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Safety Net Detection by Optic Flow Processing

Xavier Daini1, Charles Coquet1, Romain Raffin2, Thibaut Raharijaona3 and Franck Ruffier1

Abstract— Drone navigation is an area of study that is receiv-
ing more and more attention. Obstacle detection techniques and
autonomous guidance are continuously improving, but some
types of obstacles are still very difficult to detect with current
methods. Safety nets used to separate and secure 2 contiguous
spaces are indeed very difficult to detect by Lidar and by
image processing based on pattern recognition. The method we
propose here separates the Optical Flow detections to identify
the presence of a safety net: i) by using the norm of their vector,
ii) by matching them to a regression defining a plane (safety
net or wall). Our results show that the proposed method detects
a net in front of a wall with very few false positives, thanks
to a small displacement (at most 5%). Moreover, the distance
estimation between the net and the wall as well as the distance
between the net and the drone can be estimated with at most
20% error in the worst cases.

I. INTRODUCTION
Considering collision avoidance, it is important for a

drone to detect safety nets and to know their location and
distance from the observer, especially when the drone is
navigating autonomously. When the drone is flying indoor
or outdoor, safety nets are a threat that is invisible to most
visual detection systems. Indeed, the usual tools in computer
vision to detect and map the environment (such as SLAM
with Lidar), fail to detect safety nets. The human operator
still needs to choose a drone-friendly environment devoid of
obstacles to prevent collisions.

Indeed, most visual navigation methods are based on
opaque surfaces. Recent studies are focusing on semi-
transparent spaces using mostly Lidar [1] [2] [3] [4]. Other
methods such as pattern recognition [5], sensor fusion (ul-
trasonic sensor and Lidar [6]), even image clustering method
[7] or direct image processing to detect window frames
[8]. Learning image processing techniques could recognize
the pattern of a safety net, but providing information on
the distance of this obstacle. The presence of a safety net
definitely defines a dangerous obstacle for the drone.

Nevertheless, net detection is a vital point in Anti-Drone
Warfare (ASW). Indeed, nets are one of the most ancient
while still very performant way to destroy or put out of
commission a hostile drone: projected nets are used in order
to incapacitate enemy drones [9].

Several robots and drones are shown being able to navigate
solely based on the optic flow [10], including to stabilize
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a drone without accelerometer [11], [12] and to perform
minimalistic visual odometry [13].

A new trend is to use deep learning methods (CNN) to
assess Optic Flow in order to perform accurate ego-motion
navigation [14]. These methods are limited by the data used
to train the neural network and require substantial computing
power.

Previous studies rely on piece-wise planar approximation
of the shape of the surrounding surfaces (series of orientated
plans) using Optic Flow [15]. Low computational Optic Flow
based planar detection can also lead to safe terrain-following
[11].

Optic Flow-based method to detect the presence of a safety
net in front of a background surface. This visual method uses
successive regressions of Optic Flow data to identify planar
surfaces arranged one behind the other, which indicates the
presence of a non-opaque surface. We also provide a way to
estimate the distance relative to the detected safety net and
to what background lies behind it.
A hexarotor equipped with a low cost global-shutter cam-
era was used to show the impact of a safety net on the
Optic Flow field, measured during a flight in front of a
textured background (section II). Tests were conducted with
and without the safety net to evaluate the accuracy of the
detection. Section II also details the material used to capture
the images and the method to extract Optic Flow. Various
methods exist for extracting Optic Flow vectors. Some Optic
Flow extraction methods are based on a limited number of
2D-points named “corners” [16] while others focus on “dense
vector field” where at each pixel is estimated a value of the
Optic Flow vector-field [17], [18].

In section III, we explain how Optic Flow can be used to
detect surfaces. The method using successive planar surfaces
detection to detect the safety net is provided in section VI.

In section VIII, we present aerial robotic experiments
where the drone was following a desired trajectory. The
Optic Flow-based detection method was performed offline in
these preliminary results. The method we propose detected a
safety net with very low number of false positives (less than
5%) in conjunction with accurate estimations of the distances
between the drone and the safety net, as well as between the
drone and the background.

II. MATERIAL AND OPTIC FLOW ACQUISITION
METHODS

We will describe hereafter both the UAV and the camera
it carries.



Fig. 1. The images are processed using a Lucas Kanade method to extract the Optic Flow field. This field is then processed to detect the presence of the
net in viewed or not. To estimate the distance toward the safety net, the processing algorithm uses both the ground truth velocity from the MoCap system
and the Optic Flow field: it allows distance estimation between the drone and the safety net Dnet

est as well as between the safety net and the wall behind
Dwall

est .

Fig. 2. The hexarotor flying in the Marseille’s flying arena in front of the
safety net. Through the safety net, we can see a textured panel considered
here as a background wall

A. The Hexarotor

We used a hexarotor developed together with
HexadroneTM based on the PX4 low-level flight controller
[19]. We also used a trajectory tracking algorithm1 to
apply an hexagonal-like route on the hexarotor. PX4
is particularly convenient, thanks to its adaptability to
the nature of the drone (air-wing, quadrotor, hexarotor,
etc.), and its reliability when the drone is associated with
QGroundControl, a Ground Control Station (GCS), and
the MAVLINK protocol. The position and orientation of
the drone used in the drone controllers came from the
MoCap system setup in the Mediterranean Flying Arena.
The flying arena was equipped with 19 motion-capture
cameras (VICON) inside a volume of 6× 8× 6 meters.

The experimental setup is illustrated in Figure 1. The
drone was equipped with a Jetson Xavier NX as onboard
computer. The onboard computer was connected in USB to
a low-cost global-shutter camera2, as we can see in Figure 3a.
Finally, the datasets including the Optic Flow measurement
were recorded via the Robot Operating System (ROS) and
processed at a frequency f = 10 Hz.

B. Optic flow acquisition

1) Drone trajectory: For our experiments, we built a
hexagonal-like trajectory in order to keep the drone on a

1https://github.com/gipsa-lab-uav/trajectory control
2ELP USBGS720P02-L36 with a 3.6 mm objective

Fig. 3. The hexarotor (a) has an embedded camera. It moved perpendicu-
larly to its optical axis and along the wall. Because the arena is very large,
we only used the center of it in order to have the best tracking margin with
our MoCap system (b). This leads us to focus on the two parallel plans,
one in the back and one in front of the arena (b). Also, the movement is
considered to be at constant z altitude (c) and so we removed the Z vertical
component of the Optic Flow acquired from captured images.

Specifics Global Shutter Camera Used parameters
Size pixels 3.6µm2 3.6µm2

Number pixels 1080× 720 px 640× 480 px
FOV 100° 40°

Framerate 30 Hz 10 Hz

TABLE I
INITIAL PARAMETERS OF THE CAMERA (LEFT) AND THE USED ONES

(RIGHT).

continuous circuit. This trajectory had 2 linear trajectories
where the camera went along 2 different vertical textured
planes, as illustrated in Figure 3b. The first vertical plan is
composed of a net and a plan behind this net. We planned
the trajectory to keep a minimal distance of Dnet = 2.7m
between the drone and the safety net. The wall behind is
placed at Dwall = 3.5m from the drone’s trajectory. The
second vertical plan has no net in front of it, and was set at
Dwall = 2.7m from the drone. The interest of a hexagonal-
like trajectory is that it reduces as much as possible the
angle to turn before a straight line, while also reducing the
movement on the borders (and so not going out of the area



covered by our MoCap system). Furthermore, this trajectory
can be continuous, without pauses to stabilize as most of the
rotation inducing perturbation will be corrected during the
“sides movement” which is not covered by this study. This
continuous rotation on the sides is what causes us to call it
hexagonal-like, as the shape will not follow a strict hexagon,
as you can see on Figure 3bc. Finally, a short pause of 2 s
when the drone finished to go along a wall was necessary to
catch up a potential delay between the setpoint and the real
trajectory.
During the trajectories, and more precisely during the parallel
translation along the planes, we had V xd = 0.25m.s−1 and
V yd = 0 while having a strong control on the yaw of the
drone (to be as much as possible parallel even in case of
noises or perturbations).
Finally, on its onboard computer, the hexarotor saves the
images captured by the camera as well as its position (red
on the MoCap) at the same time in a single file.

2) Saved images: We can see in Table I that the images
read are cropped (from 1080 × 720 px to 640 × 480 px)
and the Field-of-View (FOV) is smaller (from 100° to 40°).
This is due to our choice to reduce as much as possible
the computations and the data flow through our onboard
computer. The process, we used for the flight, was a series
of waypoints to follow. In order to achieve this, the MoCap
system refreshed the drone position at 100Hz, leaving few
times for images acquisition. Images acquisition were made
every 100ms as a trade-off.

After the experiment, we obtained a set of images as
shown in Figure 3d, with corresponding attitude from the
drone. The images were then pre-processed in order to
extract their 60-pixel wide central band. We decreased the
number of pixels to be processed, reducing the search area
for Optical Flow method. This reduces the computational
cost, and sets the study in a 2D case.

3) Lucas Kanade Method for Optic Flow Extraction: We
used a Lucas Kanade [16] algorithm in conjunction with a
Shi-Thomasi [20] corner detector, in order to get the Optic
Flow vector field. This method selects some points on one
image (also called corners) and tries to follow them in the
next one. The process is highly configurable: we can set
the number of searched point, their quality as well as the
number of filter’s levels, which tune the final Optic Flow
measurement but require more computations.
Other methods exist, such as the Gunnar Farnesback method
[17] or [18] which give a dense Optic Flow, very interesting
in principle for our study. But its main drawback is that
they smooth the Optic Flow measurements, removing the
discontinuities that we try here to detect (like in Figure 4d).
As a consequence, these alternative Optic Flow extraction
methods would prevent the detection of two parallel planes
(one in front of the other), as we try here to separate them
here.

C. Backprojection

At this step, the Optic Flow measurement was planar,
being taken from a 2D image. It is composed of 2D vectors
following detected corners between two images. However,
the most useful representation of the Optic Flow is the
spherical one. The only difference is the fact that the planar
flow is projected on a sphere, in order to get an optic flow
magnitude in [rad.s−1].
To do this, a matrix expression of the retro-projection, taking
into considerations the camera intrinsic parameters (size of
pixels, focal and resolution) had to be used. It was applied
to all the Optic Flow vectors detected before and put from
a 2D planar representation to a 3D spherical one.
We shall not go deep in the computations here, however it
is an important step that the reader can find in [19] and the
camera parameters, depending on the type of camera used,
are given in [21]. The idea is to compute the corresponding
position (X,Y, Z) on a sphere or radius f (f being the focal
distance of our lens) of each point (x, y) on the receptor
plane. This computation is made by a matrix and by knowing
all the positions (X,Y, Z) we can compute the 3D Optic
Flow vector, also named spherical flow.

III. GROUND-TRUTH OPTIC FLOW EXPRESSION

It has been shown in [22] that the expression of the
ground-truth spherical Optic Flow at step i and angle ob-
served θ: −→ωi(θi) can be computed via the knowledge of the
desired point to which we compute the ground truth Optic
Flow, with respect to the observer (distance: σi and direction:−→
di ), and the motion of the observer (

−→
T ).

First, we assumed that the drone trajectory was linear (with-
out rotation) meaning

−→
R =

−→
0 . Therefore, we canceled

the rotational term of the general ground-truth Optic Flow
equation. The Optic Flow perceived by the drone can then
be defined as follows :

−→ωi(θi) = − 1

σi(θi)
∗
(−→
Ti − (

−→
Ti .

−→
di (θi)).

−→
di (θi)

)
(1)

By defining the angle of observation (θi) with respect to
the main optical axis of the camera, we obtain the following
expression:

|ωi(θi)x| =
cos(θi)

D
∗ (Vx − Vx ∗ sin(θi) ∗ sin(θi))

=
cos(θi)

D
∗ Vx ∗ (1− sin2(θi)

=
Vx

D
∗ cos3(θi)

(2)

Where:

• D is the distance from the orthogonal point of view, it
can either be Dwall or Dnet

• Vx is the component of
−→
Ti in the direction parallel to

the plan
• θi is the angle at which the considered point is observed



Fig. 4. The value of the Optic Flow magnitude seen along the x− axis:
|ωi(θi)x| vary according to the angle considered with Vx = 0.25m/s. In
Case (A), (a) the drone moves parallel to a single textured wall. The Optic
Flow has a cos3 type of curve as shown in (b). In Case (B) there is a
safety net between the drone and the wall (c). Some corners detected by
the Lucas & Kanade method would then belong to the safety net, leading
to two curves: one from the wall (in black) and one from the net (in blue)
(d).

IV. SIMPLIFIED CASE STUDY

In this first study, to simplify, the drone moves in trans-
lation only parallel to the plane to be detected (Figure 4ac).
We measured the Optical Flow in the direction of movement
(along the x-axis of the image) during a movement parallel
to the background plan (Figure 4ac).

We tested our net detection algorithm in 2 cases:
• Case A: there is nothing between the drone and the

plane, so the Optical Flow amplitude measurements
should be compact around a single Optical Flow mag-
nitude curve (Figure 4b).

• Case B: there is a net between the drone and the plane,
so the Optical Flow amplitude measurements should
be more dispersed and possibly distributed around 2
different Optical Flow magnitude curves (Figure 4d).

V. GROUND-TRUTH OPTIC FLOW CURVE DEFINING A
PLANE

In presence of a plane, the Optic Flow magnitude mea-
surements can be fitted to a ground truth Optic Flow curve
defining a plane: Aω ∗ cos3(k ∗ θ) (equation 2) with Aω and
k being the parameters of our ground truth equation model.
k is introduced here to compensate for the approximation of
the ground truth Optic Flow equation, for the measurement
errors and for the uncertainties of the drone trajectory. Our
assumptions of a perfectly linear translation along the walls
is an approximation, as the drone will have some small
variations on its pitch and roll. The addition of the k
parameter helps to reduce the fitting error, while being simple
and computationally efficient.

Fig. 5. Flowchart of the process used in order to detect the presence of
a safety net. First, the magnitude of the flow vectors are fitted using an
iterative least-square method. Then clusters are made from the initial data
and the fitted curve. Finally, a second fit is realized on each cluster. If the
two new fitted curves are different enough, then we concluded to a presence
of a safety net on the original image, if not, then we only concluded that
no net were detected.

Different forms of regression curves to match the data points
could also be envisioned.

We know from [22] and our assumptions that the Optic
Flow magnitude measurements follows a cos3 function in the
presence of a parallel plane. Hence, in the present case, the
least-square method will efficiently fit the cos3 function to
our optic measurement to assess Aω and k. Alternatively, a
Gaussian fit might have been more effective in the case of a
broad Field-of-View instance or when the drone’s movement
is more complex than a line parallel to a plan.

VI. NET DETECTOR

At this point, we had a series of Optic Flow vectors.
We had then two cases to treat:

• either we have one plane, and so we should have only
one curve (Figure 4ab)

• or we see both a safety net and a plane on the camera.
Hence, two curves of Optic Flow magnitude will be the
signature of the presence of a safety net (Figure 4cd)



As we assumed that the plane and the net were parallel to
each other (Figure 4c), they had the same type of Optic Flow
norm distribution (equation 2) but with a different amplitude
Aω (Figure 4d). As a result, the following algorithm was
designed to determine whether one or two Optic Flow curves
are present:

(i) We fit our Optic Flow magnitudes using an iterative
least square method with limit on the number of iter-
ation (as shown in Figure 5). The least square method
optimizes the curve to minimize the sum of squared
error to each point.

(ii) The net-detector then selects all the Optic Flow magni-
tudes belonging to a band around the fitted curve. This
band is made between 0.7 times and 1.3 times of the
initial fitted curve. This allows us to remove outliers
without making many assumptions on the Optic Flow
magnitude.

(iii) If the initial fit is within the confidence interval, the
net-detector divides the Optic Flow magnitude measure-
ments in two sets (or clusters) defined by their positive
and negative errors with respect to the first fitting curve.

(iv) Then, these two clusters of Optic Flow magnitude are
respectively fitted again to the approximated ground-
truth Optic Flow equation. The net-detector uses the
distance between two fitting curves to detect or not if
one or two planes are seen by the camera. The algorithm
will always provide a solution whether the errors are
important or small.

(v) After having fitted each cluster with a |ωi(θi)| =
Aω ∗ cos3(k ∗ θi) curve, we compare the difference
between Aω net and Aωwall. If the difference is small
(less than a 10% difference between them), then it
means that the distribution is quite centered, we can
assume a “one curve” set of Optic Flow magnitude
which implies that no safety net were detected (Case
A, Figure 4ab). However, if the clusters are relatively
far apart and without too much disparity (more than
a 10% difference but not more than 40% – more
than 40% would mean a wrong fit–), the net-detector
consider one curve for each cluster resulting in two
planes (Case B, Figure 4cd). As it is impossible to
see through an opaque plane, one of them must be
semi-transparent or a safety net: the plane belonging
to the safety net is defined by the largest Aω (which
will correspond to Aω net) which is the closest to the
camera (Figure 4bd).

VII. METHOD OF THE SAFETY NET DISTANCE
ESTIMATION

Another aspect of this study is also to estimate the distance
to the detected safety net.
By using the equation (2) and having the knowledge of our
movement with respect to the observed plane –the amplitude
of velocity vector–, the net-detector can directly deduce
the distance drone/plane. This is achieved using the cosine
coefficient output by the fitting method Aω .

|ωi(θi)x| = Vx

D ∗ cos3(θi) = Aω ∗ cos3(θi)

Using this equation, we can directly obtain D, which is the
distance we defined as the orthogonal distance drone/plane
(Figure 3c).

Dwall =
Vx

Aω
(3)

The drone trajectory can generate noise since the drone’s
movement cannot be perfectly parallel to the plane, and some
rotations are also possible. To improve the estimation, the
Dest estimated at 10Hz is averaged along each trajectory.
In such preliminary experiment, the drone velocity will be
given by the MoCap system in our flight arena.

VIII. EXPERIMENTAL RESULTS

A. Quality analysis of net detection with a textured back-
ground

We conducted two experiments using the same texture.
The first one was set up without using a net (Case A), while
the other experiment was done using a net (Case B). We used
the same texture in both experiments to make the experiments
comparable.

As we can observe, there are some images that were not
usable (Table II lines 3 and 4). This is attributed to two
primary factors:

• Errors in the iterative least squares fitting method result-
ing from excessive computation (e.g run-time error);

• Non-parallel movement of the drone with respect to the
safety net.

The algorithm detects the presence of a safety nets within
two successive images, with a low percentage of missed
detection (less than 5%) and a low percentage of false alarms
(at most 10%). Each case of determining the net detector
–A or B– is the result of measurements made from the
set of images taken during a single flight of the drone in
front of the safety net and where all images are processes.
However, a case determination based on only one image
can be problematic because it is likely to be affected by
factors such as noise or other kind of errors. We then decided,
to choose a minimum of 70% of data pointing toward the
same case in order to conclude. This 70% threshold allows
discriminating, if the algorithm detects the presence of a
safety net in 70% of the images or not, in function of Case
A or B depicted in Figure 4.
This simple threshold filter leads to an interesting classifi-
cation in either Case A or Case B situations (last line of
table II). Another type of filter that could be used is a ”two-
consecutive measurement” trigger. This would imply to have
the memory of the precedent detection result, but could also
lead to an even better estimation overall.

B. Distance estimations

In order to validate our assumptions about distance estima-
tion, we computed the estimates of Dwall and Dnet and their
standard-deviation (Std) as well as the accuracy (%accuracy)



Fig. 6. The images (a) and (d) have given an Optic Flow field along their X axis, shown in (b) and (d) respectively. In case (a) we have Dwall = 2.3m
and in case (d) we have Dwall = 3.5m and Dnet = 2.7m. The Optic Flow measured is represented in red in (b) and (e) for both cases. We can see that
the distribution of the norms (c) is way more diverse than in (f) but the algorithm is able to detect 2 clusters who each follows the distribution of a single
plane. The presence of both clusters is the signature of two surfaces detected, one in front of the other: the cluster with the largest optic flow magnitude
is the closer surface from the drone (eq. 3) and the cluster below with the smallest optic flow magnitude is the farthest surface (f).

Trajectory number : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Case A: simple wall A A A A A A

Case B: wall + safety net B B B B B B B B B
Nb of images per set 30 30 30 30 30 30 20 20 20 30 30 30 30 30 30

Nb usable image per sets 25 30 26 28 25 28 18 20 16 28 27 29 28 26 26
Nb net detected per set 0 3 2 3 1 1 17 20 16 28 27 29 27 26 26

% of accurate estimations 100 90 93 89 96 96 94 100 100 100 100 100 97 100 100
Case determination (threshold = 70%) A A A A A A B B B B B B B B B

TABLE II
DETECTION OF SAFETY NET IN CASE (A) AND (B), PERCENTAGES OF GOOD RESULTS AND DETERMINATION OF SAFETY NET SEEN DURING

TRAJECTORY.

Traj. mean(Dwall) mean(Dwall
est ) Std %

number [m] [m] [m] accuracy
1 3.29 3.24 0.50 86.9
2 2.74 2.66 0.56 83.5
3 2.81 2.96 0.42 86.7
4 3.15 3.11 0.47 88.8
5 2.68 2.52 0.47 83.7
6 2.48 2.34 0.28 91.5

TABLE III
ESTIMATED DISTANCE Dwall VIA NET-DETECTION ALGORITHM

DURING 6 TRAJECTORIES WITHOUT NET IN SETUP (CASE A)

with respect to the ground truth (Table IV).
Furthermore, we also have run our algorithm without the
presence of net, in order to assess its “general” reliability
and the impact of a net on the quality of the measurement
(Table III).

As we can see in Table II, the experiment shows that we

are able to detect the presence of a safety-net with a very
high confidence (two last lines). Furthermore, some errors
persist, mainly due to incertitude with the camera optics.

Moreover, the quality of the distance estimation do not
change if there is a safety net or not, with in average an
accuracy of 86.9% in Case (A) (Table III) while having
86.4% for Dnet and 87.2% for Dwall in Case (B) (Table
IV). Furthermore, the errors are centered as shown in Figure
7.
We conclude that our method is able to detect the presence
of a safety net between the drone and the wall. Our detection
algorithm is also able to estimate concomitantly:

• the relative distance of the safety net with a good
precision (std 0.38m)

• distance relative to the background wall behind the net
(std 0.50m).

4The boxplot command is provided by the Matlab function boxplot:
https://fr.mathworks.com/help/stats/boxplot.html



Traj. mean(Dwall) mean(Dwall
est ) Std % mean(Dnet) mean(Dnet

est ) Std %
number [m] [m] [m] accuracy [m] [m] [m] accuracy

7 3.15 2.95 0.44 88.7 2.35 2.44 0.37 86.0
8 2.94 2.83 0.21 94.0 2.15 2.29 0.21 90.2
9 2.77 2.70 0.45 86.0 1.97 2.19 0.40 80.5

10 3.15 3.07 0.51 88.0 2.35 2.41 0.38 86.2
11 2.94 2.69 0.48 84.0 2.14 2.09 0.31 86.5
12 2.76 2.73 0.45 85.9 1.96 2.06 0.29 87.0
13 3.62 3.42 0.63 86.6 2.82 2.861 0.51 84.8
14 3.18 2.97 0.41 88.1 2.38 2.36 0.28 90.1
15 3.25 3.26 0.64 83.7 2.45 2.58 0.45 86.0

TABLE IV
ESTIMATED DISTANCE Dwall AND Dnet VIA NET-DETECTION ALGORITHM DURING 9 TRAJECTORIES WITH A SAFETY-NET IN SETUP (CASE B)

Fig. 7. Boxplot4of estimation distance error for three pooled data: i) Dwall

without any net (left) (Case A), ii) Dnet (center)(Case B), iii) and Dwall

with the safety net in between (right) (Case B). As in Tables IV and III, we
observed a relatively high Std but low mean error: i) std = 0.47m, error =
0.05m for Dwall

est without net, ii) std = 0.38m, error = 0.07m for Dnet
est and

iii) std = 0.50m, error = 0.13m for Dwall
est with the safety net in between.

In addition, the distance estimation errors are all centered.

IX. CONCLUSION

The detection of a safety net by a drone has been made
possible using Optic Flow cues taken from a low-cost
global-shutter camera with a small resolution. This could
lead to a better and safer flight for a drone, without the need
of an operator checking the area for safety net beforehand.
Our method could be added in such a workflow in order
to avoid safety net and non-opaque obstacles, as already
suggested for regular Optic Flow based wall avoidance.
Furthermore, with more than 90% confidence on direct
measures and 100% in the overall trajectory estimation, we
can assume that any net would be detected in a few steps
with a limited number of images.
In this study, we have also shown that the observation of
the Optic Flow can help the drone determining the shape of
their environment, by detecting and extracting information,
not only of the presence of a background wall but also of a
safety net between the drone and the background.
This development is interesting as the Optic Flow cues
provide detection that other visual methods could not.

In a future study, we will show how the Optic Flow based
safety net detection algorithm can also be used when the
drone is moving using any successive translation and in
more complex environment when the surfaces are not
parallel. Such detection method could allow UAV to avoid
hitting such safety nets, as well as making a coarse visually
cartography of the surrounding.
Detection of (underwater) net is also very important for
sea-surface vehicle (fishing vessel, sailing, ...) as well as for
submarines infiltration and Anti-Submarine Warfare [23],
[24].
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