NVZ originate in the lower crust (e.g., Garrison et al.,
398	2006), rather than in the subducting plate or mantle wedge. However, this relationship is
399	not seen in 20^{th} century samples, which are characterized by La/Yb < 20 (Figures 4 and 8).
400	

401 **5.3 Processes changing the melts initial U/Th ratio and its impact on** (²³⁰Th/²³⁸U)

402 Time-dependent melting processes can change (230 Th/ 232 Th) (McKenzie, 1985; 403 Spiegelman and Elliott, 1993, Lundstrom et al., 1995; Sims et al., 1999). However, in the 404 case of Reventador lavas we argue that this effect is small relative to other petrological 405 influences. Therefore, we use the lavas' (230 Th/ 232 Th) as a proxy for the (238 U/ 232 Th) of 406 their spatially and temporally integrated source. Since U is more mobile than Th under 407 typical subduction zone conditions (e.g., Kessel et al., 2005), arc lavas are often 408 characterized by 238 U-excesses. Over time, 238 U-excess leads to high (230 Th/ 232 Th) due to

ingrowth of ²³⁰Th (Reubi et al., 2014; Turner et al., 2003). Low (²³⁰Th/²³²Th) measured in 409 410 Reventador lavas (≤ 1.12) requires addition of Th to the mantle wedge and/or a source with low (²³⁸U/²³²Th). In some arcs, Th is added to the mantle wedge via sediment melts and/or 411 fluids, which lowers (²³⁸U/²³²Th) and eventually (²³⁰Th/²³²Th) (Turner and Foden, 2001; 412 DuFrane et al., 2009; Reubi et al., 2014). However, Colombian Margin sediments have 413 high (²³⁸U/²³²Th) equal to 7.469 (Plank, 2014). Therefore, in the NVZ subducted sediment 414 415 is likely to raise the U/Th of the mantle wedge, regardless of how U and Th are fractionated 416 during melting or dehydration.

417 Whether the subducted crust melts in the NVZ is a matter of debate (E. Bourdon et 418 al., 2003; Garrison et al., 2006; Hidalgo et al., 2012; Michaud et al., 2009; see Section 2.1). 419 However, the effects of slab melting on U-series disequilibria should be considered as Th is 420 more mobile than U at higher temperatures, especially in the presence of residual garnet, 421 and therefore addition of melts or supercritical fluids to the mantle wedge may result in ²³⁰Th-excess (Sigmarrson et al., 1998; Kessel et al., 2005; Kuritani et al., 2008). Eastern 422 Galapagos Spreading Center basalts (EGSC), with average $(^{238}U/^{232}Th) = 0.947$, can be 423 used to approximate $(^{238}\text{U}/^{232}\text{Th})$ of Carnegie Ridge basalts (Kokfeldt et al., 2005). Small 424 degree partial melting of the EGSC (5-10%) at 1000°C and 4 GPa results in $(^{238}U/^{232}Th) =$ 425 0.623-0.707 and initial (²³⁰Th/²³⁸U) = 1.34-1.52 (Kessel et al., 2005). Addition of 0.25-1% 426 of these melts to the depleted mantle, with $(^{238}\text{U}/^{232}\text{Th})$ and $(^{230}\text{Th}/^{232}\text{Th}) = 1.52$ (Sims and 427 Hart, 2006), generates $(^{230}\text{Th}/^{232}\text{Th}) = 1.049 - 1.267$ and $(^{238}\text{U}/^{232}\text{Th}) = 0.782 - 1.160$. Because 428 $(^{230}\text{Th}/^{232}\text{Th})$ will decrease due to decay of ^{230}Th , the $(^{230}\text{Th}/^{232}\text{Th})$ of this mixture will 429 430 eventually encompass the values measured in Reventador lavas (Figure 12). However, seafloor alteration raises ($^{238}U/^{232}Th$) of the oceanic crust (Kelley et al., 2005). Therefore, 431

432 mixtures of depleted mantle and EGSC melts are likely to have higher $(^{238}U/^{232}Th)$ than

433 shown in Figure 12; over time this will result in higher (230 Th/ 232 Th). Consequently, in this

434 case the effect of melting subducted crust on 238 U- 230 Th disequilibria is unclear.

435 Instead, we suggest that low (²³⁰Th/²³²Th) among Reventador lavas reflects crustal

436 assimilation. This argument is supported by trends among (230 Th/ 232 Th), 87 Sr/ 86 Sr, ε_{Nd} , ε_{Hf} ,

437 and ²⁰⁸Pb/²⁰⁶Pb, which extend towards measured isotopic compositions of Sub-Andean

438 basement samples (Figure 10). It is also consistent with conclusions from previous studies

439 demonstrating that assimilation can lower (²³⁸U/²³²Th) and produce ²³⁰Th-excesses

440 (Ankney et al., 2013; Bourdon et al., 2000; Handley et al., 2018; Hora et al., 2009; Huang

441 et al., 2007; Jicha et al., 2007; Jicha et al., 2009; Garrison et al., 2006; Price et al., 2007;

442 Walker et al., 2007). In particular, ²³⁰Th-excess among Cotopaxi andesites has been

443 attributed to partial melting of the garnet-bearing lower crust (Garrison et al., 2006).

444

445 **5.4 Modeling the evolution of Reventador Lavas**

446 Evolution of continental arc lavas, such as those of Reventador, can be thought of 447 as a multi-step process. Broadly, and for modeling purposes, these processes can be 448 grouped into two steps: first, magma generation in the mantle wedge; followed by magma 449 ascent through and interaction with the continental crust. Unfortunately, processes 450 occurring at the slab-mantle interface and in the mantle-wedge are not well understood in 451 the NVZ, and are thus difficult to quantify. Therefore, we use parental basalt compositions 452 estimated from previous studies, and focus instead on processes occurring in the crust 453 which overprint parental basalt compositions.

454

455 **5.4.1 The finite-difference assimilation-fractional crystallization model**

- 456 We use a finite-difference assimilation-fractional crystallization model (FD-AFC;
- 457 DePaolo, 1981; 1985) to quantify the effects of assimilation on 87 Sr/ 86 Sr, ϵ_{Nd} , ϵ_{Hf} ,

458
208
Pb/ 206 Pb, (230 Th/ 232 Th), (238 U/ 232 Th), La/Yb, and La/Sm.

459 The model parameters and equations are defined as follows:

460
$$M = mass of magma in magma chamber$$

461
$$\overline{m}_{c} = \frac{dM_{c}}{dt}$$
, where M_c is the mass of crystallized material ($\overline{m}_{c} \neq 0$)

462
$$\overline{m}_{a} = \frac{dM_{a}}{dt}$$
, where M_a is the mass of assimilated material

463
$$C_m, C_o, C_a = \text{concentration of an element in the magma at time t}_n$$
, the initial magma,

464 and the assimilant, respectively

465
$$\varepsilon_{\rm m}, \varepsilon_{\rm o}, \varepsilon_{\rm a}$$
 = isotopic ratio in the magma at time t_n, the initial magma, and the

466 assimilant, respectively

467
$$D =$$
 the bulk solid/liquid partition coefficient, $D > 0$

468 To simplify, we let
$$\bar{a} = \frac{\bar{m}_a}{\bar{m}_c}$$
, so that $\frac{dM_a}{dt} = \bar{a}\bar{m}_c$.

469 With these parameters defined, the equations describing the mass and composition of a

470 magma chamber at time t are:

471
$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{\mathrm{d}M_{\mathrm{c}}}{\mathrm{d}t} + \frac{\mathrm{d}M_{\mathrm{a}}}{\mathrm{d}t} = -\overline{\mathrm{m}}_{\mathrm{c}} + \overline{\mathrm{m}}_{\mathrm{a}} = -\overline{\mathrm{m}}_{\mathrm{c}}(1-\overline{\mathrm{a}}) \ (1)$$

472
$$\frac{dC_m}{dt} = \left(\frac{\overline{m}_c}{M}\right) \left[\overline{a}(C_a - C_m) - (D - 1)C_m\right] (2)$$

473
$$\frac{d\varepsilon_{m}}{dt} = \left(\frac{\overline{m}_{c}}{M}\right) \left[\overline{a}\frac{C_{a}}{C_{m}}(\varepsilon_{a} - \varepsilon_{m})\right] (3)$$

474 Stepwise solutions for (1-3) can be written as:

475
$$M(t_n) = M(t_{n-1}) + \left(\frac{dM}{dt}\right)_{t_{n-1}} \Delta t (4)$$

476
$$C_m(t_n) = C_m(t_{n-1}) + \left(\frac{dC_m}{dt}\right)_{t_{n-1}} \Delta t$$
 (5)

477
$$\varepsilon_{\rm m}(t_{\rm n}) = \varepsilon_{\rm m}(t_{\rm n-1}) + \left(\frac{d\varepsilon_{\rm m}}{dt}\right)_{t_{\rm n-1}} \Delta t \ (6)$$

478 In this stepwise formulation, total mass assimilated is:

479
$$M_{a}(t_{n}) = M_{a}(t_{n-1})(1 - M_{c}) + \left(\frac{dM_{a}}{dt}\right)_{t_{n-1}} \Delta t$$
(7)

480 The fraction of crustal assimilant in the magma chamber can be calculated by combining481 (4) and (7):

482
$$f_c(t_n) = \frac{M_a}{M}(t_n)$$
 (8)

483

484 **5.4.2 Endmember compositions**

485 Isotopic compositions of both endmembers are shown in Table 3. For the parental magma, we estimate that ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.7041$, $\varepsilon_{Nd} = 5.5$, and ${}^{208}\text{Pb}/{}^{206}\text{Pb} = 2.053$ (Figure 5). 486 These values fall within the ranges observed in the Western Cordillera and back-arc where 487 isotopically primitive compositions reflect limited assimilation of isotopically primitive 488 489 Western Cordillera basement consisting of island arcs and oceanic plateaus (Ancellin et al., 490 and references therein). The ε_{Hf} value of 9.7 for the basaltic endmember was calculated 491 using its ε_{Nd} projected onto the ε_{Hf} - ε_{Nd} terrestrial array (Figure 5; Vervoort et al., 2001). Relative to the Reventador lavas, the assimilant must have high ⁸⁷Sr/⁸⁶Sr and 492 208 Pb/ 206 Pb as well as low ε_{Nd} and ε_{Hf} . Since the basement samples analyzed in this study 493 have 87 Sr/ 86 Sr, ϵ_{Nd} , and ϵ_{Hf} similar to or more primitive than the Reventador lavas, they do 494 not represent the crustal assimilant. Instead, we estimate that crustal 87 Sr/ 86 Sr = 0.7200 and 495

496 ε _n	1 = -10. These	e values were	e used to model	evolution at	Chalupas	(Hammersley	y et al.
--------------------	----------------	---------------	-----------------	--------------	----------	-------------	----------

497 2022) and are comparable to the most evolved basement samples analyzed as part of that

498 study as well as model crust compositions from previous studies (Figure 5; Bryant et al.,

499 2006; Hidalgo et al., 2012). As with the parental basalts, we estimate ε_{Hf} of the assimilant

500 by projecting its ε_{Nd} onto the ε_{Hf} - ε_{Nd} terrestrial array (Vervoort et al., 2001). Finally,

501 because few other studies have measured ²⁰⁸Pb/²⁰⁶Pb of potential assimilant lithologies

502 beneath NVZ, we define ²⁰⁸Pb/²⁰⁶Pb of the assimilant using sample SU-11, which has the

503 highest ²⁰⁸Pb/²⁰⁶Pb measured in the NVZ (Figure 5, Tables 1 and 3).

504 Unlike isotope ratios, the elemental concentrations of both endmembers, which we 505 refer to as C_o and C_a for the parental basalt and crustal assimilant, respectively, cannot be 506 easily estimated from previous studies. The concentrations of the basaltic endmember, Co, 507 are particularly hard to define. Basalts are exceedingly rare in the NVZ, and have only been 508 collected at Sangay, the southernmost volcano, and in the back-arc. However, isotopic 509 analyses indicate that Sangay basalts have undergone crustal assimilation (Ancellin et al., 510 2017), and major and trace element data suggest that the melt regimes in the NVZ main-511 and back-arcs are different (Ancellin et al., 2017; Garrison et al., 2018). Consequently, 512 neither back-arc basalts nor Sangay basalts are analogous to the Reventador parental

513 basalts. Alternatively, C_o values could be defined using basalts from other arcs or global

514 averages. However, arc basalts are incredibly diverse. Their compositions depend on

515 magma sources (i.e., compositions of the mantle wedge and subducting crust and sediment)

as well as the pressure and temperature of metasomatism and melting. Since these factors

517 are poorly constrained in the NVZ, it is difficult to determine whether basalts from other

518 arcs and global averages accurately reflect regional basalt compositions. The

519 concentrations of the assimilant, Ca, are similarly hard to define. This is due to the lack of

520 exposure, and also because the metamorphic basement in the NVZ is lithologically and

521 geochemically diverse (Hammersley et al., 2022).

Fortunately, if the isotopic compositions of the parental basalt and assimilant endmembers are defined, then model isotope ratios are more sensitive to changes in the concentration ratios of the endmembers, C_0/C_a , than individual concentrations themselves. This is shown below:

 ϵ_m can also be expressed as a function of f, the current magma mass / initial magma mass

527
$$\varepsilon_{\rm m}(f) = \frac{\left(\frac{\overline{a}}{\overline{a}-1}\right)\left(\frac{C_{\rm a}}{z}\right)(1-f^{-z})\varepsilon_{\rm a}+C_{\rm o}f^{-z}\varepsilon_{\rm o}}{\left(\frac{\overline{a}}{\overline{a}-1}\right)\left(\frac{C_{\rm a}}{z}\right)(1-f^{-z})+C_{\rm o}f^{-z}} \quad (9; \text{ DePaolo et al., 1981})$$

528 Where $z = \frac{\overline{a}+D-1}{\overline{a}-1}$. Differentiating Eq. 9 with respect to C_o and C_a yields the following:

529
$$\frac{\partial \varepsilon_{\rm m}}{\partial C_{\rm o}} = \frac{(\varepsilon_{\rm o} - \varepsilon_{\rm a}) \left(\frac{C_{\rm a}}{z}\right) (f^{-z}) \left(\frac{\overline{\rm a}}{\overline{\rm a} - 1}\right) (1 - f^{-z})}{\left(\left(\frac{\overline{\rm a}}{\overline{\rm a} - 1}\right) \left(\frac{C_{\rm a}}{z}\right) (1 - f^{-z}) + C_{\rm o} F^{-z}\right)^2} (10)$$

530
$$\frac{\partial \varepsilon_{\rm m}}{\partial C_{\rm a}} = \frac{(\varepsilon_{\rm a} - \varepsilon_{\rm o}) \left(\frac{C_{\rm o}}{z}\right) (f^{-z}) \left(\frac{\overline{a}}{\overline{a} - 1}\right) (1 - f^{-z})}{\left(\left(\frac{\overline{a}}{\overline{a} - 1}\right) \left(\frac{C_{\rm a}}{\overline{a}}\right) (1 - f^{-z}) + C_{\rm o} f^{-z}\right)^2} \quad (11)$$

These equations are almost identical, except that they have opposite signs, and Eq. (10) has a $\frac{C_a}{z}$ term in the numerator while Eq. (11) has a $\frac{C_o}{z}$ term. Equations (10) and (11) can be combined to give:

534
$$\frac{\partial \varepsilon_{\rm m}}{\partial} = -\frac{\partial \varepsilon_{\rm m}}{\partial C_{\rm o}} \left(\frac{C_{\rm o}}{C_{\rm a}}\right) (12)$$

535 This demonstrates that 1) increasing C_a and C_o has opposite effects on ε_m ; and 2) 536 for a given D, \bar{a} , and f (or $\varepsilon_m(t_n)$), ε_m is constant if $\frac{C_o}{C_a}$ is constant. Therefore, instead of varying both C_a and C_o, we can fix the concentrations of one endmember, and examine
how predicted isotope ratios change as a function of the other.

539

540 **5.4.3 Depth of assimilation**

541 While model results do not depend explicitly on the depth of assimilation, it is 542 important to consider where assimilation occurs, as this affects \bar{a} as well as the crystallizing 543 phases and resulting partition coefficients. Because Reventador lavas do not preserve 544 petrographic evidence of assimilation such as crustal xenoliths, the depth of assimilation is 545 unclear. While petrographic studies suggest that magmas are stored and homogenized in 546 the upper crust at 7-12 km depth, there is no petrographic evidence indicating that 547 assimilation also occurs at shallow depths (Ridolfi et al., 2008; Samaniego et al., 2008). In 548 fact, significant amounts of assimilation are unlikely to occur in the upper crust because the 549 crust is cooler, and more energy is required to heat the crust to its melting point, which 550 limits the total amount of assimilation.

551 Instead, previous studies of continental arc magmatism suggest that assimilation is 552 more likely to occur near the base of the crust. This region near the base of the crust has been referred to as the "MASH zone" (melting, assimilation, storage, and homogenization; 553 554 Hildreth and Moorbath, 1988) or the "deep crustal hot zone" (Annen et al., 2006). At these 555 depths the temperature difference between the parental magma and assimilant is 556 minimized, and therefore the amount of energy required to heat the crust to its melting 557 point is also minimized, which in turn maximizes \bar{a} and the amount of assimilation that 558 occurs (DePaolo et al., 2019; Hammersley and DePaolo, 2006; Perry et al., 1992). 559 Although the crust in the Eastern Cordillera is 50-55 km thick, gravity data indicates that

the lowermost ~10 km is composed of dense mafic material. Therefore, in this region
assimilation likely occurs at ~40 – 45 km depth (Asumpção et al., 2013; Condori et al.,
2017; Koch et al., 2021; Feineger and Seguin, 1993; Chulick et al., 2013; Hammersley et
al, 2022). However, without petrographic evidence or detailed studies of single crystals
(e.g. Ginibre and Davidson, 2014) we cannot confirm the depth of assimilation, and
therefore this process could conceivably occur at any depth throughout the crust.

- 566
- 567 **5.4.4 Model isotope ratios**

Model isotope ratios are shown in Figure 6. With $\bar{a} = 0.15$, 10 - 20% assimilation is required to generate the compositional range observed in Reventador lavas. This value is similar to estimates for the extent of crustal assimilation occurring at other Eastern Cordillera volcanoes such as Chalupas (13.5 – 25%) and Cayambe (3 – 30%), but more than Antisana (2.2 – 4.5 %) (Bourdon et al., 2002; Samaniego et al., 2005; Hammersley et al., 2022).

574 Endmember compositions used in the model are shown in Table 3. Using the 575 average continental crust composition from Rudnick and Gao (2014) to approximate Ca, a 576 range of C_0 are needed to reproduce the full spectrum of isotopic diversity, which suggests 577 that the endmembers are somewhat heterogeneous (Minimum and maximum values given 578 in Table 3 form the gray shaded field in Figure 6). The model mineral assemblages and 579 partition coefficients used are shown in Table 4. Model A was produced via removal of a 580 gabbroic mineral assemblage consisting of 47.5 % olivine, 18.8% clinopyroxene, 9.4% 581 orthopyroxene, 18.8% plagioclase, 4.5% amphibole, and 1% garnet. Since Nd, Hf, and Pb are incompatible in all fractionating phases, varying the mineral proportions has a small 582

583	effect on the bulk partitioning coefficients, and therefore does not affect ϵ_{Nd} , ϵ_{Hf} , and
584	²⁰⁸ Pb/ ²⁰⁶ Pb. However, since Sr is compatible in plagioclase, changing the amount of
585	plagioclase can account for additional variability of ⁸⁷ Sr/ ⁸⁶ Sr. Increasing the amount of
586	plagioclase removed increases D_{Sr} and vice versa. If \bar{a} , ${}^{87}Sr/{}^{86}Sr_a$, ${}^{87}Sr/{}^{86}Sr_o$, and Sr_a/Sr_o are
587	held constant, increasing D_{Sr} decreases $Sr_m(t)$ (equations 2 and 5), which in turn increases
588	Sr_a/Sr_m and $\frac{d\epsilon_{Sr}}{dt}$ (equation 3). This is illustrated in Figure 6. Models A, B, and C all have
589	Sr_{o} = 1300 ppm and Sr_{a} = 320 ppm. However, the model A assemblage contains 18.8 $\%$
590	plagioclase, while model B contains 28.8 % plagioclase, and model C contains 8.8 %
591	plagioclase. Consequently, when compared with model A, model B predicts that ${}^{87}Sr/{}^{87}Sr$
592	changes more rapidly relative to other isotope ratios, while model C predicts less rapid
593	changes in ⁸⁷ Sr/ ⁸⁶ Sr (Figure 6).

594

595 **5.4.5 Model trace element ratios**

596 The origin of elevated LREE/HREE in NVZ lavas is widely debated. Some studies 597 attribute this trait to melting of subducted crust (e.g., Hidalgo et al., 2012), while others suggest it is generated by assimilation (e.g., Garrison et al., 2006) or fractional 598 599 crystallization of garnet in the mantle and lower crust (e.g., Bloch et al., 2017; Bryant et al., 600 2006, and references therein). Regardless, Reventador lavas show systematic covariance 601 between La/Yb, and Sr, Nd, Hf, and Pb isotope ratios indicating that interaction between 602 ascending magmas and the continental crust also increases LREE/HREE. 603 Since changes in C_a are scaled by $\bar{a} = 0.15$ (equation 2), model trace element 604 concentrations are not highly sensitive to changes in the assimilant composition. This lack 605 of sensitivity is especially true for compatible elements, such as Yb when garnet and

606 amphibole are crystallizing. In this case, it is likely that $\bar{a}(C_a-C_m) \ll |(D-1)C_m|$ (equation 607 2), and thus the effects of assimilation will be negligible compared to the effects of 608 fractional crystallization. Incompatible elements with mineral-melt partition coefficients 609 approaching zero are slightly more sensitive to assimilation. However, unless C_a-C_m is 610 sufficiently large it is still likely that $\bar{a}(C_a-C_m) < C_m$, and thus changing C_a has limited 611 impact on model results. Therefore, we assume that $La/Yb_a = 10.5$ (Rudnick and Gao, 612 2014), and examine how changing the mineral assemblage and the parental basalt 613 composition affect model results. With the model A mineral assemblage (Table 4), La/Yb₀ = 18 - 20 is needed to reproduce the La/Yb of 21^{st} century samples (Figure 8), which is 614 615 comparable to the range found within primitive continental arc basalts from Mexico, The 616 Cascades, and Central America (Schmidt and Jagoutz, 2015). However, increasing the 617 amount of garnet in the mineral assemblage causes La/Yb to increase more quickly. Thus, 618 lower La/Yb_o can be compensated for with increased garnet crystallization and vice versa. 619 This is shown in model D, which has $La/Yb_0 = 15$ and 2% garnet. Compared to 21^{st} century lavas, trends between La/Yb and radiogenic isotope ratios among 20th century lavas are 620 weaker. However, Low La/Yb among 20th century lavas can be reproduced by further 621 lowering La/Yb_o. Model E reproduces the 20th century compositions with the model A 622 623 mineral assemblage and $La/Yb_0 = 9-11$ (Figure 8). 624 Weak correlations between La/Sm and isotope ratios indicate that assimilation also increases LREE/MREE ratios (Figure 8). With La/Sm_a = 5.13 and La/Sm_o = 4.5 - 5, model 625

- 626 A reproduces the full range of La/Sm found in Reventador lavas. However, since lavas
- 627 with 238 U-excesses have higher La/Sm than lavas with 230 Th-excesses, and $(^{230}$ Th/ 238 U)

does not vary systematically with isotope ratios or wt. % SiO₂, an additional mechanism is
necessary to explain variable La/Sm.

630

631 **5.4.6**²³⁸U-²³⁰Th systematics

In many regards, $(^{230}\text{Th}/^{232}\text{Th})$ behaves similarly to the radiogenic isotope ratios 632 described in Section 5.4.4. Although ingrowth and decay change (²³⁰Th/²³²Th), this ratio is 633 not affected by high-temperature igneous processes. Consequently, (²³⁰Th/²³²Th) is 634 sensitive to the $(^{230}\text{Th}/^{232}\text{Th})$ of the endmembers, Th_a, Th_o, and the time elapsed since 635 establishment of disequilibrium. Since all phases included in the model have $D_{Th} \ll 1$, 636 637 changing the fractionating assemblage does not significantly affect model results. We calculate $(^{230}\text{Th}/^{232}\text{Th})_a = 0.706$ using average crustal Th and U concentrations and 638 assuming secular equilibrium between $(^{238}U/^{232}Th)$ and $(^{230}Th/^{232}Th)$, and also assume that 639 $Th_a = 1.2 \text{ ppm}$ (Rudnick and Gao, 2014). This value falls within the range of (²³⁰Th/²³²Th) 640 641 calculated for the basement samples analyzed in this study, assuming secular equilibrium (Table 3). In contrast to the crustal endmember, (²³⁰Th/²³²Th) of the parental basalt is more 642 643 difficult to define as it depends on the following processes which are poorly understood in the NVZ: 1) $(^{238}U/^{232}Th)$ of the mantle and slab components; 2) U/Th elemental 644 fractionation during metasomatism and melting; 3) ingrowth of ²³⁰Th during melting; and 645 646 4) time elapsed between melting and assimilation (Reubi et al., 2014 and references therein). However, since assimilation lowers $(^{230}\text{Th}/^{232}\text{Th})$, we expect that $(^{230}\text{Th}/^{232}\text{Th})_0 >$ 647 648 1.173, the highest (²³⁰Th^{/232}Th) measured among Cotopaxi Andesites (Garrison et al., 2006) Consequently, we estimate that $(^{230}\text{Th}/^{232}\text{Th})_0 = 1.2$. With these endmember compositions 649 as well as the \bar{a} values and amount of crust assimilated defined above, Th₀ = 0.25 - 0.5 is 650

required to reproduce the full range of $(^{230}\text{Th}/^{232}\text{Th})$ measured in Reventador lavas as well as the trends between $(^{230}\text{Th}/^{232}\text{Th})$ and radiogenic isotopes (Figure 10).

- It is also important to consider the time elapsed since assimilation. Decay and
- 654 ingrowth of ²³⁰Th towards secular equilibrium could account for additional variability in
- $(^{230}\text{Th}/^{232}\text{Th})$ beyond that produced by varying $(^{230}\text{Th}/^{232}\text{Th})_o$ and/or Th_a/Th_o. However,
- 656 systematic variability between (²³⁰Th/²³²Th) and long-lived radiogenic isotope ratios

(Figure 10) indicates that $(^{230}\text{Th}/^{232}\text{Th})$ is primarily a function of the parental magma's and

assimilant's (238 U/ 232 Th), and that the effects of ingrowth and decay are secondary.

Therefore, we suggest that assimilation occurred within a few tens of thousands of years.

660 This finding is consistent with previous studies suggesting that assimilation occurs on

timescales that are fast relative to the half-life of ²³⁰Th (Hora et al., 2009; Handley et al.,

662 2008; Jicha et al., 2007; Price et al., 2007)

663 We also examine the effects of assimilation on $(^{230}\text{Th}/^{238}\text{U})$ and $(^{238}\text{U}/^{232}\text{Th})$.

664 Changing the mineral assemblage does not significantly affect the modeled $(^{238}U/^{232}Th)$ or

 $(^{230}\text{Th}/^{238}\text{U})$. Since the phases included in our modelling all have D_U and D_{Th} << 1, very

little U and Th are removed from the magma. Consequently, the modelled $(^{238}U/^{232}Th)$ and

 $(^{230}\text{Th}/^{238}\text{U})$ are more sensitive to changes in endmember compositions than phase

proportions. As such, we suggest that variable $(^{238}U/^{232}Th)$ and $(^{230}Th/^{238}U) > 1$ result from

669 heterogeneous endmember compositions. Previous studies have shown that assimilation of

670 partial melts with $(^{230}\text{Th}/^{238}\text{U}) > 1$ can produce intermediate-felsic lavas with ^{230}Th -excess

671 (Ankenny et al., 2013; Berlo et al., 2004; Cooper et al., 2002; Garrison et al., 2006).

However, if $(^{230}\text{Th}/^{238}\text{U})$ of the parental basalt and assimilant are fixed, then $(^{238}\text{U}/^{232}\text{Th})$

673 would vary systematically with other isotope ratios or wt. % SiO₂, which is not observed.

674 Therefore, an additional mechanism is required to produce the observed diversity. We posit 675 that the most likely explanation is that the crustal assimilant and parental magma have heterogeneous $(^{238}U/^{232}Th)$ and $(^{230}Th/^{238}U)$, reflecting differences in the extent of melting 676 677 and metasomatism as well as the metasomatic agent (i.e. fluid vs. melt, Kessel et al., 2005) as well as differences in the degree of crustal melting. For instance, with $(^{230}\text{Th}/^{232}\text{Th})_0 =$ 678 1.2, $(^{230}\text{Th}/^{232}\text{Th})_a = 0.706$, Th_a = 1.2, and Th_o = 0.32, Reventador lavas with $(^{230}\text{Th}/^{238}\text{U}) >$ 679 1 can be generated with $({}^{230}\text{Th}/{}^{238}\text{U})_a = 1.1 - 1.3$ and $({}^{230}\text{Th}/{}^{238}\text{U})_o = 0.95 - 1.05$ (Figure 12). 680 With the $({}^{230}\text{Th}/{}^{232}\text{Th})_0$, $({}^{230}\text{Th}/{}^{232}\text{Th})_a$, Th_a/Th_o, and $({}^{230}\text{Th}/{}^{238}\text{U})_a$ values outlined 681 above, 238 U-excess in a subset of lavas can be accounted for by extending $(^{230}$ Th $/^{238}$ U)₀ to 682 0.8–0.9 (Figure 12). Since U is more mobile than Th in aqueous fluids, lower $(^{230}\text{Th}/^{238}\text{U})_{o}$ 683 684 may reflect increased involvement of aqueous fluids during metasomatism. This explanation is supported by higher Pb/Ce in lavas with ²³⁸U-excess, as Pb is more mobile in 685 686 fluids than Ce (Figure 11). Although La/Sm is also influenced by assimilation (section 5.4.5), this mechanism could also produce higher La/Sm observed in samples with ²³⁸U-687 688 excess (Figure 11; Kessel et al., 2005). However, this explanation is difficult to verify with 689 our current understanding of basalt petrogenesis in the NVZ. Although model $(^{238}U/^{230}Th)$ and $(^{230}Th/^{238}U)$ are more sensitive to endmember 690 691 compositions than mineral assemblage (see above), we also examine the effects of 692 crystallization of accessory minerals with $D_U < D_{Th}$. Garrison et al. (2006) suggested that crystallization of a phase assemblage containing 5% apatite results in ²³⁸U-excesses among 693 694 Cotopaxi rhyolites. Since a atite also has $D_{Pb} < D_{Ce}$ and $D_{La} < D_{Sm}$, removal of this phase could potentially explain the elevated Pb/Ce and La/Sm of lavas with ²³⁸U-excess 695 696 (Prowatke and Klemme, 2006). However, Reventador lavas contain only trace apatite,

which limits the amount of apatite in the crystallizing assemblage (Ridolfi et al., 2008).
Although adding 1% apatite decreases D_U/D_{Th} from 0.96 to 0.51, D_U and D_{Th} remain << 1.
Consequently, apatite crystallization is unlikely to produce the observed ²³⁸ U-excess in a
few Reventador lavas. As such, we argue that variable ²³⁰ Th- ²³⁸ U disequilibria result
primarily from source heterogeneity.
5.4.7 Comparison of the Finite Difference- and Energy Constrained Assimilation
Fractional Crystallization Models
Since the development of the AFC model (DePaolo, 1981), numerous other
formulations have been proposed, most notably, the Energy Constrained AFC model (EC-
AFC; Spera and Bohrson, 2001; Bohrson and Spera, 2001). The primary difference
between the FD-AFC and the EC-AFC models is that the EC-AFC model accounts for the
thermodynamics of the system. So, in principle, the EC-AFC model is more realistic, as
long as the lithology and thermal structure of the assimilation crust are known explicitly.
The main difference of the EC-AFC model is that the ratio of mass assimilated
/mass crystallized (M_a/M_c or \bar{a}) changes continuously, whereas in the FD-AFC model this
parameter is constant, unless the user changes it stepwise. In the EC-AFC model, the user
must define the equilibration temperature, T_{eq} , which controls the extent of interaction
between the parental magma and assimilant, and therefore the total amount of crust
assimilated (Spera and Bohrson, 2001). To set T_{eq} , the thermal structure of the crust as well
as the depth of assimilation must be well constrained. The EC-AFC model also accounts
for partial melting of the crust by allowing the user to specify K_D values for crustal melting.
In contrast, FD-AFC does not account for melting, and essentially $K_D = 1$, which

720	approximates bulk assimilation of the crust. While the inclusion of partial melting is more
721	realistic, setting K_D appropriately requires that the user have a clear idea of the crustal
722	lithology. Thus, when using EC-AFC, the modeler must know both the lithological
723	composition of the crust being assimilated and the equilibration temperature, T_{eq} . As such,
724	the EC-AFC model is only as accurate as one's knowledge of the crust-magma system.
725	However, for Reventador, we lack explicit knowledge of the crustal lithology and
726	thermal structure. While studies suggest that assimilation occurs at $\sim 40 - 45$ km in the
727	NVZ (Asumpção et al., 2013; Condori et al., 2017; Koch et al., 2021; Feineger and Seguin,
728	1993; Chulick et al., 2013; Hammersley et al, 2022), Reventador lavas do not preserve
729	petrographic evidence of assimilation, and therefore we cannot definitively constrain either
730	the depth of assimilation or T_{eq} . As a result, the EC-AFC results are not necessarily more
731	accurate than the FD-AFC results. The advantage of FD-AFC is its simplicity; results
732	depend only on the ratio of mass assimilated/mass crystallized at each step, the
733	composition of the endmembers, and the crystallizing phases. Furthermore, when fitting the
734	model to the data, the assumption that $D = 1$ can be compensated for by changing the C_a (or
735	C_o , since results depend on the ratio of C_a to C_o) to reflect increased concentrations of
736	incompatible elements in the crustal melt. Additionally, the user can make incremental
737	steps that change the Ma/Mc stepwise.
738	Figure 13 compares the FD-AFC results shown in Figure 6 (model A) along with
739	results produced using EC-AFC of Spera and Bohrson (2001). In both models, we use the

same endmember compositions and partition coefficients for crystallization. We set the

741 thermal parameters for the EC-AFC model using the standard lower crustal parameters

142 listed in Bohrson and Spera (2001), and for the sake of comparison we also set D = 1 for all

743	elements during crustal melting. In the EC-AFC model we set the equilibration temperature
744	to 1228°C. This value was chosen because with the parameters listed above, equilibration
745	at 1228°C would yield ~20% assimilation, the amount of assimilation required by the FD-
746	AFC model to produce the trends observed in Reventador lavas. The main difference
747	between the two models is the amount of crust assimilated. While the FD-AFC model
748	reproduces the observed trends with 10-20% assimilation, the EC-AFC model requires less
749	assimilation, 8-12%. The slight divergence between the two models is due to the
750	differences in mass assimilated/mass crystallized at each step, which affects model
751	concentrations of each element differently, depending on C_o/C_a ratios. Since model isotope
752	ratios depend on model concentrations, this effect carries over to model isotope ratios
753	(Figure 13). The divergence between the two models is largest when comparing trends
754	between isotope ratios whose elements have large differences in Co/Ca. For instance, the
755	models in Figure 13 have $Sr_o/Sr_a = 4.1$, $Nd_o/Nd_a = 0.41$, $Hf_o/Hf_a = 0.41$, and $Pb_o/Pb_a = 0.16$
756	(Table 3). While the differences between the models are largest when comparing trends in
757	87 Sr/ 86 Sr vs ϵ_{Nd} or 206 Pb/ 208 Pb, the difference is less pronounced in trends between ϵ_{Nd} vs
758	$^{208}\text{Pb}/^{206}\text{Pb},$ and nearly nonexistent in ϵ_{Nd} vs $\epsilon_{Hf}.$ Regardless, the significance of this
759	difference is small, considering that the lithology and thermal structure of the crust beneath
760	Reventador are poorly constrained. As understanding of the magmatic system at
761	Reventador evolves, we may be able to make the assumptions necessary to apply more
762	realistic and more complex models. However, with our current, limited, understanding of
763	the magmatic system, the FD-AFC model also demonstrates that crustal assimilation can
764	reproduce the observed isotopic trends.

766 6. Conclusions

767 In this study, we show that assimilation significantly impacts magma composition at 768 Reventador. Our finite difference-AFC modeling indicates that observed linear trends between radiogenic Sr, Nd, Hf and Pb isotopes, (²³⁰Th/²³²Th), LREE/HREE ratios (e.g., 769 770 La/Yb) and LREE/MREE ratios (e.g., La/Sm) can be accounted for by 10-20% assimilation 771 accompanied by fractional crystallization of a gabbroic assemblage. However, the full 772 spectrum of isotopic and geochemical diversity of Reventador's lavas, including both ²³⁸U-773 and ²³⁰Th-excesses, also requires source heterogeneity. This additional heterogeneity most 774 likely reflects variable degrees of metasomatism and melting during basalt petrogenesis as 775 well as variable extents of crustal melting. In our FD-AFC models presented here, this 776 variable source composition is demonstrated by the need to vary elemental concentrations 777 in the parental magma (C_0) . 778 Lastly, we compare coupled assimilation fractional crystallization models, explicitly 779 Finite Difference-AFC and Energy Constrained-AFC models. Our comparison shows that 780 while the EC-AFC model accounts for the thermodynamics of the system and is thus more 781 realistic, the EC-AFC model is only as accurate as one's knowledge of the lithological 782 composition of the crust being assimilated, the crust's thermal structure and the depth of 783 assimilation; these parameters are often not well known for many continental crustal 784 volcanic systems. In contrast, the FD-AFC model, albeit thermally simplistic, provides 785 results that depend only on the ratio of mass assimilated/mass crystallized at each step, the 786 composition of the endmembers, and the crystallizing phases. 787 While this study is specific to Reventador, its implications are global, providing an

vnprecedented understanding of the impact of assimilation of thickened and evolved
789	continental crust. Specifically, we demonstrate that crustal assimilation can overprint ²³⁸ U-
790	series signatures imparted during metasomatism and mantle melting. Consequently, ²³⁸ U-
791	series data cannot be interpreted in a vacuum, and must be considered in tandem with other
792	data, especially long-lived radiogenic isotope ratios, which provide unambiguous
793	information on long-term source variations.
794	
795	Acknowledgments
796	This work was funded by NSF grants EAR 1019545 (KWWS) and EAR 1019546
797	(JMG). LBK acknowledges support from the Richard B. and Lynne V. Cheney Study-
798	Abroad Scholarship Fund and the Center for Global Studies Excellence Fund at the
799	University of Wyoming. KWWS acknowledges support from the US and Ecuadorian
800	Fulbright Commissions as well as the National Geographic Society. LBK and KWWS both
801	acknowledge Mark Thurber for his support in the field. JBT acknowledges financial
802	support from the French Agence Nationale de la Recherche (grant ANR-10-BLAN-0603
803	M&Ms—Mantle Melting—Measurements, Models, Mechanisms). We also thank editor
804	Rosemary Hickey-Vargas, Wendy Bohrson, Heye Freymuth, and two anonymous
805	reviewers for their thoughtful feedback which improved this manuscript.
806	

807 Appendix A: Supplementary Material

808	There are four	supplemental	files associated	with this n	nanuscript.	The first s	upplemental

- 809 file is a table containing major and trace element data for Reventador lavas. The second file
- 810 is a table containing regional data used in Figures two, three, four, and five. The third file is
- 811 a document containing the citations for the sources of regional data. The fourth file
- 812 contains supplemental material regarding the methods used in this study, as well as quality
- 813 assurance data.
- 814

815 **References**

816	Almeida, M., Gaunt, E., Ramon, P., 2019. Ecuador's El Reventador Volcano Continually
817	Remakes Itself. Eos Trans. AGU 100, 2019EO117105.
818	
819	Ancellin, MA., Samaniego, P., Vlastelic, I., Nauret, F., Gannoun, A., Hidalgo, S., 2017.
820	Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic
821	arc. Geochem. Geophys. Geosyst. 18, 2016GC006679.
822	
823	Ankney, M.E., Johnson, C.M., Bacon, C.R., Beard, B.L., Jicha, B.R., 2013. Distinguishing
824	lower and upper crustal processes in magmas erupted during the buildup to the 7.7
825	ka climactic eruption of Mount Mazama, Crater Lake, Oregon, using 238U–230Th
826	disequilibria. Contrib. Mineral. Petrol. 166, 563–585.
827	
828	Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The Genesis of Intermediate and Silicic
829	Magmas in Deep Crustal Hot Zones. J. Petrol. 47, 505–539.
830	
831	Assumpção, M., Feng, M., Tassara, A., Julià, J., 2013. Models of crustal thickness for
832	South America from seismic refraction, receiver functions and surface wave
833	tomography. <i>Tectonophysics</i> 609, 82–96.
834	
835	Baize, S., Audin, L., Alvarado, A., Jomard, H., Bablon, M., Champenois, J., Espin, P.,
836	Samaniego, P., Quidelleur, X., Le Pennec, JL., 2020. Active Tectonics and
837	Earthquake Geology Along the Pallatanga Fault, Central Andes of Ecuador. Front.
838	<i>Earth Sci.</i> 8 , 2020.00193.
839	
840	Ball, L., Sims, K.W.W., Schwieters, J., 2008. Measurement of ²³⁴ U/ ²³⁸ U and ²³⁰ Th/ ²³² Th in
841	volcanic rocks using the Neptune MC-ICP-MS. J. Anal. At. Spectrom. 23, 173–180.
842	

843	Berlo, K., Turner, S., Blundy, J., Hawkesworth, C., 2004. The extent of U-series
844	disequilibria produced during partial melting of the lower crust with implications
845	for the formation of the Mount St. Helens dacites. <i>Contrib. Mineral. Petrol.</i> 148,
846	122–130.
847	
848	Bindeman, I.N., Davis, A.M., 2000. Trace element partitioning between plagioclase and
849	melt: investigation of dopant influence on partition behavior. <i>Geochim. Cosmochim.</i>
850	Acta 64 , 2863–2878.
851	
852	Bloch, E., Ibanez-Mejia, M., Murray, K., Vervoort, J., Muntener, O., 2017. Recent crustal
853	foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights
854	from the roots of a modern subduction zone. Earth Planet. Sci. Lett. 476, 47–58.
855	
856	Bonrson, W.A., Spera, F.J., 2001. Energy-Constrained Open-System Magmatic Processes
857	II: Application of Energy-Constrained Assimilation–Fractional Crystallization (EC- AEC) Model to Measure $L_{\rm eff}$ ($L_{\rm eff}$ 1010–1041
838 850	AFC) model to magmatic Systems. J. Petrol. 42, 1019–1041.
839	Pourdon D. Sima K.W.W. 2002 II agrica Constraints on Introplate Deseltie Magnetism
000 961	Bourdon, B., Shins, K. W., 2005. U-series Constraints on intraplate basanic Maginatism.
862	<i>Rev. Minerul. Geochem.</i> 52 , 215–254.
862	Pourdon P. Turner S. Henderson G.M. Lundstrom C.C. 2003 Introduction to U
864	series Geochemistry Ray Mineral Geochem 52, 1, 21
865	series Geochemistry. Kev. Minerul. Geochem. 52, 1–21.
866	Bourdon B. Turner S.P. Ribe N.M. 2005 Partial melting and unwelling rates
867	beneath the Azores from a U-series isotope perspective <i>Farth Planet Sci Lett</i>
868	2.39 42–56
869	20 <i>7</i> , 12 30.
870	Bourdon, B., Wörner, G., Zindler, A., 2000, U-series evidence for crustal involvement and
871	magma residence times in the petrogenesis of Parinacota volcano. Chile. <i>Contrib.</i>
872	Mineral. Petrol. 139 . 458–469.
873	
874	Bourdon, B., Zindler, A., Elliott, T., Langmuir, C.H., 1996. Constraints on mantle melting
875	at mid-ocean ridges from global 238 U- 230 Th disequilibrium data. <i>Nature</i> 384 , 231–
876	235
877	
878	Bourdon, E., Eissen, J., Monzier, M., Robin, C., Martin, H., Cotten, J., Hall, M.L., 2002.
879	Adakite-like lavas from Antisana Volcano (Ecuador): evidence for slab melt
880	metasomatism beneath Andean Northern Volcanic Zone. J. Petrol. 43, 199–217.
881	
882	Bourdon, E., Eissen, JP., Gutscher, MA., Monzier, M., Hall, M.L., Cotten, J., 2003.
883	Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case
884	(South America). Earth Planet. Sci. Lett. 205, 123–138.
885	
886	Bryant, J.A., Yogodzinski, G.M., Hall, M.L., Lewicki, J.L., Bailey, D.G., 2006.
887	Geochemical Constraints on the Origin of Volcanic Rocks from the Andean
888	Northern Volcanic Zone, Ecuador. J. Petrol. 47, 1147–1175.

889	
890	Chiaradia, M., 2009. Adakite-like magmas from fractional crystallization and melting-
891	assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera,
892	Ecuador). Chem. Geol. 265, 468–487.
893	
894	Chiaradia M Fontboté L Paladines A 2004 Metal Sources in Mineral Deposits and
895	Crustal Rocks of Ecuador (1° N- 4° S): A Lead Isotone Synthesis <i>Econ Geol</i> 99
896	1085–1106
897	1005 1100.
808	Chiaradia M. Müntener, O. Beate B. 2020. Effects of assistic ridge subduction on the
800	geochemistry of frontal are magnes. <i>Earth Planat</i> . Sci. Latt. 531 , 2010, 115084
000	geochemistry of frontal are magnias. Earth I tunet. Sci. Lett. 331, 2019.113964.
900	Chiaradia M. Müntanar O. Baata P. 2011 Enriched Pasaltia Andositas from Mid
901	childradia, W., Multicher, O., Beate, B., 2011. Enficience Dasanic Andesites from Mid-
902	Western Condillers of Founder), L. Detrol. 52, 1107, 1141
905	western Cordinera of Ecuador). J. Petrol. 52 , 1107–1141.
904	Chianadia M. Müntenen O. Deste B. Fantiania D. 2000 Adabita like valuaniam of
905	Chiaradia, M., Muntener, O., Beate, B., Fontignie, D., 2009. Adakite-like volcanism of
906	Ecuador: lower crust magmatic evolution and recycling. Contrib. Mineral. Petrol.
907	158, 303–388.
908	
909	Chulick, G.S., Detweiler, S., Mooney, W.D., 2013. Seismic structure of the crust and
910	uppermost mantle of South America and surrounding oceanic basins. J. S. Am.
911	Earth Sci. 42 , 260–276.
912	
913	Condori, C., França, G.S., Tavera, H.J., Albuquerque, D.F., Bishop, B.T., Beck, S.L., 2017.
914	Crustal structure of north Peru from analysis of teleseismic receiver functions. J. S.
915	<i>Am. Earth Sci.</i> 76 , 11–24.
916	
917	Cooper, K.M., Reid, M.R., Dunbar, N.W., McIntosh, W.C., 2002. Origin of mafic magmas
918	beneath northwestern Tibet: Constraints from ²³⁰ Th- ²³⁸ U disequilibria. <i>Geochem</i> .
919	Geophys. Geosyst. 3, 1–23.
920	
921	Davidson, J.P., Hora, J.M., Garrison, J.M., Dungan, M.A., 2005. Crustal forensics in arc
922	magmas. J. Volcanol. Geotherm. Res. 140, 157–170.
923	
924	Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting
925	of young subducted lithosphere. <i>Nature</i> 347 , 662–665.
926	
927	DePaolo, D.J., 1985. Isotopic studies of processes in mafic magma chambers: I. The
928	Kiglapait Intrusion, Labrador. J. Petrol. 26, 925–951.
929	
930	DePaolo, D.J., 1981. Trace element and isotopic effects of combined wallrock assimilation
931	and fractional crystallization. Earth Planet. Sci. Lett. 53, 189–202.
932	
933	DePaolo, D.J., Harrison, T.M., Wielicki, M., Zhao, Z., Zhu, D.C., Zhang, H., Mo. X., 2019.
934	Geochemical evidence for thin syn-collision crust and major crustal thickening

935 936 937	between 45 and 32 Ma at the southern margin of Tibet. <i>Gondwana Res.</i> 73 , 123–135.
938 939 940	Dostal, J., Dupuy, C., Carron, J.P., le Guen de Kerneizon, M., Maury, R.C., 1983. Partition coefficients of trace elements: Application to volcanic rocks of St. Vincent, West Indies. <i>Geochim. Cosmochim. Acta</i> 47, 525–533.
941 942 943 944	DuFrane, S.A., Turner, S., Dosseto, A., Soest, M. van, 2009. Reappraisal of fluid and sediment contributions to Lesser Antilles magmas. <i>Chem. Geol.</i> 265 , 272–278.
945 946 947 948	Dunn, T., Sen, C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study. <i>Geochim. Cosmochim. Acta</i> 58, 717–733.
949 950 951 952	Elkins, L.J., Sims, K.W.W., Prytulak, J., Blichert-Toft, J., Elliott, T., Blusztajn, J., Fretzdorff, S., Reagan, M., Haase, K., Humphris, S., 2014. Melt generation beneath Arctic Ridges: Implications from U decay series disequilibria in the Mohns, Knipovich, and Gakkel Ridges. <i>Geochim. Cosmochim. Acta</i> 127, 140–170.
953 954 955 956 957 958	Elkins, L.J., Sims, K.W.W., Prytulak, J., Elliott, T., Mattielli, N., Blichert-Toft, J., Blusztajn, J., Dunbar, N., Devey, C., Mertz, D.F., Schilling, JG., Murrell, M., 2011. Understanding melt generation beneath the slow-spreading Kolbeinsey Ridge using ²³⁸ U, ²³⁰ Th, and ²³¹ Pa excesses. <i>Geochim. Cosmochim. Acta</i> 75 , 6300–6329.
959 960 961	Elliott, T., Plank, T., Zindler, A., White, W., Bourdon, B., 1997. Element transport from slab to volcanic front at the Mariana arc. <i>J. Geophys. Res. Solid Earth</i> 102 , 14991–15019.
962 963 964	Feininger, T., Seguin, M.K., 1983. Simple Bouguer gravity anomaly field and the inferred crustal structure of continental Ecuador. <i>Geology</i> 11, 40-44.
965 966 967 968 969	Garrison, J., Davidson, J., Reid, M., Turner, S., 2006. Source versus differentiation controls on U-series disequilibria: Insights from Cotopaxi Volcano, Ecuador. <i>Earth Planet.</i> <i>Sci. Lett.</i> 244, 548–565.
970 971 972 973	Garrison, J., Sims, K.W.W., Yogodzinski, G., Escobar, R., Scott, S., Mothes, P., Hall, M., Ramon, P., 2018. Shallow-level differentiation of phonolitic lavas from Sumaco Volcano, Ecuador. <i>Contrib. Mineral. Petrol.</i> 173 , 1–19.
974 975 976	Garrison, J.M., Davidson, J.P., 2003. Dubious case for slab melting in the Northern volcanic zone of the Andes. <i>Geology</i> 31 , 565–568.
977 978 979 980	George, R., Turner, S., Hawkesworth, C., Morris, J., Nye, C., Ryan, J., Zheng, SH., 2003. Melting processes and fluid and sediment transport rates along the Alaska-Aleutian arc from an integrated U-Th-Ra-Be isotope study. <i>J. Geophys. Res. Solid Earth</i> 108 , 2002JB001916.

981	
982	Gerlach D.C. Frey F.A. Moreno-roa H. Lopez-escobar L. 1988 Recent Volcanism in
983	the Puvehue—Cordon Caulle Region Southern Andes Chile (40.5°S).
984	Petrogenesis of Evolved Layas <i>L Petrol</i> 29 333–382
085	r euogenesis of Evolved Edvas. 5. r enot. 27, 555-562.
086	Cinibra C. Davidson I.B. 2014 Sr. Isotona Zoning in Plagicalasa from Parinasota
900	Velsene (Newthern Chile): Quentifying Magne Mixing and Crustel Centerninetian
907	L Detrol 55, 1002, 1029
900	J. Petrol. 55 , 1205–1258.
989	Critichan M. A. Marana D. Eisen J. D. Davidan E. 2000. Constate multing he around
990	Gutscher, MA., Maury, R., Elssen, JP., Bourdon, E., 2000. Can slab melting be caused
991	by flat subduction? Geology 28, 535–538.
992	
993	Goldstein, S.J., Murrell, M.T., Janecky, D.R., 1989. Th and U isotopic systematics of
994	basalts from the Juan de Fuca and Gorda Ridges by mass spectrometry. Earth
995	<i>Planet. Sci. Lett.</i> 96 , 134–146.
996	
997	Goldstein, S.J., Murrell, M.T., Janecky, D.R., Delaney, J.R., Clague, D.A., 1992.
998	Geochronology and petrogenesis of MORB from the Juan de Fuca and Gorda ridges
999	by ²³⁸ U- ²³⁰ Th disequilibrium. <i>Earth Planet. Sci. Lett.</i> 109 , 255–272.
1000	
1001	Goldstein, S.J., Murrell, M.T., Williams, R.W., 1993. ²³¹ Pa and ²³⁰ Th chronology of mid-
1002	ocean ridge basalts. Earth Planet. Sci. Lett. 115, 151–159.
1003	
1004	Hall, M., Ramón, P., Mothes, P., LePennec, J.L., García, A., Samaniego, P., Yepes, H.,
1005	2004. Volcanic eruptions with little warning: the case of Volcán Reventador's
1006	Surprise November 3, 2002 Eruption, Ecuador. Revista geológica de Chile 31, 349-
1007	358.
1008	
1009	Hall, M.L., Samaniego, P., Pennec, J.L. le, Johnson, J.B., 2008. Ecuadorian Andes
1010	volcanism: A review of Late Pliocene to present activity. J. Volcanol. Geotherm.
1011	<i>Res.</i> 176 , 1-6.
1012	
1013	Hammersley, L., DePaolo, D.J., 2006. Isotopic and geophysical constraints on the structure
1014	and evolution of the Clear Lake volcanic system. J. Volcanol. Geotherm. Res. 153,
1015	331–356.
1016	
1017	Hammersley, L., DePaolo, D.J., Beate, B., and Deino, L.A., 2022. Rhyolite Ignimbrite
1018	generation in the Northern Andes: The Chalupas Caldera, Ecuador. In Isotopic
1019	Constraints on Earth System Processes (eds. K.W.W. Sims, K. Maher, and D.P.
1020	Schrag). American Geophysical Union, Geophysical Monography Series. pp. 87-
1021	132. 10.1002/9781119595007
1022	
1023	Handley, H.K., Reagan, M., Gertisser, R., Preece, K., Berlo, K., McGee, L.E., Barclay, J.,
1024	Herd, R., 2018. Timescales of magma ascent and degassing and the role of crustal
1025	assimilation at Merapi volcano (2006–2010), Indonesia: Constraints from uranium-

1026 1027	series and radiogenic isotopic compositions. <i>Geochim. Cosmochim. Acta</i> 222 , 34–52.
1028	
1029	Harpp, K.S., White, W.M., 2001. Tracing a mantle plume: Isotopic and trace element
1030	variations of Galápagos seamounts. Geochem. Geophys. Geosyst. 2,
1031	2000GC000137.
1032	
1033	Harpp, K.S., Wanless, V.D., Otto, R.H., Hoernle, K., Werner, R., 2005. The Cocos and
1034	Carnegie Aseismic Ridges: a Trace Element Record of Long-term Plume–
1035	Spreading Center Interaction. J. Petrol. 46, 109–133.
1036	
1037	Hart, S.R., Blusztain, J., 2006. Age and geochemistry of the mafic sills, ODP site 1276,
1038	Newfoundland margin. Chem. Geol. 235, 222–237.
1039	
1040	Hart, S.R., Coetzee, M., Workman, R.K., Blusztajn, J., Johnson, K.T.M., Sinton, J.M.,
1041	Steinberger, B., Hawkins, J.W., 2004. Genesis of the Western Samoa seamount
1042	province: Age, geochemical fingerprint and tectonics. <i>Earth Planet. Sci. Lett.</i> 227,
1043	37–56.
1044	
1045	Hauri, E.H., Wagner, T.P., Grove, T.L., 1994. Experimental and natural partitioning of Th,
1046	U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts.
1047	<i>Chem. Geol.</i> 117 . 149–166.
1048	- · · · · · · · · · · · · · · · · · · ·
1049	Hidalgo, S., Gerbe, M.C., Martin, H., Samaniego, P., Bourdon, E., 2012. Role of crustal
1050	and slab components in the Northern Volcanic Zone of the Andes (Ecuador)
1051	constrained by Sr-Nd-O isotopes. Lithos 132-133, 180-192.
1052	5 1 7
1053	Hildreth, W., Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of
1054	Central Chile. Contrib. Mineral. Petrol. 98, 455–489.
1055	
1056	Hora, J.M., Singer, B.S., Wörner, G., Beard, B.L., Jicha, B.R., Johnson, C.M., 2009.
1057	Shallow and deep crustal control on differentiation of calc-alkaline and tholeiitic
1058	magma. Earth Planet. Sci. Lett. 285, 75–86.
1059	
1060	Huang, F., Gao, L., Lundstrom, C.C., 2008. The effect of assimilation, fractional
1061	crystallization, and ageing on U-series disequilibria in subduction zone lavas.
1062	Geochim. Cosmochim. Acta 72, 4136–4145.
1063	
1064	Jackson, M. G., and Dasgupta, R., 2008. Compositions of HIMU, EM1, and EM2 from
1065	global trends between radiogenic isotopes and major elements in ocean island
1066	basalts. Earth Planet. Sci. Lett. 276, 175–186.
1067	· · · · · · · · · · · · · · · · · · ·
1068	Jaillard, E., Lapierre, H., Ordoñez, M., Álava, J.T., Amórtegui, A., Vanmelle, J., 2009.
1069	Accreted oceanic terranes in Ecuador: southern edge of the Caribbean Plate? In The
1070	Origin and Evolution of the Caribbean Plate (eds. K.H. James, M.A. Lorenth and
1071	J.A. Pindell) Geol. Soc., London, Special Publications 328. pp. 469-485.

1072	
1073	Jarvis, K.E., 1988. Inductively coupled plasma mass spectrometry: A new technique for the
1074	rapid or ultra-trace level determination of the rare-earth elements in geological
1075	materials. Chem. Geol. 68, 31–39.
1076	
1077	Jicha, B.R., Johnson, C.M., Hildreth, W., Beard, B.L., Hart, G.L., Shirey, S.B., Singer,
1078	B.S., 2009. Discriminating assimilants and decoupling deep- vs. shallow-level
1079	crystal records at Mount Adams using ²³⁸ U– ²³⁰ Th disequilibria and Os isotopes.
1080	Earth Planet. Sci. Lett. 277, 38–49.
1081	
1082	Jicha, B.R., Singer, B.S., Beard, B.L., Johnson, C.M., Moreno-Roa, H., Naranjo, J.A.,
1083	2007. Rapid magma ascent and generation of ²³⁰ Th excesses in the lower crust at
1084	Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile. Earth Planet. Sci. Lett.
1085	255 , 229–242.
1086	
1087	Johnson, D.M., Hooper, P.R., Conrey, R.M., 1999. XRF analysis of rocks and minerals for
1088	major and trace elements on a single low dilution Li-tetraborate fused bead. Adv. X
1089	Ray Anal. 41, 843–867.
1090	
1091	Jull, M., Kelemen, P.B., Sims, K.W.W, 2002. Consequences of diffuse and channelled
1092	porous melt migration on uranium series disequilibria. Geochim Cosmochim Acta 66,
1093	4133–4148. https://doi.org/10.1016/S0016-7037(02)00984-5
1094	
1095	Kelley, K.A., Cottrell, E., 2009. Water and the oxidation state of subduction zone magmas.
1096	<i>Science</i> 325 , 605–607.
1097	
1098	Kelley, K.A., Plank, T., Farr, L., Ludden, J., Staudigel, H., 2005. Subduction cycling of U,
1099	Th, and Pb. Earth Planet. Sci. Lett. 234, 369–383.
1100	
1101	Kessel, R., Schmidt, M.W., Ulmer, P., Pettke, T., 2005. Trace element signature of
1102	subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature
1103	437 , 724–727.
1104	
1105	Klein, M., Stosch, H.G., Seck, H.A., Shimizu, N., 2000. Experimental partitioning of high
1106	field strength and rare earth elements between clinopyroxene and garnet in andesitic
1107	to tonalitic systems. Geochim. Cosmochim. Acta 64, 99–115.
1108	
1109	Koch, C.D., Delph, J., Beck, S.L., Lynner, C., Ruiz, M., Hernandez, S., Samaniego, P.,
1110	Meltzer, A., Mothes, P., Hidalgo, S., 2021. Crustal thickness and magma storage
1111	beneath the Ecuadorian arc. J. S. Am. Earth Sci. 110, 2021.103331.
1112	
1113	Kokfelt, T.F., Lundstrom, C., Hoernle, K., Hauff, F., Werner, R., 2005. Plume-ridge
1114	interaction studied at the Galápagos spreading center: Evidence from ²²⁶ Ra- ²³⁰ Th-
1115	²³⁸ U and ²³¹ Pa- ²³⁵ U isotopic disequilibria. <i>Earth Planet. Sci. Lett.</i> 234 , 165–187.
1116	

1117	Kuritani, T., Yokoyama, T., Nakamura, E., 2008. Generation of Rear-arc Magmas Induced
1118	by Influx of Slab-derived Supercritical Liquids: Implications from Alkali Basalt
1119	Lavas from Rishiri Volcano, Kurile Arc. J. Petrol. 49, 1319–1342.
1120	
1121	Layne, G.D. and K.W.W. Sims (2000). Analysis of ²³² Th/ ²³⁰ Th in volcanic rocks by
1122	Secondary Ionization Mass Spectrometry. Int. J. Mass Spectrom. 203, 1-3, 187-198.
1123	
1124	Lundstrom, C.C., Gill, J., Williams, Q., Perfit, M.R., 1995. Mantle Melting and Basalt
1125	Extraction by Equilibrium Porous Flow. Science 270, 1958-1961.
1126	
1127	Lundstrom, C.C., Sampson, D.E., Perfit, M.R., Gill, J., Williams, Q., 1999. Insights into
1128	mid- ocean ridge basalt petrogenesis: U- series disequilibria from the Siqueiros
1129	Transform, Lamont Seamounts, and East Pacific Rise. J. Geophys. Res. Solid Earth
1130	104 , 13035–13048.
1131	
1132	McDonough, W.F., Sun, SS., 1995. The composition of the Earth. Chem. Geol. 120, 223-
1133	253.
1134	
1135	McKenzie, D., 1985. The extraction of magma from the crust and mantle. <i>Earth Planet</i> .
1136	Sci. Lett. 74 , 81–91.
1137	
1138	McKenzie, D., O'Nions, R.K., 1991. Partial Melt Distributions from Inversion of Rare
1139	Earth Element Concentrations. J. Petrol. 32, 1021–1091.
1140	
1141	Michaud, F., Witt, C., Royer, JY., 2009. Influence of the subduction of the Carnegie
1142	volcanic ridge on Ecuadorian geology: Reality and fiction. In <i>Backbone of the</i>
1143	Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision
1144	(eds. S.M. Kay, V.A. Ramos, W.R. Dickinson). Geol. Soc. Am., Boulder. pp. 217-
1145	228.
1146	
1147	Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins.
1148	Am. J. Sci. 274, 321–355.
1149	
1150	Münker, C., Weyer, S., Scherer, E., Mezger, K., 2001. Separation of high field strength
1151	elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC- ICPMS
1152	measurements. Geochem. Geophys. Geosyst. 2. 2001GC000183.
1153	
1154	Müntener, O., Kelemen, P.B., Grove, T.L., 2001. The role of H ₂ O during crystallization of
1155	primitive arc magmas under uppermost mantle conditions and genesis of igneous
1156	pyroxenites: an experimental study. Contrib. Mineral. Petrol. 141, 643–658.
1157	
1158	Nandedkar, R.H., Hürlimann, N., Ulmer, P., Müntener, O., 2016. Amphibole-melt trace
1159	element partitioning of fractionating calc-alkaline magmas in the lower crust: an
1160	experimental study. Contrib. Mineral. Petrol. 171. s00410-016-1278-0.
1161	- · ·

1162 1163	Narvaez, D.F., Rose-Koga, E.F., Samaniego, P., Koga, K.T., Hidalgo, S., 2018.
1164	Puñalica and Sangay volcanoos (Equador) Contrib Minoral Datrol 173 S00410
1164	runanca and Sangay Volcanoes (Ecuador). Conuno. Mineral. renoi. 175. 500410-
1105	018-1508-8.
1100	Pesserille A Textor S. P. 1076 Coochemistry of Econo colo albeline velocito reals
110/	feeceniio, A., Taylor, S.K., 1976. Geochemistry of Eocene calc-alkanne volcame rocks
1108	from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 58, 63–81.
1109	Diants T 2014 The chamical composition of subducting addiments In Tractice or
1170	Plank, 1., 2014. The chemical composition of subducting sediments. In <i>Treatise on</i>
11/1	<i>Geochemistry (2^m Eattion)</i> (eds. H.D. Holland, K.K. Turekian). Elsevier. pp. 607-
1172	029.
11/3	Drive Dishard C. Casara D. Camble I.A. Turner S. Smith J.F.M. Cash C. Habder
11/4	Price, Richard C., George, R., Gamble, J.A., Turner, S., Smith, I.E.M., Cook, C., Hobden,
1175	B., Dosseto, A., 2007. U–1n–Ra fractionation during crustal-level andesite formation at December and set $N_{\rm eff}$ Zealand $Ch_{\rm eff}$ C = 1.244, 427, 451
11/6	formation at Ruapenu voicano, New Zealand. Chem. Geol. 244, 437–451.
11//	
11/8	Prowatke, S., Klemme, S., 2006. Trace element partitioning between apatite and silicate
11/9	melts. Geochim. Cosmochim. Acta 70, 4513–4527.
1180	
1181	Reubi, O., Bourdon, B., Dungan, M.A., Koornneef, J.M., Selles, D., Langmuir, C.H.,
1182	Actego, S., 2011. Assimilation of the plutonic roots of the Andean arc controls
1183	variations in U-series disequilibria at Volcan Llaima, Chile. Earth Planet. Sci. Lett.
1184	303 , 37–47.
1185	D 1 O C' KINAN D 1 D 2014 238H 230TH 111 ' '
1186	Reubi, O., Sims, K.W.W., Bourdon, B., 2014. ²⁵⁶ U– ²⁵⁶ Th equilibrium in arc magmas and
1187	implications for the time scales of mantle metasomatism. Earth Planet. Sci. Lett.
1188	391 , 146–158.
1189	
1190	Richter, S., Goldberg, S.A., 2003. Improved techniques for high accuracy isotope ratio
1191	measurements of nuclear materials using thermal ionization mass spectrometry. Int.
1192	J. Mass Spectrom. 229, 181–197.
1193	
1194	Ridolfi, F., Puerini, M., Renzulli, A., Menna, M., Toulkeridis, T., 2008. The magmatic
1195	feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained
1196	by texture, mineralogy and thermobarometry of the 2002 erupted products. J.
1197	Volcanol. Geotherm. Res. 176, 94–106.
1198	
1199	Rosenbaum, G., Sandiford, M., Caulfield, J., Garrison, J.M., 2019. A trapdoor mechanism
1200	for slab tearing and melt generation in the northern Andes. Geology 47, 23–26.
1201	
1202	Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust. In <i>Treatise on</i>
1203	Geochemistry (2 ^{ma} edition) (eds. H.D. Holland, K.K. Turekian). Elsevier. pp. 1-51.
1204	
1205	Sallares, V., Charvis, P., 2003. Crustal thickness constraints on the geodynamic evolution
1206	of the Galapagos Volcanic Province. Earth Planet. Sci. Lett. 214, 545–559.
1207	

1208	Samaniego, P., Eissen, JP., Pennec, JL. le, Robin, C., Hall, M.L., Mothes, P., Chavrit,
1209	D., Cotten, J., 2008. Pre-eruptive physical conditions of El Reventador volcano
1210	(Ecuador) inferred from the petrology of the 2002 and 2004–05 eruptions. J.
1211	Volcanol. Geotherm. Res. 176, 82–93.
1212	
1213	Samaniego, P., Martin, H., Monzier, M., Robin, C., Fornari, M., Eissen, JP., Cotten, J.,
1214	2005. Temporal Evolution of Magmatism in the Northern Volcanic Zone of the
1215	Andes: The Geology and Petrology of Cayambe Volcanic Complex (Ecuador). J.
1216	Petrol. 46, 2225–2252.
1217	
1218	Schaefer, S.J., Sturchio, N.C., Murrell, M.T., Stanley, W.N., 1993. Internal 238U-series
1219	systematics of pumice from the November 13, 1985, eruption of Nevado del Ruiz,
1220	Colombia. Geochim. Cosmochim. Acta 57, 1215–1219.
1221	,
1222	Schmidt, M.W., Jagoutz, O., 2017. The global systematics of primitive arc melts.
1223	Geochem, Geophys, Geosyst. 18, 2817–2854.
1224	
1225	Scott, S.R., Sims, K.W.W., Reagan, M.K., Ball, L., Schwieters, J.B., Bouman, C., Lloyd,
1226	N.S., Waters, C.L., Standish, I.L., Tollstrup, D.L., 2019. The application of
1227	abundance sensitivity filters to the precise and accurate measurement of uranium
1228	series nuclides by plasma mass spectrometry. Int. I. Mass Spectrom 435, 321–332.
1229	
1230	Sigmarsson, O. Martin, H. Knowles, L. 1998. Melting of a subducting oceanic crust from
1231	U–Th disequilibria in austral Andean lavas. <i>Nature</i> 394 , 566–569.
1232	
1233	Sims, Kenneth W.W., Blichert-Toft, J., Kyle, P.R., Pichat, S., Gauthier, P.J., Blusztain, J.,
1234	Kelly, P., Ball, L., Lavne, G., 2008a, A Sr, Nd, Hf, and Pb isotope perspective on
1235	the genesis and long-term evolution of alkaline magmas from Erebus volcano.
1236	Antarctica, J. Volcanol, Geotherm, Res. 177, 606–618.
1237	
1238	Sims K W W. DePaolo, D.J. Murrell, M T. Baldridge, W S. Goldstein, S. Clague, D.
1239	Jull M. 1999 Porosity of the melting zone and variations in the solid mantle
1240	unwelling rate beneath Hawaii inferences from $^{238}\text{U}-^{230}\text{Th}-^{226}\text{Ra}$ and $^{235}\text{U}-^{231}\text{Pa}$
1241	disequilibria Geochim Cosmochim Acta 63 4119–4138
1242	
1243	Sims K W W DePaolo D I Murrell M T Baldridge W S Goldstein S I Clague
1243	D A 1995 Mechanisms of Magma Generation Beneath Hawaii and Mid-Ocean
1244	Bidges: Uranium/Thorium and Samarium/Neodymium Isotopic Evidence. Science
1245	267 508-512
12+0 12/7	207, 500-512.
1241	Sime KWW Gill IB Dosseto A Hoffmann DI Lundstrom CC Williams PW
1240	Ball I Tolletrup D Turner & Prvtulak I Classner IIC Standish II
1247 1250	Elliott T 2008h An Inter I aboratory Assessment of the Therium Isotoria
1250	Composition of Synthetic and Rock Reference Materials. Geostand, Coognal Page
1251	22 65 01
1252	32, 03-71.
1233	

1254 1255	Sims, K.W.W., Goldstein, S.J., Blichert-toft, J., Perfit, M.R., Kelemen, P., Fornari, D.J., Michael, P., Murrell, M.T., Hart, S.R., DePaolo, D.J., Layne, G., Ball, L., Jull, M.,
1256	Bender, J., 2002. Chemical and isotopic constraints on the generation and transport
1257	of magma beneath the East Pacific Rise. <i>Geochim. Cosmochim. Acta</i> 66, 3481–
1258	3504
1250	
1260	Sime KWW Hart S.R. 2006 Comparison of Th. Sr. Nd and Ph isotopes in oceanic
1260	hasalts: Implications for mantle beterogeneity and magma genesis. <i>Earth Planet</i>
1261	Sci Lott 245 7/3_761
1262	501. Lett. 243 , 745 701.
1264	Sime KWW Hart S.P. Reagan MK Blueztain I Staudigel H. Sohn P.A. Lavne
1204	G D Ball I A Andrews I 2008c 238 II 230 Th 226 Da 210 Dh 210 Dh 223 Th 228 Da and
1205	235 U 231 Pa constraints on the ages and netrogeneois of Vailulu'u and Malumalu
1200	Lavas Samoa Geochem Geophys Geostyst 0 10 1020/2007GC001651
1207	Lavas, Samoa. Geochem., Geophys., Geosyst. 9, 10.1029/20070C001051.
1200	Sime Kannath W.W. Maalannan I. Dliabart Toft I. Margina F.M. Dlyartain I.
1209	Sinis, Kenneth W. W., Maclennan, J., Bilchert-Tott, J., Mervine, E.M., Biusztajii, J.,
1270	Gronvold, K., 2015a. Short length scale manue neterogeneity beneath Iceland
12/1	probed by glacial modulation of melting. Earth Planet. Sci. Lett. 319, 146–157.
1272	
1273	Sims, Kenneth W.W., Pichat, S., Reagan, M.K., Kyle, P.R., Dulaiova, H., Dunbar, N.W.,
1274	Prytulak, J., Sawyer, G., Layne, G.D., Blichert-10ft, J., 2013b. On the time scales
1275	of magma genesis, melt evolution, crystal growth rates and magma degassing in the
1276	Erebus volcano magmatic system using the 236 U, 235 U and 232 Th decay series. J.
1277	Petrol. 54, 235–271.
1278	
1279	Spiegelman, M., Elliott, T., 1993. Consequences of melt transport for uranium series
1280	disequilibrium in young lavas. <i>Earth Planet. Sci. Lett.</i> 118 , 1–20.
1281	
1282	Spera, F.J., Bohrson, W.A., 2001. Energy-Constrained Open-System Magmatic Processes
1283	I: General Model and Energy-Constrained Assimilation and Fractional
1284	Crystallization (EC-AFC) Formulation. J. Petrol. 42, 999–1018.
1285	
1286	Stracke, A., Bourdon, B., 2009. The importance of melt extraction for tracing mantle
1287	heterogeneity. Geochim. Cosmochim. Acta 73, 218–238.
1288	
1289	Sun, SS., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:
1290	implications for mantle composition and processes. In Magmatism in the Ocean
1291	Basins (eds. A.D. Saunders, M.J. Norry). Geol. Soc., London, Special Publications
1292	42, 313–345.
1293	
1294	Sturm, M.E., Goldstein, S.J., Klein, E.M., Karson, J.A., Murrell, M.T., 2000. Uranium-
1295	series age constraints on lavas from the axial valley of the Mid-Atlantic Ridge,
1296	MARK area. Earth Planet. Sci. Lett. 181, 61–70.
1297	
1298	Syracuse, E.M., Abers, G.A., 2006. Global compilation of variations in slab depth beneath
1299	arc volcanoes and implications. Geochem. Geophys. Geosyst. 7, 2005GC001045.

1300	
1301	Syracuse E.M. Van Keken P.E. Abers G.A. 2010 The global range of subduction zone
1302	thermal models Phys Farth Planet Inter 183 73–90
1302	
1304	Tepley F.I. Lundstrom C.C. McDonough W.F. Thompson A 2010 Trace element
1305	nartitioning between high-An plagioclase and basaltic to basaltic andesite melt at 1
1305	atmosphere pressure Lithos 118, 82, 94
1300	aunosphere pressure. Lunos 116, 82–94.
1202	Taplay E. L. Lundstrom C.C. Sims K.W.W. Hálinian D. 2004. Il sorias disaguilibria in
1200	MORP from the Correct Transform and implications for months malting. Earth Dianet
1210	Soi Lett 223 70.07
1211	Sci. Leii. 223 , 19–91.
1311	Thiskysell, M.E. 2002, Multicellector ICD MS analysis of Dhisotomes using a 207Dh 204Dh
1312	Infitiwan, M.F., 2002. Multiconector ICP-MIS analysis of PD isotopes using a PD- PD
1313	double spike demonstrates up to 400 ppm/amu systematic errors in 11-
1314	normalization. Chem. Geol. 184, 255–279.
1315	
1316	Thomas, R.B., Hirschmann, M.M., Cheng, H., Reagan, M.K., Lawrence Edwards, R.,
1317	2002. (²⁵¹ Pa/ ²⁵⁵ U)-(²⁵⁵ Th/ ²⁵⁶ U) of young matic volcanic rocks from Nicaragua and
1318	Costa Rica and the influence of flux melting on U-series systematics of arc lavas.
1319	<i>Geochim. Cosmochim. Acta</i> 66 , 4287–4309.
1320	
1321	Turner, S., Bourdon, B., Gill, J., 2003. Insights into Magma Genesis at Convergent
1322	Margins from U-series Isotopes. Rev. Mineral. Geochem. 52, 255–315.
1323	
1324	Turner, S., Foden, J., 2001. U, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace
1325	element variations in Sunda arc lavas: predominance of a subducted sediment
1326	component. Contrib. Mineral. Petrol. 142, 43–57.
1327	
1328	Vervoort, J.D., Plank, T., Prytulak, J., 2011. The Hf-Nd isotopic composition of marine
1329	sediments. Geochim. Cosmochim. Acta 75, 5903-5926.
1330	
1331	Waters, C.L., Sims, K.W.W., Klein, E.M., White, S.M., Reagan, M.K., Girard, G., 2013.
1332	Sill to surface: Linking young off-axis volcanism with subsurface melt at the
1333	overlapping spreading center at 9°03' N. East Pacific Rise. Earth Planet. Sci. Lett.
1334	369 , 59–70.
1335	
1336	Waters, C.L., Sims, K.W.W., Perfit, M.R., Blichert-Toft, J., Blusztajn, J., 2011. Perspective
1337	on the Genesis of E-MORB from Chemical and Isotopic Heterogeneity at 9–10°N
1338	East Pacific Rise. J. Petrol. 52, 565–602.
1339	
1340	Walker, J.A., Erik Mickelson, J., Thomas, R.B., Patino, L.C., Cameron, B., Carr, M.J.,
1341	Feigenson, M.D., Lawrence E.R., 2007. U-series disequilibria in Guatemalan lavas,
1342	crustal contamination, and implications for magma genesis along the Central
1343	American subduction zone. J. Geophys. Res. Solid Earth 112, 2006JB004589
1344	

1345	Werner, R., Hoernle, K., Barckhausen, U., Hauff, F., 2003. Geodynamic evolution of
1346	the Galápagos hot spot system (Central East Pacific) over the past 20 m.y.:
1347	Constraints from morphology, geochemistry, and magnetic anomalies.
1348	Geochem. Geophys. Geosyst. 4, 2003GC000576.
1349	
1350	Williams, R.W., Gill, J.B., 1989. Effects of partial melting on the uranium decay series.
1351	Geochim. Cosmochim. Acta 53, 1607–1619.
1352	
1353	Workman, R. K., and Hart, S. R., 2005. Major and trace element composition of the
1354	depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53-72.
1355	
1356	Yepes, H., Audin, L., Alvarado, A., Beauval, C., Aguilar, J., Font, Y., Cotton, F., 2016. A
1357	new view for the geodynamics of Ecuador: Implication in seismogenic source
1358	definition and seismic hazard assessment. <i>Tectonics</i> 35 , 1249–1279.
1359	
1360	Yogodzinski, G.M., Brown, S.T., Kelemen, P.B., Vervoort, J.D., Portnyagin, M., Sims,
1361	K.W.W., Hoernle, K., Jicha, B.R., Werner, R., 2015. The Role of Subducted Basalt
1362	in the Source of Island Arc Magmas: Evidence from Seafloor Lavas of the Western
1363	Aleutians. J. Petrol. 56, 441–492.
1364	
1365	Yogodzinski, G.M., Lees, J.M., Churikova, T.G., Dorendorf, F., Wöerner, G., Volynets,
1366	O.N., 2001. Geochemical evidence for the melting of subducting oceanic
1367	lithosphere at plate edges. <i>Nature</i> 409 , 500–504.
1368	
1369	Zou, H., Zindler, A., Niu, Y., 2002. Constraints on Melt Movement Beneath the East
1370	Pacific Rise From ²³⁰ Th- ²³⁸ U Disequilibrium. Science 295 , 107–110.

Table 1 Sr, Nd, Hf, and Pb isotope data for Reventador lavas																	
Sample	Eruption year	⁸⁷ Sr/ ⁸⁶ Sr	2 SE	¹⁴³ Nd/ ¹⁴⁴ Nd	2 SE	ε _{Nd}	2 SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2 SE	€нf	2 SE	²⁰⁶ Pb/ ²⁰⁴ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁴ Pb	2 SE	²⁰⁸ Pb/ ²⁰⁴ Pb	2 SE
REV 117	1944	0.704504	6	0.512774	5	2.65	10	0.282925	4	5.42	15	18.6220	8	15.6083	8	38.5110	23
REV 118	1944	0.704493	7	0.512776	6	2.69	12	0.282924	4	5.37	14	18.6189	5	15.6101	6	38.5115	19
REV 125	1976	0.704589	7	0.512731	4	1.81	8	0.282908	7	4.82	23	18.5761	5	15.6068	6	38.4827	18
REV 002	2002	0.704517	9	0.512747	7	2.13	14	0.282915	4	5.05	13	18.6042	8	15.6085	8	38.5044	25
REV 003	2002	0.704530	9	0.512741	4	2.01	8	0.282903	5	4.62	17	18.5949	6	15.6083	7	38.4906	20
REV 004	2002	0.704516	8	0.512749	5	2.17	10	0.282908	4	4.81	14	18.5982	6	15.6087	6	38.4980	17
REV 005	2002	0.704511	11									18.5986	5	15.6084	5	38.4974	13
REV 121	2002	0.704454	7	0.512768	5	2.54	10	0.282915	5	5.06	16	18.6294	12	15.6111	13	38.5202	36
REV 126	2002	0.704492	9	0.512752	5	2.22	10	0.282922	5	5.31	18	18.6095	7	15.6111	7	38.5103	24
REV 122	2005	0.704538	8	0.512777	4	2.72	8	0.282901	7	4.55	26	18.6003	5	15.6086	4	38.4978	14
REV 127	2007	0.704444	6	0.512775	4	2.68	8	0.282917	9	5.13	32	18.6328	5	15.6077	5	38.5135	13
REV 129	2007	0.704428	1	0.512782	5	2.81	10	0.282917	3	5.13	12	18.6327	10	15.6089	10	38.5159	30
REV 001	2008	0.704489	8	0.512771	4	2.59	8	0.282919	4	5.20	16	18.6125	7	15.6066	8	38.4969	23
REV 006	2008	0.704471	9	0.512770	5	2.57	10	0.282918	5	5.18	16	18.6124	8	15.6070	7	38.4976	22
REV 123	2008	0.704420	11	0.512782	5	2.81	10	0.282927	3	5.46	12	18.6396	8	15.6120	7	38.5251	22
REV 124	2009	0.704475	6	0.512760	5	2.38	10	0.282912	5	4.96	19	18.6062	9	15.6100	9	38.5026	28
REV 200	2016	0.704553	9	0.512741	7	2.02	14	0.282887	4	4.05	15	18.5801	5	15.6068	5	38.4824	16
REV 201	2016	0.704541	8	0.512741	6	2.01	12	0.282880	4	3.81	13	18.5848	4	15.6087	4	38.4891	12
REV 202	2016	0.704541	7	0.512748	7	2.14	14	0.282881	4	3.87	14	18.5828	5	15.6094	6	38.4888	14
REV 203	2016	0.704568	9	0.512724	6	1.68	11	0.282891	3	4.21	11	18.5860	5	15.6088	5	38.4882	14
Basement	Samples:																
REV 130		0.704376	8	0.512823	9	3.60	18	0.283204	9	15.27	31	18.4561	4	15.5892	4	38.2647	12
SU 11		0.705654	2	0.512601	6	-0.73	12	0.282792	4	0.72	15	18.0431	5	15.5777	6	37.8712	14
SU 112				0.512691	2	1.03	5	0.282834	2	2.19	13						

Quality Assurance Standards:

AGV-2	0.703979	3	0.512783	8	2.82	0.15	0.282971	3	7.00	0.09	18.8656	68	15.6203	11	38.539 (4)	75
	(2)		(1)				(1)				(4)		(4)			
BCR-1	0.704996	8	0.512640	5	0.04	0.13	0.282862	4	3.19	0.13	18.8207	6	15.6371	5	38.7263	14
	(1)		(9)				(1)				(1)		(1)		(1)	

Notes: Errors reported as 2 standard error, and expressed as uncertainty in the last decimal place(s).

Nd isotopes are normalized to a chondritic value of 143 Nd/ 144 Nd = 0.512638. Hf isotopes are normalized to a chondritic value of 176 Hf/ 177 Hf = 0.282772.

For quality assurance standards AGV-2 and BCR-1, numbers in parentheses indicate number of measurements conducted during the course of this study. Uncertainties are 2 SE.

AGV-2 (mean $\pm 2\sigma$): ⁸⁷Sr/⁸⁶Sr = 0.703981 \pm 0.000009, ¹⁴³Nd/¹⁴⁴Nd = 0.512791 \pm 0.000013, ¹⁷⁶Hf/¹⁷⁷Hf = 0.282984 \pm 0.000009, ²⁰⁶Pb/²⁰⁴Pb = 18.8688 \pm .0063, ²⁰⁷Pb/²⁰⁴Pb = 15.6173 \pm 0.0071, ²⁰⁸Pb/²⁰⁴Pb = 38.5443 \pm 0.0135 (Weis et al., 2006; 2007).

BCR-1 (mean $\pm 2\sigma$): ⁸⁷Sr/⁸⁶Sr = 0.705018 \pm 0.000013, ¹⁴³Nd/¹⁴⁴Nd = 0.512638 \pm 0.000006, ¹⁷⁶Hf/¹⁷⁷Hf = 0.282875 \pm 0.000003, ²⁰⁶Pb/²⁰⁴Pb = 18.8225 \pm .00031, ²⁰⁷Pb/²⁰⁴Pb = 15.6363 \pm 0.0033, ²⁰⁸Pb/²⁰⁴Pb = 38.7321 \pm 0.0073 (Weis et al., 2006; 2007).

GEOREM Recommended values for AGV-2 (mean $\pm 2\sigma$): ⁸⁷Sr/⁸⁶Sr = 0.704035 \pm 0.0000155, ¹⁴³Nd/¹⁴⁴Nd = 0.51278 \pm 0.00022, ¹⁷⁶Hf/¹⁷⁷Hf = 0.282978 \pm 0.000011, ²⁰⁶Pb/²⁰⁴Pb = 18.939 \pm .005, ²⁰⁷Pb/²⁰⁴Pb = 15.654 \pm 0.003, ²⁰⁸Pb/²⁰⁴Pb = 38.56 \pm 0.006

GEOREM recommended values BCR-1 (mean $\pm 2\sigma$): ⁸⁷Sr/⁸⁶Sr = 0.705014 \pm 0.0000033, ¹⁴³Nd/¹⁴⁴Nd = 0.512615 \pm 0.000121, ¹⁷⁶Hf/¹⁷⁷Hf = 0.282867 \pm 0.000015, ²⁰⁶Pb/²⁰⁴Pb = 18.813 \pm .009, ²⁰⁷Pb/²⁰⁴Pb = 15.632 \pm 0.006, ²⁰⁸Pb/²⁰⁴Pb = 38.727 \pm 0.032

Table 2:	U-Series da	ata for El	Reven	tador la	vas								
Sample	Eruption	U	2 σ	Th	2 σ	(²³⁸ U/ ²³² Th)	2 σ	(²³⁰ Th/ ²³² Th)	2 SE	(²³⁰ Th/ ²³⁸ U)	2 SE	(²³⁴ U/ ²³⁸ U)	2 SE
	Year	(ppm)		(ppm)									
REV 117	1944	1.00	0.02	4.19	0.05	0.971	0.018	1.048	0.010	1.080	0.023	1.001	0.002
REV 118	1944	1.81	0.02	5.25	0.06	1.047	0.019	1.062	0.011	1.014	0.021	1.000	0.004
REV 125	1976	1.76	0.02	5.26	0.06	1.014	0.019	0.984	0.010	0.970	0.020	1.001	0.003
REV 001	2008	1.46	0.02	4.42	0.06	1.001	0.018	1.042	0.010	1.041	0.022	1.001	0.002
REV 002	2002	1.29	0.02	3.96	0.05	0.985	0.018	1.029	0.010	1.044	0.022	1.000	0.004
REV 003	2002	1.28	0.02	4.11	0.05	0.944	0.017	1.028	0.010	1.089	0.023	1.001	0.003
REV 004	2002	2.03	0.03	5.52	0.07	1.115	0.021	1.003	0.010	0.900	0.019	1.000	0.002
REV 005	2002	2.21	0.03	5.67	0.07	1.181	0.022	1.024	0.011	0.867	0.019	1.002	0.001
REV 121	2002	1.38	0.02	4.06	0.05	1.029	0.019	1.119	0.014	1.088	0.024	1.002	0.003
REV 126	2002	1.90	0.03	5.30	0.06	1.091	0.020	1.036	0.010	0.949	0.020	1.002	0.003
REV 122	2005	1.33	0.02	4.11	0.05	0.982	0.018	1.043	0.011	1.063	0.019	1.003	0.001
REV 127	2007	1.49	0.02	4.70	0.06	0.965	0.018	1.025	0.011	1.063	0.019	1.002	0.001
REV 129	2007	1.53	0.02	4.70	0.06	0.989	0.018	1.065	0.011	1.076	0.023	1.002	0.002
REV 006	2008	1.45	0.02	4.40	0.05	1.001	0.018	1.031	0.010	1.030	0.022	1.001	0.002
REV 123	2008	1.59	0.02	4.66	0.06	1.035	0.019	1.048	0.011	1.012	0.021	1.001	0.002
REV 124	2009	1.51	0.02	4.59	0.06	0.997	0.018	1.071	0.011	1.074	0.022	1.003	0.004
REV 200	2016	1.66	0.02	5.19	0.06	0.968	0.018	0.983	0.010	1.015	0.019	1.004	0.001
REV 201	2016	1.58	0.02	4.94	0.06	0.972	0.018	0.998	0.010	1.026	0.019	1.002	0.001
REV 202	2016	1.58	0.02	5.08	0.06	0.944	0.017	0.979	0.011	1.037	0.019	1.002	0.002
REV 203	2016	1.66	0.02	5.07	0.06	0.995	0.018	0.983	0.010	0.988	0.019	1.002	0.001
Basement	: Samples:												
REV 130		0.83		1.91		1.321							
SU 11		2.08		7.85		0.806							
SU 112		2.63		13.27		0.603							
Quality As	surance Stan	dards:											
BCR-1		1.70	0.02	5.87	0.07	0.878	0.017	0.882	0.010	1.004	0.022	1.004	0.001
RGM-2		5.48	0.08	14.36	0.18	1.158	0.220	1.218	0.010	1.052	0.022	1.004	0.001
									•				~

Notes: activity ratios (denoted by parentheses) were calculated using the following decay constants: $\lambda_{238} = 1.5513 \times 10^{-10} \text{ yr}^{-1}$, $\lambda_{234} = 2.8263 \times 10^{-6} \text{ yr}^{-1}$ ¹, $\lambda_{232} = 4.9475 \times 10^{-11} \text{ yr}^{-1}$, $\lambda_{230} = 9.1577 \times 10^{-6} \text{ yr}^{-1}$

Errors (2 σ or 2 SE) were propagated following standard techniques and include: uncertainty in ²³³U and ²²⁹Th spikes used for isotope dilution and measurement precision for bracketing standards and samples

Recommended values for BCR-2 (mean $\pm 2\sigma$): U = 1.665 \pm 0.051, Th = 5.762 \pm 0.275, (²³⁸U/²³²Th) = 0.883 \pm 0.31, (²³⁰Th/²³²Th) = 0.881 \pm 0.013, (²³⁰Th/²³⁸U) = 0.998 \pm 0.0380 (Scott et al., 2019)

Table 3: Model endmember compositions

⁸⁷ Sr/ ⁸⁶ Sr	ε _{Nd}	Eнf	²⁰⁸ Pb/ ²⁰⁶ Pb	(²³⁰ Th/ ²³² Th)		
0.7041	5.5	9.74	2.053	1.20		
0.7200	-12	-17.4	2.0989	0.706		
Sr 320	Nd 20	Hf 3.7	Pb 11	Th 1.2	La/Yb 10.5	La/Sm 5.13
1300 (1250 -	8.25 (7.5	1.5 (1.25 -	1.8 (1.6-2.0)	0.32 (0.25-0.5)	Models A-C: 19	4.75 (4.5-5)
1350)	- 10)	1.75)			(18-20)	
					Model D: 15	
					Model E: 13 (11.5-14.5)	
	 ⁸⁷Sr/⁸⁶Sr 0.7041 0.7200 Sr 320 1300 (1250 - 1350) 	87Sr/86Sr ε _{Nd} 0.7041 5.5 0.7200 -12 Sr Nd 320 20 1300 (1250 - 1350) 8.25 (7.5 - 10)	$\begin{array}{ccccccc} 8^{87} Sr / ^{86} Sr & & & & & & \\ 0.7041 & 5.5 & & 9.74 \\ 0.7200 & -12 & & -17.4 \\ \\ Sr & & Nd & & Hf \\ 320 & & 20 & & & \\ 1300 (1250 - & & 8.25 (7.5 & & 1.5 (1.25 - \\ 1350) & & -10) & & & 1.75) \\ \end{array}$	87 Sr/ 86 Sr ϵ_{Nd} ϵ_{Hf} 208 Pb/ 206 Pb0.70415.59.742.0530.7200-12-17.42.0989SrNdHfPb320203.7111300 (1250 - 10)8.25 (7.51.5 (1.25 - 1.8 (1.6-2.0))1.8 (1.6-2.0)	87 Sr/ 86 Sr ϵ_{Nd} ϵ_{Hf} 208 Pb/ 206 Pb $(^{230}$ Th/ 232 Th)0.70415.59.742.0531.200.7200-12-17.42.09890.706SrNdHfPbTh320203.7111.21300 (1250 -8.25 (7.5)1.5 (1.25 -1.8 (1.6-2.0)0.32 (0.25-0.5)1350)-10)1.75)1.8 (1.6-2.0)0.32 (0.25-0.5)	87Sr/86Sr ε _{Nd} ε _{Hf} ²⁰⁸ Pb/ ²⁰⁶ Pb (²³⁰ Th/ ²³² Th) 0.7041 5.5 9.74 2.053 1.20 0.7200 -12 -17.4 2.0989 0.706 Sr Nd Hf Pb Th La/Yb 320 20 3.7 11 1.2 10.5 1300 (1250 - 8.25 (7.5 1.5 (1.25 - 1.8 (1.6-2.0) 0.32 (0.25-0.5) Models A-C: 19 (18-20) 1300 (1250 - 8.25 (7.5 1.5 (1.25 - 1.8 (1.6-2.0) 0.32 (0.25-0.5) Models A-C: 19 (18-20) Model D: 15 Model E: 13 (1.5-14.5) 1.5 (1.25 - 1.5 (1.25 - 1.5 (1.25 - 1.5 (1.25 -

Table 1.4: Partition Coefficients														
Partition Coefficients for individual	_						_	_						
	Sr	Nd	Ht	Pb	U	Th	La	Sm	Yb					
Olivine (ol)	0.00019	0.001	0.01	0.0001	0.0001	0.001	0.0004	0.0013	0.0015					
Clinopyroxene (cpx)	0.157	0.28	0.21	0.0102	0.0127	0.013	0.052	0.44	0.64					
Orthopyroxene (opx)	0.0034	0.013	0.01	0.0013	0.00001	0.00001	0.0019	0.063	0.39					
Plagioclase (plg) ⁴	2.1	0.133	0.0038	0.1	0.01	0.01	0.205	0.144	0.0423					
Amphibole (amp)	0.42	0.94	0.705	0.07	0.013	0.017	0.173	1.628	2.191					
Garnet (grt)	0.0099	0.222	0.26	0.00012	0.0058	0.00137	0.024	0.53	24					
Model Partition Coefficients														
A and E (47.5% ol, 18.8% cpx, 9.4% opx, 18.8% plag, 4.5% amp, 1% gt)	0.444	0.150	0.120	0.024	0.005	0.006	0.066	0.253	0.553					
B (41.7% ol, 16.5% cpx, 8.2% opx, 28.8% plag, 3.9% amp, 0.9% gt)	0.648	0.148	0.105	0.033	0.006	0.006	0.083	0.240	0.490					
C (53.3% ol, 21.1% cpx, 10.6% opx, 8.8% plag, 5.1% amp, 1.1% gt)	0.240	0.152	0.134	0.015	0.004	0.005	0.048	0.267	0.616					
D (47% ol, 18.6% cpx, 9.3% opx, 18.6% plag, 4.5% amp, 2% gt)	0.439	0.151	0.121	0.024	0.005	0.006	0.065	0.256	0.790					

³ Binderman and Davis, 2000; Dostal et al., 1983; Dunn and Sen, 1994; Huari et al., 1994; Klein et al., 2000; Mckenzie and O'Nions, 1991; Nandedkar et al., 2016; Prowatke and Klemme, 2006)

¹Hf partition coefficient calculated based on the Zr coefficient of Binderman and Davis, 2000; Yb partition coefficient calculated based on the Y coefficient of Binderman and Davis, 2000.

1376 Figure Captions

1377 **Figure 1.** A) Map showing Reventador in relation to other volcanoes in the NVZ and

1378 important tectonic features such as the Carnegie Ridge, Grijalva Fracture Zone (GFZ), and

- 1379 Chingual-Cosanga-Pallatanga-Puna (CCPP) Shear Zone. Although Reventador is located
- 1380 between the Eastern Cordillera in the main arc and the back-arc, we classify it as a main-
- 1381 arc volcano (see Results). B) Sample locations. Also shown are the Coca River, and the EC
- 1382 45, one of the main roads connecting Quito and the Inter-Andean Valley to the Amazon
- 1383 Basin.

1384

1385 Figure 2. Major-element composition of Reventador samples compared with NVZ main-

arc and back-arc volcanics. A) Wt. % FeO/MgO vs. wt. % SiO₂ after Miyashiro, 1974.

1387 Reventador samples plot near the tholeiitic/calc-alkaline dividing line, while main-arc

1388 volcanics are generally calc-alkaline and alkaline back-arc lavas are characterized by

1389 higher FeO/MgO. **B**) Wt. % SiO₂ vs. wt. % K₂O after Peccerillo and Taylor, 1976.

1390 Reventador samples plot near the medium-high K₂O divide. Main-arc samples have low-

1391 medium K₂O, while back-arc samples have high K₂O (For NVZ data and sources, see

1392 supplementary data – Table S2).

1393

1394 Figure 3. Trace-element compositions of Reventador samples compared with NVZ main-

1395 arc volcanics with wt. % $SiO_2 < 64$ and back-arc volcanics. A) Primitive mantle-

1396 normalized trace-element concentrations and **B**) chondrite-normalized REE concentrations

- 1397 of Reventador samples (Sun and McDonough, 1989; McDonough and Sun, 1995).
- 1398 Reventador samples have traits that typify arc lavas, such as LILE enrichment and HFSE

depletion. In A and B the main-arc field (gray) is the mean value of main-arc volcanics +/-

1400 1 SD (Supplementary data – Table S2). Trace-element concentrations in Reventador

samples are relatively high compared to main arc values, but much lower than Sumaco

- 1402 values, which represent back-arc values (Garrison et al., 2018).
- 1403

1404 **Figure 4.** A) La/Yb vs. Yb. NVZ volcanoes, including Reventador, produce lavas with

1405 high La/Yb, similar to Western Aleutian values, outlined field labeled WA. In contrast,

1406 "typical" arc lavas, such as lavas from the Marianas, outlined field labeled M, have lower

1407 La/Yb and higher Yb concentrations (Elliot et al., 1997; Yogodzinski et al., 2015, and

1408 references therein). **B**) La/Yb vs wt. % SiO₂. **C**) La/Sm vs. wt. % SiO₂.

1409

1410 Figure 5. Sr, Nd, Hf, and Pb isotope ratios of Reventador lavas, other NVZ volcanics, and

1411 potential magma sources, and model endmembers (Hammersley et al., 2022; Harpp and

1412 White, 2001; 2005; Werner et al., 2003; Workman and Hart, 2005; Jackson and Dasgupta,

1413 2008). **A**) ε_{Nd} vs ⁸⁷Sr/⁸⁶Sr. **B**) ²⁰⁸Pb/²⁰⁴Pb vs ²⁰⁶Pb/²⁰⁴Pb. **C**) ²⁰⁷Pb/²⁰⁴Pb vs ²⁰⁶Pb/²⁰⁴Pb. **D**)

1414 E_{Nd} vs E_{Hf} (regional data and sources are available in Supplementary data – Table S2).

- 1422 **Figure 7. A, B, C, D**) ⁸⁷Sr/⁸⁶Sr, ε_{Nd}, ε_{Hf}, and ²⁰⁸Pb/²⁰⁶Pb vs wt. % SiO₂.
- 1423

1424 **Figure 8.** ⁸⁷Sr/⁸⁶Sr, ε_{Nd} , ε_{Hf} , and ²⁰⁸Pb/²⁰⁶Pb vs La/Yb (**A**, **B**, **C**, **D**) and La/Sm with AFC

- 1425 models. A maximum of 20% assimilation accompanied by fractional crystallization of a
- 1426 gabbroic assemblage containing olivine, plagioclase, orhopyroxene, clinopyroxene,
- 1427 amphibole and garnet is required to reproduce the observed data. The models are discussed
- in Section 5.4.5 and parameter values are listed in Tables 3 and 4.
- 1429

1430 **Figure 9.** (²³⁸U/²³²Th) vs (²³⁰Th/²³²Th) showing data from Reventador along with regional

1431 data from Cotopaxi and Nevado de Ruiz (Garrison et al., 2006; Schaffer et al., 1993) and

1432 global arc, MORB and OIB data. Dashed lines show percentages of ²³⁰Th- and ²³⁸U-

- 1433 excesses (Arc data is from Reubi et al., 2014 and References therein. MORB and OIB data
- 1434 from Bourdon et al., 1996; 2005; Goldstein et al., 1989; 1992; 1993; Lundstrom et al.,
- 1435 1999; Peate et al., 2001; Sims et al., 1995; 1999; 2001; 2002; 2008c; 2013b Sturm et al.,
- 1436 2000; Tepley et al., 2004; Zou et al., 2002)
- 1437

```
1438 Figure 10 A, B, C, D, E, F) (<sup>230</sup>Th/<sup>232</sup>Th) vs <sup>87</sup>Sr/<sup>86</sup>Sr, \varepsilon_{Nd}, \varepsilon_{Hf}, <sup>208</sup>Pb/<sup>206</sup>Pb, wt. % SiO<sub>2</sub>,
```

1439 La/Yb, and La/Sm showing Reventador lavas and AFC model results. Numbers indicate

- 1440 the percent crustal assimilant in the magma. A maximum of 20% assimilation is required to
- reproduce the observed data. Model details are discussed in section 5.4.6 and Tables 3 and

1442 4.

1444 **Figure 11**. (230 Th/ 238 U) vs. **A**) wt. % SiO₂, **B**) La/Sm, and **C**) Pb/Ce. The dashed line 1445 shows (230 Th/ 238 U) = 1.

1446

Figure 12. (²³⁸U/²³²Th) vs (²³⁰Th/²³²Th) showing data from Reventador along with model 1447 1448 results. Metasomatism models show the effects of 5 - 10% partial melting of average 1449 EGSC basalt (Kokfeldt et al., 2005) and addition of 0.25 - 1% of these melts to the 1450 depleted mantle. Numbers on the EGSC melt model indicate the percentage partial melting 1451 of the EGSC, while numbers on the depleted mantle + EGSC melt models indicate the percentage of melt added to the depleted mantle. AFC models with $(^{230}\text{Th}/^{232}\text{Th})_0 = 1.20$, 1452 $(^{230}\text{Th}/^{232}\text{Th})_a = 0.706$, $(^{230}\text{Th}/^{238}\text{U})_o = 1.05 - 0.80$, and $(^{230}\text{Th}/^{238}\text{U})_a = 1.1 - 1.3$ are also 1453 1454 shown. AFC models are described in section 5.4.6 and Tables 3 and 4.

1455

1456 Figure 13. A comparison of FD-AFC and EC-AFC results. Endmember compositions and 1457 partition coefficients for crystallization used in both models are given in Tables 3 and 4. A) ϵ_{Nd} vs 87 Sr/ 86 Sr. **B**) 208 Pb/ 206 Pb vs ϵ_{Nd} . **C**) 208 Pb/ 206 Pb vs 87 Sr/ 86 Sr. **D**) ϵ_{Hf} vs ϵ_{Nd} (Both the 1458 1459 FD-AFC and EC-AFC models are plotted in D. However since Nd_o/Nd_a and Hf_o/Hf_a both 1460 equal 0.41, the model trajectories are nearly identical. For further details see section 5.4.7 1461 of the text). For the EC-AFC model, $T_{eq} = 1228^{\circ}C$, and the other thermal parameters were 1462 set according to the standard lower crustal values given in Bohrson and Spera, 2001 (Initial 1463 magma temperature = 1320° C, initial assimilant temperature = 600° C, magma liquidus = 1464 1320°C, assimilant liquidus = 1100°C, assimilant solidus = 900°C, specific heat of the 1465 magma = $1484 \text{ J/(kg} \cdot \text{K})$, specific heat assimilant = $1388 \text{ J/(kg} \cdot \text{K})$, enthalpy of fusion = 1466 369000 J/kg, and enthalpy of crystallization = 354000 J/kg). Additionally, in the EC-AFC

- 1467 model the partition coefficients for assimilation were set to one to facilitate comparison
- 1468 with the FD-AFC results. While the FD-AFC model reproduces the observed trends with
- 1469 10-20% assimilation, the EC-AFC model requires less assimilation, 8-12% (for both
- 1470 models we show the percent of assimilant currently in the magma, while the EC-AFC
- 1471 output shows mass assimilant normalized to the initial mass magma; these numbers differ
- 1472 by up to 1%).

Figure 2

10⁰

 \diamond

60

