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Vector Coded Caching Multiplicatively Increases the
Throughput of Realistic Downlink Systems

Hui Zhao, Graduate Student Member, IEEE, Antonio Bazco-Nogueras, Member, IEEE,
and Petros Elia, Member, IEEE

Abstract—The recent introduction of vector coded caching
has revealed that multi-rank transmissions in the presence of
receiver-side cache content can dramatically ameliorate the file-size
bottleneck of coded caching and substantially boost performance
in error-free wire-like channels. In this work, we employ large-
matrix analysis to explore the effect of vector coded caching
in realistic wireless multi-antenna downlink systems. For a
given downlink MISO system already optimized to exploit both
multiplexing and beamforming gains, and for a fixed set of antenna
and SNR resources, our analysis answers a simple question:
What is the multiplicative throughput boost obtained from
introducing reasonably-sized receiver-side caches that can pre-
store information content? The derived closed-form expressions
capture various linear precoders, and a variety of practical
considerations such as power dissemination across signals, realistic
SNR values, as well as feedback costs. The schemes are very
simple (we simply collapse precoding vectors into a single vector),
and the recorded gains are notable. For example, for 32 transmit
antennas, a received SNR of 20 dB, a coherence bandwidth of
300 kHz, a coherence period of 40 ms, and under realistic file-size
and cache-size constraints, vector coded caching is here shown
to offer a multiplicative throughput boost of about 310% with
ZF/RZF precoding and a 430% boost in the performance of
already optimized MF-based (cacheless) systems. Interestingly,
vector coded caching also accelerates channel hardening to the
benefit of feedback acquisition, often surpassing 540% gains over
traditional hardening-constrained cacheless downlink systems.

Index Terms—Coded caching, linear precoding, multi-antenna
transmission, random matrix analysis, downlink systems.

I. INTRODUCTION

CACHING is widely considered to be a valuable re-
source toward alleviating traffic congestion in various

networks [2], [3]. A particularly powerful method for exploiting
cache resources can be found in the seminal work of Maddah-
Ali and Niesen [4], who introduced the coded caching frame-
work as a means for exploiting cache-aided side information at
the receivers in order to remove interference. This breakthrough
was originally presented for the single-stream (single-antenna),
error-free, shared-link Broadcast Channel (BC), over which a
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central server delivers content to K cache-aided users. In this
context, the server has access to a library of N files, and each
user has access to their own dedicated cache of normalized
size γ ≜ M

N ∈ [0, 1] corresponding to an individual cache-size
equal to the size of M = γN files, and corresponding to a
cumulative cache size equal to Kγ times the size of the library.
After a combinatorial content-allocation in each cache during
the placement phase, and after each user reveals its demanded
file, the delivery phase in [4] employed a novel clique-based
scheme that transmitted XORs that could serve Kγ+1 users at
a time. This astounding multiplicative speed-up factor of Kγ+1
over single-stream cacheless systems was based on the idea that
a single XOR carries the desired subfiles of Kγ+1 users, and
that these users can utilize their own cached side information
to remove undesired subfiles from the XOR in order to recover
their own subfile. Unfortunately, the clique-based structure of
the so-called MN coded caching scheme in [4] requires that
the size of each file grows exponentially in K (cf. [5], [6]).
This in turn effectively implies — under realistic file sizes —
a much reduced real speedup factor Λγ + 1 ≪ Kγ + 1 for
some maximum allowed number of cache-states1 Λ ≪ K.
This problem of subpacketization-constrained (or file-size
constrained) coded caching is thoroughly documented in a
variety of works such as [6]–[8] as well as [9]–[12].

At the same time, it also became apparent that for coded
caching to develop into an impactful ingredient in wireless
systems, it would have to work in conjunction with multi-
antenna arrays which are rightfully recognized as the most
valuable resource in modern networks. This realization brought
to the fore notable research in the area of multi-antenna coded
caching [13], [14], which considers the same model as the
aforementioned cache-aided BC, except that now the server
(the base-station) is endowed with multiple transmit antennas.
In recent years, several related works explored various aspects
of the problem, with substantial emphasis on physical-layer
considerations. One of the first such works can be found in [15]
which designed physical-layer adaptations of various multi-
antenna coded caching schemes. Another interesting approach
can be found in [16] which presented a multi-antenna coded-
caching scheme for lower SNR regimes when the placement
exploits prior information on the users’ locations. Furthermore,
the work of [17] considered the use of transmit antennas
for achieving rate scalability in the limit of large K, while
the work in [18], [19] nicely considered the fusion of multi-

1The cache state defines the content stored at the cache of a certain user, such
that two users sharing the same cache state must store the exact same content
in their caches. Having fewer cache states implies smaller subpacketization
and thus smaller required file sizes, and a bounded file size forcefully reduces
Λ as well as the corresponding gain Λγ + 1.



antenna multicast beamforming and coded caching toward
improved interference management. Interesting work can also
be found in [20]–[29] and in a variety of other publications.
It is the case though that for most of the above schemes, the
corresponding degrees-of-freedom (DoF) impact of caching
was merely additive to the multiplexing gain (denoted here
by Q), in the sense that in most of the above scenarios, the
DoF performance stagnated at around Q+Λγ for very modest
values of Λγ. In essence, due to the severity of the file-size
constraint, the impact of caching was dwarfed by the existing
and available multiplexing gains, which has been extensively
demonstrated in various field trials [31].

This imbalance in the impact of caching on multi-antenna
systems was reversed with the introduction in [32] of vec-
tor coded caching. This reversal is owed in part to the
fact that this new approach could dramatically ameliorate
the subpacketization problem previously associated to XOR-
based schemes. While previous multi-antenna coded caching
techniques essentially focused on using multiple antennas (L
transmit antennas) to efficiently deliver the aforementioned
sequence of XORs of the original MN scheme, the novel
method in [32] applied a decomposition-based approach that
employed a clique structure on vectors rather than on scalars.
Vector coded caching need not entail the transmission of XORs.
Building on the idea of employing Λ shared caches (Λ cache
states) and linear precoding, the algorithm in [32] was able
to offer unprecedented performance as well as a dramatically
reduced subpacketization. To be precise, for some Q ≤ L
representing the aforementioned multiplexing gain of choice,
the algorithm in [32] reduced subpacketization from being
exponential in K to being exponential in K/Q, all while being
able to serve up to Q(1 + Λγ) users at a time. This implied a
theoretical multiplicative boost over the DoF of multiplexing-
gain systems by a factor of 1 + Λγ, with the new DoF of
Q(1 + Λγ) far exceeding the additive impact (see DoF of
Q+Λγ) of previous XOR-based multi-antenna coded caching
approaches. It is the case though that the work in [32] focused
on the error-free, asymptotically high-SNR regime, without
considering any practical aspects such as power dissemination
across signals, realistic SNR values, the effects of beamforming
gain, or the costs of gathering channel state information (CSI).
With the exception of some preliminary works like the one
in [33], we know very little about the practical performance
of vector coded caching in wireless systems. While this new
approach was shown to be useful in an information-theoretic
(DoF) sense, the real impact that this approach has on optimized
downlink systems, has remained an open question.

Any attempt to establish the real impact of vector coded
caching must answer a simple question: Under a fixed set of an-
tenna and SNR resources, what is the multiplicative throughput
boost obtained from being able to add receiver-side caches to
downlink systems that would have otherwise been able to enjoy
an optimized exploitation of multiplexing and beamforming
gains. Indeed, spatial multiplexing and beamforming in multi-
antenna downlink systems, and its well-studied application in
the large-antenna regime or massive multiple-input multiple-
output (MIMO) [34]–[37], is a key technology in current and
future wireless networks that significantly enhances spectral

efficiency. Such enhancements have been recently proven in
the aforementioned field trials [31] which demonstrate that a
sizeable fraction of the promising theoretic gains brought about
by spatial multiplexing approaches, can indeed be attained
under practical constraints.

While very considerable research has focused on a variety
of advanced precoding schemes, the work-horses of spatial-
multiplexing precoding are the optimized versions of linear
precoding techniques such as Zero-Forcing (ZF), Regularized
ZF (RZF), and Matched Filtering (MF). These techniques main-
tain low complexity and an ability to provide very high spectral
efficiency that often comes close to the optimal performance
of the non-linear Dirty-Paper Coding, especially when the
number of transmit antennas L is large [34]. Furthermore, as
one would expect, the acquisition of CSI is another ingredient
of crucial importance in such systems, even in the presence
of Time Division Duplexing (TDD) that partially reduces the
CSI overhead as the dimensionality of the problem becomes
larger [38]. This same CSI overhead brings to the fore the
issue of channel hardening, which arises as the number of
antennas increases, and which partially alleviates the stringent
CSI requirements [39].

Structure of Paper and Current Contributions: The remain-
der of this paper is organized as follows. We introduce the
system model and the considered framework in Section II.
Subsequently, in Section III, we first adapt the vector coded
caching approach of [32] to realistic SNR values, while
considering three different linear precoding schemes: ZF, RZF
and MF. After doing so, we proceed to employ random matrix
theory to analyze (in Theorem 1 for MF, Theorem 2 for ZF,
and Theorem 3 for RZF) the achievable throughput of vector
coded caching for the three aforementioned precoders. This
analysis — which naturally incorporates the standard cacheless
case corresponding to γ = 0 — captures any SNR and any
number of users.

Subsequently, based on the derived asymptotic performance,
in Section IV we optimize both the cacheless as well as the
cache-aided algorithms by accounting for the CSI acquisition
costs, and by optimizing over the total number of simulta-
neously served streams (users). This optimization, which is
performed as a function of SNR, of L and of the CSI acquisition
costs, can be found in Theorems 4, 5. The same optimization
yields systems that are separately calibrated to better balance
multiplexing gains with beamforming gains, in the presence
or absence of caching. In this same section we also derive the
ratio between the throughputs of the (independently) optimized
cache-aided and cacheless systems. This ratio represents
the multiplicative throughput boost offered by caching, over
optimized cacheless downlink systems with the same power and
antenna resources. Subsequently, in Section V we numerically
verify the accuracy of the derived expressions, showing that
they characterize very precisely the actual performance. This
evaluation allows us to demonstrate the substantial gains from
using caching, highlighting realistic regimes of SNR, L, CSI
costs, file sizes and cache sizes. In Section VI we present the
main conclusions, while in the appendices we host some of
the remaining proofs.

Notations: C stands for the set of complex numbers,



IL ∈ CL×L denotes the L×L identity matrix, and 0L ∈ CL×1

denotes the all-zero vector. We use X ∼ Y to denote
that X follows the statistical distribution Y . Furthermore, | · |
denotes either the cardinality of a set or the magnitude of
a complex number, || · || denotes the norm-2 operator for
a vector, while we also define [Z] ≜ {1, 2, · · · , Z} for a
positive integer Z. Additionally, Tr{·} and E{·} denote the
trace and the expectation operators, respectively, whereas (·)T ,
(·)∗ and (·)H denote the non-conjugate transpose, conjugate
part and conjugate transpose of a matrix, respectively. In
asymptotic analysis, f(x) = o(g(x)) as x→ ∞ denotes that
limx→∞

f(x)
g(x) = 0. a.s.−→ stands for almost sure convergence. If

X
a.s.−→ X̊ and X̊ is deterministic, we call X̊ the asymptotic

deterministic equivalent of X . Moreover, in the limit of x→ ∞,
our use of A(x) .= B(x) will mean that A(x) = B(x) + o(1).

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System Model
We consider a downlink MISO scenario where an L-antenna

base station (BS) serves K single-antenna cache-aided users.
The BS has access to a library of N equally-sized files, and
each user is endowed with a local memory (or cache) of size
equal to the size of M library files (M < N ), such that each
user can store a fraction γ = M

N ∈ [0, 1) of the library content.
We denote the library content by F and the n-th file by Wn,
such that F ≜ {Wn}Nn=1.

We consider the wireless channel to be modeled as a sym-
metric Rayleigh fading channel, where all channel coefficients
are assumed to be independent and identically distributed
(i.i.d.). When describing a general transmission, our notation
will often incorporate the subset K ⊆ [K] of users that are
simultaneously served during that transmission. Consequently,
in our communication model, the received signal at the k-th
user in K is given by

yK(k) = hTK(k)xK + zK(k), (1)

where k ∈ [|K|], where zK(k) ∈ C represents the corresponding
Additive White Gaussian Noise (AWGN) with zero-mean and
unit-variance, where xK ∈ CL×1 denotes the transmitted signal
vector that simultaneously serves the users in K, and where
hK(k) ∈ CL×1 represents the channel vector for the channel
from the BS to the k-th user in K. As mentioned, hK(k) is
assumed to be an i.i.d. Gaussian random vector with mean 0L
and covariance matrix IL. Finally, xK is obtained by applying
a specific precoding scheme (which we will detail later on) to
the information vector sK ∈ C|K|×1 intended for the users in
K, where sK has mean 0|K| and covariance matrix I|K|.

We consider an average power normalization, where the
power is averaged over both transmit symbols and channel
realizations, i.e., E{||xK||2} ≤ Pt, where Pt is the average
power constraint. As is common in practical downlink settings,
we assume TDD uplink-downlink transmissions, such that
the BS estimates the downlink channels through uplink pilot
transmissions by applying channel reciprocity.

We proceed to describe the main structure of the scheme,
first doing so without specifying the linear precoding class that
is used. We will also formally define the main performance
metrics investigated in this paper.

B. Signal-Level Vector Coded Caching for Finite SNR

Building on the general vector-clique structure in [32], we
are here free to choose the precoding schemes, as well as
calibrate at will the dimensionality of each vector clique. This
freedom is essential in controlling the impact of CSI costs and
of power-splitting across users, both of which directly affect
the performance in practical SNR regimes.

We proceed to describe the cache placement phase and the
subsequent delivery phase.

1) Placement Phase: The first step involves the partition of
each library file Wn into

(
Λ
Λγ

)
non-overlapping equally-sized

subfiles
{
W T
n : T ⊆ [Λ], |T | = Λγ

}
, each labeled by some

Λγ-tuple T ⊆ [Λ]. As discussed in Section I, the number of
cache states Λ is chosen to satisfy the file-size constraint; in our
case, the subpacketization is

(
Λ
Λγ

)
, which naturally serves as a

lower bound on the file sizes. Subsequently the K users are
arbitrarily separated into Λ disjoint groups D1,D2, . . . ,DΛ,
where the g-th group, which consists of B = K

Λ users2, is
given by Dg ≜

{
bΛ + g

}B−1

b=0
⊆ [K]. The ϑ-th user of this

g-th group is denoted by Ug,ϑ.
At this point, all the users belonging to the same group

are assigned the same cache state and thus proceed to cache
identical content. In particular, for those in the g-th group, this
content takes the form ZGg =

{
W T
n : T ∋ g, ∀n ∈ [N ]

}
. This

grouping as well as the entire placement phase, are naturally
done before the users’ requests take place, and of course well
before the channel states are known to the BS.

2) Delivery Phase: This phase starts when each user κ ∈
[K] simultaneously asks for its intended file, denoted here by
Wdκ , dκ ∈ [N ]. The BS selects Q users from each group, where
Q ≤ B is a variable that will be optimized afterwards and
which is the equivalent of the multiplexing gain. By doing so,
the BS decides to first ‘encode’ over the first ΛQ users, and to
repeat the encoding process B/Q times3. To deliver to the ΛQ
users, the transmitter employs

(
Λ

Λγ+1

)
sequential transmission

stages. During each such stage, the BS simultaneously serves a
unique set Ψ of |Ψ| = Λγ+1 groups, corresponding to a total
of Q(Λγ + 1) users served at a time (i.e., per stage). At the
end of the

(
Λ

Λγ+1

)
transmission stages, all the ΛQ users obtain

their intended files. By repeating this process
⌈
B
Q

⌉
times, all

the K users obtain their intended files. As suggested above, the
factor G ≜ Λγ + 1 describes the number of user groups that
are simultaneously served. Another crucial parameter includes
the multiplexing gain Q which, unlike in [32], will be here
subject to optimization.

For example, let us consider a setting with G = 3, B = 4,
and Λ = 40, and a choice of Q = 2. The delivery will be split
into B

Q = 2 encoding processes, and each process is split into

2For clarity of exposition, and without limiting the scope of the results,
we will consider K to be a multiple of Λ. The general case can be readily
handled (cf. [32]), and in Section V we provide a related example.

3To clarify, what the above says is the following. If there are, e.g., B = 2Q
users per group and thus K = 2ΛQ users in total, then the algorithm that
we describe here will be first applied to the first ΛQ users, and then, after
this delivery is done, the same algorithm will apply to the remaining ΛQ
users, thus eventually satisfying all K users. Also note that a small amount
of additional subpacketization can easily resolve the case where B/Q may
not be an integer.



(
Λ
G

)
so-called stages. Each stage will involve the transmission

to a different set (triplet in this case) of cache groups Ψ′ ⊆ [Λ]
where |Ψ′| = G = 3. In each such stage, the BS serves Q = 2
users from each of the above three cache groups, which allows
for serving GQ = 6 users at a time. For example, the first stage
can correspond to the set Ψ = {D1,D2,D3}. The difference
between the two processes is that in the first delivery process,
the BS serves the first Q = 2 users in each cache-group, while
in the second process, the BS serves the last Q = 2 users in
each cache-group (cf. Fig. 1). We refer to the users currently
served in a delivery process as active users and to all the other
users as passive users in Fig. 1.

Let us now focus on a single transmission stage. As
mentioned above, at each such stage, we pick a set Ψ ⊆ Λ of
G = Λγ + 1 groups that will be served simultaneously. From
within these chosen groups, we will serve Q ≤ B users per
group. In particular, for each user Uψ,ϑ of some group ψ ∈ Ψ,
this stage will deliver all subfiles4 sψ,ϑ by transmitting

xΨ =
1√
G

∑
ψ∈Ψ

ρψ
∑Q

ϑ=1
vψ,ϑsψ,ϑ, (2)

where vψ,ϑ ∈ CL×1 denotes the precoder applied to the subfile
intended by user Uψ,ϑ, and where ρψ denotes the power
normalization factor for group ψ ∈ Ψ, applied under a total
power constraint Pt. Upon defining Vψ ∈ CL×Q as Vψ ≜
[vψ,1

∣∣ . . . ∣∣vψ,Q] and sψ ∈ CQ as sψ ≜ [sψ,1, . . . , sψ,Q]
T , the

above takes the simple form

xΨ =
1√
G

∑
ψ∈Ψ

ρψVψsψ. (3)

Remark 1. It is easy to see that the described scheme simply
involves a carefully selected linear combination of G linear-
precoding vectors that are now to be sent simultaneously. It
is also easy to see that the above scheme also incorporates
the traditional cacheless downlink scenario corresponding to
γ = 0, which itself corresponds to G = |Ψ| = 1. In such case,
the transmit signal expression reverts to the simpler common
expression x = ρVs.

For decoding to work, the subfiles must be chosen carefully.
This choice follows the principles of coded caching, and in
particular of vector coded caching. Thus, when considering
the transmission stage which serves the G = Λγ + 1 groups
in Ψ, the subfile transmitted to user Uψ,ϑ is here selected to
be WΨ\{ψ}

dψ,ϑ
, simply because this subfile is stored in the cache

of each user of every other group in Ψ except ψ. Because
of this structure, the users of a particular group can remove
the inter-group interference from the other Λγ groups by
using their cached content. On the other hand, following the
principles of vector coded caching, the intra-group interference
is handled with linear precoding that ‘separates’ the signals
of the users from the same group. Naturally one can imagine
that cache-aided removal of interference as well as ‘nulling
out’ of interference, both require knowledge of the composite
precoder-channel coefficients (cf. (4) and (5)). These so-called

4In a slight abuse of notation, we use the term “subfile” to refer both to
the actual subfile generated after file-splitting, as well as to the corresponding
complex-valued information symbol sψ,ϑ.

composite CSI costs will be explicitly accounted for in our
analysis. We proceed to elaborate on the precoders and the
transmissions.

C. Vector Coded Caching for the Physical Layer

We now emphasize on the physical layer details of the
communication scheme. Our description will focus on the
transmission that serves a specific set Ψ of user-groups. First
let us recall that Vψ ∈ CL×Q denotes the precoding matrix
for the symbols of users in group ψ ∈ Ψ. We note that,
as is common, our analysis will assume Gaussian signaling.
Then let us note that for an average power constraint Pt,
the power normalization factor ρψ from (3), takes the form
ρψ =

√
Pt

E{sHψVH
ψVψsψ}

=
√

Pt
E{Tr{VH

ψVψ}}
. Then the subse-

quent corresponding received signal at user Uψ,k (i.e., at the
k-th user of group ψ ∈ Ψ), will take the form

yψ,k =
hTψ,k√
G
ρψVψsψ +

hTψ,k√
G

∑
ϕ∈Ψ
ϕ̸=ψ

ρϕVϕsϕ︸ ︷︷ ︸
inter-group interference

+zψ,k. (4)

As previously mentioned, the inter-group interference5 experi-
enced by user Uψ,k, can be removed from yψ,k by exploiting
that same user’s cached content and that user’s composite
CSI {hTψ,kvϕ,k′ρϕ}ϕ∈{Ψ\ψ}, k′∈[Q]. Then, after the cache-aided
removal of this inter-group interference, the equivalent received
signal at Uψ,k is given by

y′ψ,k =
ρψ√
G
hTψ,kvψ,ksψ,k

+
ρψ√
G

∑Q

ϑ=1,ϑ̸=k
hTψ,kvψ,ϑsψ,ϑ︸ ︷︷ ︸

intra-group interference

+ zψ,k. (5)

Consequently, the corresponding SINR for information decod-
ing at Uψ,k, is given by

SINRψ,k =

ρ2ψ
G |hTψ,kvψ,k|2

1 +
ρ2ψ
G

∑Q
ϑ=1,ϑ̸=k |hTψ,kvψ,ϑ|2

. (6)

On the other hand, in the cacheless case of γ = 0, the
received signal yk = ρhTk vksk + ρ

∑Q
ϑ=1,ϑ̸=k h

T
k vϑsϑ +

zk at some user k naturally carries no inter-group inter-
ference (as there are no other groups to simultaneously
serve), and the SINR takes the standard form SINRk =

ρ2|hTk vk|
2

1+ρ2
∑Q
ϑ=1,ϑ̸=k |hTk vϑ|2

. Therefore, the instantaneous rate

Rψ,k = ln
(
1 + SINRψ,k

)
nats/s/Hz (7)

for user Uψ,k is obtained by evaluating the above, at the SINR
value in (6).

We consider the MF, ZF and RZF linear precoding schemes,
selected here for being very common, simple, as well as
competitive in terms of rate performance [41], [42]. As is

5As a reminder, the term inter-group interference refers to the received
signal component whose power is due to the information meant for users
originating from other groups.



Fig. 1: An example of vector coded caching with G = 3, Λ = 40, B = 4 and Q = 2.

known, the corresponding precoding matrices Vψ take the
form:

Vψ =


HH
ψ , MF Precoder

HH
ψ

(
HψH

H
ψ

)−1

, ZF Precoder

HH
ψ

(
HψH

H
ψ + αIQ

)−1

, RZF Precoder,

(8)

where Hψ ≜
[
hψ,1|hψ,2| · · · |hψ,Q

]T ∈ CQ×L denotes the
channel matrix for the channel from the BS to the Q chosen
users belonging to group ψ ∈ Ψ, and where α is the
regularization factor of the RZF precoder [41]. It is worth
recalling that the RZF precoder reverts to the ZF precoder
when α = 0, and to the MF precoder when α→ ∞, and also
that Q is bounded above by B and, in the case of the ZF/RZF
precoding, it is also bounded as Q ≤ L. For simplicity we
assume that α = L/Pt, which is a commonly used assumption
throughout the literature [41], [43], [44].

We will henceforth use the term (G,Q)-vector coded
caching, to refer to the vector coded caching scheme when
it serves G groups with Q users per group. We will also use
the term MF-based (G,Q)-vector coded caching to refer to
the same scheme when the underlying precoder is MF, and
similarly we will use ZF-based or RZF-based (G,Q)-vector
coded caching, for the other two precoders. Let us now formally
define some important metrics of interest.

Definition 1. (Average sum-rate and effective sum-rate). For a
(G,Q)-vector coded caching scheme, its average sum-rate
is denoted by R̄(G,Q) and is defined as the total data-
transmission rate (before accounting for CSI costs) summed
over the GQ simultaneously served users, and averaged over
the fading. Similarly, the effective average sum-rate R̄(G,Q)
will represent the corresponding average rate after through all
CSI costs are duly accounted for.

Definition 2. (Effective gain over MISO). For a given set
of L and SNR resources, and a fixed underlying precoder
class, the effective gain, after accounting for CSI costs, of
the (G,Q)-vector coded caching over the cacheless scenario
(corresponding to G = 1, and an operating multiplexing gain
Q′) will be denoted as G(G,Q; 1, Q′) ≜ R̄(G,Q)

R̄(1,Q′)
in the form

of the ratios of the effective rates.

III. ANALYSIS OF THE AVERAGE RATE AND OF THE
EFFECTIVE GAIN OVER MISO

In this section, we analyze the average sum-rates and the
corresponding effective rates achieved by the cache-aided
downlink schemes of Section II-B for the MF, ZF and RZF
linear precoders of interest. After doing so, we also report the
effective gains offered by these (G,Q)-vector coded caching
schemes, over the (G = 1, Q′) cacheless equivalents.

We will henceforth consider the ratio c ≜ Q/L, while we
will often use the notation c′ ≜ Q′/L when referring explicitly
to the cacheless equivalent. The two ratios can be chosen
independently. When applying large matrix analysis, we will
be assuming a fixed c > 0 and a fixed c′ > 0.

A. MF Precoding

To derive the average sum-rate of vector coded caching with
MF precoding, we first recall that the elements of Hψ are i.i.d.
Gaussian random variables with zero mean and unit variance,
which implies that E

{
Tr
{
HψH

H
ψ

}}
= LQ (cf. [45]), which

then implies that the power normalization factor ρψ takes the
form ρψ =

√
Pt/E{Tr{HψH

H
ψ }} =

√
Pt
QL (cf. [46]). This in

turn yields (cf. (8), (3)) a transmitted signal of the form

xΨ =
√

Pt
GQL

∑
ψ∈Ψ

HH
ψ sψ =

√
Pt
GQL

∑
ψ∈Ψ

Q∑
ϑ=1

h∗
ψ,ϑsψ,ϑ. (9)

The corresponding average sum-rate is presented below. We
note that Theorem 1 focuses on the case of Q > 1. However,
the analysis for Q = 1 is straightforward and follows the same
large-matrix properties and principles. The only difference
is that for the single-stream scenario, one can deviate from
the current scheme, and employ XORs rather than linear
combinations over the complex numbers. This is not covered
in our work here.

Theorem 1. For any given Pt and c = Q/L, the average
sum-rate R̄MF of the MF-based (G, cL)-vector coded caching
scheme in the large L regime satisfies

R̄MF(G, cL)
.
= c GL ln

(
1 +

1

c

Pt
Pt +G

)
. (10)

Proof. The proof can be found in Appendix I.



The following directly distils the above result to the cacheless
case.6

Corollary 1. In the limit of large L, and for any fixed Pt
and c′, the average sum-rate of the (traditional, cacheless)
MF-based MISO BC with c′L streams satisfies

R̄MF(1, c′L)
.
= c′ L ln

(
1 +

1

c′
Pt

Pt + 1

)
. (11)

B. ZF Precoding

Moving now to the case of ZF-based vector coded caching,
and focusing again on a set of groups Ψ and on the transmission
stage corresponding to some group ψ ∈ Ψ, the power control
factor takes the form ρ2ψ = Pt

E{Tr{(HψHH
ψ )−1}} , while the

transmitted signal from (3) becomes

xΨ =
1√
G

∑
ψ∈Ψ

ρψH
H
ψ

(
HψH

H
ψ

)−1
sψ. (12)

This in turn yields a received signal at user Uψ,k which —
after the cache-aided removal of the inter-group interference
(cf. (4)) — takes the form

y′ψ,k =
1√
G
ρψh

T
ψ,kH

H
ψ

(
HψH

H
ψ

)−1
sψ + zψ,k

=
1√
G
ρψ
(
1TkHψ

)
HH
ψ

(
HψH

H
ψ

)−1
sψ + zψ,k

=
1√
G
ρψsψ,k + zψ,k, (13)

where 1k ∈ CQ×1 denotes the vector whose components are
all zero except for the k-th element, which equals 1. After
considering that all intra-group interference is canceled by
means of ZF precoding, the SINR at user Uψ,k is given by

SINRZF
ψ,k =

Pt

GE
{
Tr
{(

HψHH
ψ

)−1}} . (14)

With this in place, we proceed with the following theorem.

Theorem 2. For c = Q
L ∈ (0, 1), the average sum-rate R̄ZF

sum

of the ZF-based (G,Q)-vector coded caching scheme takes
the form

R̄ZF(G,Q) = QG ln

(
1 +

Pt
G

(
1

c
− 1

))
. (15)

Proof. Directly from [50], and from the fact that HψH
H
ψ

is a Wishart matrix with L degrees of freedom, we know
that E

{
Tr
{(

HψH
H
ψ

)−1}}
= Q

L−Q for L > Q. Naturally,
SINRZF

ψ,k is deterministic and constant across all simultaneously
served users. By summing the average rate of each of the GQ
served users, we obtain (15).

6It is worth noting that while there have been various works (cf. [44],
[46]–[48]) analyzing the MF sum-rate in traditional massive MIMO systems,
the result derived in this work here entails less assumptions. For example,
focusing on the large-L regime, the result in [47] directly assumes a tight
Jensen’s bound, while the result in [48] is under a so-called “near deterministic”
assumption in low/high SNRs. On the other hand, our method here draws
from the uplink analysis in [49], and only employs a large-L assumption to
derive the exact asymptotic optimality for any value of SNR.

C. RZF Precoding

We finally consider our third precoder, and do so in the
asymptotic regime of large L and fixed c. We first note that
the received signal at Uψ,k — after cache-aided removal of
the inter-group interference — takes the form

y′ψ,k =
ρψ√
G

Q∑
ϑ=1

hTψ,k
(
αIL +HH

ψHψ

)−1
h∗
ψ,ϑsψ,ϑ + zψ,k.

(16)

For Hψ,−k denoting the matrix resulting from Hψ after
removing its k-th row, we can define

Aψ,k ≜ hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1

h∗
ψ,k, (17)

Bψ,k ≜ hTψ,k
(
αIL +HH

ψ,−kHψ,−k
)−1

HH
ψ,−k

×Hψ,−k
(
αIL +HH

ψ,−kHψ,−k
)−1

h∗
ψ,k. (18)

With these notations, we can derive the SINR at user Uψ,k as

SINRRZF
ψ,k =

A2
ψ,k

ρ2ψ
G(

1 +Aψ,k
)2

+
ρ2ψ
G Bψ,k

, (19)

where the proof of (19) is relegated to Appendix II-A.
We can now present the asymptotic deterministic equivalent

of the sum-rate of our proposed scheme when RZF is applied.
We recall that in the limit of large L, the deterministic value
X̊ represents the asymptotic deterministic equivalent of X if
X

a.s.−→ X̊ .

Theorem 3. In the large-L regime with fixed c = Q/L, the
average sum-rate R̄RZF of RZF-based (G,Q)-vector coded
caching takes the form

R̄RZF(G,Q)
.
= R̊RZF(G, cL)

≜ cGL ln
(
1 +

a2ψ,kp
2
ψ/G(

1+aψ,k

)2
+Pt/G

)
, (20)

where R̊RZF is the deterministic equivalent7 of R̄RZF and

aψ,k ≜ 1
2

[√
(1− c)2P 2

t + 2(1 + c)Pt + 1 + (1− c)Pt − 1
]

p2ψ ≜
Pt

aψ,k − Pt
2

(
Pt(c−1)2+c+1√

P 2
t (c−1)2+2(c+1)Pt+1

+ 1− c
) . (21)

Proof. The proof is based on the derivation of the asymptotic
deterministic equivalent of the SINR, and it is presented in
Appendix II.

D. Accounting for the CSI Costs

To account for the cost of CSI acquisition under TDD, we
consider a basic CSI-acquisition effort where at the beginning
of each transmission stage, the GQ served users send uplink
orthogonal pilot symbols, from which the BS can estimate
the downlink channel matrix, under the assumption of channel
reciprocity. Then the CSI-acquisition process engages downlink
training, of similar complexity, in order to communicate the

7This entails a small abuse of terminology, as it is R̊RZF/L that is the
deterministic equivalent of R̄RZF/L.



composite CSI that here allows our receivers to perform cache-
aided cancellation of the inter-group interference (cf. (4)) from
their signal. This acquisition process for gathering composite
CSI, with the same aforementioned complexity per served
user, is standard in a variety of traditional communications
techniques such as SIC-based approaches. For additional details,
please refer to [51]. To account for this CSI-acquisition
overhead, we directly extend the commonly-used approach
in [52]–[55], that easily allows us to calculate the effective
average sum-rate (cf. Definition 1) for each precoder i ∈ {MF,
ZF, RZF}, to be

R̄i =

(
1− βtotGQ

TcWc

)
R̄i = (1− c ζG,Q) R̄

i, (22)

where βtot is the number of resources per user and per block
used for pilot transmission, R̄i is the previously calculated
average sum-rate before accounting for CSI costs, where Tc
and Wc are the coherence time and coherence bandwidth,
respectively, and where ζG,Q ≜ βtotGL

TcWc
. For completeness we

report the effective rates in the following corollary. The proof
is direct as it merely involves applying (22) in the expressions
from Theorems 1–3. We recall that aψ,k and pψ are defined
in Theorem 3.

Corollary 2. The effective rates of the proposed vector coded
caching schemes under MF, ZF, and RZF precoding take the
form, respectively,

R̄MF(G,Q)
.
= (1− c ζG,Q) c GL ln

(
1 +

1

c

Pt
Pt +G

)
R̄ZF(G,Q) = (1− c ζG,Q)QG ln

(
1 +

Pt
G

(
1

c
− 1

))
R̄RZF(G,Q)

.
= (1− c ζG,Q)cGL ln

(
1+

a2ψ,kp
2
ψ/G

(1 + aψ,k)2 + Pt/G

)
E. Effective Gains over Cacheless MISO Systems

At this point, with Theorems 1, 2, 3 in place, and in
conjunction with Corollary 2, we can directly report the
effective gains over cacheless MISO. For each of the three
precoder classes, MF, ZF, and RZF, and for a fixed set of
antenna and SNR resources, we obtain the effective gain
G(G,Q; 1, Q′) = R̄(G,Q)

R̄(1,Q′)
(cf. Definition 2) of the (G,Q)-

vector coded caching schemes over the cacheless scenario
(G = 1) with some chosen number of streams Q′. These
effective gains are collected together in the following corollary.

Corollary 3. The effective gains of the proposed vector coded
caching schemes under MF, ZF, and RZF precoding satisfy,
respectively,

GMF (G,Q; 1, Q′)
.
= ξ

GQ

Q′

ln
(
1 + L

Q
Pt

Pt+G

)
ln
(
1 + L

Q′
Pt
Pt+1

)
GZF (G,Q; 1, Q′) = ξ

GQ

Q′

ln
(
1 + Pt

G

(
L
Q − 1

))
ln
(
1 + Pt

(
L
Q′ − 1

))
GRZF (G,Q; 1, Q′)

a.s.−→ ξ
R̊RZF(G, cL)

R̊RZF(1, c′L)

where ξ ≜ (L−QζG,Q)

(L−Q′ζ1,Q′)
and R̊RZF(·, ·) is defined in (20).

IV. OPTIMIZING PHYSICAL LAYER VECTOR CODED
CACHING

Theorems 1–3 reveal the important dependence of vector
coded caching on the number of streams, Q, that we choose
to activate. This dependence strikes at the very core of the
problems stemming from power-splitting and CSI overheads.
Indeed, while an increased Q ≤ L allows for a higher DoF at
lower subpacketization, this increase in the number of streams
may not be beneficial in practice as it entails less power per
stream as well as more CSI to be communicated.

For this reason, we here proceed to analytically optimize our
schemes over the choices of Q. This optimization is tractable
partly due to the simplicity of the achievable-rate expressions
derived in the previous theorems8, and while some of these
expressions involve asymptotic approximations, they will, as we
will verify numerically, be very precise (see for example Fig. 2).
Our analysis of the optimal c∗ will assume a variable c =
Q/L that is continuous and unbounded. As noted before, the
optimization takes into account the impact of CSI acquisition
under TDD.

Let us first focus on deriving the optimal c∗ for MF, where
c ∈ (0,∞) and Ω ≜ Pt

Pt+G
.

Theorem 4. In the MF-based (G,Q)-vector coded caching
with non-negligible CSI costs, the optimal c∗ that maximizes
R̄MF in the asymptotic sense is given by the solution to the
following expression:

(1− 2ζG,Qc
∗) ln

(
1 +

Ω

c∗

)
− Ω(1− ζG,Qc

∗)

Ω + c∗
= 0. (23)

Proof. We prove the theorem by demonstrating that R̄MF as
derived in Corollary 2 is concave over c ∈ (0,∞). Let us first
note that the first derivative of R̄MF in (10) is given by

∂R̄MF

∂c
= GL

[
ln

(
Ω+ c

c

)
+

c

Ω+ c
− 1

]
, (24)

whereas the second derivative is then given by

∂2R̄MF

∂c2
= −GL Ω2

c(Ω + c)2
< 0. (25)

By differentiating R̄MF in Corollary 2 with respect to c, we
have that

∂R̄MF

∂c = (1− ζG,Qc)
∂R̄MF

∂c − ζG,QR̄
MF (26)

∂2R̄MF

∂c2 = (1− ζG,Qc)
∂2R̄MF

∂c2 − 2ζG,Q
∂R̄MF

∂c . (27)

Let us know to inspect the signs of these derivatives. First,
note that Ω+c

c ≥ 1 for any feasible Ω, c, simply because
Ω = Pt

Pt+G
≥ 0. Let us also note that the function ln(x)+1/x is

decreasing when x ∈ (0, 1) and is increasing when x ∈ [1,∞),

8The derivation of the optimal point for RZF is omitted due to the fact that,
although we can obtain the derivative of the sum-rate, the equation to find the
optimal Q provides little insight and we would need to obtain the solution
numerically (cf. Appendix III in [56]).



and also that its minimum value (attained at x = 1) is equal
to 1. Consequently, it follows that

∂R̄MF

∂c
= GL

[
ln

(
Ω+ c

c

)
+

c

Ω+ c
− 1

]
≥ 0, (28)

where the inequality is strict unless Ω+c
c = 1 corresponding to

c → ∞. Therefore, we conclude that R̄MF is monotonically
increasing over c ∈ (0,∞).

From the fact that ∂R̄MF

∂c ≥ 0 (cf. (28)), the fact that
∂2R̄MF

∂c2 < 0 (cf. (25)), and the fact that 1− ζG,Qc ≥ 0, we can
conclude that ∂2R̄MF

∂c2 < 0 in (27). Therefore, R̄MF is concave
over c ∈ (0,∞), and thus the global maximum point of R̄MF

is at the root c∗ of ∂R̄MF

∂c .

Next, we consider ZF-based cache-aided precoding, for
which we have the following.

Theorem 5. In the ZF-based (G,Q)-vector coded caching
with non-negligible CSI costs, the optimal c∗ that maximizes
R̄ZF is given by the solution to the following equation:

(1− 2ζG,Qc
∗) ln

(
1 + Pt

G

(
1
c∗ − 1

))
−

(1− ζG,Qc
∗)PtG

(1− Pt
G )c∗ + Pt

G

= 0.

(29)

Proof. The proof builds on the properties of the first and
second derivatives of R̄ZF, in a similar manner as in the proof
of Theorem 4. These derivatives now take the form ∂R̄ZF

∂c =

(1−ζG,Qc)∂R̄
ZF

∂c −ζG,QR̄ZF, and ∂2R̄ZF

∂c2 = (1−ζG,Qc)∂
2R̄ZF

∂c2 −
2ζG,Q

∂R̄ZF

∂c . After applying (15), these derivatives take the form

∂R̄ZF

∂c
= GL

[
ln
(
1 + Pt

G

(
1
c − 1

))
−

Pt
G

(1− Pt
G )c+ Pt

G

]
(30)

∂2R̄ZF

∂c2
= −GL

(PtG )2

c
( (

1− Pt
G

)
c+ Pt

G

)2 < 0. (31)

Since the second derivative ∂2R̄ZF

∂c2 in (31) is always negative,
R̄ZF is a concave function with respect to c. Therefore, the root
of ∂R̄ZF

∂c = 0, which we denote by c⋆R, is the global maximum
of R̄ZF over c ∈ (0,∞). Moreover, it follows from (15) that
R̄ZF = 0 for c = 1 and that R̄ZF > 0 for 0 < c < 1, which
implies that c⋆R belongs in the interval (0, 1).

Since ∂R̄ZF

∂c

∣∣
c=c⋆R

= 0 and since ∂2R̄ZF

∂c2 is always negative,

we know that ∂R̄ZF

∂c is monotonically decreasing and that this
same ∂R̄ZF

∂c is negative for all c ∈ (c⋆R, 1).
Consequently, R̄ZF is monotonically decreasing in the

interval c ∈ (c⋆R, 1). Thus the maximum point of R̄ZF must
belong in the interval (0, c⋆R) where we can see that ∂R̄

ZF

∂c > 0

and ∂2R̄ZF

∂c2 < 0. Hence, R̄ZF is concave throughout c ∈ (0, c⋆R),
and thus the root of ∂R̄ZF

∂c is the global maximum point of
R̄ZF, where this point c∗ must belong in (0, c⋆R). Finally,
substituting (15) and (30) into ∂R̄ZF

∂c yields (29) and proves
the theorem.

Remark 2. As Pt → ∞, we can write (30) as ∂R̄ZF

∂c =
GL
[
ln
(
Pt
G

)
+ln

(
1−c
c

)
− 1

1−c
]
+o(1), where limPt→∞ o(1) =

0. Therefore, in the high-SNR regime and without taking CSI
costs into account, the optimal value of c that maximizes R̄ZF

(and thus R̄RZF, since both converge at high-SNR) is given
by c∗ =

(
1 + 1

W(Pt/(eG))

)−1
, upon omitting an o(1) additive

term, and upon using W(·) to denote the Lambert W-Function.
This expression can serve as a good approximation in those
moderate-to-high SNR scenarios where the dimensionality of
the problem implies a relatively small CSI cost. As one can
see, as the SNR becomes very large, the above c∗ converges,
as is known, to 1, corresponding to Q ≈ L.

After deriving the above optimal c∗, we can now consider
the ratio

G⋆i ≜
maxQ∈Z+ R̄i(G,Q)

maxQ′∈Z+ R̄i(G = 1, Q′)
, (32)

which describes the performance boost due to caching, over
(independently) optimized downlink cacheless systems, after
accounting for CSI costs. These gains G⋆MF,G⋆ZF,G⋆RZF are
reported for the three precoders of interest. As one would
expect, this comparison is done under a fixed set of SNR
and antenna resources. The transition from the continuous
c to the operating Q will follow by simply considering
Q∗ = argmaxQ∈{⌊c∗L⌋,⌊c∗L⌋+1}{R̄(Q)}, where ⌊·⌋ denotes
the nearest integer less than or equal to the argument.

V. NUMERICAL RESULTS

We proceed to numerically demonstrate the achieved ef-
fective rates as well as the effective gains that an optimized
vector coded caching scheme provides over the independently
optimized cacheless downlink solution. We note that the
simulated results employ no approximations (for example,
the corresponding SINR is taken directly from (6)). For ease
of exposition, we list in Table I the derived theorems and
corollaries.

The following figures build on the analysis of the effective
sum rates and effective gains of Section III, as well as on the
analysis of the optimized gains of Section IV. These figures
incorporate the CSI costs in the realistic scenario of having
βtot = 10, Tc = 0.04 seconds and Wc = 300 kHz (cf. (22)),
which captures the common scenario of low-mobility users
consuming videos. We note that βtot = 10 is high enough to
allow us to neglect the impact of CSI estimation noise [54], [55].
Fig. 2 (left) describes the effective rate of the different cache-
aided schemes, for different values of Q. The plot highlights
the tightness of the results of Theorems 1–3 (after accounting
for CSI costs: see Corollary 2), where we see that indeed
the derived asymptotically-approximate expressions have no
discernible distance from the actual (simulated) performance.
The vertical lines indicate the optimal Q derived in Theorems 4–
5. These optimal points indeed match the actual maximum
point of the curves. Fig. 2 (right) extends this illustration of the
tightness of the results, to Theorems 4–5, by illustrating the
optimized (over all Q choices) effective rate performance of
the three precoders, comparing the derived results to the actual
performance. We note that, for the case of RZF precoding, we
represent the result of Theorem 3 (Corollary 2) by considering
a c∗ value that is obtained from an exhaustive search based on
these derived expressions.



TABLE I: Derived Theorems (Thms.) and Corollaries (Cors.)

Thm. 1 Thm. 2 Thm. 3 Thm. 4 Thm. 5 Cor. 1 Cor. 2 Cor. 3
Average

sum-rate MF
Average

sum-rate ZF
Average

sum-rate RZF
Optimal Q

for MF
Optimal Q

for ZF
Average sum-rate
in cacheless MF

Effective rates
in MF/ZF/RZF

Effective gains
in MF/ZF/RZF
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Fig. 2: Effective rate R̄ and optimized effective rate for Pt = 10 dB and G = 5.
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Fig. 3: Effective gain G⋆ over optimized cacheless system for L ∈ {32, 64} and G = 6.

Fig. 3 focuses on the effective gains over optimized cacheless
downlink systems. As before, the theoretical and simulated
results fully match. Here the theoretical results reflect the
effective gain ratio G⋆i in (32), where the derived effective-
rate expressions are from Corollary 2 (and the corresponding
Theorems 1–3), and where the optimized c∗ are directly from9

Theorems 4–5.
It is notable that, despite the fact that Theorem 1 and

Theorem 3 are obtained from asymptotic analysis, they closely
characterize the real performance obtained from simulations.
This is also reflected in Fig. 4.

Under the above realistic coherence periods and coherence
bandwidths, realistic CSI costs, as well as realistic values
of SNR and L, the multiplicative boosts over the achievable
rates of optimized downlink systems are quite notable. For
example, for 64 transmit antennas, a receiver-side SNR of 20
dB, the same Wc = 300 kHz and Tc = 40 ms, and under
realistic file-size and cache-size constraints that allow us to
assume G = 6, vector coded caching is here shown to offer a

9We recall that, for the RZF case, in Fig. 3 we numerically evaluate c∗

from Theorem 3.

multiplicative boost of about 280% in ZF/RZF precoding and
380% over MF-based cacheless systems, whereas for the case
of 32 antennas the gain elevates to 310% for ZF and to a 430%
multiplicative boost in the performance of already optimized
MF-based cacheless systems10. As one would expect, this same
figure reveals that the gains G⋆MF,G⋆ZF,G⋆RZF grow monotonically
with the SNR, and often come very close to the theoretical
upper bound of G.

Another interesting comparison is shown in Fig. 4, where
we ask that the cache-aided and cacheless scenarios share
the same exact multiplexing gain Q. The motivation for this
comparison traces back to the idea of channel hardening, which
refers to the fact that as long as L is sufficiently large, and as
long as Q/L is sufficiently small, the channel converges to a
deterministic value, thus making CSI acquisition easier. While
this paper is not about the channel hardening properties of the
cache-aided downlink, Fig. 4 — which plots the effective gain
G(G,Q; 1, Q) = R̄(G,Q)/R̄(1, Q) — offers a first indication

10In addition to the speedup factor reported here, the use of caches can
also lead to additional — albeit marginal — reductions in delivery-time,
complements of the so-called local caching gain, which is though of no
particular interest to this study.



of yet another benefit of vector coded caching, which now
allows us to serve more users at a time, but do so with a
controlled ratio Q/L that guarantees certain channel hardening
conditions. Focusing on the case of a fixed Q = 8 for both the
cache-aided (G = 6), as well as the cacheless case (G = 1),
Fig. 4 reveals that under the same Wc, Tc and under realistic
SNR values of, for example, approximately 15dB, the effective
gains (over cacheless equivalent systems with the same Q/L)
approach 400% for the ZF-based precoders, and even go beyond
540% when using MF-based precoding. Similar gains are
recorded in the larger scenario with L = 128 transmit antennas.

So far, for the sake of clarity of exposition, we have
considered the case where K is a multiple of Λ. The impact
of deviating from this assumption is indeed very small. Let us
briefly discuss this. Let B ≜ ⌊K/Λ⌋, in which case K − ΛB
cache groups will have B + 1 users each, while the remaining
Λ(B + 1)−K cache groups will have B users. Then for the
first B+1

Q − 1 delivery processes, the effective gain will be the
same as before, while for the remaining processes this will be
slightly reduced. Let us consider the worst case where there
are only B users in each cache group in a specific cache-group
set Ψ. In this case, we can have that the number of users in
each cache group in Ψ is ΓQ+ (Q− 1) where Γ = B+1

Q − 1.
The corresponding effective gain averaged over the entire Γ+1
delivery processes for serving the cache-group set Ψ is then

G(G,Q; 1, Q′) =
1

Γ + 1

(
Γ
R̄(G,Q)

R̄(1, Q′)
+

R̄(G,Q− 1)

R̄(1, Q′)

)
, (33)

where R̄(·) was introduced in Definition 1. We illustrate
this result in Fig. 5, which plots this effective gain in (33),
comparing it to the corresponding gain under the assumption
that Λ divides K (denoted by Λ|K in Fig. 5). We can easily
see that the effective gain gap decreases as Γ increases, and
eventually becomes negligible for a reasonable value of Γ, e.g.,
gap ≤ 2% for Γ = 4 in both the medium and the high SNR
regimes.

The above numerical illustrations refer to theoretical gains
of G = 5 and G = 6. To better understand the implications
that such values entail, we provide the following simplifying
example scenario in which we explain how the considered
values are obtained in some realistic use cases.

Example 1. Let us consider the Netflix library, focusing on
movies, and let us make the educated speculation that the
popularity distribution of the library content follows a Zipf
distribution with exponent parameter 1.4 (cf. [57]). Assume
that we choose to apply coded caching on the part of the library
that captures 90% of the traffic, such that on average 90% of
the Netflix traffic will experience a streaming volume reduction
by a (theoretical) factor of G. Thus in a Netflix library of
approximately 3700 movies, coded caching is applied to the
100 most popular ones. The remaining 10% of the traffic is
sent in an uncoded manner.

The subpacketization constraint will be largely defined by
the latency requirements, which will ask from us, before
subpacketization, to first split each movie into files that —
in order to guarantee smooth streaming — will have to be
sufficiently small. Assume a latency of two minutes, which can

be seamlessly handled with a small buffer. This, with the extra
assumption that movies last around 90 minutes, implies file
(sub-movie) sizes of approximately 2min

90min = 1/45 of the movie
size. Let us now consider several possible scenarios that we
can encounter in practice.

a) First setting: Let us assume that the receiving devices
are each endowed with a cache of size equal to 25GB, and let us
assume that they stream HD movies whose size is approximately
1.3GB. From this, we obtain a file size of approximately
1.3GB

45 = 28.8MB.
Under the assumption of atomic (indivisible) communication

packets of size equal to 50 bytes, this brings us to a subpack-
etization of 28.8MB

50B ≈ 6 · 105. This level of subpacketization,
together with the corresponding γ = 25GB

100·1.3GB ≈ 0.19, allows
for a theoretical gain of G = 7 (since

(
Λ

0.19Λ

)
≤ 6 · 105

and G = Λγ + 1). Recalling our example of the hardening-
constrained setting with Q = 8 (cf. Fig. 4), to attain the
promised gain of G = 7, we require at least QΛ ≈ 240
receiving nodes/antennas, which could represent 60 users with
4 receive antennas each.

b) Second setting: Under approximately the same condi-
tions, but for Full-HD movies of size 2.47GB, the corresponding
scenario implies γ < 0.10 and can allow for a gain close to
G = 6. Recalling the same setting with Q = 8 of Fig. 4, under
the Full-HD assumption, we see that attaining the promised
gain of G = 6 requires a network with at least QΛ ≈ 400
receiving nodes/antennas, which could represent K = 100
users with 4 receive antennas each.

c) Third setting: Let us now assume that each cache has
a size equal to 5GB, and let us consider Standard Definition
(SD-480p) streaming. Hence, the file (sub-movie) sizes become
400.5MB

45 = 8.9MB and γ = 5GB
100·400.5MB ≈ 0.125. With an

atomic communication packet size of 200 bytes, we have
subpacketization 4.5 · 104, with a theoretical gain of G = 5. In
this SD small-cache scenario, considering Q = 8 corresponds
to K = 256 single antenna users, or 128 users with 2 antennas
each.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

This work explores new methods for improving the per-
formance of advanced multi-antenna downlink systems. Such
systems constitute the backbone of modern wireless communi-
cations, and they have traditionally depended on an optimized
interplay between multiplexing and beamforming techniques.
While multi-antenna arrays have been without a doubt one
of the most valuable resources and the driving force behind
advanced communications technologies, we are now presented
with a new and highly complementary and abundant resource
in the form of the ever-increasing storage volumes available
across even the smallest communicating nodes.

Motivated by the opportunity offered by this newly abundant
resource, our work presented very simple to implement
optimized cache-aided linear precoding schemes for the multi-
antenna downlink broadcast channel. These schemes simply
exploit cached content in order to be able to simultaneously
transmit carefully selected precoded vectors that would have
otherwise been sent one after the other. Because of the simplic-
ity of this idea, it is conceivable to expect the gains to persist
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Fig. 4: Hardening-constrained effective gain over a constrained classical downlink system. Q is fixed at Q = 8, while G = 6.
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Fig. 5: Effective gain versus Γ in medium SNR (10 dB) and high SNR (30 dB).

for a broader class of precoders. Our performance analysis
derives simple expressions that reveal significant multiplicative
gains from applying caching over already optimized downlink
systems, where these gains persist for various well-known
precoding classes. This same analysis and optimization are here
shown to hold very tight in realistic non-asymptotic settings,
while also incorporating a variety of practical considerations
such as power dissemination across signals, realistic SNR
values, as well as CSI costs. The comparisons of optimized
cache-aided vs. optimized cacheless downlink systems reveal
that vector coded caching can recover a sizeable portion of
its theoretic (high-SNR) gain G = Λγ + 1, even in realistic
wireless settings operating at realistic SNR values.

In terms of challenges, indeed G remains, under current
practices, bounded in the range of single digits. Any im-
provement beyond this range would require either a dramatic
increase in the storage capability of nodes (γ), or a research
breakthrough in the area of subpacketization-constrained coded
caching. Further improving the subpacketization-constrained
performance of coded caching primitives (thus effectively
allowing for a larger Λ) remains to date the big challenge
in coded caching, and any progress in that direction would
undoubtedly have a profound impact on the performance of
cache-aided multi-antenna systems.

The reported gains here will naturally come under pres-
sure from additional realistic considerations such as having
statistically asymmetric channels, although this problem can

be partially ameliorated with power control, with rate-splitting
approaches [58], [59], or with the novel “brothers” approach
in [60]. These same reported gains may also come under
pressure from the additional CSI costs that would arise in
the event where multi-antenna coded caching algorithms start
serving more and more users. Remedies for this can be found
in the novel clique structures recently reported in [51]. A big
associated open problem is the simultaneous reduction of both
the subpacketization and CSI costs (see [61] for some early
efforts). Naturally the system performance also remains subject
to the need for cacheable and live-streamed data to co-exist
(cf. [59]), the need for cache-aided and cacheless users to
coexist,11 as well as will depend on the stochastic nature of the
network topology and user behavior (for some early remedies,
the reader can refer to [40], [62]).

The presented new results, as well as the aforementioned
challenges, arrive at an instance when bandwidth and antenna
resources are asked to handle an aggressively increasing volume
of data. At the same time though, the new results come at a
time when Moore’s law on storage capabilities remains intact
and the ever-increasing majority of communicated content is
cacheable [3]. For these reasons, and given the powerful gains
reported here, we believe that the aforementioned techniques
can further help translate the abundance of Gbytes of storage
space into much needed spectral efficiency.

11See [30], which reveals the surprising conclusion that cacheless users can
benefit from full coded caching gains.



APPENDIX I: PROOF OF THEOREM 1
Similar to the proof of [49, Lemma 1], we define X ≜
Pt

GcL2 |hTψ,kh∗
ψ,k|2 and Y ≜ 1 + 1

Q

∑Q
ϑ=1,ϑ̸=k Yϑ, where Yϑ ≜

Pt
GL |h

T
ψ,kh

∗
ψ,ϑ|2. From [48, Lemma 1], we know that E{X} =

Pt
cG (1+

1
L ), Var{X} =

P 2
t

G2c2

(
4
L+

10
L2 +

6
L3

)
<∞, E{Yϑ} = Pt

G

and Var{Yϑ} =
P 2
t

G2 (1 +
2
L ) <∞. We want to prove that

R̄MF(G, cL)

c GL
= E

{
ln

(
1 +

X

Y

)}
= ln

(
1 + E{X}

E{Y }
)
+ o(1), as Q = cL→ ∞. (34)

By applying Jensen’s inequality on E {ln (X + Y )} and
E {ln (Y )} separately, we get the next two bounding results.

ln
(

1
E{(X+Y )−1}

)
≤ E {ln (X + Y )} ≤ ln (E {X + Y }) (35)

− ln (E {Y }) ≤ −E {ln (Y )} ≤ − ln
(

1
E{Y −1}

)
, (36)

and after combining these two bounds, we get

ln
(

1
E{(X+Y )−1}

)
− ln (E {Y }) ≤ E

{
ln
(
1 + X

Y

)}
≤ ln (E {X + Y })− ln

(
1

E{Y −1}

)
. (37)

On the other hand, Jensen’s inequality says that E{Y −1} ≥
1/E{Y } and E

{
(X + Y )−1

}
≥ 1/E {(X + Y )}, which

yields

ln

(
1 +

E{X}
E{Y }

)
≤ ln (E {X + Y })− ln

(
1

E{Y −1}

)
(38)

ln

(
1 +

E{X}
E{Y }

)
≥ ln

(
1

E{(X+Y )−1}

)
− ln (E {Y }) . (39)

At this point, both E
{
ln
(
1 + X

Y

)}
and ln

(
1 + E{X}

E{Y }

)
are

bounded above and below by the same bounds (37)–(39), and
the gap between these bounds (∆) takes the form

∆ ≜

{
ln (E {X + Y })− ln

(
1

E{Y −1}

)}
−
{
ln

(
1

E {(X + Y )−1}

)
− ln (E {Y })

}
= ln

[(
E {X + Y }E

{
(X + Y )−1

} )(
E {Y }E

{
Y −1

} )]
.

We want to show that this gap vanishes as Q = cL→ ∞. By
expanding the Taylor series of Y −1 at E{Y }, we have that

lim
Q→∞

E {Y }E
{
Y −1

}
= lim
Q→∞

E {Y }E
{

1
E{Y } − (Y−E{Y })

E2{Y } + (Y−E{Y })2
E3{Y } + · · ·

}
= 1 + lim

Q→∞
E{g(Y )} (a)

= 1 + E
{

lim
Q→∞

g(Y )
}

(b)
= 1, (40)

where g(Y ) ≜
∑∞
n=2(−1)n (Y−E{Y })n

En{Y } , where (a) follows
from exchanging the order of the limitation and expectation
operators (validated via the Dominated Convergence Theorem
(DCT))12, and where (b) follows from using the DCT to

12To see this, first define Z ≜ |Y − E{Y }| ≥ 0. As Q → ∞, Z →
0 (due to the law of large numbers), there always exists a constant Q0

and ε < 1 such that Z < ε for any Q > Q0. For Z < ε, we have
that

∑∞
n=2 Z

n = Z2

1−Z < ε2

1−ε . Considering g(Y ) ≤
∑∞
n=2 Z

n and

E{
∑∞
n=2 Z

n} < ε2

1−ε < ∞, which satisfies the DCT condition, yields that
limQ→∞ E{g(Y )} = E{limQ→∞ g(Y )}.

exchange the limitation and infinite summation operators in
limQ→∞ g(Y ) (similar to the step (a)) and then by considering
that Y − E{Y } → 0 as Q → ∞ (due to the law of large
numbers). By using similar mathematical manipulations, we
have that

lim
Q=cL→∞

E {X + Y }E
{
(X + Y )−1

}
= 1. (41)

Considering the two limits (40) and (41), we can directly
conclude that lim

Q=cL→∞
∆ = 0, and therefore prove (34).

Finally, substituting E{X} = Pt
cG (1 + 1

L ) and E{Y } =

1+ Pt
G
Q−1
Q into (34) and considering Q = cL→ ∞, completes

the proof of Theorem 1.

APPENDIX II: PROOF OF THEOREM 3

We split the proof in three parts. First, we present the
proof of (19). Then, we provide two useful lemmas, and we
conclude by deriving the asymptotic deterministic equivalent
of the SINR.
A. Proof of (19)

We provide here the proof of the expression of SINRRZF
ψ,k

in (19). Let us recall that Hψ,−k represents the matrix Hψ

after removing its k-th row. The useful signal contribution to
the received signal in (16) (omitting the term ρψ/

√
G for the

sake of conciseness) can be written as

hTψ,k
(
αIL +HH

ψHψ

)−1
h∗
ψ,ksψ,k

= hTψ,k

(
αIL +HH

ψ,−kHψ,−k + h∗
ψ,kh

T
ψ,k

)−1

h∗
ψ,ksψ,k

(a)
=

hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1

h∗
ψ,k

1 + hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1

h∗
ψ,k

sψ,k

(b)
=

Aψ,k
1 +Aψ,k

sψ,k, (42)

where (a) follows from the relation(
A−BD−1C

)−1
BD−1 = A−1B

(
D−CA−1B

)−1
(43)

and where (b) follows after applying the definition of Aψ,k
from (17).

On the other hand, the power of the interference averaged
over data signals in (16) is given by (44) on the top of the next
page. We derive (46) by applying again into (45) the matrix
identity from (43) and considering the definitions of Aψ,k and
Bψ,k from (17)–(18). Then, combining (46) with (42) yields
the expression of SINRRZF

ψ,k in (19). This concludes the proof.

B. Two Useful Lemmas

In the following, we present two lemmas that are instrumental
in the derivation of Theorem 3.

Lemma 1. For any fixed c, 0 < c < ∞, the trace of
1
L

(
zIL + 1

LH
H
ψHψ

)−1

converges to Sc(z) almost surely as
L→ ∞, where Sc(z) is defined as

Sc(z) ≜
1

2

(√
(1− c)2

z2
+

2(1 + c)

z
+ 1 +

1− c

z
− 1

)
. (47)
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hTψ,ϑ

(
αIL +HH

ψHψ

)−1
h∗
ψ,kh

T
ψ,k

(
αIL +HH

ψHψ

)−1
h∗
ψ,ϑ′E{s∗ψ,ϑsψ,ϑ′} (44)

=
ρ2ψ
G

hTψ,k
(
αIL +HH

ψHψ

)−1
HH
ψ,−kHψ,−k

(
αIL +HH

ψHψ

)−1
h∗
ψ,k (45)

=
ρ2ψ
G

hTψ,k
(
αIL +HH

ψ,−kHψ,−k
)−1

HH
ψ,−kHψ,−k

(
αIL +HH

ψ,−kHψ,−k
)−1

h∗
ψ,k(

1 + hTψ,k
(
αIL +HH

ψ,−kHψ,−k
)−1

h∗
ψ,k
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Bψ,kρ

2
ψ/G

(1 +Aψ,k)2
. (46)

Proof. This lemma can be obtained as a direct application of a
known result from [63, Ch. 3] for the Stieltjes transform [64].
Hence, we omit the proof due to the page limitation and refer
the reader to [63, Ch. 3] for more details.

Lemma 2. For any fixed 0 < c <∞ and arbitrary 0 < θ <∞,
we have that, as L→ ∞,

Tr
{

1
L

(
θI+ 1

LH
H
ψ,−kHψ,−k

)−2}
a.s.−→ Tr

{
1
L

(
θI+ 1

LH
H
ψHψ

)−2}
. (48)

Proof. Let us first define A ≜ θI + 1
LH

H
ψ,−kHψ,−k, and let

us also define

δ ≜
∣∣∣Tr{ 1

L

(
θI+

1

L
HH
ψ,−kHψ,−k

)−2
}

− Tr
{ 1

L

(
θI+

1

L
HH
ψHψ

)−2
}∣∣∣. (49)

By applying the Woodbury matrix identity [65], we have that

δ =
∣∣∣ 1
L
Tr
{ 2

L

hTkA
−3h∗

k
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Lh

T
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which can be further rewritten as δ =
∣∣Θ1 − Θ2

∣∣, where
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.

Furthermore, we apply eigenvalue decomposition by factorizing
1
LH

H
ψ,−kHψ,−k as 1

LH
H
ψ,−kHψ,−k = QΛQH , which yields

A−1 = Q (θI+Λ)
−1

QH , and A−3 = Q (θI+Λ)
−3

QH .
Thus, upon defining g ≜ Qh∗

k/
√
L, the term Θ1 can be

rewritten as
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where gℓ is the ℓ-th element of g and λℓ is the ℓ-th eigenvalue
of 1

LH
H
ψ,kHψ,k. Similarly, we have that

Θ2=
1
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Finally, from (51), (52), and from the fact that δ ≤
∣∣Θ1

∣∣+∣∣Θ2

∣∣,
the difference δ approaches zero almost surely as L → ∞.
This concludes the proof of Lemma 2.

C. Proof of Theorem 3

We obtain Theorem 3 by deriving the asymptotic determin-
istic equivalent of SINRψ,k in (19). For that, we first derive
the asymptotic deterministic equivalent of Aψ,k and ρ2ψ .

Let us start by considering Aψ,k, defined in (17). By means
of the Trace Lemma and the Rank-1 Perturbation Lemma
from [63], we can obtain that

Aψ,k = hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1

h∗
ψ,k (53)

a.s.−→ Tr

{(
αIL +HH

ψHψ

)−1
}

(54)

as L→ ∞. From this, we can apply Lemma 1 and the fact that
α = L/Pt to obtain the deterministic equivalent of Aψ,k, which
we denote as aψ,k, and which is given by aψ,k = Sc

(
1
Pt

)
,

where Sc(z) = 1
2

[√
(1−c)2
z2 + 2(1+c)

z + 1+ 1−c
z −1

]
as defined

in (47). This yields the expression of aψ,k in (21).
Next, we focus on Bψ,k, introduced in (18), and we again

apply the Trace Lemma and the Rank-1 Perturbation Lemma
from [63] in the limit of L→ ∞ to obtain that
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. (55)

The first trace term of the R.H.S. of (55) matches (53), and
thus its deterministic equivalent is aψ,k. With respect to the
second term of the R.H.S. of (55), applying Lemmas 1 and 2
yields (56) as L→ ∞, where {λℓ}Lℓ=1 are the eigenvalues of
1
LH

H
ψHψ and where ∂Sc(z)

∂z is the derivative of Sc(z) with
respect to z, which is given by
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]
. (57)

From (55) and (56) it holds that Bψ,k
a.s.−→ bψ,k ≜ aψ,k +

1
Pt

∂Sc(z)
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∣∣∣
z=1/Pt

as L→ ∞.

Finally, we focus on the power control factor
for the RZF precoder, which was given by
ρ2ψ = Pt

1
LTr{ 1
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ψHψ(

1
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ψHψ+
1
Pt

IL)−2} . From the derivation

of Bψ,k and (55)–(56), it follows that ρ2ψ
a.s.−→ Pt

bψ,k
. Thus, the
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asymptotic deterministic equivalent of ρ2ψ, denoted by p2ψ,
takes the form p2ψ = Pt

bψ,k
, which, upon substituting (57) in

bψ,k, yields the expression of p2ψ in (21).
Next, we obtain the asymptotic deterministic equivalent

of SINRψ,k by substituting the asymptotic deterministic
equivalent of Aψ,k, Bψ,k and ρ2ψ into (19), which yields

SINRRZF
ψ,k

a.s.−→
a2ψ,kp

2
ψ/G(

1 + aψ,k
)2

+ Pt
G

. (58)

Finally, a direct application of the Continuous Mapping
Theorem [66] yields (20), which concludes the proof of
Theorem 3.
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