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ABSTRACT
Deep learning approaches have allowed for a great leap in the per-
formances of visual saliencymodels. However, the lack of annotated
data remains the main challenge for visual saliency prediction. In
this paper, we leverage image inpainting methods to synthesize
augmented images, which is done by completing the weakly-salient
areas, and propose a Visual Saliency guided Generative Adversarial
Network (VSGAN) that contains a dual encoder to extract multi-
scale features and a generator equipped with visual saliency guided
modulation to synthesize high fidelity and diversity results. Ex-
tensive experimental results show that our method outperforms
state-of-the-art methods for image inpainting on visual saliency
datasets, and demonstrate the effectiveness of VSGAN for visual
saliency data augmentation both quantitatively and qualitatively.

CCS CONCEPTS
• Computing methodologies → Interest point and salient region
detections.
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1 INTRODUCTION
Visual saliency prediction aims to infer which areas of an image
are attractive to human eyes. It is widely used in the fields of image
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compression, cognition studies and image quality assessment [20].
In the context of multimedia data, understanding visual attention
is a key step in understanding user experience, thus highlighting
the need for efficient and reliable visual saliency models. In the
last decade, deep learning based approaches have shown great
advantages over conventional methods. Compared to the extraction
of hand-craft features following biological evidence, data-driven
methods [1] show superior performance and robustness, especially
when dealing with higher-order information.

Nevertheless, such methods need high-volume datasets, and the
expensive cost of eye-tracking experiments causes existing public
datasets to remain of a limited sizes, and often focus on particular
styles [3].

One of the most popular methods proposed to alleviate this bur-
den of gathering eye-tracking data is to pretrain a visual saliency
network on a mouse-tracking dataset [8], which is then fine-tuned
on smaller eye-tracking datasets. However, a form of bias may be
introduced due to the domain shift between the two data modal-
ities, culminating in suboptimal performances with regard to the
training datasets size. Another solution, used in numerous domains
of computer vision is data augmentation, i.e. the addition of altered
or transformed images in the dataset. This includes classic ways,
such as shape or color transforms, as well as novel methods relying
on Generative Adversarial Networks (GANs) [24, 25].

As for visual saliency prediction, classic ways for data augmen-
tation have been studied in a few works. Kim and Milabfar [12]
studied the effect of noise images and proposed a model using noisy
images which demonstrated the negative influences. Tilke et al. [9]
investigated the use of different resolutions on the images and made
a comparison for gaze distribution. Che et al. [3] found that some
augmentation methods are not label-preserving, such as crops, by
doing a fine-grained analysis of human gaze with different trans-
formations. However, these methods may have potential effects on
visual attention. Indeed, images and their corresponding saliency
maps are intrinsically related, and altering the image may also al-
ter the associated map. To overcome it, we propose a novel data
augmentation method based on image inpainting to preserve the
salient regions of an image, and generate diverse backgrounds in
weakly-salient regions.
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Compared to classic data augmentation techniques, our method
avoids modifying the salient areas of the images, allowing for the
preservation of the original saliencymap. The diversity in the gener-
ated weakly-salient areas also allows for large-scale data augments,
which further allow for improvements in visual saliency models
when trained on this data. More qualitative and quantitative analy-
sis will be further explored in the experimental part. Overall, we
propose the following three contributions:

• Visual Saliency guided GAN (VSGAN), a new inpainting net-
work formed with a dual encoder and a generator equipped
with visual saliency guided modulation.

• A comparison with exiting image inpainting networks show-
ing that VSGAN achieves better outcomes on visual saliency
datasets.

• An evaluation of the significant improvement allowed by
VSGAN data augmentation when applied to visual saliency
modeling.

2 METHODOLOGY
In order to alleviate the burden of gathering eye-tracking data, we
propose a Visual Saliency guided Generative Adversarial Network
(VSGAN) as a data augmentation tool, where the overall pipeline is
illustrated in Figure 1 (top). VSGAN consists of a dual encoder to
generate the content vector c when given salient regions as input,
a mask guided modulation to dynamically modulate the content
vector, and a generator to synthesize the inpainted results. Note that
we use an additional random vector z to enable diverse results. The
detailed structure of each module is elaborated in the subsections
below.

2.1 Dual encoder
We feed the partial image and the corresponding mask into the
dual encoder to produce a content vector c. The dual encoder is
composed of a local and global branch, as depicted in Figure 1 (left).
For the local branch, a series of convolution blocks with a convolu-
tional layer and a 2x downsampling layer are employed, resulting in
feature maps with multiple levels [𝑓 1

𝑙𝑜𝑐
, 𝑓 2
𝑙𝑜𝑐

, ..., 𝑓
𝑁𝑙𝑜𝑐

𝑙𝑜𝑐
]. We propose

additional transformer blocks [5] to obtain extra context since con-
volution lacks the ability to capture long-range information. The
transformer blocks are applied on the higher levels of the encoder,
producing feature maps [𝑓 1

𝑔𝑙𝑏
, 𝑓 2
𝑔𝑙𝑏

, ..., 𝑓
𝑁𝑔𝑙𝑏

𝑔𝑙𝑏
]. We fuse the feature

maps from each branch via element-wise multiplication. The mul-
tiplied features will be sent to the generator by skip connections.
In the last layer, the feature maps are flattened into vectors respec-
tively in both branches, which are then concatenated and processed
by a linear layer to generate content vector c.

2.2 Mask guided modulation
As shown in Figure 1 (right), we regard the corresponding salient
map of the input image as the mask. In order to handle the problem
of masks in various sizes, we propose a mask guided modulation
to dynamically modulate the content vector c which is inspired
by [19]. In our implementation, the mask is resized to adapt to the
spatial size of the last-level feature maps in the dual encoder. By
using two convolutional layers, two feature maps are generated,

…
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Figure 1: VSGAN is composed of a dual encoder and a genera-
tor. Dual encoder: The combination of the local encoder and
global encoder branch can be utilized to extract multi-scale
features. Mask Guided Modulation: It is implemented by two
convolution layers to capture spatial information frommask.

which are then flattened as scale vectors 𝛾 and bias vectors 𝛽 . Also,
a linear layer is utilized to transfer 𝛾 and 𝛽 to the proper dimension
as c. Finally, the network gains more spatial information based on
the input mask via an affine transformation as c𝑚𝑜𝑑 = 𝛾c + 𝛽 .

2.3 Generator
Recall that our goal is to generate plausible images with each partial
image. To this end, we use a random vector z to enable some degree
of diversity in the generated areas. Following StyleGAN [11], a non-
linear network is leveraged to map the vector z to an embedding w.
Inspired by CO-MOD-GAN [23], the embedding w is concatenated
with cmod as global style embedding s to modulate the generator.
Our generator has the symmetric architecture as the local encoder
branch with convolution and upsampling layers. Additionally, skip
connections, fused from the dual encoder branches, are used to
enhance the quality of the synthesized image. Different from [23],
our content vector c is guided by a modulation layer, and the skip
connections are derived from the dual encoder as stated before. In
this way, more spatial and global information is provided when
trading off quality and diversity.

3 EXPERIMENTS
Implementation DetailsWe conduct the data augmentation ex-
periments on SALICON dataset [8] which contains 15000 images
and the corresponding saliency maps. All images and saliency maps
are resized to (320,256). By default, 𝑁𝑙𝑜𝑐 and 𝑁𝑔𝑙𝑏 are set to be 7
and 5, respectively. We set 0.7 as the threshold to generate mask
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Table 1: Ablation study.

Method FID LPIPS PIDS UIDS
CO-MOD-GAN 10.95 0.2475 4.68 17.73
w/o DE 10.46 0.2426 5.48 19.32
w/o MGM 10.39 0.2380 5.06 18.46
VSGAN(full model) 9.92 0.2409 7.24 21.30

(a) Img (b)  GT (c) CO-MOD-GAN

(d) w/o DE (e) w/o MGM (f) VSGAN

Figure 2: Ablation study. The differences are highlighted red
and yellow boxes.

from saliency map. Our VSGAN is trained with the same loss func-
tions as in [11] by using Adam optimizer [13]. All experiments are
conducted on one NVIDIA 3090 GPU with learning rate 0.02 and
batch size 2.
Evaluation metrics We evaluate the results on SALICON test set
by Fréchet Inception Distance (FID) [6], Perceptual Image Patch
Similarity Distance (LPIPS) [22] and Paired/Unpaired Inception Dis-
criminative Score (P-IDS/U-IDS) [23]. To evaluate the effectiveness
of our methods for data augmentation, we train two visual saliency
models [4, 14] where different augmentation strategies are applied.
The metrics we use are two variants of Area under ROC curve
(AUC-Borji, sAUC), Normalized scanpath saliency (NSS), Similar-
ity (SIM), Pearson’s correlation coefficient (CC), Kullback-Lieber
divergence (KLDIV) [15].

3.1 Ablation Study
We perform an ablation study to evaluate the efficiency of two
key modules in our network: dual encoder(DE) and mask guided
modulation(MGM). Four variants are implemented to study the
impact of each component. CO-MOD-GAN can be regard as the
reference model without our proposed component. All these models
in the ablation study are trained and evaluated on the SALICON
dataset. Quantitative and qualitative comparisons are shown in
Table 1 and Figure 2.
Dual encoder. To study the capability of our dual encoder, we
remove the global branch from our network and train on SALICON
dataset with 50 epochs (DE in Table 1). As shown in Table 1, we
find significantly better results with the full VSGAN on all metrics,

(b) GT (c) Pix2pix (d) Pconv

(a) Img (e) PDGAN (f) CO-MOD-GAN (g)  VSGAN

(b) GT (c) Pix2pix (d) Pconv

(a) Img (e) PDGAN (f) CO-MOD-GAN (g)  VSGAN

Figure 3: Comparison with Exiting methods. Details pro-
cessed by our method are visually consistent with input im-
ages (marked in red boxes) when comparing to others.

Table 2: Comparison with Existing methods.

Method FID LPIPS PIDS UIDS
Pix2pix 40.81 0.40 0.0 0.0
Pconv 45.55 0.39 0.0 0.0
PDGAN 32.83 0.38 0.0 0.0
CO-MOD-GAN 10.95 0.25 4.68 17.73
VSGAN 9.92 0.24 7.24 21.30

especially on FID, PIDS and UIDS, which suggest that the results
on DE lost some fidelity in detail. Moreover, we show some visual
examples in Figure 2. Compared to (d) and (f), VSGAN has fewer
artifacts in the wall (highlighted in red boxes). By using transformer
on global encoder and skip-connection, dual encoder in VSGAN
has bigger receptive field than traditional encoder, showing the
benefits of synthesizing new images.
Mask guided modulation We then evaluate the mask guided
modulation by dropping this layer when concatenating the content
vector c and style vector s (MGM in Table 1). Similarly, this model
is trained on SALICON dataset with 50 epochs. In Table 1, the
performances of VSGAN model proves to be better on all metrics.
Considering mask guided modulation can add spatial information
on content vector c, VSGAN achieve better balance on the diversity
and high fidelity when generating new images. To better compari-
son, we visually compare the results of MGM (c) and VSGAN (f) in
Figure 2. VSGAN generates more realistic wall than MGM (masked
as yellow boxes).
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Table 3: Model complexity.

Models # Params of G # Params of D
Pix2pix 48M 5M
PDGAN 235M 5M
CO-MOD-GAN 80M 29M
VSGAN 130M 29M

3.2 Comparison with existing methods
We compare our method with some leading image inpainting mod-
els, including Pix2pix [7], Pconv [16], PDGAN [17], CO-MOD-
GAN [23]. The above networks are trained on SALICON dataset
with the setting described in their original papers. As shown in
Table 2, our method significantly outperforms all other methods
in FID, LPIPS, PIDS and UIDS. As shown in Figure 3, the results of
Pix2pix, Pconv and PDGAN have blur or droplet-like artifacts in
some regions (marked in red boxes). Comparing to CO-MOD-GAN,
VSGAN can generate more content-consistent results and create
fewer visual artifacts as visualized in (f) and (g).

3.3 Pluralistic Generation
The diversity of our network comes from the StyleGAN architecture.
The latent code z is randomly sampled from a normal distribution
and can be seen as a style code which control the inpainting areas.
We visualize some results of stochastic image synthesis in Figure 4.
In the first row, the roofs in (c), (d) and (e) are different, same as the
street. In the second row, VSGAN generates types of groves which
have a different form and remain realistic overall.

3.4 Model complexity
We conduct a comparison of parameter numbers with competing
methods in Table 3. Our VSGAN has 130M parameters for gen-
erator and 29M for discriminator. Although our model has more
parameters than some other models, this increased parameter count
allows it to better capture the complexity of the underlying data
and achieve higher accuracy in the predictions.

3.5 Effectiveness for data augmentation
In this section, we propose an evaluation of data augmentation
methods for visual saliency models. Firstly, we studied the effect of
classic data augmentation methods. To extend the work of Che et
al. [3], we choose 10 wildly used traditional image transformations
that contains cropping, flipping, color transform, random rotation,
contrast, JPEG, noise, shearing, inversion and mirroring. The imple-
mentation detail is introduced in the Table 4. Secondly, to evaluate
the performance of our VSGAN as data augmentation method, we
mask training images with the saliency maps and generate new
images to expand the visual saliency datasets.

In detail, we use the above data augmentation methods to expand
one time of the training dataset and then leverage these data to train
the visual saliency models. To simplify the representation of each
models, we named the model by the data augmentation technique
used. Specifically, the baseline models are trained using only the
original datasets. Additionally, we create a super-set composed all
of the data augmentation techniques that improve the performances

Table 4: Classic methods for data augmentation.

Methods Generation Details
Cropping CAT2000 (1720, 980), MIT1003 (800, 600), Random
Flipping Flipping horizontally and vertically
Color Transform BGR to HSV
Random Rotation Rotation degree between 60◦ and 160◦, Random
Contrast Converting an image range from [0.3, 0.7] to [0, 1]
JPEG Compression ratio 5
Noise Gaussian noise (var = 0.1)
Shearing Shearing matrix [[1,0,0],[0.5,1,0],[0,0,1]]
Inversion Flipping vertically
Mirroring Flipping horizontally

Table 5: Results of MSI-Net on CAT2000 test set.

KLDIV ↓ NSS ↑ sAUC ↑ SIM ↑ CC ↑ AUC_Borji ↑
SALICON 0.4072 2.2438 0.7725 0.6808 0.8295 0.7852
baseline 0.3259 2.3937 0.7890 0.7292 0.8671 0.8007
Cropping 0.2677 2.4719 0.7973 0.7589 0.8946 0.8087
Color Transform 0.3068 2.4200 0.7914 0.7382 0.8758 0.8030
Random Rotation 0.3230 2.3990 0.7865 0.7316 0.8690 0.7979
Contrast 0.2853 2.4569 0.7912 0.7513 0.8890 0.8022
JPEG 0.2766 2.4722 0.7900 0.7563 0.8939 0.8007
Shearing 0.3150 2.4110 0.7883 0.7352 0.8724 0.7996
Noise 0.2767 2.4737 0.7915 0.7567 0.8941 0.8023
Flipping 0.3307 2.3819 0.7898 0.7265 0.8635 0.8016
Mirroring 0.3773 2.3169 0.7781 0.6987 0.8414 0.7896
Inversion 0.3713 2.3355 0.7819 0.7040 0.8483 0.7935
Valid 0.2668 2.4723 0.7983 0.7578 0.8871 0.8091
VSGAN 0.2656 2.4734 0.7988 0.7563 0.8876 0.8099

of the model, and refer this set as Valid set. To evaluate the efficacy
of VSGAN as a data augmentation tool, we use a combination of the
Valid set and the images generated by VSGAN to train the visual
saliency models. In order to get fair and convincing results, we
choose two visual saliency models [14] [4] and four visual saliency
datasets: SALICON [8], CAT2000 [2], MIT1003 [10] and OSIE [21].
The detail of these models is introduced in the supplementary file.
We train them on SALICON dataset and then fine-tune on the visual
saliency datasets.

To make a investigation and analysis on whether the gener-
ated image preserve the same saliency with GT, we conduct visual
saliency experiments using a visual saliency model[18] to generate
visual saliency maps for both the origin and our inpainting images.
The results of this experiment, as shown in Figure 5, indicate that
the saliency maps for the original and inpainting images are nearly
identical, demonstrating that our inpainting method is capable of
preserving the same saliency as the GT. In the next, we introduce
the results of data augmentation for visual saliency models in detail.

3.5.1 CAT2000. For CAT2000 dataset, we divide training set, test
set and validation set with the ratio of 8:1:1. Since the CAT2000
dataset has 20 categories, we ensure that our sets are uniformly
balanced.

The results of MSI-Net on CAT2000 test set are introduced in
Table 5. We find that Cropping, Color Transform, Random Rotation,
Contrast, JPEG, Noise methods have positive effect to mitigate over-
fitting, and thus we consider these transformations as our "Valid
set". However, Flipping, Shearing, Inversion, Mirroring methods
have negative effect. It seems that these kind of transformations
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(a) Img (b) GT (c) VSGAN(1) (d) VSGAN(2) (e) VSGAN(3)

Figure 4: Pluralistic Generation. The diversity is highlighted in red boxes.

a. Mask Image b. Origin Image c. VSGAN d. GT e. VSGAN

Figure 5: Analysis on whether the generated image preserve the same saliency with GT.

may change the ground truth thus providing the model with bad in-
struction. As we can see from the last two rows in Table 5, VSGAN
achieve better performance than Valid, showing the usefulness of
this augmentation method in the context of visual saliency predic-
tion.

Similarly to MSI-Net results, the SAM-ResNet model shows sig-
nificant improvement when trained with augmented data, com-
pared with the original CAT2000 dataset, as shown in Table 6. The
performance of models including Flipping, Mirroring, Inversion
are ranking last three models on all models. It means that Flip-
ping, Mirroring and Inversion have bad influence on some images
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Table 6: Results of SAM-ResNet on CAT2000 test set.

KLDIV ↓ NSS ↑ sAUC ↑ SIM ↑ CC ↑ AUC_Borji ↑
SALICON 1.2183 0.9243 0.7180 0.4550 0.4017 0.7181
baseline 0.8018 1.6400 0.7179 0.5819 0.7070 0.7179
Cropping 0.5613 1.8021 0.7303 0.6417 0.7784 0.7304
Color Transform 0.5365 1.8144 0.7446 0.6453 0.7849 0.7446
Random Rotation 0.5439 1.8035 0.7476 0.6436 0.7817 0.7476
Contrast 0.5297 1.8095 0.7477 0.6441 0.7840 0.7476
JPEG 0.5542 1.8095 0.7477 0.6441 0.7840 0.7511
Shearing 0.5498 1.7781 0.7491 0.6340 0.7683 0.7492
Noise 0.5363 1.8088 0.7444 0.6449 0.7830 0.7444
Flipping 0.5685 1.7775 0.7420 0.6332 0.7686 0.7420
Mirroring 0.5682 1.7983 0.7332 0.6423 0.7791 0.7332
Inversion 0.5712 1.7762 0.7499 0.6337 0.7693 0.7500
Valid 0.5372 1.8106 0.7345 0.6452 0.7871 0.7463
VSGAN 0.5345 1.8153 0.7348 0.6461 0.7889 0.7506

Table 7: Results of MSI-Net on OSIE dataset.

KLDIV ↓ NSS ↑ sAUC ↑ SIM ↑ CC ↑ AUC_Borji ↑
SALICON 1.2781 1.0368 0.6973 0.4126 0.3789 0.6973
baseline 0.6695 1.9517 0.7517 0.6078 0.7200 0.7517
Cropping 0.6126 1.9655 0.7677 0.6183 0.7350 0.7677
Flipping 0.6582 1.9837 0.7619 0.6134 0.7250 0.7620
Color Transform 0.6511 1.9665 0.7585 0.6126 0.7251 0.7585
Random Rotation 0.6278 1.9686 0.7625 0.6157 0.7304 0.7625
Contrast 0.6753 1.9608 0.7522 0.6093 0.7233 0.7522
JPEG 0.6510 1.9781 0.7587 0.6149 0.7281 0.7587
Noise 0.6684 1.9790 0.7536 0.6130 0.7276 0.7536
Shearing 0.7039 1.9112 0.7504 0.5984 0.7068 0.7504
Inversion 0.7975 1.7584 0.7346 0.5507 0.6505 0.7345
Mirror 0.7444 1.7974 0.7655 0.5584 0.6652 0.7654
Valid 0.6588 1.9891 0.7689 0.6201 0.7368 0.7623
VSGAN 0.6595 1.9876 0.7732 0.6221 0.7385 0.7647

of CAT2000 dataset, more or less. VSGAN, however, allows for a
slight improvement of performances when coupled with the Valid
set. The different of performance on MSI-Net and SAM-ResNet
may come from the different size of the parameters. In fact, MSI-
Net is much lighter than SAM-ResNet. When trained on CAT2000
training set, it almost gets the best performance. On the contrary,
SAM-ResNet has more parameters to be fit which needs more data
to get convergence.

3.5.2 MIT1003 and OSIE. MIT1003 dataset is split into training and
validation set with a ratio of 800:203. Since MIT1003 dataset only
contains 1003 pairs of data, we used MIT1003 dataset to fine-tune
the best model training by SALICON dataset and tested on OSIE
dataset to get the baseline.

We conduct similar experiments with CAT2000 experiments.
In the Table 7, we find that the results are very similar to whose
on CAT2000 test dataset. The only difference is that Flipping has
positive effect to mitigate overfitting. When using Flipping method
to change the images and visual saliency maps on CAT2000 dataset,
it may generate wrong ground truth since the CAT2000 dataset has
20 different sets data which contains Flipping. All other kinds of
methods showed the same results with those in CAT2000 dataset.
For the last two lines of Table 7, VSGAN ranks 1st in most metrics.

On SAM-ResNet, the results are very different. As is shown on
Table 8, the models training on the MIT1003 training set coupled
with augmented datasets perform worse than the model training

Table 8: Results of SAM-ResNet on OSIE dataset.

KLDIV ↓ NSS ↑ sAUC ↑ SIM ↑ CC ↑ AUC_Borji ↑
SALICON 1.5282 0.5048 0.6472 0.3210 0.1870 0.6472
baseline 0.7160 2.0233 0.7489 0.6180 0.7270 0.7489
Cropping 1.4832 1.0273 0.6968 0.4140 0.3783 0.6968
Color Transform 1.6598 0.8524 0.7046 0.3784 0.3134 0.7046
Random Rotation 1.6109 0.7851 0.6989 0.3691 0.2862 0.6989
Contrast 1.4600 0.9103 0.7181 0.3906 0.3364 0.7181
JPEG 1.6179 0.8930 0.7002 0.3827 0.3279 0.7002
Shearing 1.5869 0.9787 0.7046 0.3983 0.3639 0.7046
Noise 1.5869 0.9787 0.7182 0.4132 0.3934 0.7181
Flipping 1.4565 1.0365 0.7224 0.4104 0.3886 0.7224
Mirroring 1.5969 0.9448 0.7109 0.4132 0.3934 0.7181
Inversion 1.5567 0.9166 0.7090 0.3878 0.3360 0.7002
Valid - - - - - -
VSGAN 1.3572 1.3201 0.7228 0.4536 0.4872 0.7235

on MIT1003 training set. It may be that SAM-ResNet is over-fitting
on the MIT1003 dataset, and thus doubling the size of the dataset
might be detrimental to the performances of the model on the OSIE
dataset. Another explanation for this gap in performances for the
augmentations between MSI-Net and SAM-ResNet may cause by
their architecture and loss functions. As we mentioned before, MSI-
Net is a lighter network and used KL-divergence loss. SAM-ResNet
used a linear combination of three three different loss, thus creating
more constraints, making the network more prone to overfit on
the training set. From the last row of Table 8, we also notice the
overfitting problem of VSGAN but less than others.

4 CONCLUSION
In this paper, we transfer the problem of data augmentation for
visual saliency models into image inpainting task by masking the
weakly-salient area of the images and synthesizing new images to
extend the training data. We have proposed VSGAN to achieve good
performance for image inpainting when work on visual saliency
datasets. Experiments are conducted on the several datasets to
show the effectiveness of our proposed method on visual saliency
modeling.

REFERENCES
[1] Ali Borji. 2019. Saliency prediction in the deep learning era: Successes and

limitations. IEEE transactions on pattern analysis and machine intelligence 43, 2
(2019), 679–700.

[2] Ali Borji and Laurent Itti. 2015. Cat2000: A large scale fixation dataset for boosting
saliency research. arXiv preprint arXiv:1505.03581 (2015).

[3] Zhaohui Che, Ali Borji, Guangtao Zhai, XiongkuoMin, Guodong Guo, and Patrick
Le Callet. 2019. How is gaze influenced by image transformations? dataset and
model. IEEE Transactions on Image Processing 29 (2019), 2287–2300.

[4] Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, and Rita Cucchiara. 2018.
Predicting human eye fixations via an lstm-based saliency attentive model. IEEE
Transactions on Image Processing 27, 10 (2018), 5142–5154.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[6] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. Advances in neural information processing systems 30
(2017).

[7] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
image translation with conditional adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1125–1134.

[8] Ming Jiang, Shengsheng Huang, Juanyong Duan, and Qi Zhao. 2015. Salicon:
Saliency in context. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 1072–1080.



VSGAN: Visual Saliency guided Generative Adversarial Network for data augmentation Conference’17, July 2017, Washington, DC, USA

[9] Tilke Judd, Fredo Durand, and Antonio Torralba. 2011. Fixations on low-
resolution images. Journal of Vision 11, 4 (2011), 14–14.

[10] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Torralba. 2009. Learning
to predict where humans look. In 2009 IEEE 12th international conference on
computer vision. IEEE, 2106–2113.

[11] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. 2020. Analyzing and improving the image quality of stylegan. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
8110–8119.

[12] Chelhwon Kim and Peyman Milanfar. 2013. Visual saliency in noisy images.
Journal of vision 13, 4 (2013), 5–5.

[13] A KingaD. 2015. A methodforstochasticoptimization. Anon. InternationalConfer-
enceon Learning Representations. SanDego: ICLR (2015).

[14] Alexander Kroner, Mario Senden, Kurt Driessens, and Rainer Goebel. 2020. Con-
textual encoder–decoder network for visual saliency prediction. Neural Networks
129 (2020), 261–270.

[15] Matthias Kummerer, Thomas SA Wallis, and Matthias Bethge. 2018. Saliency
benchmarking made easy: Separating models, maps and metrics. In Proceedings
of the European Conference on Computer Vision (ECCV). 770–787.

[16] Guilin Liu, FitsumAReda, Kevin J Shih, Ting-ChunWang, AndrewTao, and Bryan
Catanzaro. 2018. Image inpainting for irregular holes using partial convolutions.
In Proceedings of the European conference on computer vision (ECCV). 85–100.

[17] Hongyu Liu, Ziyu Wan, Wei Huang, Yibing Song, Xintong Han, and Jing Liao.
2021. Pd-gan: Probabilistic diverse gan for image inpainting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9371–9381.

[18] Jianxun Lou, Hanhe Lin, David Marshall, Dietmar Saupe, and Hantao Liu. 2021.
TranSalNet: Visual saliency prediction using transformers. CoRR abs/2110.03593
(2021). arXiv:2110.03593 https://arxiv.org/abs/2110.03593

[19] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic
image synthesis with spatially-adaptive normalization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2337–2346.

[20] Xu Wang, Lin Ma, Sam Kwong, and Yu Zhou. 2018. Quaternion representation
based visual saliency for stereoscopic image quality assessment. Signal Processing
145 (2018), 202–213.

[21] Juan Xu, Ming Jiang, Shuo Wang, Mohan S Kankanhalli, and Qi Zhao. 2014.
Predicting human gaze beyond pixels. Journal of vision 14, 1 (2014), 28–28.

[22] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
2018. The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
586–595.

[23] Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I Chang,
and Yan Xu. 2021. Large scale image completion via co-modulated generative
adversarial networks. arXiv preprint arXiv:2103.10428 (2021).

[24] Xu Zheng, Tejo Chalasani, Koustav Ghosal, Sebastian Lutz, and Aljosa Smolic.
2019. Stada: Style transfer as data augmentation. arXiv preprint arXiv:1909.01056
(2019).

[25] Xinyue Zhu, Yifan Liu, Jiahong Li, Tao Wan, and Zengchang Qin. 2018. Emotion
classification with data augmentation using generative adversarial networks. In
Pacific-Asia conference on knowledge discovery and data mining. Springer, 349–
360.

https://arxiv.org/abs/2110.03593
https://arxiv.org/abs/2110.03593

	Abstract
	1 Introduction
	2 METHODOLOGY
	2.1 Dual encoder
	2.2 Mask guided modulation
	2.3 Generator

	3 EXPERIMENTS
	3.1 Ablation Study
	3.2 Comparison with existing methods
	3.3 Pluralistic Generation
	3.4 Model complexity
	3.5 Effectiveness for data augmentation

	4 CONCLUSION
	References

