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Effectiveness of Attitude Estimation Processing
Approaches in Tolerating Radiation Soft Errors

Tarso Kraemer Sarzi Sartori, Luiz Henrique Laurini, Hassen Fourati, Rodrigo Possamai Bastos

Abstract—This paper investigates and compares the neutron-
induced soft-error tolerance effectiveness of five classical attitude
estimation (AE) processing approaches that are typically embed-
ded in inertial navigation systems of autonomous things. Results
of 14-MeV and thermal neutron radiation testing campaigns
indicate that all the AE approaches – implemented without
protection mechanisms – can be critically perturbed by single
event upsets (SEUs), recovering themselves after a few seconds
if sensors’ measurements are continuously provided. Moreover,
Kalman filter-based AE approaches presented better effective-
nesses in tolerating SEUs than AE based on gradient descent.

Index Terms—Radiation-induced soft errors, attitude estima-
tion algorithms, inertial navigation system.

I. INTRODUCTION

Attitude estimation (AE) algorithms are used to estimated
the attitude (spatial orientation) of an object with respect to a
reference. The attitude estimation involves a two part process:
(1) the estimation of the object’s orientation from on-board
sensors’ measurements, and (2) filtering of noisy measure-
ments [1]. Estimating the attitude from on-board measure-
ments has a long history, and plenty of optimal algorithms have
been developed over the last decades [2]. These AE algorithms
are typically embedded in inertial navigation systems (INSs),
providing real-time attitude to control object’s movements and
maneuvers. INSs have become more and more essential in
the new era of autonomous things, being integrated in objects
such as low-cost drones [3] and nanosatellites [4], cf. Figure
1 in which an application of INS is exemplified. The INS’s
inertial measurement unit (IMU) enables the tracking of ro-
tational and translational movements through MEMS (micro-
electro-mechanical systems) gyroscopes and accelerometers.
For many applications requiring 3D attitude determination, it
is necessary to include the measurements of a third sensor.
MARG (magnetic, angular rate, and gravity) sensors is a
hybrid IMU which incorporates a 3-axis magnetometer [5],
measuring the Earth’s magnetic field, to accomplish this task.
Moreover, the INSs contain analog-to-digital interface circuits,
an on-board processing system, composed by a processor,
program and data memories, and a programmable logic.

In space environments [6], aviation altitudes [7], and also
at ground levels, all the INS components are exposed to
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Figure 1. Abstraction of an INS – embedded in an object (e.g. satellite) –
and its component under test (in this work, the on-board processing system,
considering exclusively the AE algorithm).

radiation-induced effects [8]. Radiation-induced transient ef-
fects in INS components can create transient faults able
to invert memory bits of their circuits – i.e. single event
upsets (SEUs) – or even halt their operation, requiring a
system hardware reboot – i.e. single event functional interrupts
(SEFIs). SEFIs and SEUs are classically considered as soft
single event effects (SEEs) or simply soft errors [9].

Soft errors during the processing of AE algorithms in INSs
can interfere with their responses, failing in properly estimat-
ing the object’s attitude. To the best of our knowledge, only
a few articles briefly discuss radiation effects in INS compo-
nents. Among the related works, Bazzano et al. have evaluated
the reliability of a commercial off-the-shelf (COTS) INS under
proton radiation [10], and Stansberry has characterized a 3-
axis MEMS accelerometer for SEU sensitivity under protons
and heavy ions [11]. Zhi-yong et al. investigated throughout
laboratory experiments the effects of harsh electromagnetic
environment [12] on IMUs, performing statistical analyzes
with the measured data for determining the degree of influence
of these effects on the IMU upsets. Jiang et al. proposes a
secure attitude estimator for autonomous vehicles, validating
the method through single and multiple measurement attacks
simulations [13]. Wang et al. investigates technical challenges
and solutions for inertially stabilized platforms for strategic
navigation systems under hostile environments [14]. In addi-
tion, our previous work [15] has investigated neutron effects
in a classical AE algorithm – the novel quaternion Kalman
filter (NQKF) – underlining the SEFI contribution on the total
number of radiation-induced critical failures.

Unlike aforementioned prior works, this article compares
the effectiveness of AE processing approaches under neutron
radiation by taking into account four classical AE algorithms:
(1) NQKF; (2) Quaternion-based extended Kalman filter
(EKF); (3) Quaternion-based indirect Kalman filter (IKF); and
(4) Quaternion-based gradient descent (Gradient). Different
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computing strategies, considering distinct dataset sizes and 14-
MeV and thermal neutron fluxes, were evaluated.

II. CASE-STUDY ATTITUDE ESTIMATION (AE) MODELS

An AE algorithm is used to estimate the attitude or orien-
tation of an object with respect to a known reference, based
on the on-board sensors’ measurements. Equation 1 shows a
simplified model for the sensors. ω = ω0 + bω + vω

a = CB
N [q] · g + va

m = CB
N [q] · h+ vm

(1)

These three equations describe respectively the gyroscope,
accelerometer, and magnetometer measurements. In fact, if the
initial orientation is given, only the gyroscope information
should be enough to estimate the attitude. However, due to
the gyroscope bias, bω added to the real angular velocity ω0,
and integration errors [16], the estimation error increases over
time. To compensate these errors, the other sensors are used.

The attitude of an object can be represented through dif-
ferent forms. Euler angles ϕ, θ, ψ are the most simple
representation, having an intuitive physical interpretation com-
monly referred to as roll, pitch, and yaw, respectively [17]
(cf. Figure 1). Nevertheless, the Euler angles are susceptible
to singularity problems [18], demanding more computational
efforts if dynamically used on the AE. Another well-known
AE representation, not susceptible to singularity problems, is
the attitude quaternion q that is a normalized hypercomplex
vector with 4 components [2]:

q = [e q4]
T = [q1 q2 q3 q4]

T

where e and q4 represent respectively the complex and real
parts of the quaternion. The rotation matrix CB

N [q] in equation
1 is a nonlinear function of the attitude quaternion:

CN
B [q] = (q24 − eTe)I3 + 2eeT − 2qS[e]

where, I3 and S[e] are respectively an identity matrix (3 ×
3) and a skew-symmetric matrix, function of the quaternion
complex part. The rotation matrix is capable of transforming
a vector defined in the navigation frame (N) (such as the
gravity g and the Earth’s magnetic field h) to the body
frame (B). Other important parameters to take into account
are the sensors’ measurement noises, represented by vω , va,
and vm in equation 1, inherent to each sensor. In order to
filter such noises and combine the sensors data to estimate
the attitude, many different approaches have been proposed.
One well-known approach is the Kalman filter (KF), which
provides a recursive solution and less computational efforts
for the method of least squares [19] for linear systems. The
KF algorithm assumes the sensor’s noises follow a Gaussian
normal distribution with zero mean and a determined standard
deviation, depending on the sensors. The KF is then designed
to provide sequential quaternion estimates that are minimum-
variance [2], following the schema shown in Figure 2. In
Figure 2, the filter is firstly initialized with a guess of the
state of the system x0/0, that in the case of this work is just

Figure 2. Kalman filter algorithm schema for AE.

the quaternion q, and an error covariance matrix P0/0, which
is an estimate of the error in the filter estimation. Further,
the filter makes a prediction (xk/k-1, Pk/k-1) in the iteration k
using the physical model of the system, which in the case
of AE can be based on the angular velocity provided by
the gyroscopes. Finally, the predictions are updated using
another set of sensors’ measurements, such as acceleration
(accelerometer) and magnetic field (magnetometer), generating
the estimates xk/k and Pk/k that will feed the algorithm in the
next iteration.

The four AE algorithms assessed in this work are:

• EKF: the EKF is one of the most applied algorithms
for real-time spacecraft AE [1] as they are already well-
established [20]. Since the KF is designed for linear
systems, it is necessary to linearize the measurement
equations (accelerometer and magnetometer in equation
1) to properly use it for the attitude quaternion estimation.

• NQKF: the linearization necessary for the EKF algorithm
can provoke undesirable effects, such as sensitivity to ini-
tial conditions and an increase in the computational load.
For dealing with them, Choukroun, et al. in [2] developed
a novel algorithm, presenting a pseudo-measurement lin-
ear equation to be used with the KF, eliminating the
linearization procedure and being less sensitive to initial
AE errors.

• IKF: Suh Soo in [16] proposed an adaptive KF approach
to compensate external accelerations (other than gravity).
Instead of estimating the quaternions, they estimate the
attitude quaternion error, function of the gyroscope bias
and noise, and then convert into quaternions.

• Gradient: Madgwick in [21] proposed a novel AE algo-
rithm using the gradient descent, an iterative optimization
algorithm, to minimize a cost function in terms of the
attitude quaternion. The proposed approach is recursive
as well as the traditional KF, but is less computationally
costly, achieving similar degrees of precision.

The KF based algorithms as well as the Gradient algorithm
possess some parameters that need to be adjusted according
to the respective sensors’ noises. For the KF, it is necessary to
set three covariance matrices, one for each sensor being used
(gyroscope, accelerometer, and magnetometer), based on the
standard deviation of the sensors’ measurement noise. For the
Gradient algorithm, a parameter called β (cf. [5]), representing
the magnitude of the gyroscope measurement error, needs also
to be tuned prior operation.
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III. INPUT DATA SETS TO TEST THE AE APPROACHES

Two different input data sets were generated to test each
case-study AE algorithm (cf. section II) processing under
radiation. Input vectors with three components (3 × 1) con-
stitute the input data sets that represent indeed the sensors’
measurements.

The first input data set contains 1000 input vectors com-
posed of: (1) the angular velocities, calculated based on the
model implemented in [2]; (2) the acceleration, modeled as
constant vectors attached to gravity (1 g); and (3) the magnetic
field, generated for the latitude and longitude of Grenoble
(France). The acceleration- and magnetic field-related input
vectors were defined regarding the ground fixed frame N. The
CB

N [q] matrix were used to transfer them to the object’s body
fixed frame B emulated in this work (cf. section II). The sen-
sors’ measurement sampling times were specified considering
0.01 s, therefore the emulated total time of the input data set
of 1000 input vectors per sensor was 10 s. Additionally, the
sensors’ noise were defined as a white Gaussian noise with
a standard deviation of 0.03 and mean 0. The second input
data set is composed of 333 input vectors with the same basic
characteristics described for the input data set of 1000 input
vectors, excepting the model used for calculating the three
components of the input vectors [16].

The case-study AE algorithm initially executes the input
data set’s first input vector, generating a corresponding output
vector (i.e. an case-study AE algorithm’s quaternion), and so
on for the next input vectors. Thereby, as the input data sets
contain 1000 and 333 input vectors, output data sets of 1000
and 333 output vectors are generated respectively. The case-
study AE processing approaches were named according to
the AE algorithm’s acronyms, i.e EKF, IKF, Gradient, and
NQKF that executed input data sets of 333 input vectors, and
1000 NQKF that executed input data set of 1000 input vectors.

IV. ASSESSMENT OF AE APPROACHES UNDER NEUTRONS

A. Neutron Radiation Test Set-Ups

In order to assess the effectiveness of the case-study AE
processing approaches in tolerating soft errors, the processing
system abstracted in Figure 1 was implemented in a Raspberry
Pi 4 Model B board, herein referred as the system under
test (SUT), which has a synchronous dynamic random-access
memory (SDRAM) and an 1.5 GHz 64-bit quad-core Arm
Cortex-A72 processor. The operating system (OS) installed
on the SUT was the 32-bit Raspberry Pi OS Lite . The AE
algorithms were implemented in C/C++ language and stored
along with the input data sets in an SD card.

The SUT that ran the case-study AE algorithms was exposed
to neutrons in four different radiation testing campaigns.
The first and second campaigns were performed in July and
August 2021 at the Institute Laue-Langevin (ILL) in Grenoble
(France) by using the thermal and epi-thermal neutron irradi-
ation station (TENIS) that generates a neutron beam in a wide
spectrum of energy, ranging from 10 meV to 10 MeV but with
a large component in the thermal region (approximately 99 %,
corresponding to the range from 20 meV to 1 eV). Figure
3 shows the SUT (2 GB of SDRAM) inside the radiation

Figure 3. SUT (Raspberry Pi board) under the neutron beam at the ILL.

Neutron Generator Ethernet Cable Raspberry Pi

Figure 4. SUT (Raspberry Pi board) under the neutron generator at the LPSC.

chamber at the ILL’s TENIS facility. The flux estimation at
the ILL in July 2021 was 1.9 · 109 neutrons / cm2 / s at the
beam center, having the nuclear reactor operating in 43 MW.
For the second campaign in August 2021, the flux estimation
was 2.4 · 109 neutrons / cm2 / s (nuclear reactor power in 55
MW). In July campaign, the SUT was placed in a position
where the estimated flux was around 1.0 · 107 neutrons / cm2

/ s, while in August campaign the SUT was moved outside
the window characterized with a minimum flux of 1.2 · 107

neutrons / cm2 / s due to the high number of SEFIs initially
observed. Hence, the SUT in August campaign was exposed
to a residual thermal neutron flux.

The third and fourth campaigns were performed in Febru-
ary and July 2022 through the 14-MeV neutron genera-
tor GENEPI2 at the LPSC’s GENESIS facility in Grenoble
(France) [22]. Figure 4 shows the SUT (4 GB of SDRAM)
inside the neutron generator chamber

Figure 5 depicts the test set-up used in the neutron radi-
ation campaigns. Another Raspberry Pi, herein the control
computer (CC) outside the neutron chamber, was applied to
send commands, receive data, and monitor the experiment.
The communication between the CC and SUT was made by
secure shell (SSH) protocol via an Ethernet cable. For the ILL
campaigns, the algorithms and data sets were stored in a SD
card connected to the SUT via an USB-SD adapter placed
outside the radiation chamber, while for the LPSC campaigns
they were stored in the SD card of the CC, which was in
charge of programming the SUT over Ethernet by using the
pre-execution environment (PXE) protocol. Hence, both SD
cards were not exposed to radiation effects. In all campaigns,
the input data set was loaded once – from the SD card to a
first-in-first-out (FIFO) buffer on the data memory (SDRAM)
– before the beginning of the case-study AE algorithm’s
execution. Then, in the ILL campaigns, for each input vector,
the case-study AE algorithm produced an output vector that
was immediately written into the program memory. Otherwise,
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Figure 5. Test set-up used in the neutron radiation testing campaigns.

in the LPSC campaigns, right after each output vector was
calculated, it was stored in another FIFO buffer on the data
memory. Only after the entire execution of the input data
set, the output data set stored in the FIFO buffer was thus
sent to the CC’s SD card. Classical checkers (checksum and
watchdog) monitoring communication, program memory, and
OS resources were implemented and configured to make the
process of restarting the SUT in case of communication loss
more autonomous as well as to identify SEUs in the FIFO
buffers storing the input and output vectors and during the
processing of the case-study AE algorithm.

B. Hypotheses of Radiation-induced Failures in the AE

Simulations were performed beforehand to generate the
case-study AE algorithm’s output vectors, i.e. the AE quater-
nions that are indeed the golden reference data/results as
they were calculated by the AE algorithm via simulation
without any radiation effect. Otherwise, the radiation testing
data/results are the AE quaternions calculated in the SUT
by the AE algorithm facing the neutron flux effects. Every
AE algorithm’s execution is defined herein as a run, i.e. the
complete execution of either 1000 input vectors for the first
case-study input-data set or 333 for the second one.

For the sake of making the results of the radiation testing
campaigns more intuitive, the radiation testing data were
converted into Euler angles afterward, adopting as rotation
sequence ψ, θ, ϕ (i.e. Yaw-Pitch-Roll). The Euler angles’
mean absolute error (MAE) between the radiation testing data
and the golden reference data were also calculated after the
campaigns through the following equation:

MAE =
1

n

n∑
i=1

|yirad
− yi| (2)

in which n is the number of input vectors for a specific run,
yi is the respective golden reference data, and yirad

is the
Euler angle calculated considering the radiation testing data.
We adopted 1 degree as the Euler angle’s MAE threshold
in order to classify different hypotheses of radiation-induced
failures in the AE processing system:

• No failure: the result of the AE algorithm does not differ
from the golden reference and the run is complete, e.g.

the AE algorithm correctly computes the entire input data
set;

• Tolerable failure: the run is complete but a SEU-induced
mismatch between the radiation testing data/results and
the golden reference is observed and the Euler angles’
MAEs are lesser than the threshold stipulated;

• Critical failure:

– Mismatch and complete run: a SEU causes a
mismatch between radiation testing data/results and
the golden reference, being the Euler angles’ MAEs
greater than the threshold stipulated, however the
input data set is fully processed;

– Incomplete run: a SEFI stops the AE algorithm
during the input data set processing, however a
mismatch between the radiation testing data/results
and the golden reference is not observed before the
interruption;

– Mismatch and incomplete run: a SEFI stops the AE
algorithm during the input data set processing and a
mismatch between the radiation testing data/results
and the golden reference is observed before the
interruption.

• Processing failure: it is either a tolerable failure or a
critical failure resulting in a mismatch and complete run,
however the SEU occurs in the operations that make the
processing of the AE algorithm. Hence, tolerable and
critical failures that are induced by SEUs in the FIFO
buffers (used to store the input and output vectors) are
not considered processing failures.

C. Computing Strategies Applied to Assess AE Approaches

Three different computing strategies for the case-study AE
algorithms were assessed during the radiation testing cam-
paigns. Figure 6 abstracts these computing strategies that were
defined considering the four cores of the SUT:

• Strategy 1: run three independent and redundant pro-
cesses of the case-study AE algorithm in three different
cores at the same time, i.e. the same case-study AE
algorithm was separately executed at the same time by
core 1, 2, and 3, providing thus three output data sets that
are equal if no failure was induced by the radiation;

• Strategy 2: run a single process of the case-study AE
algorithm in a core x determined by the OS, besides
running other four processes of four similar algorithms
at the same time in order to increase the amount of
computational work that the case-study AE algorithm’s
processing system (SUT) performs (i.e. increase the com-
puting system’s load average). For example, the case-
study AE algorithm was executed in core 1 for a while,
after in core 3 or another in function of the OS’s process
management;

• Strategy 3: likewise strategy 2, run a single process of
the case-study AE algorithm in a core y determined by
the OS, however no other processes of similar algorithms
are running at the same time.
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Table I
RADIATION TESTING RESULTS FOR THE THREE CAMPAIGNS CARRIED OUT AT THE ILL (THERMAL NEUTRONS) AND LPSC (14-MEV NEUTRONS).

Campaign Processing
Approach

(based on the
AE algorithms)

Irradiation
Time Critical Failures Tolerable

Failures
Number

of
runs

Runs
per

hour

Average
Flux Fluence Cross

Section FIT Beam
Energy

[ h ]

Number of
mismatches

and incomplete
runs

Number of
incomplete

runs

Number of
mismatches

and complete
runs

[ 105
neutrons/
cm2/s ]

[ 1010
neutrons/
cm2 ]

[ 10−10

cm2 ]
[ Failures/
109h ] [ eV ]

July
2021
(ILL)

EKF 58.85 0 814 0 1 2696 45.8

100

211.86 3.84 35.27

20m to 1

1000 NQKF 7.58 0 105 0 0 175 23.1 27.29 3.85 35.32
NQKF 57.97 1 1332 0 0 2414 41.6 208.69 6.39 58.64

IKF 56.9 0 839 0 0 1989 35.0 204.84 4.10 37.60
Gradient 57.76 2 1002 1 0 3719 64.4 207.94 4.83 44.37

August
2021
(ILL)

EKF 38.86 0 998 0 0 1690 43.5

120

167.88 5.94 54.57
1000 NQKF 41.18 0 1021 0 0 1081 26.3 177.90 5.74 52.69

NQKF 38.61 0 989 0 0 1561 40.4 166.80 5.93 54.43
IKF 39.03 4 974 0 0 1386 35.5 168.61 5.80 53.25

Gradient 37.76 1 1017 0 0 2023 53.6 163.12 6.24 57.29

February
2022

(LPSC)

EKF 15.17 0 4 1 2 554 36.5

4.14

2.26 2.21 20.28

14M

1000 NQKF 13.9 0 6 1 0 1430 102.9 2.07 3.37 30.98
NQKF 13.09 0 6 0 0 3453 263.8 1.95 3.07 28.20

IKF 13.92 0 10 0 3 1189 85.4 2.08 4.81 44.20
Gradient 12.76 0 4 0 0 2931 229.7 1.90 2.10 19.29

July
2022

(LPSC)

EKF 37.26 0 11 1 1 1593 42.8

4.27

5.73 2.10 19.23
1000 NQKF 39.6 0 25 3 4 5336 134.7 6.09 4.60 42.23

NQKF 39.59 0 24 4 3 14382 363.3 6.09 4.60 42.24
IKF 39.61 0 10 1 3 4400 111.1 6.09 1.81 16.58

Gradient 38.39 0 15 3 0 12260 319.4 5.90 3.05 28.00

Figure 6. Different computing strategies implemented for testing the AE
approaches under neutron radiation effects.

D. Cross Sections and Failure in Time of AE Approaches

Table I summarizes the results for the four radiation cam-
paigns performed. The cross section for each AE approach
was obtained dividing the number of critical failures by the
fluence (irradiation time × average flux). The failure in time
(FIT) was calculated by multiplying the cross section by the
14-MeV neutron flux at commercial airplane altitude of 40,000
ft (around 91.8 neutrons / cm2 / h [23]). Note that for the FIT
results of thermal neutron radiation campaigns at the ILL, we
also used the aforementioned neutron flux as inside an airliner
the thermal neutron flux can be around one to two times greater
than high-energy neutron flux (greater than 10 MeV) [24].

Table I also highlights that only a few number of runs
presented processing failures, mostly noticed in the LPSC
campaigns as much higher fluxes were applied in the ILL cam-
paigns, generating more SEFIs that prevent the AE processing
approaches to fully compute the input data set. Other factors
can also explain the low number of processing failures such
as the error detection and correction codes integrated on the
Arm Cortex-A72 of the SUT and its cache memories. Actually,
whenever an error is detected and cannot be corrected, the
cache line is evicted, the error is reported in a register and,
in the case of the L1 data cache, causes a ”data abort” [25].
Moreover, the Arm Cortex-A72 also has error correction codes
for the data coming from the SDRAM, further mitigating the
number of failures that could be observed as it would correct
at least a single bit of word that was affected by the radiation.

1000_NQKF EKF Gradient IKF NQKF
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2 (33%)

4 (100%)

1 (14%)

4 (57%)

4 (50%)

4 (67%) 6 (86%)

3 (43%)

Critical processing failures
Tolerable processing failures

Figure 7. Summary of the processing failures observed in the four radiation
campaigns for the case-study AE processing approaches tested.

E. Processing Failures in AE Approaches

Figure 7 shows a summary of the processing failures
observed in all the four campaigns for each AE approach.
The July-2022 campaign presented the highest numbers of
processing failures due to the longer irradiation time compared
to the February-2022 campaign (cf. Table I), thereby they are
predominant in Figure 7.

Figure 7 also shows the proportion of tolerable processing
failures and critical processing failures for each case-study
AE processing approach. Note that the processing failures
observed in the Gradient approach were all critical processing
failures, unlike the other AE approaches that report also
tolerable processing failures. The IKF approach presented
the highest proportion of tolerable processing failures, which
indicate that the operations in the processing of the IKF
algorithm were disturbed by SEUs, however the disturbance
was either not enough to make the IKF algorithm to diverge or
the SEU effect was rapidly mitigated, i.e. the IKF algorithm
could quickly recover itself, having Euler angles’ MAEs below
the threshold of 1 degree specified (cf. subsection IV-B).
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F. Critical Processing Failures in AE Approaches

Figures 8, 9, and 10 show valuable experimental findings
regarding runs that presented critical processing failures, i.e.
significant differences between the radiation-testing data/re-
sults and the golden reference. Figure 8 shows the response
of the 1000 NQKF approach in the February-2022 campaign.
In orange the golden reference data in form of Euler angles
(response outside the radiation) is represented, and in blue the
radiation testing data of the significant failure scenario (re-
sponse under radiation). Beside the approach response graphs,
the absolute error between the golden and under radiation
reference data and the MAE are represented in green and
red respectively. The most probable hypothesis is a SEU
effect during the computation of the 408th input vector of
the input data set, considerably persisting during about 300
input vectors. The MAE for the roll (ϕ), pitch (θ), and yaw
(ψ) angles are 95, 9.4, and 15.6 degrees respectively, and the
absolute errors reached about 300, 95, and 225 degrees for the
respective three angles, considering the peaks. It is important
to note that an error of 300 degrees is equivalent to an error
of -60 degrees, considering the range of 360 degrees of the
trigonometric circle. However, the metric used in this work
is the Euler angle’s MAE (cf. subsection IV-B) that purely
considers the absolute difference between the golden Euler
angles and the AE approach responses under radiation. The
input data set used in the 1000 NQKF approach considers
sensors with a sampling time of 0.01 seconds, i.e. the sensors
provide 100 input vectors per second. Therefore, considering
a shorter computation time than the sensors’ sampling time,
the SEU effect would have remained for about 3 seconds as
it persisted for around 300 input vectors. Even though the AE
errors in the 1000 NQKF approach response were high, the
1000 NQKF algorithm could rapidly follow the right response
using the next input vectors.

Figure 9 shows a critical processing failure obtained in the
July-2022 campaign for the IKF approach. Probably a SEU
occurred during the computation of the 108th input vector
reflecting a high peak in Euler angle ψ, and remaining until the
135th input vector. The Euler angles’ MAEs were 0.2, 0.075,
and 7.4 degrees for ϕ, θ, and ψ respectively. As this input data
set assumes a sampling time of 0.1 seconds for the sensors,
making the same assumptions as in the previous analysis, the
SEU effect would have remained about 2.7 seconds, presenting
a high absolute error peak of around 270 degrees in ψ.

Finally, Figure 10 presents a critical processing failure
observed on the Gradient approach in the July-2022 campaign.
Probably a SEU disturbed the processing of 168th input vector,
and the Gradient algorithm could not recover itself until the
end of the input data set, showing a delayed behavior in
relation to the golden reference data. On the other hand, the
response presents a tendency of recovery as the absolute error
tends slowly to zero. The Euler angles’ MAEs in this case
were 37.5, 19, and 22.4 degrees for ϕ, θ, and ψ respectively.

In general, regarding all KF-based AE processing ap-
proaches tested, when the input data set is completely com-
puted and a processing failure occurred, the KF-based AE
algorithm rapidly recover themselves to their ideal responses.

Figure 8. Radiation testing results of Euler angles being significantly per-
turbed by a critical processing failure (SEU-induced mismatch and complete
run) during the 1000 NQKF approach processing in February-2022 campaign.

Figure 9. Radiation testing results of Euler angles being significantly per-
turbed by a critical processing failure (SEU-induced mismatch and complete
run) during the IKF approach processing in July-2022 campaign.

This is probably due to the recursive and adaptive nature of
KF algorithms. Besides the estimation of the attitude based
on the previous responses, the KF algorithm also relies on
information from multiple sensors. Assuming the measure-
ments are continuously available, the KF adapts its internal
gains based on the confidence level on past estimates and
current measurements, improving the AE response over time.
Otherwise, the processing failures obtained in the Gradient
approach were all critical and some of them, such as the run
in figure 10, could not completely recover itself until the end
of the input data set. However, we underline both the KF-based
and Gradient AE processing approaches need some tuned
parameters according to the characteristics of the sensors (cf.
section II). When a SEU disturbs the AE approach processing,
if the sensors’ measurements are reliable and continuously
available, the calibration of these AE approaches’ parameters
is fundamental for improving the algorithms’ convergence.

G. Assessment of AE approaches in Computing Strategies

In order to compare the AE processing approaches running
in different computing strategies, we considered the classical
metrics of central processing unit (CPU) usage, load average,
and computation time. Furthermore, we focused on radiation-
testing data/results obtained in the LPSC campaigns for Strate-
gies 1 and 2 as they presented most processing failures and
they were exposed to similar average neutron fluxes (cf. Table
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Figure 10. Radiation testing results of Euler angles being significantly per-
turbed by a critical processing failure (SEU-induced mismatch and complete
run) during the Gradient approach processing in July-2022 campaign.

I). Table II summarizes the results considering the different
computing strategies tested in the LPSC campaigns.

The CPU usage is defined as the ratio between the time
spent by the processor on one or more processes and the
time interval measured. The value ranges from 0%, when
the CPU time is not used by the processes and N × 100%
when the CPU is fully utilized, with N being the number
of processing cores (SUT’s CPU has four cores). Observe in
Table II that the average CPU usages were similar among
the processes related to the case-study AE algorithms within
the same strategy and different regarding the other strategy.
For example, the Gradient approach in Strategy 1 had an
average CPU usage of 10.05 %, similar to the EKF in the
same strategy but very different from the same approach in
Strategy 2 (41.16%). The normalized load average in Table
II was obtained averaging all system processes running or
waiting for the processor availability during 15 minutes of
measurements, and normalized by the SUT’s number of cores.
Strategy 1 executes three times more processes in parallel
when comparing with Strategy 2, consequently the average
CPU usage for each process was reduced, whereas the system
load average was increased. Although the number of processes
in parallel in Strategy 1 was higher, the number of runs was
lower due to the overload in comparison with Strategy 2.
Hence, higher numbers of failures induced by SEUs in the
FIFO buffer (used for storing output vectors) and of processing
failures were observed (cf. column ”Total” in Table II).

Figure 11 shows the average computation time of each input
vector and the rates of processing failures and critical process-
ing failures for each one of the AE processing approaches in
Strategies 1 and 2 in the July-2022 campaign. The rate of
critical processing failures and the rate of processing failures
were obtained respectively dividing the number of critical pro-
cessing failures and the number of processing failures (critical
+ tolerable) by the irradiation time of each AE approach for
Strategies 1 and 2 tested in July 2022. The computation time
was calculated dividing the exposition time of the AE approach
divided by the number of input vectors processed (number
of runs × 333) in each strategy for the same campaign.
The EKF approach presented the highest computation time
in both computing strategies, whereas the NQKF the lowest
one. The highest rates of critical processing failures were
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Figure 11. Rate of processing failures, rate of critical processing failures,
and the average computation time of each input vector for each of the AE
approach in Strategies 1 and 2 for the July-2022 campaign.

observed in the NQKF and Gradient approaches in Strategy 2.
Actually, according to Figure 7, in all campaigns when a SEU
disturbed the processing of the Gradient approach, it provoked
a critical processing failure. The KF-based approaches EKF
and IKF showed better results for both Strategy 1 and 2 and
for the rates of critical processing failures and processing
failures. More specifically, the IKF presented a better results
regarding computation time and rates of processing failures
compared with the other AE approaches. In Strategy 1, the IKF
provided the highest rate of processing failures. Nevertheless,
all processing failures were tolerable and the rate of critical
processing failures was zero. In Strategy 2, the IKF has one
of the lowest rates of processing failures. These observations
agree with the data in Figure 7, showing that the IKF approach
has the highest percentage of tolerable processing failures in
relation to the other AE approaches.

V. CONCLUSIONS

This work implemented, tested, and compared five AE pro-
cessing approaches through four different radiation campaigns
(thermal and 14-MeV neutrons). Three different computing
processing strategies were also used for assessing the ef-
fectiveness of the AE approaches in tolerating SEU effects,
essentially varying the SUT’s CPU usage and load average.
Strategy 2 (cf. subsection IV-C) proved to be more suitable
for testing the AE approaches, producing a higher number
of runs and failures within a shorter irradiation time. The
different levels of fault tolerance observed among the different
strategies are explained for instance by the time the AE
algorithm takes to execute an input data set, the number of
voluntary and involuntary context switches (able to cause more
cache invalidation), the time spent executing kernel threads.
Compared with the AE approach based on gradient descent,
KF-based AE approaches showed better results regarding
tolerable and critical processing failures, being able in all
cases to recover themselves after a few seconds. This is
probably caused by the KF’s adaptive nature, which relies on
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Table II
SUMMARY OF PROCESSING FAILURES OBSERVED IN FEBRUARY-2022 AND JULY-2022 CAMPAIGNS AND SUT’S CPU METRICS FOR STRATEGIES 1 & 2.

Strategy AE Processing
Approach

Irradiation
time [h]

Number
of Runs

Failures Average
CPU load

[%/process]

Standard
deviation of

the CPU load
[%/process]

Normalized
load

average

Normalized
overload

[%]
Processing failures In

output
fifos

TotalCritical
processing

failures

Tolerable
processing

failures

Strategy 1

1000 NQKF 26.99 1985 0 4 0 4 9.96 3.92

6.15 515
EKF 24.19 541 1 1 1 3 10.13 4.73

Gradient 25.91 4493 0 0 2 2 10.05 4.41
IKF 26.57 1585 0 3 0 3 10.00 4.17

NQKF 27.02 5359 1 2 4 7 9.95 4.04

Strategy 2

1000 NQKF 25.18 4518 4 0 14 18 42.76 11.47

2.46 146
EKF 24.50 1373 0 0 1 1 42.74 11.25

Gradient 24.72 10456 3 0 0 3 41.16 12.15
IKF 25.53 3767 1 3 2 6 42.74 10.81

NQKF 25.22 12235 3 1 9 13 41.68 12.47

multiple sensors’ measurements, adjusting its internal gains
based on its past estimate and current measurements. All
processing failures observed on the Gradient approach were
critical processing failures, and in some examples it could
not recover itself until the end of the input dataset. On the
other hand, the effectiveness of AE processing approaches
can still be improved by optimally tuning the AE algorithms’
parameters based on the sensors’ noises. Among the KF-
based approached, the EKF and IKF presented the lowest
rates of critical processing failures, being the IKF the one that
presented the best results for computation time and processing
failures.
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