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ABSTRACT
When watching the same visual stimulus, humans can exhibit a
wide range of gaze behaviors. These variations can be caused by
bottom-up factors (i.e. features of the stimulus itself) or top-down
factors (i.e. characteristics of the observers). Inter-observer visual
congruency is a measure of this range. Moreover, it has been shown
that cinematic techniques, such as camera motion or shot editing,
have a significant impact on this measure [17]. In this work, we
first propose a metric for measuring IOC in videos, taking into ac-
count the dynamic nature of the stimuli. Then, we propose a model
for predicting inter-observer visual congruency in the context of
feature films, by using high-level cinematic annotation as prior
information in a deep learning framework.

CCS CONCEPTS
• Computing methodologies → Interest point and salient region
detections.
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1 INTRODUCTION
Predicting human viewing behavior, in the sense of gaze patterns
or visual saliency for instance, is an important topic in the com-
puter vision community. However, visual behavior is not always
consistent between observers, either because of top-down factors
(for instance, observers with a previous knowledge of the stimuli
will exhibit different gaze patterns [5]), or bottom-up characteris-
tics. For example, people will tend to exhibit very similar behaviors
when viewing a scene containing a single salient object, while clut-
tered scenes, or scenes lacking strong visual attractors will induce
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more diversity in eye fixation locations. Differences in ages, or cul-
tural background can also be found in visual attention data [4, 10].
Thus, understanding how different observers will react to a given
stimulus is key in understanding the way we interact visually with
images.

The similarity, or dissimilarity between visual trajectories among
observers is referred as attentional synchrony, and metrics quantify-
ing this synchrony are commonly called inter-observer congruency
(IOC) metrics. Such metrics have proven very useful in a whole
variety of applications, such as image ranking, quality assessment,
or even visual saliency: indeed, IOC has been shown to provide an
upper-bound on the performances of models predicting the loca-
tions of eye fixations. However, this measure in itself has received
way less attention than, for instance, visual saliency prediction.
Le Meur et. al. [9] offered a first image-processing approach, where
they studied the influence of several image features, such as the
depth of field or the image complexity, on IOC scores. Following
this work, Rahman and Bruce [14] explored more image charac-
teristics, coupled with top-down features. They proposed a pre-
dictive model of IOC based on both those feature sets, as well as
information yielded by the predictions of visual saliency models.
Bruckert et. al. [3] proposed an approach based on deep learning,
relying on deep convolution networks to extract features, coupled
with a shallow regression network. More recently, Yue et. al. [22]
proposed a model for predicting IOC in the context of video, relying
on a two-stream deep learning architecture.

In the context of movies, attentional synchrony has also been
studied, from a more cognitive point of view. Dorr et. al. pointed
out several differences in the variation of eye fixations and sac-
cade amplitudes when watching the same stimulus several times
over two days, and compared the synchrony observed on Holly-
wood movies and natural scenes. Mital et. al. [11] showed that the
most predictive features for gaze clustering when viewing dynamic
stimuli were temporal and motion-related, like flicker or contrast
in motion. Smith and Mital [17] also studied the influence of the
viewing task on attentional synchrony, highlighting a significant
influence of it, but mostly after the first few fixations, which were
usually guided by the exogenous attention mechanisms.

In the following, we first describe how to compute a reliable and
suitable IOC score, inspired by visual saliency metrics, for dynamic
stimuli. We then propose a model dedicated to predict this score
in the context of feature films, by incorporating high-level priors
using cinematic annotations.
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2 MEASURING INTER-OBSERVER
CONGRUENCY

2.1 Previous metrics
A lot of methods have been proposed to describe the amount of
visual congruency among observers when viewing a stimulus. All
of those methods use different hypotheses about the distribution of
gaze patterns, but overall, these metrics are highly correlated to one
another [5]. Rajashekar et. al. [15] used the average z-score between
the individual human fixations and the overall fixation density,
using Kullback-Lieber divergence as a metric. Peters et. al. [12] used
the normalized scanpath saliency metric (NSS) to compare each
individual gaze track to a global inter-observer model, composed
of the aggregation of individual saliency heatmaps.

Sawahata et. al. [16] used a criterion based on information the-
ory, the entropy of the fixation distribution, or more precisely, the
entropy of a Gaussian mixture model (GMM) fitted on the the gaze
points divided into clusters based on the Bayesian information
criterion (BIC). Similarly, Mital et. al. [11] used GMMs, and more
specifically the weighted covariance value, to discriminate between
"tightly and loosely clustered frames", i.e. frames in which atten-
tional synchrony is higher or lower. Smith and Mital [17] also used
these GMM clusters and their covariance, expressed as the visual
angle enclosing 68% of gaze points. Finally, several area-based meth-
ods have been proposed: for instance, Goldstein et. al. [6] computed
the area of the best-fit bivariate contour ellipse, whereas Breeden
and Hanrahan [1] used the area of the convex hull of the fixation
points.

Finally, more saliency-inspired methods consist in comparing
the gaze tracks of a single observer to the joint distribution of
all the other observers. This leave-one-out approach was used by
Torralba et. al. [18] and LeMeur et. al. [9], where they use the rate of
fixations falling in a saliency classifier, created from a thresholded
fixation distribution map, and Rahman and Bruce [13], where they
compute the AUC score between the individuals and the aggregated
fixation distribution of all other observers.

2.2 Dynamic stimuli
Extending the measure of IOC to the spatio-temporal domain is not
as straight forward as it may seem. For instance, applying an IOC
measure on a frame-by-frame basis can be problematic, as there
might not be enough fixations to avoid a significant amount of
noise: indeed, in the case of cinematographic movies, each frame
will be displayed for around 42 milliseconds, while the average eye
fixation spans around a few hundred milliseconds, implying that
each frame will only display one or two fixations per observer.

More generally, designing an IOC measure for dynamic stim-
uli implies answering questions about what we actually want to
measure. For example, let us consider a sequence containing two
spatially separate salient locations 𝐴 and 𝐵 (a dialogue between
two characters, for instance), and two observers. If, during a short
time period, the first observer fixates location𝐴 first and location 𝐵
second, and the second observer does the opposite, both observers
will exhibit similar spatial gaze patterns, and only differ temporally.
However, a frame-by-frame measure will (in the worst scenario)
treat the case as if the first observer only fixated location 𝐴 and

the second only location 𝐵. We then argue that a well-designed
IOC metric should take into account the temporal continuity: two
non-simultaneous fixations at the same spatial location should be
considered as "close" based on the temporal dimension.

In order to address this issue, we propose a new approach to
compute an IOC measure in the spatio-temporal domain.

First, we define the spatio-temporal fixation density map for
a stimulus. For each frame, we compute the traditional fixation
density map by convolving the binary fixation map with a Gaussian
kernel, which covariance is chosen so that it approximates the size
of the fovea. Figure 1 shows an example of this spatio-temporal
representation. Then, we stack those density map into a spatio-
temporal volume, and smooth it in the temporal dimension using
a Gaussian kernel, which variance is set to approximate 250 ms,
i.e. the average duration of a fixation. In the case of a 24 frames
per second cinematic stimuli, this amounts to 6 frames. Now, this
spatio-temporal map can be compared to ground truth fixations
using the NSS metric on the whole volume:

𝑁𝑆𝑆 (𝑆, 𝐹 ) = 1
𝑁

∑︁
𝑖

𝑆𝑖𝐹𝑖

where
1
𝑁

=
∑︁
𝑖

𝐹𝑖 and 𝑆 =
𝑆 − 𝜇 (𝑆)
𝜎 (𝑆)

(1)

where 𝑁 is the number of fixated voxels, 𝑆 is the fixation density
volume, 𝐹 is a spatio-temporal binary fixation map, i.e. a volume
where each voxel is either 1 if a fixation occurred at its location
and time, and 0 otherwise. The choice of the NSS metric in this
case comes straight forward, as it is way less time- and memory-
consuming than AUC metrics.

Figure 1: Example of spatio-temporal fixation density map
on a sequence of Big Fish (Tim Burton, 2004).

From there, we use the exact same leave-one-out approach than
the static case. A fixation density is computed for each group of
(𝑁𝑜 − 1) observers, and compared using the NSS metric to the
fixations of the remaining observer. The scores are then averaged
over the observers to get a global IOC value. In order to track the
evolution of attentional synchrony over time, we keep the global
fixation densities and fixation maps, and compute the NSS values
over a sliding time-window, which size can be chosen depending
on the context: a shorter time window (e.g. four or five frames)
allows for a finer-grained analysis, but is more sensitive to noise,
for instance.

However, the main drawback of this method is its memory con-
sumption. Indeed, we need to store a volume of size 𝐻 ×𝑊 × 𝑇

(where 𝐻 is the height of the frame,𝑊 the width and 𝑇 the dura-
tion of the whole sequence) for each observer, which can quickly
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become overwhelming when working with high-resolution stimuli
and (relatively) long movie sequences. In order to solve this issue,
we designed a simple, yet useful heuristic.

We only consider a sliding time-window of size 𝑡 ; for each group
of (𝑁𝑜−1) observers, we gather all their fixations during this period,
and report it on a 2D binary fixation map, which is then smoothed
into a fixation density. This map is then compared to the binary
fixation map of the remaining observer using the NSS metric. The
process is iterated and averaged over all the observers to get an
IOC score over the considered time frame. The duration of the time
window can be freely chosen, once again depending on the context.
In our analyses, we considered two window sizes: 5 frames for
a fine-grain approach and 20 frames for a more general view. In
our previous dataset [2], we found a strong significant correlation
between this heuristic and the memory expensive approach (for
time windows of 5 frames: 𝑟 = 0.7912, 𝑝 < 0.001; for time windows
of 20 frames: 𝑟 = 0.8531, 𝑝 < 0.001). From now on, we will then
only refer to this heuristic when we mention spatio-temporal IOC.

3 PREDICTING IOC FOR CINEMATIC STIMULI
In this section, we propose a bottom-up model dedicated to predict
inter-observer visual congruency on dynamic stimuli, and more
specifically on cinematic stimuli. For this purpose, we designed
a two-stream deep neural network, inspired by the design of the
ViNet saliency model [7].

3.1 Architecture
To design this model, we make the assumption that the features
that drive attention in videos and that are extracted in deep saliency
models should also play an important role into determiningwhether
or not a stimulus will induce high or low visual congruency. This
assumption was also made by Rahman and Bruce [14], with their
Histogram of Predicted Salience features, where they use a stack of
feature vectors extracted from several visual saliency models.

Our model is divided into three parts: (i) first, a two-stream en-
coder extracts features from the optical flow and the frames at
different depths; (ii) then, similarly to the ViNet model [7], these
features are passed through 3D convolution layers and upsampling,
mixing the different hierarchical features using skip connections;
(iii) finally, the resulting representation, alongside with IOC priors
based on the cinematographic characteristics, is passed through
fully connected layers to obtain an IOC value. The overall architec-
ture is shown on Figure 2.

Two-stream encoder : The encoder part is composed of two
S3D networks [21], one for the spatial features, using a stack of 32
consecutive frames as the input, and the other using the same 32
stack with optical flow. Following the approach of ViNet [7], for a
frame at time 𝑡 , the input is composed by the frames 𝐹𝑡−32+1, ..., 𝐹𝑡
and the optical flow maps 𝑂𝑡−32+1, ...,𝑂𝑡 .

The features are extracted at the end of the four convolution
blocks, and passed through skip connections to the decoder module,
at different hierarchical levels. For an input of shape [𝑇 ×𝐶×𝐻×𝑊 ],
where 𝑇 is the time window (in our case, 32), 𝐶 is the number
of channels of the input (in our case, 3) and 𝐻 and 𝑊 are the
height and width of the considered frame, the four features vectors,

𝑋1, 𝑋2, 𝑋3 and 𝑋4 have respective shapes of [192 × 16 × 𝐻
4 × 𝑊

4 ],
[480 × 16 × 𝐻

8 × 𝑊
8 ], [832 × 8 × 𝐻

16 × 𝑊
16 ] and [1024 × 4 × 𝐻

32 × 𝑊
32 ].

Decoder module : The decoder module consists in a succession
of concatenations alongside the temporal axis, gathering the hierar-
chical features from the two stream and the output of the previous
upsampling layer, 3D convolution layers, and upsampling using
trinlinear interpolation. This integration part is then followed by
three 3D convolution layers, to reduce the feature tensor to one
in the channel and temporal dimensions. The output features are
then flattened, batch-normalized and concatenated with IOC priors,
before being passed through three dense layers (similarly to the
static IOC model) of size 1024, 256 and 1.

Cinematic IOC priors : In a previous work [2], we showed
that high-level cinematic information can significantly influence
inter-observer visual congruency, and is most likely not taken into
account by the feature extractor. We then include five prior values
into the feature vector:

• A camera motion prior, which is the average IOC value for
the type of camera movement in the shot of the considered
frame,

• A shot size prior, which is the average IOC value for the shot
size of the considered frame,

• A shot angle prior, which is the average IOC value for the
shot angle of the considered frame,

• The entropy of the flicker map of the considered frame,
• A cut prior, which is the average IOC value of frames within
the first 500 milliseconds following a cut if the frame is in
this situation, and the average IOC value of the other frames
if not.

In their work, Mital et. al [11] showed that flicker, i.e. the change
in luminance over time, alongside with motion, is also a strong pre-
dictor of gaze clustering. Since motion is already taken into account
by the optical flow stream, we include flicker by computing the
entropy of a flicker map: at time 𝑡 , we consider frames 𝐹𝑡−4, ..., 𝐹𝑡 ,
and transfer them from RGB to the CIELAB color space. We then
compute the absolute difference of the frames luminance values
(𝐿𝑡−4, ..., 𝐿𝑡 ), and average it:

𝐹𝑙𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

|𝐿𝑡−𝑖 − 𝐿𝑡−𝑖+1 | (2)

Where 𝐹𝑙𝑡 is the flicker map at time 𝑡 and 𝑁 is the number of
successive frames considered. In our case, we use 𝑁 = 5, similarly
to Smith and Mital [17], in order to minimize the influence of noise
due to compression artifacts.

3.2 Training
3.2.1 Implementation details. The frames are first resized to [288×
512], using letterboxing if needed to respect the original aspect
ratio of the frame. The optical flow frames are processed using the
same procedure as Xie et. al. [21]: the optical flow is extracted using
the TV-L1 algorithm [23], the magnitude is truncated into [−20, 20],
and the maps are then stored as 3-channels encoded JPEG files.

To process the frame 𝐹𝑡 , the sequence 𝐹𝑡−32+1, ..., 𝐹𝑡 is fed to the
model. If any of those frames fall before the first frame of the clip,
the first frame is just repeated the adequate amount of times. In
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Figure 2: Architecture of the proposed dynamic IOC model

order to train the network, we select the 32-frames sequences in a
random order among all clips

The priors are computed based on available information; if no
editing annotation is provided, we take the average IOC value of
the whole dataset for each IOC prior.

The S3D encoder are initialized using weights pre-trained on
the Kinetics dataset [8] on an action-recognition task, using both
RGB frames and optical flow. We use the L2 norm as a loss function,
with the Adam optimizer, learning rate is initially set at 10𝑒 − 4,
and the batch size is set at 4.

3.2.2 Training datasets. The model is first trained on the DHF1k
dastaset [19]. Ground truth IOC scores are computed based on the
supplied scanpaths (using the 20-frames time window). The 500 first
clips from the training set are used for training, and the remaining
100 are used for validation, and for early stopping. While the Hol-
lywood2 dataset would have been useful to train on, as it features
the type of clips we are interested in, its limitations prevented us
from using it. The low number of free-viewing observers makes it
difficult to get a reliable IOC score, and, while adding task-oriented
data can be useful for visual saliency, it induces too much of a bias
for IOC prediction.

Then, we use 15 clips from our dataset to fine-tune the model
(12 for training, 3 for validation), using the IOC priors as we have
cinematographic annotations, holding out the 5 remaining clips for
testing purposes.

3.3 Results
We used three datasets to evaluate the model: the validation set of
DHF1k (100 clips), the 5 held out clips from our dataset, and the
dataset from Breeden and Hanrahan [1].

We observe a Pearson correlation coefficient score between the
predicted IOC values and the ground-truth of 𝑟 = 0.691 (𝑝 <

10−5) for the DHF1k dataset, 𝑟 = 0.731 (𝑝 < 10−5) for Breeden’s
dataset and 𝑟 = 0.755 (𝑝 < 10−5) for ours. These scores are much
higher than those obtained with static models [3, 14], which can
be explained by the prominent role played by motion features on
IOC [11]. DHF1k results also seem to be lower than the other, prob-
ably due to the absence of cinematographic priors and annotations,
that are used in Breeden’s and our dataset.

3.3.1 Ablation study. In order to evaluate how each part of the
model contributes to the overall performances, and especially how
the cinematic priors have an influence, we performed and ablation
study, retraining different settings of the model. First, we tried both
branches (RGB and Optical Flow) separated, without any priors.
Then, we use the two streams and all of the priors but one each
time: the camera motion prior (1), the shot size prior (2), the shot
angle prior (3), the flicker map entropy (4) and the cut prior (5).
Results for each configuration is shown in Table 1

As expected, on the DHF1k set, as there is no significant prior,
the correlation scores do not vary when removing priors, except in
configuration (4), where the entropy of the flicker map is removed.
The camera angle prior does not seem to have any impact on the
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Dataset DHF1k [20] Breeden [1] Ours
RGB-stream (no prior) 0.631 0.624 0.657
Flow-stream (no prior) 0.471 0.473 0.469
Two-stream+priors (1) 0.690 0.712 0.733
Two-stream+priors (2) 0.689 0.731 0.728
Two-stream+priors (3) 0.690 0.731 0.754
Two-stream+priors (4) 0.652 0.699 0.718
Two-stream+priors (5) 0.691 0.707 0.743

Full model 0.691 0.731 0.755
Table 1: Pearson correlation coefficient between predicted IOC scores and ground truth IOC for several models

prediction, which is consistent with what we observed in previ-
ous work [2], and can probably be removed. A small improvement
is seen when adding the optical flow stream to the RGB stream.
The relatively low value for this improvement can be explained by
the fact that the RGB-stream already extract at least some motion
features, because of its 3D-CNN feature extractor. Finally, over-
all, adding cinematographic high-level information through these
priors seems to be of interest for predicting inter-observer visual
congruency.

4 DISCUSSION
In this work, we focused our attention on inter-observer visual
congruency, a measure of how similar gaze behaviors from differ-
ent observers are when they are watching the same stimulus. We
proposed a way to measure this phenomenon on dynamic stimuli,
and introduced a model to predict it on movie sequences.

While inter-observer congruency (or attentional synchrony) is
well known and studied by cognitive psychologists, we argue that
more attention should be payed to this measure in computer vision,
both from a modeling point of view and for the resulting applica-
tions. While its role as an upper bound of the performance of visual
attention models is well-known, it can also be used to constraint
visual saliency predictions: for instance, a predicted saliency map
exhibiting a lot of salient areas will probably be wrong if the IOC is
high (meaning that observers tend to look at the same place). In this
regard, predicting IOC can be used to give an estimation of how
"difficult" a saliency prediction will be, and serve as a likelihood
score.

It could also be interesting to evaluate the interest of this mea-
sure in the context of image quality assessment: a high degree of
visual congruency means that there might be a single strong visual
attractor on the image, and thus artifacts on other areas of the frame
could be overlooked.

From the perspective of filmmaking, knowing when viewers
will focus their attention in the same location is tremendously
useful for directors, as it allows them even more control on what
the viewer experiences, in order to convey their narrative content
and messages at best. For virtual cinematography and automated
editing, this can be used to constraint the choice of the cuts, for
instance, depending on the desired style.
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