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Abstract

This paper introduces a couple of new time-frequency transforms, designed to
adapt their scale to specific features of the analyzed function. Such an adaptation
is implemented via so-called focus functions, which control the window scale as
a function of the time variable, or the frequency variable. In this respect, these
transforms are non-linear, which makes the analysis more complex than usual.
Under appropriate assumptions, some norm controls are obtained for both trans-
forms in L2pRq spaces, which extend the classical continuous frame norm control
and guarantees well-definedness on L2. Given the non-linearity of the transforms,
the existence of inverse transforms is not guaranteed anymore, and is an open
question. However, the results of this paper represent a first step towards a more
general theory.
Besides mathematical results, some elementary examples of time and frequency
focus functions are provided, together with corresponding focused transforms
of real and synt-hetic signals. These can serve as starting point for concrete
applications.

Keywords: Time-Frequency analysis, Non-linear transform, time-frequency trade-off,
continuous frames

1 Introduction

1.1 Context and purpose

Time-frequency transforms and generalizations (wavelets and others) have long been
used in various theoretical and applied domains. Besides quadratic transforms (Wigner
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distributions and generalizations), linear transforms such as the Gabor/STFT [1, 2]
and wavelet transforms [1, 3–5] generally enjoy simple and useful invertibility prop-
erties, and therefore allow describing functions and signals as linear combination of
building blocks, called time-frequency atoms. The time (and frequency/scale) resolu-
tion of the latter is specified by the construction rule: constant time and frequency
resolution for Gabor/STFT, generated by translation and modulation, and constant
relative frequency resolution for wavelets, generated by translation and scaling. See
also [6–8] for alternative constructions that implement other scaling rules. Variants
were also considered in specific applied domains, such as the Stockwell transform [9]
in geophysics, which is very close to the constant Q transform [10, 11] we consider
below, and the continuous wavelet transform.

In several application domains, in particular audio signal processing, it has been
shown that adapting the scale of time-frequency atoms to the content of the signal
can provide more efficient signal descriptions [12–14]. The window size is a main con-
trol parameter for the time-frequency resolution of the analysis: large windows provide
good frequency resolution, while short windows yield good time resolution. The latter
is constrained by the uncertainty principle, which can be given various quantitative
formulations (see [15, 16] and references therein), and which basically states that pre-
cision in time domain is possible at the price of precision loss in frequency domain,
and vice versa. The problem of tuning time-frequency resolution as a function of time
or frequency has been addressed by various authors, in various contexts, often with
pre-defined dependence, sometimes adaptively [13, 14]. As a motivation, even though
there is no complete consensus on psycho-physical aspects of human perception, it is
known to involve several non-linear effects [17], and it has been claimed that this non-
linearity allows going beyond time-frequency uncertainty in terms of localization [18].
Such strategy has been successfully implemented in some advanced audio coders such
as AAC (see [19] for a short account), which can switch dynamically between short and
long local cosine windows. Another possible motivation can be hyper-resolution (sepa-
ration of close locally harmonic components or close transients in signals for example).
The adaptation is often driven by heuristic computations, for example the optimiza-
tion of a sparsity criterion of the obtained time-frequency representation, using for
example some form of entropy as in [12, 13] or other criteria [14]. The adaptation
may be implemented through a time (or frequency) dependent warping function, as
in [20]. To our knowledge, the non-linear problem where the time-frequency resolution
is adapted to the analyzed function, has not been analyzed from the mathematical
point of view so far.

The goal of the present paper is to introduce and study such adaptive time-
frequency transforms, able to adapt their time-frequency resolution to the analyzed
function. This is done here by introducing a focus function f ÞÑ σf which adapts
the shape (size, bandwidth etc...) of the analysis window to specific properties of
the analyzed signal f . Stepping away from fixed time-frequency resolution makes the
analysis significantly more complex. The purpose of this article is to introduce the
non-linear transforms, prove that they are well-defined on L2 and provide explicit,
signal-dependent, lower and upper bounds for their norm (which depends on the choice
of focus function).
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We first introduce in Section 2 a time-focused transform M τ , which is a modified
STFT where the window scale can be adapted to the signal at each time. The adapta-
tion is done by associating with the analyzed signal f a focus function στf : t ÞÑ στf ptq.

We prove in Theorem 1 the well-definedness of M τ as a map from L2pRq into
L2pR2q and obtain a norm control of the form cf }f}2 ď }M τf}2 ď Cf }f}2, with
explicit constants cf , Cf , under suitable assumptions on the focus function στf . Build-
ing a frequency-focused STFT can be done along similar lines, and is not addressed
here. After briefly reviewing constant-Q transform [11, 21] and continuous wavelet
transform [3] and pointing out their relationship, we introduce in Section 3 a new
frequency-focused transform Mν . The latter is built from a complex-valued wavelet
transform, modified by a focus function defined in the frequency domain: to the ana-
lyzed signal f is associated a focus function σνf : ω ÞÑ σνf pωq. We prove similar norm
control and well-definedness results. Explicit examples of focus functions are discussed
in the context of continuous time, in Section 2 for time focus, which can be transposed
to the frequency focus case. Section 4 is devoted to numerical illustrations, in discrete,
finite-dimensional situations. There, we discuss and display examples of focus func-
tions and illustrate the resulting time-focused and frequency-focused spectrograms,
computed on real audio signals and toy examples. Section 5 is devoted to conclusions
and perspectives.

Except the section devoted to numerical illustrations, the analysis described in the
present paper is limited to the continuous time setting and mostly L2pRq. Extensions to
more general functional settings and issues related to discretization of the transforms
will be the object of further work.

1.2 Notation

We first introduce or recall some notation. We will often use the notation Cpra, bs, Xq
for the space of continuous functions from R intoX , supported in ra, bs. More generally,
given A Ă R

R we denote by Ac the subspace of functions in A with compact support,
and by A0 the subspace of functions in A which vanish at infinity. We define A` c :“
tf ` c, f P Au for c P R and A` denotes the subspace of A of non-negative valued
functions.

Given an open interval I in R, CnpIq stands for the space of function which are
n times continuously differentiable on I, and C8pIq “ Xně0C

npIq. Furthermore, we
denote by CppIq the space of piecewise continuous functions on I, and Cp,0pIq the
subspace of CppIq consisting of functions that tend to 0 at ˘8. CcpIq denotes the
space of continuous, compactly supported functions on I.

We recall that LppRd, dµq, p ě 1, stands for the set of p´integrable functions -
where we identify functions that coincide almost everywhere - with respect to the
measure µ. The shorter notations LppRdq and Lp denote respectively LppRd, dxq and
LppR, dxq where dx is the Lebesgue measure.

Given f P LppRdq, its Fourier transform is either written Fpfq or f̂ , and defined
by the following convention. For f P L1pRdq,

Fpfqpωq :“

ż

Rd

fpxqe´2iπx¨ωdx , ω P R
d . (1)
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With this definition, the inverse Fourier transform reads

F
´1pF qptq :“

ż

Rd

F pωqe2iπt¨ωdω , t P R
d . (2)

For functions of two variables, we introduce the notation

@x1, x2, ξ1, ξ2 P R, F1pfqpξ1, x2q :“

ż

R

fpx1, x2qe´2iπx1ξ1dx1 ; (3)

F2pfqpx1, ξ2q :“

ż

R

fpx1, x2qe´2iπx2ξ2dx2 , (4)

and

@x1, x2, ξ1, ξ2 P R, F
´1

1
pF qpx1, ξ2q :“

ż

R

F pξ1, ξ2qe2iπx1ξ1dξ1 ; (5)

F
´1

2
pF qpξ1, x2q :“

ż

R

F pξ1, ξ2qe2iπx2ξ2dξ2 . (6)

2 The non-linear time focused operator

2.1 Atoms and time focused transform

Let us now introduce and study the first non-linear transform of interest here, namely
the time focused transform, which involves a focus function defined in the time domain.

Assumptions

Throughout this section we will use the following assumptions.
i. h is a nonzero, continuous, compactly supported function, called window, with

length l P R
`
˚ . Examples of such a window include most windows used in signal

processing (Hann, Blackman,...).
ii. To every f P L2pRq is associated a function στf , called focus function. στf will be

assumed to be larger than 1, piecewise continuous and to tend to 1 at infinity, i.e.

@f P L2pRq, στf P C`
p,0pRq ` 1. (7)

In addition we will assume that for every f P L2 there is a sequence pfnqn P pC8
c qN

such that

fn
L2

ÝÑ
nÑ`8

f and στfn
L8

ÝÑ
nÑ`8

στf . (8)

In order to lighten the notations we will sometimes omit the subscript τ when
there are no ambiguities.

iii. γ is a C1 symmetrical diffeomorphism satisfying limtÑ´8 γptq “ ´8 and
limtÑ`8 γptq “ `8.

Remark 1 The technical assumption (8) on the map f Ñ στf is used in the proof of Lemma 1
below. We believe it should be satisfied for most reasonable choices of mappings f Ñ στf .
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Atoms and transform definition

Given the above hypotheses, we can define the time-focused atoms as

@x, t, ω P R, ht,ω,στ
f

pxq :“
b
γ1pωqστf ptqe2iπγpωqxhpστf ptqpx ´ tqq , (9)

and the corresponding transform of a given signal f P L2 by

@t, ω P R, M τfpt, ωq :“ xf, ht,ω,στ
f

yL2 . (10)

The pointwise definition of the scalar product is guaranteed by the fact that
hpστf ptqpx ´ tqq is a continuous, compactly supported function of x. When there are
no ambiguities, we will sometimes write ht,ω,f instead of ht,ω,σf

and ht,ω,n instead of
ht,ω,σfn

for a certain sequence pfnqn.

Remark 2 1. In the definition of time-focused atoms (9), στf ptq performs a scaling of the
window h around t. We stress that the lower bound 1 of στf is purely conventional, and
states that rescaled windows cannot be larger than h. The choice of h and the range of
values of στf therefore determine the overall resolution of the analysis.

2. The function γ performs a mere relabeling of the frequency axis. Examples of γ functions
include the obvious choice γptq “ t, γ can also be given a kind of hyperbolic sine shape
like, which has the effect of compressing high frequencies.

Density result

We first prove the following density result, which states that if we take a L2 function
f and a Cc function fε as close as possible to f in L2, then the norm of M τf will be
controlled by the norm of M τfε, which is finite by basic integration rules.

Lemma 1 Let f P L2pRq and pfnqnPN be a sequence such that fn P Cc for all n P N, fn Ñ f

in L2pRq and στfn “: σn Ñ στf in L8. Then

@ε ą 0, DN P N, @n ě N,
ˇ̌››Mτ

f
››
L2 ´

››Mτ
fn

››
L2

ˇ̌
ď ε . (11)

Proof Let ε̃ ą 0 and n P N such that }fn ´ f}L2 ă ε̃ and }σn ´ σf }8 ă ε̃. We have

ˇ̌
ˇ}Mτ

fn}2L2 ´ }Mτ
f}2L2

ˇ̌
ˇ “

ˇ̌
ˇ̌
ż

R2

|xfn, ht,ω,ny|2dωdt´
ż

R2

|xf, ht,ω,f y|2dωdt
ˇ̌
ˇ̌

We first compute, setting Fnpx, tq :“
a
σnptqfnpxqhpσnptqpx´ tqq

ż

R2

|xfn, ht,ω,ny|2dωdt “
ż

R4

Fnpx, tqF̄npx1
, tqγ1pωqe2iπγpωqpx´x1q

dxdx
1
dωdt.

We recognize the formula of F´1

1
pFnqpγpuq, tq, hence

ż

R2

|xfn, ht,ω,ny|2dωdt “
ż

R2

γ
1pωq|F´1

1 pFnqpγpuq, tq|2dωdt
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“
ż

R2

|F´1

1 pFnqpu, tq|2dudt

“
ż

R2

|Fnpx, tq|2dxdt “
ż

R2

σnptq|fnpxq|2h2pσnptqpx´ tqqdxdt.

The same computations give
ż

R2

|xf, ht,ω,f y|2dωdt “
ż

R2

σf ptq|fpxq|2h2pσf ptqpx´ tqqdxdt .

We can then write
ˇ̌
ˇ}Mτ

fn}2L2 ´ }Mτ
f}2L2

ˇ̌
ˇ “

ˇ̌
ˇ̌
ż

R

Aptqdt`
ż

R

Bptqdt
ˇ̌
ˇ̌ ,

with

Aptq :“
ż

R

σf ptqh2pσf ptqpx´ tqq
´

|fnpxq|2 ´ |fpxq|2
¯
dx .

Therefore, ż

R

|Aptq|dt ď }σf }8}h}8ε̃ .

Similarly,

Bptq :“
ż

R

σnptq|fnpxq|2
´
h
2pσnptqpx´ tqq ´ h

2pσf ptqpx´ tqq
¯
dx ,

thus ż

R

|Bptq|dt ď p}σf }8 ` ε̃qp}f}L2 ` ε̃q22l ε̃ .

Since ε̃ is arbitrary, the result follows. �

When combined with Proposition 2 below, Lemma 1 will show that M τ is well-
defined on L2.

Motivations and examples for the time focus function

As stressed in the introduction, it is not the goal of the current paper to discuss
in details explicit choices for the focus functions that would be relevant in specific
applications. We only provide a couple of prototypical examples, to illustrate desirable
and undesirable properties.

Denote by V f the time-focused transform of f P L2pRq, with a constant focus func-
tion σptq “ σref (in other words, a STFT with prescribed time-frequency resolution),
and assume for simplicity γptq “ t. If the goal is to increase the time resolution of
the analysis when the analyzed signal f P L2pRq has faster variations, a natural idea
could be to consider fixed-time slices of Lf and compute weighted norms of the form

στf ptq “ 1 `

ż

R

wpωq|V fpω, tq| dω ,

for some weight function w which enhances the contribution of high frequencies (typi-
cally wpωq “ |ω|n). This quantity is well-defined as soon as supt

ş
R
wpωq|V fpω, tq| dω ă

8; furthermore, it defines a continuous function that tends to 1 as t Ñ ˘8, since
t Ñ V fpt, ωq may be written as the convolution product of two L2 functions (up to a
phase factor).
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However, such a choice is too naive, as the second term is homogenous of degree
1 with respect to f , which results in an increase of the focus function σ when f is
multiplied by a constant (in which case one can hardly pretend that the resulting
function has facter variations). For these reasons, we will privilege non-linear terms,
such as terms involving norm ratios. Natural examples involving such ratio are given
by entropies such as the Rényi or Shannon entropies

Rαptq “
1

1 ´ α
log

}V fpt, ¨q}αLα

}V fpt, ¨q}α
L1

, Hptq “ lim
αÑ1

Rαptq ,

assuming the above quantities are well defined and nonzero.
Entropy is generally used as a measure of spread (or information content as in [22]):

the more spread out the function, the larger the entropy, independently of global
normalization. In the context under consideration here, a large value of Rαptq would
indicate that the ”energy” of the spectrogram |Lfpt, ¨q| is spread throughout the whole
frequency domain, which can be interpreted in terms of the presence of a transient
event in the signal f at time t, and would then require a more time-focused analysis.
A corresponding focus function could be defined as

στf ptq “ ARαptq `B ,

for some constants A,B that would control the range of στf , or a similar expression
using the Shannon entropy. The mathematical analysis of the behavior of such func-
tions defined on the real line is out of the scope of the present paper. We shall discuss
adaptations in discrete, finite-dimensional situations, in Section 4 devoted to numerical
illustrations.

2.2 Norm relationship

We first express the L2 norm ofMf in terms of a certain kernel, which guarantees the
well-definedness of the transform on L2, and will be useful for the rest of the study.

Proposition 1 Using the previous definition, for f P Cc we have then

}Mτ
f}2L2pR2q “

ż

R2

f̂pξq ¯̂fpξ1qKστ
f

pξ ´ ξ
1qdξdξ1

, (12)

where the kernel is

Kστ
f

puq :“
ż

R2

e
´2iπut ¯̂

hpzqĥ
ˆ
z ´ u

στ
f

ptq

˙
dzdt . (13)

Proof In order to make notations lighter we use σ for στf .

}Mτ
f}2L2 “

ż

R2

|xf̂ , ĥt,ω,σy|2dtdω

“
ż

R4

f̂pξq ¯̂fpξ1q¯̂ht,ω,σpξqĥt,ω,σpξ1qdξdξ1
dtdω
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“
ż

R2

f̂pξq ¯̂fpξ1q
ż

R2

¯̂
ht,ω,σpξqĥt,ω,σpξ1qdtdω

looooooooooooooooomooooooooooooooooon
“:Kσpξ,ξ1q

dξdξ
1

We have

Kσpξ, ξ1q :“
ż

R2

γ1pωq
σptq e

´2iπpξ´ξ1qt¯̂
h

´
ξ´γpωq
σptq

¯
ĥ

´
ξ1´γpωq
σptq

¯
dωdt .

Hence, by setting ypωq “ ´γpωq
σptq

we obtain

Kσpξ, ξ1q “
ż

R2

¯̂
h

´
ξ
σptq

` y
¯
ĥ

´
ξ1

σptq
` y

¯
e

´2iπpξ´ξ1qt
dydt

“
ż

R2

e
´2iπpξ´ξ1qt¯̂

hpzqĥ
´
z ´ ξ´ξ1

σptq

¯
dzdt .

The last equality holds by applying the changing of variable z “ y` ξ
σptq

. And now since the

kernel is a function of ξ ´ ξ1 we can deduce the expected result. �

Corollary 1 We have, for f P CcpRq,

}Mτ
f}2L2pR2q “

ż

R

|f |2ptqF´1pKστ
f

qptqdt. (14)

Proof The proof uses the Plancherel equality and the fact that the Fourier transform of a
convolution product is the product of the Fourier transform. It is an elementary computation

}Mτ
f}2L2 “

ż

R2

f̂pξq ¯̂fpξ1qKσpξ ´ ξ
1qdξdξ

“
ż

R

f̂pξq
ż

R

¯̂
fpξ1qKσpξ ´ ξ

1qdξ1
dξ

“ xf̂ ,Kσ ˚ ¯̂
fyL2

ξ

“
ż

R

fptqF´1
´
Kσ ˚ ¯̂

f
¯

ptqdt

“
ż

R

|f |2ptqF´1pKσqptqdt.

�

Now we can see that the problem can be solved by controlling the kernel Kστ
f
. In

order to obtain such a control, we can introduce the explicit formula of F´1pKστ
f

q.

@t P R, F´1pKστ
f

qptq “

ż

R

στf pxq|hpστf pxqpx ´ tqq|2dx. (15)

2.3 Main result : norm control

The rest of the section is dedicated to the proof of Theorem 1 below.
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Theorem 1 Let f P L2pRq and στf be a time focus parameter, then

cf }f}2L2pRq ď }Mτ
f}2L2pR2q ď Cf }f}2L2pRq , (16)

where

cf “ inf
tPR

"ż

R

|hpxστf px ` tqq|2dx
*

ą 0 , (17)

and

Cf “
ż

R

|hpστf ptqtq|2στf ptqdt ă 8 . (18)

Remark 3 This result is very similar to a continuous frame condition, except that cf and
Cf depend upon the analyzed function f through the focus function στf . It is interesting to
notice that the non-linearity of the transform only shows up in these constants.

2.4 Upper bound control

In order to prove the upper bound control - which also guarantees the well-definedness
in L2pRq Ñ L2pR2q of our operator - we will control the L1 norm of the previously
introduced kernel Kστ

f
. For now, f denotes a Cc function.

Lemma 2 (L1 norm control) Let σptq be a focus function and h be a window function, both

as defined in Section 2.1. Let the kernel Kσpuq be defined as in equation (13). Then
ż

R

Kσpuqdu “
ż

R

|hpσptqtq|2σptqdt . (19)

Proof We have by Fubini’s Theorem and setting u1 “ z ´ u
σptq

,
ż

R

Kσpuqdu “
ż

R2

¯̂
hpzq

ż

R

e
´2iπut

ĥpz ´ u
σptq

qdudzdt

“
ż

R2

¯̂
hpzq

ż

R

e
´2iπσptqtpz´uq

ĥpuqduσptqdtdz

“
ż

R2

¯̂
hpzqe´2iπσptqtz

ż

R

ĥpuqe2iπσptqtu
dudzσptqdt

“
ż

R2

¯̂
hpzqe´2iπσptqtz

hpσptqtqdzσptqdt

“
ż

R

|hpσptqtq|2σptqdt

�

From Lemma 2 we obtain the upper norm control by introducing a weighed window
Hf which lightens a bit the notations.

Proposition 2 (Upper bound) Let f P L2pRq and introduce the weighed and rescaled window

Hf ptq :“ |hpστf ptqtq|
b
στ
f

ptq , (20)
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then Hf P L2pRq and

}Mf}L2pR2q ď }f}L2pRq}Hf }L2pRq. (21)

Proof Since h is compactly supported and σ bounded and continuous by part, Hf P L2. Let

us now assume f P Cc. For any f, g P L2 the dual equality
ż

R

fptqĝptqdt “
ż

R

f̂pωqgpωqdω

gives

}Mf}2L2 “
ż

R

Fp|f |2qpωqKσpωqdω .

As f P L2 we have Fp|f |2q P L8, hence by using Lemma 2 for the second member
ż

R

Fp|f |2qpωqKσpωqdω ď }Fp|f |2q}L8

ż

R

|hpσptqtq|2σptqdt,

ď }|f |2}L1}Hf }2L2

“ }f}2L2}Hf }2L2 .

Using the definition of Hf and taking its L2 norm we obtain the bound in Proposition 2.
Therefore, the upper bound Cf in Theorem 1 equals }Hf }L2 .

We will now extend the result to L2. Let f P L2, by assumption (8) the exists a sequence
pfnqn with fn P Cc, converging to f in L2 and such that the sequence pσfnqn converges to
σf in L8. We know by Lemma 1 that

ˇ̌
}Mτ

f}L2 ´ }Mτ
fn}L2

ˇ̌
Ñ 0 (22)

However we know by the upper bound control that

}Mτ
fn}L2 ď }Hfn}L2}fn}L2 ď sup

n
t}Hfn}L2u}fn}L2 (23)

Since σfn converges in L8 - by assumption (8) - we know that supnt}Hfn}L2u ă 8. Hence,

p}Mτ fn}qn is bounded, and Lemma 1 guarantees that the L2 norm of Mτ f for f P L2 is
finite and controlled by }f}L2Cf “ }f}L2}Hf }L2 .

�

The following norm control is not necessary at this point but may be useful in
future work, so it is presented here.

Proposition 3 (L2 norm control) Let σptq be a focus function and h be a window function,

both as defined in Section 2.1. Let the kernel Kσpuq be defined as in equation (13). Thus we

have

}Kστ
f

}2L2pRq “ }h}2L2pRq

ż

R

|hpστf ptqtq|2στf ptq2dt. (24)

Proof Using Fubini’s Theorem we obtain

}Kσ}2L2 “
ż

R4

e
´2iπpu´u1qt|ĥpzq|2ĥpz ´ u

σptq
q¯̂hpz ´ u1

σptq
qdudu1

dtdz

10



We set then x :“ u
σptq

and x1 “ u1

σptq
which gives

}Kσ}2L2 “
ż

R2

ˆż

R

e
´2iπxσptqt

ĥpz ´ xqdx
˙

loooooooooooooooooomoooooooooooooooooon
p1q

ˆż

R

e
2iπx1σptqt¯̂

hpz ´ x
1qdx1

˙

loooooooooooooooooomoooooooooooooooooon
p2q

|ĥpzq|2σ2ptqdtdz.

We set x2 “ z ´ x and hence we recognize the inverse Fourier transform formula

p1q “
ż

R

e
´2iπpz´x2qσptqt

ĥpx2qdx2

“ e
´2iπzσptqt

hpσptqtq.

Furthermore p2q “ p1q. Thus, when we gather all the members we obtain by Fourier isometry

}Kσ}2L2 “
ż

R2

|hpσptqtq|2|ĥpzq|2dzσptq2dt

“ }h}2L2

ż

R

|hpσptqtq|2σptq2dt.

�

2.5 Lower bound control

The following proposition gives a strictly positive lower bound for the norm, in the
case of non zero signals.

Proposition 4 (Lower bound) Let σptq be a focus function and h be a compactly supported

window function, both as defined in Section 2.1. There exists c “ cpσq ą 0 which depends on

σ such that

@t P R, F
´1pKσqptq ą c , (25)

with

c :“ inf
tPR

"ż

R

|hpxσpx` tqq|2dx
*
. (26)

Proof Let t P R. Since σpxq ě 1 for any x P R, by using equation (15) we have

F
´1pKσqptq ě

ż

R

|hpσpxqpx´ tqq|2dx

Hence we have
@t P R, F

´1pKσqptq ě Hptq. (27)

Now let us prove that inftHptq “: c ą 0. We obviously have Hptq ą 0 for any t P R

furthermore by the use of the dominated convergence theorem we also have lim˘8 Hptq ą 0.
And since Hptq is continuous (again by the dominated convergence theorem) we can conclude
that there exists c “ cpσq ą 0 such that

inf
tPR

Hptq “ c ą 0 . (28)

�
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Remark 4 Since h is supposed continuous (and nonzero), a lower bound independent of σ
can be obtained for c. Without loss of generality, assume that |h| attains its maximum value
}h}8 at the origin. Then there exists a ą 0 such that for every y P p´a, aq, |hpyq| ą }h}8{

?
2.

Since σpxq ě 1 for all x, we have x P pt ´ a{σpxq, t ` a{σpxqq for every x P pt ´ a, t ` aq so
that px´ tqσpxq P p´a, aq. Therefore, we may write

ż

R

|hpxσpx` tqq|2dx “
ż

R

|hppx ´ tqσpxq|2dx ě
ż

pt´a,t`aq
|hppx ´ tqσpxq|2dx ą a}h}28 ,

which doesn’t depend on σ, then on f if σ “ στf .
Note that the compact support assumption is not necessary for that lower bound.

3 Time frequency transform with frequency focus

It is also interesting to introduce frequency-dependent focus, in addition to time-
dependent focus. We first stress that the construction of Section 2 may easily be
transposed to that context. Indeed, given the symmetry property of the STFT provided

by the Plancherel formula xf, ht,ωy “ xf̂ , yht,ωy “ xf̂ , ĥω,´ty, ”time-focus” may be

applied to the STFT of the Fourier transform f̂ of a signal f , resulting in frequency
focus. Results similar to the ones described above can be obtained using the very same
techniques, we won’t address this adaptation here.

We shall rather address the introduction of frequency focus into another trans-
form, which uses scale variables in place of frequency variables, namely wavelet
and/or constant-Q transforms. These closely related transforms are based upon time-
frequency atoms which have the constant-Q property. The Q factor is usually defined
as the ratio of the central frequency ξ of the atom by its spectral bandwidth δξ (both
quantities will be properly defined below).

3.1 Continuous constant-Q and wavelet transforms

3.1.1 Transforms on L
2pRq

The constant Q transform was introduced in a discrete context [10] and revisited more
recently [11, 21]. We provide below a slightly more general version adapted to the
continuous setting.

The time-frequency atoms are built from a reference waveform h P L2pRq, which
will be assumed continuous and compactly supported in the Fourier domain. Following
the definition from [11, 21], time-frequency atoms ht,u are generated as rescaled and
shifted copies of h, which is implemented in the continuous setting as

@x, t, u P R , ht,upxq :“
a
γpuqe2iπγpuqxhpγpuqx´ tq . (29)

Here, γ is a C1 diffeomorphism such that limuÑ´8 γpuq “ 0 and limuÑ`8 γpuq “ `8.
In [11, 21], γ was given an exponential form, we consider here a slightly more general
such scale function. Time-frequency atoms ht,u are normalized so that }ht,u}L2 “ }h}L2

for all t, u. The corresponding constant-Q transform maps every f P L2pRq to the
function Lf defined by

Lfpt, uq “ xf, ht,uyL2 . (30)
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Since f, h P L2pRq, Lfpt, uq is well-defined for all t, u P R. Under suitable assumptions
on h, L also establishes an isometry between L2pRq and L2pR2, dµq, where the measure
µ is defined by

dµpt, uq :“ γ1puq
γpuq dudt . (31)

Proposition 5 Let γ be a C1 diffeomorphism such that limuÑ´8 γpuq “ 0 and

limuÑ`8 γpuq “ `8, let h P L2pRq satisfying the admissibility condition

0 ă ch :“
ż `8

´1

|ĥpyq|2
y ` 1

dy “
ż ´1

´8

|ĥpyq|2
´y ´ 1

dy ă 8 . (32)

Then for any f P L2pRq we have

}Lf}2L2pR2,dµq “ ch}f}2L2pRq . (33)

Sketch of the proof Let h P L2pRq satisfying the admissibility condition (32). Assume f P
CcpRq. Then f P L1pRq, and by Young’s convolution inequality Lfp¨, uq P L2pRq for all u P R.

Introducing the auxiliary function F pξ, uq “ f̂pξqĥpξ{γpuq, uq, we have
ż

R

|Lfpt, uq|2dt “
ż

R3

F pξ, uqF pξ1
, uqe2iπpξ´ξ1qt{γpuq

dξdξ
1
dt “

ż

R

ˇ̌
ˇ qF1pt, uq

ˇ̌
ˇ
2

dt “ }F p¨, uq}2L2 ,

where we have used twice Plancherel’s formula, and denoted by qF1 “ F
´1

1
F the inverse

Fourier transform of F with respect to its first variable.
Let ε ą 0, Iε “ rγ´1p1{εq, γ´1pεqs. Focusing on positive frequencies first, consider the

(convergent) integral
ż

Iε

}F p¨, uq}2L2pR`q
γ1puq
γpu du “

ż

IεˆR`

|f̂pξq|2
ˇ̌
ˇ̌ψ̂

ˆ
ξ

γpuq ´ 1

˙ˇ̌
ˇ̌
2

dξ
γ1puq
γpuq du

“
ż

R`

|f̂pξq|2
ż ´1`ξ{ε

´1`ξε
|ĥpyq|2 dy

y ` 1
.

The inner integral is bounded by the admissibility constant ch, the dominated convergence
theorem then yields ż

R

}F p¨, uq}2L2pR`q
γ1puq
γpuq du “ ch}f}2L2pR`q .

Similar arguments give, for the negative frequency part,
ż

R

}F p¨, uq}2L2pR´q
γ1puq
γpuq du “ ch}f}2L2pR´q ,

and putting both results together gives Equation (33). Finally, Fatou’s lemma gives the
extension from f P CcpRq to f P L2pRq. �

This result bears strong resemblance with known results on continuous wavelet
transform [3], in particular the admissibility condition. Notice however that the latter
expresses a symmetry condition in the frequency domain with respect to frequency
ξ “ ´1, while the corresponding wavelet admissibility condition expresses a similar
symmetry with respect to the origin of frequencies. As a consequence, h is necessarily
complex-valued.
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A closer connection can be made by introducing a function ψ defined by

@x P R, ψpxq “ hpxqe2iπx . (34)

where ψ can be chosen real valued. Thus, the admissibility condition (32) becomes

0 ă cψ :“

ż

R`

|ψ̂pyq|2

y
dy “

ż

R´

|ψ̂pyq|2

´y
dy ă 8 , (35)

which is the usual admissibility condition for continuous wavelet transform [23, 24].
We remind that the latter insures invertibility, a left inverse wavelet transform being
given by the adjoint operator (up to the constant factor c´1

ψ ). The time-frequency
atoms can then be written in terms of ψ as

@x, t, u P R , ht,upxq :“
a
γpuqe2iπtψpγpuqx´ tq , (36)

which are closely related to wavelets as defined in [3], with two mild modifications,
namely the scale which is labeled by γpuq, and a phase factor. These two changes do
not modify strongly the classical wavelet transform.

3.1.2 Transforms on H
2pRq

The constant-Q and wavelet transforms defined above turn out to be unsuitable for
the construction we are about to describe. We found it more convenient to limit
to functions whose Fourier transform vanishs for negative frequency. As in [3], we
introduce the real Hardy space

H2pRq “
!
f P L2pRq, f̂pξq “ 0 @ξ ď 0

)
. (37)

Let ψ P H2pRq. Such a function ψ is called analytic (or progressive) wavelet. The
corresponding continuous wavelet transform [3] of a signal f P H2pRq is defined by

Wfpt, uq “ xf, ψt,uy “
1a
γpuq

ż

R`

f̂pξqψ̂

ˆ
ξ

γpuq

˙
e2iπξt dξ , u, t P R . (38)

If the admissibility condition below is satisfied

0 ă cψ :“

ż

R`

|ψ̂pyq|2

y
dy ă 8 , (39)

the corresponding transform satisfies the following isometry property

}Wf}
2

L2pR2,dµq “ cψ}f}2H2 , (40)
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and the measure is given by

dµpt, uq “ γ1puqdudt . (41)

Remark 5 The assumption f P H2pRq is not as irrelevant as it may appear. Indeed, in signal
processing most signals are real-valued, so that their Fourier transform possess the Hermitean

symmetry, i.e. f̂p´ξq “ f̂pξq. A real-valued signal f P L2pRq is then characterized by its
orthogonal projection onto H2pRq, and can be reconstructed as the real part of the latter
(up to a factor 2).

3.2 Definition of the frequency-focused transform

We now introduce the frequency focus effect, generated by an associated frequency
focus function σν . The role of the focus function is to modify the shape of the analysis
waveforms, in a way that depends on some local behavior of the analyzed signal f .

Assumptions

Throughout this section, we make the following assumptions
i. ψ P H2pRq is an analytic wavelet function, therefore satisfying the admissibility

condition (39), and such that the quantity below (called frequency localization of
ψ) is well-defined.

ξ0 :“
1

}ψ}2

ż

R`

ξ|ψ̂pξq|2 dξ . (42)

In addition, we assume that |ψ̂|2 is differentiable, and make the following technical
assumptions:

• ψ̂pξ0q ‰ 0
• There exists Aψ ą 0 such that for all ξ P R`,

´
|ψ̂|2

¯1

pξq ď
Aψ

|ξ ´ ξ0|
. (43)

ii. γ denotes a positive, strictly increasing C1 diffeomorphism that maps R onto R
˚
`.

iii. To every f P L2pRq is associated a focus function σνf of f P L2pRq, assumed to be
continuous, larger than 1 and such that σνf ´ 1 goes to 0 at ˘8:

@f P L2pRq, σνf P C`
0

pRq ` 1 . (44)

Time-frequency atoms and transform

Wavelet ans constant-Q transforms use time-frequency atoms with constant relative
bandwidth (i.e. bandwidth divided by the frequency localization). The frequency-
focused transform uses time-frequency atoms with prescribed frequency localization
and bandwidth. This requires introducing an appropriate notion of frequency local-
ization. Given a function f P H2pRq, its frequency localization is defined by extending

Equation (42): 1

}f}2
H2

ş
R`
ξ|f̂pξq|2 dξ provided the integral is well-defined.
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The joint control of bandwidth and frequency localization is achieved by so-called
squeezing functions ξ Ñ βupξq defined as follows: for every u P R, we set

βupξq “
σνf puq

γpuq
ξ ´ ξ1puq , (45)

for some shift parameter ξ1puq ą 0, to be specified below.
Given these parameters, we introduce frequency-focused atoms, defined by their

Fourier transform
{ψt,u,σpξq “

1a
γpuq

ψ̂ pβupξqq e´2iπξt . (46)

A simple calculation shows that }ψt,u,σ}2 “ }ψ}2{σpuq.

The shift parameters ξ1puq are fixed by imposing that the localization of
ˇ̌
ˇ{ψt,u,σpξq

ˇ̌
ˇ

equals γpuqξ0, which yields

γpuqξ0 “
1

}ψt,u,σ}2
1

γpuq

ż

R`

ξ

ˇ̌
ˇ̌ψ̂

ˆ
σpuq

γpuq
ξ ´ ξ1puq

˙ˇ̌
ˇ̌
2

dξ

“
1

γpuq}ψt,u,σ}2

ż

R`

γpuq

σpuq
pζ ` ξ1puqq

ˇ̌
ˇψ̂pζq

ˇ̌
ˇ
2 γpuq

σpuq
dζ

“
γpuq

}ψ}2σpuq

«ż

R`

ζ
ˇ̌
ˇψ̂pζq

ˇ̌
ˇ
2

dζ ` ξ1puq}ψ̂}2

ff

“
γpuq

σpuq
rξ0 ` ξ1puqs ,

therefore we obtain
ξ1puq “ pσpuq ´ 1qξ0 . (47)

Notice that when u Ñ ˘8, ξ1puq Ñ 0 and βupξq „ ξ{γpuq.

The practical effect of such a squeezing is illustrated in Fig. 1, where a squeezing
equal to 3 has been applied to three adjacent time-frequency atoms, whose bandwidth
is therefore reduced while their amplitude is increased.

Remark 6 1. Since ξ0 ą 0 and for all u γpuq ą 0 and σpuq ě 1, we have that βupξq ă 0 for

all ξ ă 0; hence {ψt,u,σpξq “ 0 for all ξ ă 0.

2. The frequency localization may actually be defined in several different ways. For exam-
ple, assuming that ψ̂ is a continuous function, the localization parameter ξ0 may be
defined as the mode of |ψ̂|, by setting ξ0 “ argmax

ξPR˚

`

|ψ̂pξq|. In this case, using the

same localization measure for {ψt,u,σ , imposing that argmax
ξPR˚

`

| {ψt,u,σ| “ ξ0γpuq is

equivalent to βupγpuqξ0q “ ξ0, which yields the same expression (47) for the frequency
shifts ξ1puq.
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Effect of the squeezing function

Fig. 1 Frequency squeezing: Fourier transforms of constant-Q atoms (top), and the same atoms out
of which three have been squeezed (bottom) by a factor 3.

Given these notations, the frequency-focused transform Mν can be defined for
f P Cc by

@t, u P R, Mνfpt, uq :“ xf, ψt,u,σν
f

yL2 , (48)

Plancherel’s formula gives the following form

Mνfpt, uq “ xf̂ , {ψt,u,σν
f

y “
1a
γpuq

ż

R`

f̂pξqψ̂

ˆ
σνf puq

γpuq
ξ ´ pσpuq ´ 1qξ0

˙
e2iπξt dξ

(49)

Remark 7 Notice that because of our choice of normalization, the time-frequency atoms do
not have constant norm any more. Retaining constant norm would impose to normalize them
by

?
σf instead of σf , but this would in turn lead to multiply the measure µ by a factor that

depends explicitly on f , which we want to avoid.

Motivations and examples for the frequency focus function

Examples of time focus functions were given in the corresponding paragraph in the
previous Section. The rationale for frequency focus functions should follow similar
objectives, we won’t discuss them here, and refer to Section 4 devoted to numerical
experiments.

The main purpose of the next sections is to establish that Mν can be extended to
a well-defined map from H2pR, dxq Ñ L2pR2, dµq satisfying a norm control similar to
a frame bound control. The pointwise definition of Mνfpt, uq on L2 is still guaranteed
by the fact that h P L2. Regarding the definition from H2 into L2pR2, dµq we can raise
that Mν is well-defined from Cc into L2pR2, dµq and then extend the control by the
use of the Fatou’s lemma.
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Sometimes, if there are no ambiguities, we will write ψt,u,f instead of ψt,u,σf
and

ψt,u,n instead of ψt,u,σfn
for a certain sequence pfnqn.

3.3 Kernel and norm relationship

To prove the main result we first derive a norm relationship involving a certain non-
negative valued kernel Kσ, so that the study of the norm of Mνf will be determined
by the norm }Kσ}8.

Proposition 6 Let ψ satisfying assumptions i. in Section 3.2. Then we have for every f P
H2pRq

}Mν
f}2L2pdµq “

ż

R`

|f̂pξq|2Kσν
f

pξqdξ , (50)

where the kernel Kσν
f

pξq is defined by

Kσν
f

pξq :“
ż

R`

ˇ̌
ˇψ̂

´
βγ´1pyqpξq

¯ˇ̌
ˇ
2 dy

y
. (51)

Proof We first introduce the auxiliary function F pξ, uq “ f̂pξqψ̂pβupξqq, and notice that
F p¨, uq P L1pR`q for all u P R. Then compute

}Mν
f}2L2pR2,dµq “

ż

R2ˆR2

`

F pξ, uqF pξ1
, uqe2iπpξ´ξ1qt γ

1puq
γpuq dξdξ

1
dudt

“
ż

R2

ˇ̌
ˇpF´1

1 F qpt, uq
ˇ̌
ˇ
2 γ1puq
γpuq dudt

“
ż

R2

|F pξ, uq|2 γ
1puq
γpuq dudξ

“
ż

R2

ˇ̌
ˇf̂pξq

ˇ̌
ˇ
2 ˇ̌

ˇψ̂pβupξqq
ˇ̌
ˇ
2 γ1puq
γpuq dudξ

“
ż

R2

`

ˇ̌
ˇf̂pξq

ˇ̌
ˇ
2 ˇ̌

ˇψ̂
´
βγ´1pyqpξq

¯ˇ̌
ˇ
2 dy

y
dξ ,

where we have denoted by F
´1

1
F the inverse Fourier transform of F with respect to its first

variable, and then used the corresponding Plancherel formula. The argument above involve
the use of Fubini’s theorem which is justified by the fact that the integral with respect to y
is convergent, this fact is proved in Theorem 2. �

A simple change of variable gives the following alternative expression for the kernel:

Corollary 2 The kernel Kσ may be written as

@ξ ą 0 , Kσpξq “
ż

R`

ˇ̌
ˇψ̂

´
σ ˝ γ´1

´
ξ
y

¯
y ´ ξ0

´
σ ˝ γ´1

´
ξ
y

¯
´ 1

¯¯ˇ̌
ˇ
2
dy
y . (52)

Remark 8 If σ is fixed and independent of f , the time-frequency atoms ht,ω,σpωq form a

continuous frame of L2pRq in the terminology of [7, 25]. We will see that in the general case,
the assumptions made on σ allow one to stay in a tractable situation.
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From now on, the goal is to obtain upper and lower bounds for the kernel Kσ.

3.4 Main result : the L
2 norm control

The main result of this section is the following Theorem 2 which is a generalization
to non-linear transform with adaptive window of the classical frame control.

Theorem 2 Let ψ satisfying assumptions i. in Section 3.2. Let f P H2pRq, and let σνf P
C`
0

pRq ` 1 denote the associated frequency-focus function. Then we have

dψ}f}2L2pRq ď }Mν
f}2L2pR2,dµq ď Cσν

f
}f}2L2pRq , (53)

where dψ ą 0 depends only on the wavelet ψ, and Cσν
f
is given by

Cσν
f
:“ cψ ` Aψ

ż

R`

´
σ
ν
f pγ´1pyqq ´ 1

¯
dy

y
ă `8, (54)

The Theorem is proven in Propositions 7 and 8.

Remark 9 As we shall see in the proof below, the assumptions on ψ insure the existence of
an interval pa, bq containing ξ0 such that |ψ̂pξq|2 ě |ψ̂pξ0q|2{2 for all ξ P pa, bq, which yields
the lower bound

dψ “ |ψ̂pξ0q|2
2

ln

ˆ
b

a

˙
.

3.4.1 Upper bound control

We have the following upper bound control.

Proposition 7 Let σ P C`
0

pRq ` 1 be a focus function.

}Kσ}8 ď cψ ` Aψ

ż

R`

´
σpγ´1pyqq ´ 1

¯
dy

y
, (55)

where Aψ is given in Equation (43).

Proof Let ξ ě 0 and write ϕpξq “ |ψ̂pξq|2 for simplicity. We will use the following expression
for the kernel, which results from a change of variable,

Kσpξq “
ż

R

ϕpβupξqqγ
1puq
γpuq du.

Hence, by the mean value theorem, we can write

Kσpξq ´ cψ “
ż

R

”
ϕpβupξqq ´ ϕ

´
ξ

γpuq

¯ı
γ1puq
γpuq

du

“
ż

R

´
βupξq ´ ξ

γpuq

¯
ϕ

1pζu,ξqγ
1puq
γpuq

du ,

with
ζu,ξ “ ξ0 `

´
ξ

γpuq
´ ξ0

¯
p1 ` θu,ξpσpuq ´ 1qq, θu,ξ P p0, 1q.
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Since βupξq ´ ξ
γpuq

“ pσpuq ´ 1q
´

ξ
γpuq

´ ξ0

¯
and using hypothesis (43) we obtain

|Kσpξq ´ cψ| ď
ż

R

pσpuq ´ 1q
ˇ̌
ˇ
´

ξ
γpuq

´ ξ0

¯
ϕ

1
´
ξ0 `

´
ξ

γpuq
´ ξ0

¯
p1 ` θu,ξpσpuq ´ 1qq

¯ˇ̌
ˇ γ

1puq
γpuq

du

ď
ż

R

pσpuq ´ 1q Aψ

1 ` θu,ξpσpuq ´ 1q
γ1puq
γpuq

du

ď Aψ

ż

R

pσpuq ´ 1qγ
1puq
γpuq

du

“ Aψ

ż

R`

´
σpγ´1pyqq ´ 1

¯
dy

y
,

which achieves the proof of the Proposition. �

3.4.2 Lower bound control

The following result guarantees the existence of a positive lower bound that only
depends on the wavelet ψ. Under the hypothesis i. in Section 3.2, we have the existence
of a ă b P R

˚
` such that

@y P pa, bq, |ψ̂pyq|2 ě
|ψ̂pξ0q|2

2
. (56)

We can then prove

Proposition 8 Let σ P C`
0

pRq ` 1 be a focus function. Then

@ξ ą 0, Kσpξq ě |ψ̂pξ0q|2
2

ln

ˆ
b

a

˙
. (57)

Proof Let us fix ξ ą 0. Using the notation

αξpyq “ βγ´1pyqpξq “
´
σ ˝ γ´1

¯
pyq ξy ´ ξ0

´´
σ ˝ γ´1

¯
pyq ´ 1

¯
,

we can write

Kσpξq “
ż

R`

|ψ̂pαξpyqq|2 dy
y
.

Since αξ is continuous, we have

αξppξ{b, ξ{aqq Ą
`
αξpξ{bq, αξpξ{aq

˘

“
´

pa´ ξ0q
´
σ ˝ γ´1

¯
p1{aq ` ξ0, pb´ ξ0q

´
σ ˝ γ´1

¯
p1{bq ` ξ0

¯

Ą pa, bq .
Indeed, since a´ξ0 ă 0 and b´ξ0 ą 0, together with the fact that σpuq ě 1 for all u, we have

pa ´ ξ0q
´
σ ˝ γ´1

¯
p1{aq ď a´ ξ0 ,

pb´ ξ0q
´
σ ˝ γ´1

¯
p1{bq ě b´ ξ0 .
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Hence ż

R`

|ψ̂pαξpyqq|2 dy
y

ě |ψ̂pξ0q|2
2

ż

α
´1

ξ
ppa,bqq

dy

y

ě |ψ̂pξ0q|2
2

ż ξ{a

ξ{b

dy

y

ě |ψ̂pξ0q|2
2

ln

ˆ
b

a

˙
,

which proves the proposition, and yields the expression of the bound given in Remark 9. �

4 Numerical illustrations

We provide in this section illustrations of the frequency and time focus functions
introduced in the core of the paper. We stress that these do not intend to address
specific applied problems, but simply to show that such focus functions can indeed be
designed and achieve well targeted goals.

Stepping from continuous time functions to discrete signals requires choosing a
discretization scheme. Our approach here was to limit ourselves to uniform, frequency
or scale independent, time sampling. In other words, we stick to very redundant time-
frequency/scale transforms, and do not address discretization issues such as the ones
developed in classical frame theory, which we consider beyond the scope of this paper.

4.1 Illustration of time focus

We illustrate the time focus effect using a simple example of time focus function,
applied to a real audio signal. For the sake of simplicity, we take γpωq “ ω for all
ω P R. Given some signal f P L2pRq, we denote by V f “ M τ

σref
f the transform of f ,

with a focus function uniformly equal to a reference scale σref, and define

στf ptq “ A

ż
ωn|V fpt, ωq| dω `B , (58)

where n P N is a fixed integer, and A,B ą 0 are real constants that can be adjusted
so that for all t,

1 ď στf ptq ď σmax ,

for some prescribed maximal focus σmax.

We display in Fig. 2 a 3.5 seconds excerpt from a castanet sound recording (from
the SQAM assessment database [26]), and the corresponding focus function estimated
using Equation (58). The window h was a 10 milliseconds long truncated Gaussian
window (to enforce compact support), and parameters were set to n “ 1, σref “ 1
and σmax “ 5. As can be seen, the transients are well detected. Fig. 3 represents
the spectrograms obtained with the unfocused transform (σptq “ 1 for all t), and
the focused transform. The latter features sharper attacks, the invervals in between
attacks being unchanged.

This example is quite an easy one, as the signal only contains transients. The
same focus function performs worse on a slightly more complex signal, that features
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Fig. 2 Castanet signal and corresponding time focus function, defined by Equation (58)
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Fig. 3 Log-spectrograms for the castanet signal plotted in Fig. 2. Left: unfocused; Right: focused,
using the focus function defined in (58) with parameters given in the text.

significant harmonic components together with transients. We display in Fig. 4 a 3.5
seconds excerpt from a glockenspiel sound recording (available from the companion
web site of [12]), together with the corresponding focus function (bottom left-hand
panel). As can be seen, the time focus function (58) detects the attacks of notes, but
the decay is much slower than it was for the castanet signal, and the focus effect on the
resulting spectrogram (not shown here) is not satisfactory. In fact, the focus function
in (58) is indeed sensitive to transients, but also on the local energy of the signal.
Increasing the value of n does not seem to improve.

As an alternative, we display in the bottom right-hand panel of Fig. 4 the focus
function based upon the entropy of fixed-time slices of the reference spectrogram
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Fig. 4 Glockenspiel signal (top) and corresponding time focus functions. Left: focus function as
defined in Equation (58). Right: focus function as defined in Equation (59).

(suitably normalized to unit norm).

σf ptq “ ´A

ż
|rV fpt, ωq| log |rV fpt, ωq| dω `B , (59)

where rV fpt, ωq “ V fpt, ωq{}Vfpt, ¨q}L1pR,dωq. Parameters A and B were again set to
ensure 1 ď σptq ď σmax “ 5.

The rationale is that slices that do not correspond to transient events exhibit a
sparser behavior, and can therefore be expected to possess a small entropy. The right-
hand panel of Fig. 4 shows that the estimated focus function is indeed sensitive to
transients, independently of the local amplitude (which is clear from the construction
in (59)). The corresponding spectrograms are displayed in Fig. 5, from which a better
focus effect can be seen on the transient attacks of the instrument. However, the
sustained parts have lost their frequency resolution in parts of the signal featuring
close transients (in the middle segment of the signal).

Entropy seems to be a valuable choice for building a time focus function. Let us
nevertheless stress that the construction depends on several parameters, including the
reference focus σref involved in the reference STFT V f , and the maximal allowed value
σmax. One may also investigate extensions built upon Renyi entropies, which provide
different measures of spreading in the time-frequency domain, as shown in [12].

4.2 Illustration of frequency focus

We now illustrate the behavior of the frequency-focused transform. Again, we will
build a focus function using an entropy measure, based upon fixed-frequency slices of
a standard continuous wavelet transform

σpuq “ ´A

ż ˇ̌
ˇĂWfpt, uq

ˇ̌
ˇ log

ˇ̌
ˇĂWfpt, uq

ˇ̌
ˇdu `B , (60)
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Fig. 5 Spectrograms for the glockenspiel signal and focus function plotted in the right hand panel
of Fig. 4. Left: unfocused; Right: focused, using the entropy-based focus function defined in (59).

where ĂWfpt, uq “ Wfpt, uq{}Wfp¨, uq}L1pRq is a normalized continuous wavelet trans-
form (equivalently a frequency-focused transform with focus function uniformly equal
to σref “ 1). We have chosen here the simplest choice γpuq “ eu. Again, A and B

are parameters which are adjusted so that 1 ď σpuq ď σmax, for all u and for some
prescribed maximal focus σmax. We display in Fig. 6 the simulated signal and its peri-
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Fig. 6 Left: toy signal (top) and periodogram (bottom, loglog scale). Right: wavelet spectrum of
the simulated signal and corresponding frequency focus function as defined in Equation (60).

odogram (square modulus of Fourier transform) on the left, and its wavelet spectrum
and the frequency focus. The simulated signal is composed of the sum of four sine
waves at different frequencies with equal amplitudes, randomly located spikes with
random amplitudes (50 spikes) and Gaussian white noise. The wavelet spectrum is
defined as the time-average of the continuous wavelet transform modulus displayed in
Fig. 7, left panel.
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Fig. 7 Scalograms for the glockenspiel signal and frequency focus function plotted in Fig. 6. Left:
unfocused; Right: focused, using the entropy-based focus function defined in (60).

Obviously, the frequency focus is insensitive to the different amplitudes of the four
sine waves in the wavelet domain. The resulting effect is visible on the scalograms
(modulus of time-scale transforms) on the right panel of Fig. 7, where the frequency
resolution has clearly been increased for displaying the four sine waves, and is weakly
changed elsewhere, in particular at smallest scales. It is also worth observing that
the localization of spikes at small scales from wavelet maxima appears simpler, since
these lines of maxima are less affected by the presence of the sine wave. We didn’t
consider a real example for illustrating the frequency focus, since constant amplitude
sine waves rarely appear in real signals. Most often, sine waves start at a given time and
their amplitude decays with time, which is not accounted for by the simple criterion
illustrated here. The latter could be adapted to be used inside time segments, after a
prior time segmentation. Such an extension would hover require additional modeling
work, and is beyond the scope of this paper.

5 Conclusion

We introduced in this paper new time-scale-frequency transforms that can adapt their
time-frequency resolution to the analyzed signal, through the frequency domain and
time domain focus functions f Ñ σνf and f Ñ στf . Based upon short time Fourier
transform or continuous wavelet transform, the proposed transforms adapt dynami-
cally the scale/bandwidth of analysis windows or wavelet as a function of frequency or
time, leading to non-linear transforms. Under suitable assumptions on focus functions,
we could prove first important results on the transforms such as the well-definedness
on L2, and norm controls similar to the one obtained in the linear case.

In Theorems 1 and 2, we obtain a control of the type

sup
fPL2pRq
f‰0

}Mf}L2

}f}L2

“ sup
fPL2pRq
f‰0

C
1{2
f ,
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where Cf depends on f P L2pRq only through the focus function σf . More specific
assumptions on the focus functions are needed to insure a finite upper bound for Cf
with f P L2. For example, one may specify that 1 ď σf ď σmax for some prescribed
σmax, as we did in numerical illustrations. It would be interesting to study more
thoroughly generic mappings f Ñ σf and derive sufficient conditions insuring the
finiteness of Cf .

Note that, due to the non-linearity of the transform, the above quantity doesn’t
define a norm for the transform. Lipschitz continuity, i.e. the existence of a constant
CpMq such that

@f1, f2 P L2 , }Mf1 ´Mf2}L2 ď CpMq}f1 ´ f2}L2 (61)

would clearly be of interest too (see also generalized operator norms introduced and
studied in [27]). Proving the existence of such Lipschitz constants for Mν and M τ

would ensure their uniform continuity. However, none of the two above mentioned
results is strong enough to prove the existence of a Lipschitz constant that satisfies
Equation (61). We plan to follow this line in the near future.

Of interest too for the inversion of the non-linear transforms would be to investigate
which conditions would guarantee the existence of a a constant cpMq such that

@f1, f2 P L2pRq , cpMq}f1 ´ f2}L2 ď }Mf1 ´Mf2}L2 . (62)

Such property would guarantee injectivity of the non-linear transform. Again, the lower
bounds provided in Theorems 1 and 2 are not sufficient to yield directly injectivity,
even though the bound does not depend on the analyzed function f .

A main further goal will be to study the invertibility of such non-linear transforms.
From our results, inverse transforms can be obtained if both the transform Mf and
the focus function σf are known, but not in situations where only the transform Mf

is known. A first step would be to analyze in which conditions an approximate inverse
can be obtained when an approximation of the focus function is available. The above-
mentioned problems are likely to play a role for this question. This may open the door
to iterative inversion methods.

Last but not least, we plan to head to concrete applications of this approach, in
particular in the context of audio perception modelling, which was one of the main
motivations for this work. For that, we plan to investigate further focus functions
that could be relevant in applications, starting from the simple models and examples
described in Section 4, and study more thorough applications to real signals.
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