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Abstract. Binary neural networks (BNNs) are an attractive solution
for developing and deploying deep neural network (DNN)-based applica-
tions in resource constrained devices. Despite their success, BNNs still
suffer from a fixed and limited compression factor that may be explained
by the fact that existing pruning methods for full-precision DNNs cannot
be directly applied to BNNs. In fact, weight pruning of BNNs leads to
performance degradation, which suggests that the standard binarization
domain of BNNs is not well adapted for the task. This work proposes a
novel more general binary domain that extends the standard binary one
that is more robust to pruning techniques, thus guaranteeing improved
compression and avoiding severe performance losses. We demonstrate a
closed-form solution for quantizing the weights of a full-precision network
into the proposed binary domain. Finally, we show the flexibility of our
method, which can be combined with other pruning strategies. Exper-
iments over CIFAR-10 and CIFAR-100 demonstrate that the novel ap-
proach is able to generate efficient sparse networks with reduced memory
usage and run-time latency, while maintaining performance.

Keywords: Binary neural networks · Deep neural networks · Pruning ·
Sparse representation.

1 Introduction

The increasing number of connected Internet-of-Things (IoT) devices, now sur-
passing the number of humans connected to the internet [6], has led to a sensors-
rich world, capable of addressing real-time applications in multiple domains,
where both accuracy and computational time are crucial [1]. Deep neural net-
works (DNNs) have the potential of enabling a myriad of new IoT applications,
thanks to their ability to process large complex heterogeneous data and to ex-
tract patterns needed to take autonomous decisions with high reliability [20].
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Investments in the Future project managed by the ANR (ANR-19-P3IA-0002)
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However, DNNs are known for being resource-greedy, in terms of required com-
putational power, memory, and energy consumption [4], whereas most IoT de-
vices are characterized by limited resources. They usually have limited processing
power, small storage capabilities, they are not GPU-enabled and they are pow-
ered with batteries of limited capacity, which are expected to last over 10 years
without being replaced or recharged. These constraints represent an important
bottleneck towards the deployment of DNNs in IoT applications [40].

A recent and notable example to enable the usage of DNNs in limited resource
devices are binary neural networks (BNNs) [15]. BNNs use binary weights and ac-
tivation functions that allow them to replace computationally expensive multipli-
cation operations with low-cost bitwise operations during forward propagation.
This results in faster inference and better compression rates, while maintaining
an acceptable accuracy for complex learning tasks [10,25]. For instance, BNNs
have achieved over 80% classification accuracy on ImageNet [10,31]. Despite the
good results, BNNs have a fixed and limited compression factor compared to
full-precision DNNs, which may be insufficient for certain size and power con-
straints of devices [22]. A way to further improve BNNs’ compression capacity
is through network pruning, which seeks to control a network’s sparsity by re-
moving parameters and shared connections [12]. Pruning BNNs, however, is a
more challenging task than pruning full-precision neural networks and it is still a
challenge with many open questions [38]. Current attempts [9,19,28,32,37,36,38]
often rely on training procedures that require more training stages than standard
BNNs, making learning more complex. Moreover, these methods fail in highly
pruned scenarios, showing severe accuracy degradation over simple classification
problems.

In this work, we introduce sparse binary neural network (SBNN), a more ro-
bust pruning strategy to achieve sparsity and improve the performance of BNNs.
Our strategy relies on entropy to optimize the network to be largely skewed to
one of the two possible weight values, i.e. having a very low entropy. Unlike BNNs
that use symmetric values to represent the network’s weights, we propose a more
general binary domain that allows the weight values to adapt to the asymmetry
present in the weights distribution. This enables the network to capture valu-
able information, achieve better representation, and, thus better generalization.
The main contributions of our work can be summarized as follows: 1) We in-
troduce a more general binary domain w.r.t. the one used by BNNs to quantize
real-valued weights; 2) we derive a closed-form solution for binary values that
minimizes quantization error when real-valued weights are mapped to the pro-
posed domain; 3) we enable the regularization of the BNNs weights distribution
by using entropy constraints; 4) we present efficient implementations of the pro-
posed algorithm, which reduce the number of bitwise operations in the network
proportionally to the entropy of the weight distribution; and 5) we demonstrate
SBNN’s competitiveness and flexibility through benchmark evaluations.

The remaining of this work is organized as follows. Section 2 discusses pre-
vious related works. The core of our contributions are described in Section 3. In
Section 4, we study the properties of the proposed method and assess its perfor-
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mance, in terms of accuracy and operation reduction at inference, through a set
of experiments using, CIFAR-10, CIFAR-100 [18] and ImageNet [31] datasets.
Finally, a discussion on the results and main conclusions are drawn in Section 5.

2 Related Work

We first provide an overview of BNNs. Next, we review sparsification through
pruning [2,12,27,34] and quantization [11,16,39,41], the two network compression
strategies this work relies on. A broad review covering further network compres-
sion and speed-up techniques can be found in [21].

Binary Neural Networks. BNNs [15] have gained attention in recent years
due to their computational efficiency and improved compression. Subsequent
works have extended [15] to improve its accuracy. For instance, [30] introduced
a channel-wise scaling coefficient to decrease the quantization error. ABC-Net
adopts multiple binary bases [23], and Bi-Real [26] recommends short residual
connection to reduce the information loss and a smoother gradient for the signum
function. Recently, ReActNet [25] generalized the traditional sign(·) and PReLU
activation functions to extend binary network capabilities, achieving an accuracy
close to full-precision ResNet-18 [13] and MobileNet V1 [14] on ImageNet [31]. By
adopting the RSign, the RPReLU along with an attention formulation Guo et al.
[10] surpassed the 80% accuracy mark on ImageNet. Although these works have
been successful at increasing the performance of BNNs, few of them consider the
compression aspect of BNNs.

Network Sparsification. The concept of sparsity has been well studied beyond
quantized neural networks as it reduces a network’s computational and storage
requirements and it prevents overfitting. Methods to achieve sparsity either ex-
plicitly induce it during learning through regularization (e.g. L0 [27] or L1 [12]
regularization), or do it incrementally by gradually augmenting small networks
[2]; or by post hoc pruning [8,33,34].

BNNs pruning is particularly challenging because weights in the {±1} domain
cannot be pruned based only on their magnitude. Existing methods include
removing unimportant channels and filters from the network [9,28,37,38], but
optimum metrics are still unclear; quantizing binary kernels to a smaller bit size
than the kernel size [36]; or using the {0,±1} domains [19,32]. Although these
works suggest that the standard {±1} binary domain has severe limitations
regarding compression, BNNs using the {0,±1} domain have reported limited
generalization capabilities [19,32]. In our work, we extend the traditional binary
domain to a more general one, that can be efficiently implemented via sparse
operations. Moreover, we address sparsity explicitly with entropy constraints,
which can be formulated as magnitude pruning of the generic binary weight
values mapping them in the {0, 1} domain. In our proposed domain, BNNs are
more robust to pruning strategies and show better generalization properties than
other pruning techniques for the same sparsity levels.

Quantization. Network quantization allows the use of fixed-point arithmetic
and a smaller bit-width to represent network parameters w.r.t the full-precision
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counterpart. Representing the values using only a finite set requires a quantiza-
tion function that maps the original elements to the finite set. The quantization
can be done after training the model, using parameter sharing techniques [11],
or during training by quantizing the weights in the forward pass, as ternary neu-
ral networks (TNNs) [17], BNNs [5] and other quantized networks do [16,39] .
Our work builds upon the strategy of BNNs by introducing a novel quantization
function that maps weights to a binary domain that is more general than the
{±1} domain used in most state-of-the-art BNNs. This broader domain signifi-
cantly reduces the distortion-rate curves of BNNs across various sparsity levels,
enabling us to achieve greater compression.

3 Method

The proposed SBNN achieves network pruning via sparsification by introducing
a novel quantization function that extends standard BNNs weight domain {±1}
to a more generic binary domain {α, β} and a new penalization term in the
objective loss controlling the entropy of the weight distribution and the sparsity
of the network (Section 3.2). We derive in Section 3.3 the optimum SBNN’s
{α, β} values, i.e. the values that minimize the quantization loss when real-
valued weights are quantized in the proposed domain. In Section 3.4, we use
BNN’s state-of-the-art training algorithms for SBNN training by adding the
sparsity regularization term to the original BNN’s objective loss. Section 3.5
describes the implementation details of the proposed SBNN to illustrate their
speed-up gains w.r.t BNNs.

3.1 Preliminaries

The training of a full-precision DNN can be seen as a loss minimization problem:

argmin
W̃

L(y, ŷ) (1)

where L(·) is a loss function between the true labels y and the predicted values

ŷ = f(x;W̃), which are a function of the data input x and the network’s full

precision weights W̃ = {w̃ℓ}, with w̃ℓ ∈ RNℓ

the weights of the ℓth layer, and
N =

∑
ℓ N

ℓ the total number of weights in the DNN. We denote the ith weight

element of w̃ℓ as w̃ℓ
i .

A BNN [15] uses a modified signum function as quantization function that

maps full precision weights W̃ and activations ã to the {±1} binary domain,
enabling the use of low-cost bitwise operations in the forward propagation, i.e.

W = sign(W̃) ,
∂g(w̃i)

∂w̃i
=

{
∂g(w̃i)
∂wi

, if− 1 ≤ w̃i ≤ 1

0 , otherwise,
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where sign(·) denotes the modified sign function over a vector, g(·) is a differen-
tiable function, W the network’s weights in the {±1} binary domain, wi a given
weight in the binary domain, and w̃i the associated full-precision weight.

3.2 Sparse Binary Neural Network (SBNN) Formulation

Given Ωℓ = {αℓ, βℓ} a general binary domain, with αℓ, βℓ ∈ R, and αℓ < βℓ, let
us define a SBNN, such that, for any given layer ℓ,

wℓ
i ∈ Ωℓ ∀ i, (2)

with wℓ
i the ith weight element of the weight vector, wℓ, and w =

{
wℓ
}
the set

of weights for all the SBNN.
We denote Sαℓ and Sβℓ the indices of the weights with value αℓ, βℓ in wℓ

Sαℓ = {i | 1 ≤ i ≤ N ℓ, wℓ
i = αℓ}, Sβℓ = {i | 1 ≤ i ≤ N ℓ, wℓ

i = βℓ}.

Since αℓ < βℓ ∀ ℓ, it is possible to estimate the number of weights taking the
lower and upper values of the general binary domain over all the network:

Lℓ = |Sαℓ |, U ℓ = |Sβℓ |, L =
∑
ℓ

Lℓ, U =
∑
ℓ

U ℓ, (3)

with L+ U = N , the total number of SBNN network weights. In the remaining
of the manuscript, for simplicity and without loss of generality, please note that
we drop the layer index ℓ from the weights notation.

To express the SBNN weights w in terms of binary {0, 1} weights, we now
define a a mapping function r : {0, 1} −→ {α, β} that allows to express w:

wi = r
(
w{0,1},i

)
=
(
w{0,1},i + ξ

)
· η (4)

with

α = ξ · η, β = (1 + ξ) · η, (5)

and w{0,1},i ∈ {0, 1}, the ith weight of a SBNN, when restricted to the binary set
{0, 1}. Through these mapping, 0-valued weights are pruned from the network,
the making SBNN sparse.

The bit-width of a SBNN is measured with the binary entropy h() of the
distribution of α-valued and β-valued weights,

h(p) = −p log2(p)− (1− p) log2(1− p) [bits/weight] , (6)

with p = U/N . Achieving network compression using a smaller bit-width than
that of standard BNN’s weights (1 bit/weight) is equivalent to setting a con-
straint in the SBNN’s entropy to be less or equal than a desired value h∗, i.e.

h(U/N) ≤ h∗. (7)
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Given h−1() the inverse binary entropy function for 0 ≤ p ≤ 1/2, it is straight-
forward to derive such constraint, U ≤ M where

M ≜ N · h−1(h∗). (8)

From Eq. (7) and (8), this implies that the constraint corresponds to restricting
the maximum number of 1s in the network, and thus the sparsity of the network.
Thus, the original full-precision DNN loss minimization problem (Eq. (1)) can
be reformulated as:

argmin
w{0,1},ξ,η

L(y, ŷ)

s.t. w{0,1} ∈ {0, 1}N ,

U ≤ M < N.

(9)

The mixed optimization problem in Eq. (9) can be simplified by relaxing the
sparsity constraint on U through the introduction of a non-negative function
g(·), which penalizes the weights when U > M :

argmin
W{0,1},ξ,η

L(y, ŷ) + λg(W{0,1})

s.t. W{0,1} ∈ {0, 1}N
(10)

and λ controls the influence of g(·). A simple, yet effective function g(W{0,1})
is the following one:

g
(
W{0,1}

)
= ReLU (U/N − EC) , (11)

where EC = M/N represents the fraction of expected connections, which is
the fraction of 1-valued weights in W{0,1} over the total number of weights of
W{0,1}.

Eq. (9) allows to compare the proposed SBNN with the standard BNN for-
mulation. By setting ξ = −1/2 and η = 2, for which α = −1 and β = +1
(Eq. (4)), and removing the constraint on U leads to the standard formulation
of a BNN. This implies that any BNN can be represented using the {0, 1} domain
and perform sparse operations. However, in practice when U is not contrained to
be ≤ M , then U ≈ N/2 and h(1/2) = 1 bit/weight, which means that standard
BNNs cannot be compressed more.

3.3 Weight Optimization

In this section, we derive the value of Ω = {α, β} which minimizes the quanti-
zation error when real-valued weights are quantized using it.

The minimization of the quantization error accounts to minimizing the bina-

rization loss, LB , which is the optimal estimator when W̃ is mapped to W [30].
This minimization is equivalent to finding the values of α and β which minimize
LB . To simplify the derivation of the optimum α and β values, we minimize LB
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over two variables in one-to-one correspondence with α and β. To achieve this,
as in Eq. 4-5, we map wi ∈ Ω to wi ∈ {−1,+1}, i.e.

wi = τwi + ϕ,

where τ and ϕ are two real-valued variables, and α = −τ + ϕ and β = τ + ϕ.
As a result, α and β are in one-to-one correspondence with τ and ϕ, and the
minimization of LB can be formulated as

τ∗, ϕ∗ = argmin
τ,ϕ

LB = argmin
τ,ϕ

∥w̃− (τw+ ϕ1)∥2 (12)

where ∥·∥2 is the ℓ2-norm and 1 is the all-one entries matrix.
By first expanding the ℓ2-norm term and using the fact that sum(w) =

N ℓ(2p − 1), it is straightforward to reformulate Eq. 12 as a a function of the
sum of real-valued weights, their ℓ1-norm, the fraction of +1-valued binarized
weights and the two optimization parameters. In such case, the ∇LB is

∇LB =

(∂LB

∂τ
∂LB

∂ϕ

)
= 2

(
−∥w̃∥1 +N ℓ

(
τ + ϕ(2p− 1)

)
− sum(w̃) +N ℓ

(
ϕ+ τ(2p− 1)

)) . (13)

Solving to find the optimal values τ and ϕ we obtain

τ∗ =
∥w̃∥1
N ℓ

− ϕ∗(2p− 1) , ϕ∗ =
sum(w̃)

N ℓ
− τ∗(2p− 1). (14)

When p = 0.5, like in standard BNNs, it gives the classical value of τ∗ =
∥w̃∥1/N ℓ as in [30].By substituting ϕ∗ in Eq. (12), we obtain the closed-form
solution

τ∗ =
∥w̃∥1 − (2p− 1)sum(w̃)

N ℓ(1− (2p− 1)2)
, ϕ∗ =

sum(w̃)− (2p− 1)∥w̃∥1
N ℓ(1− (2p− 1)2)

. (15)

As the gradient (Eq. 13) is linear in ϕ and τ , this implies that there is a
unique critical point. Moreover, an analysis of the Hessian matrix confirms that
LB is convex and that local minimum is a global minimum. The derivation is
here omitted as it is straightforward.

3.4 Network Training

The SBNN training algorithm builds upon state-of-the-art BNN training algo-
rithms [3,15,25], while introducing network sparsification. To profit from BNNs
training scheme, we replace W{0,1}, ξ and η (Eq. (10)) with W, τ and ϕ. Do-
ing so, L(y, ŷ) corresponds to the loss of BNN algorithms LBNN. SBNN training
also requires to add the penalization term from Eq. (11) to account for sparsity.
To account for W, the regularization function g(W{0,1}) (Eq. (11)) is redefined
according to

j(W) = ReLU

((∑
i

wi + 1

2N

)
− EC

)
, (16)
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Fig. 1: BNNs vs. SBNNs operations in a convolutional layer using cout filters and
input of cin dimensions. BNNs’ (cout · cin) convolutional kernels are dense and
require all computations. SBNNs’ kernels are sparse, allowing to skip certain
convolutions and sum operations. The removed filters are indicated by a dashed
contour and no fill. Both BNNs and SBNNs perform convolutions using XNOR
and popcount operations, while the sum is replaced by popcount operations.

and the SBNN objective loss can be expressed as

LSBNN = LBNN + λ j(W). (17)

During training, we modulate the contribution of the regularization term
j(W) by imposing, at every training iteration, to be equal to a fraction of LSBNN,
i.e.

γ =
λ j(W)

LSBNN

. (18)

The hyperparameter γ is set to a fixed value over all the training process. Since
LSBNN changes at every iteration, this forces λ to adapt, thus modulating the
influence of j(W) proportionally to the changes in the loss. The lower γ is set, the
less influence j(W) has on the total loss. This means that network sparsification
will be slower, but convergence will be achieved faster. On the opposite case
(high γ), the training will favor sparsification.

3.5 Implementation Gains

We discuss the speed-up gains of the proposed SBNN through its efficient im-
plementation using linear layers in the backbone architecture. Its extension to
convolutional layers (Fig. 1) is straightforward, thus we omit it for the sake of
brevity.

We describe the use of sparse operations, as it can be done on an FPGA
device [7,36]. Instead, when implemented on CPUs, SBNNs can take advantage
of pruned layers, kernels and filters for acceleration [9,28,37,38]. Moreover, for
kernels with only a single binary weight equal to 1 there is no need to perform
a convolution, since the kernels remove some elements from the corner of their
input.
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The connections in a SBNN are the mapped one-valued weights, i.e. the set
S1. Therefore, SBNNs do not require any XNOR operation on FPGA, being
popcount the only bitwise operation needed during the forward pass. The latter,
however, is performed only in a layer’s input bits connected through the one-
valued weights rather than the full input.

For any given layer ℓ, the number of binary operations of a BNN is OBNN =
2N ℓ [3], N ℓ XNOR operations and N ℓ popcounts. A rough estimate of the
implementation gain in terms of the number of binary operations of SBNNs
w.r.t. BNNs can be expressed in terms of the EC as

OSBNN

OBNN

≈ 2N ℓ

EC ·N ℓ
≈ 2

EC
, (19)

which indicates that the lower the EC fraction, the higher the gain w.r.t. BNNs.
Binary operations are not the only ones involved in the inference of SBNN lay-

ers. After the sparse {0, 1} computations, the mapping operations to the {α, β}
domain take place, also benefiting from implementation gains. To analyze these,
let us now denote x the input vector to any layer and z = wx its output. Using
E. (4), z can be computed as

z = ξ z′ + ξ η q, (20)

where z′ = w{0,1} x is the result of sparse operations (Fig. 1), q = 1x, and 1
the all-ones matrix.

All the elements in q take the value 2 · popcount(x) − |x|, with |x| the size
of x. Therefore, they are computed only once, for each row of 1. Being ξ and η
known at inference time, they can be used to precompute the threshold in the
threshold comparison stage of the implementation of the batchnorm and sign
operations following the estimation of z [35].Thus, SBNNs require |x| binary
operations, one real product and |x| real sums to obtain z from z′.

4 Experiments and Results

We first run a set of ablation studies to analyze the properties of the proposed
method (Section 4.1). Namely, we analyze the generalization of SBNNs in a
standard binary domain and the proposed generic binary domain; we study the
role of the quantization error in the network’s performance; and the effects of
sparsifying binary kernels. Next, we compare our proposed method to other
state-of-the-art techniques using the well established CIFAR-10 and CIFAR-
100 [18] datasets. Preliminary results on ImageNet [31] are also discussed. All
our code has been made publicly available3.

4.1 Ablation Studies

Experimental setup. We use a ResNet-18 binarized model trained on CIFAR-
10 as backbone architecture. We train the networks for 300 epochs, with batch

3 github.com/robustml-eurecom/SBNN

https://github.com/robustml-eurecom/SBNN/
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Table 1: Role of the binary domain and the quantization error when sparsifying
BNNs. Experiments performed on CIFAR-10 with a binarized ResNet-18 model.

Domain Sparsity constraint Top-1 Accuracy ∆

Baseline / 88.93% /
{−β,+β} [30] 95% 85.95% -2.98%

{α, β} 95% 86.46% -2.47%
Learned {α, β} 95% 88.84% -0.09%

size of 512, learning rate of 1e− 3, and standard data augmentation techniques
(random crops, rotations, horizontal flips and normalization). We use an Adam
optimizer and the cosine annealer for updating the learning rate as suggested in
[24] and we follow the binarization strategy of IR-Net [29].

Generalization properties. We compare the performance of the proposed
generic binary domain to other binary domains used by BNNs by assessing the
networks’ generalization capabilities when the sparsity ratio is 95%. For this ex-
periment, we use the {−β,+β} domain from [30] with no sparsity constraints
as the baseline. Additionally, we consider the same domain with a 95% sparsity
constraint and the {α, β} domain obtained optimizing τ and ϕ according to Eq.
(15) with the 95% sparsity constraint. Table 1 reports the obtained results in
terms of top-1 accuracy and accuracy loss w.r.t. the BNN baseline model (∆).
When we impose the 95% sparsity constraint with the {−β,+β} domain, the
accuracy drop w.r.t. to the baseline is 2.98%. Using the {α, β} domain, the loss
goes down to 2.47%, nearly 0.5% better than the {−β,+β} domain. The results
suggest that a more general domain leads to improved generalization capabilities.

Impact of the quantization error We investigate the impact of the quan-
tization error in the SBNN generalization. To this end, we compare the pro-
posed quantization technique (Sec. 3.3) with the strategy of learning Ω via back-
propagation. We denote this approach Learned {α, β} (Table 1). The obtained
results show that with the learning of the parameters the accuracy loss w.r.t. the
BNN baseline decreases down to −0.09%, thus 2.38% better than when τ and ϕ
are analytically obtained with Eq. (15). This result implies that the quantization
error is one of the sources of accuracy degradation when mapping real-valued
weights to any binary domain, but it is not the only source. Indeed, activations
are also quantized. Moreover, errors are propagated throughout the network.
Learning Ω can partially compensate for these other error sources.

Effects of network sparsification We investigate the effects of network spar-
sification and how they can be leveraged to reduce the binary operations (BOPs)
required in SBNNs. In Section 4.1, we showed that our binary domain is more
adept at learning sparse network representations compared to the standard bi-
nary domain. This allows us to increase the sparsity of SBNNs while maintaining
a desired level of accuracy. When the sparsity is sufficiently high, many convolu-
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Fig. 2: Percentage of binary kernels for various Hamming weights of a binarized
Resnet-18 model over CIFAR-10 for different sparsity constraints. The 5-th, 10-
th and 15-th layers are shown in the top, middle and bottom rows, respectively.

tional kernels can be entirely removed from the network, which further reduces
the BOPs required for SBNNs. Additionally, convolutional kernels with only a
single binary weight equal to 1 do not require a convolution to be performed, as
these kernels simply remove certain elements from the input.

To illustrate this effect, we plotted the distribution of binary kernels for
the 5th, 10th, and 15th layers of a binarized ResNet-18 model (Fig. 2). The
first column shows the distribution when no sparsity constraints are imposed,
while the second and third columns show the distribution for sparsity levels of
95% and 99%, respectively. The kernels are grouped based on their Hamming
weights, which is the number of non-zero elements in each {0, 1}3×3 kernel. The
plots suggest that increasing the sparsity of SBNNs results in a higher number
of kernels with Hamming weights of 0 and 1.

4.2 Benchmark

CIFAR-10. We compare our method against state-of-the-art methods over a
binarized ResNet-18 model using CIFAR-10. Namely, we consider: STQ [28],
Slimming [37], Dual-P [7], Subbit [36], IR-Net [29] and our method with learned
τ and ϕ, for different sparsity constraints. We use the IR-Net as BNN baseline to
be compressed. We use the experimental setup described in Sec. 4.1 with some
modifications. We extend the epochs to 500 as in [36], and we use a MixUp strat-
egy [42]. In the original IR-Net formulation [29], the training setup is missing.
We use our setup to train it, achieving the same accuracy as in [29].

Table 2 reports the obtained results in terms of accuracy (Acc.), accuracy
loss w.r.t. the IR-Net model (∆), and BOPs reduction (BOPs PR). For our
SBNN, we estimate BOPs PR by counting the number of operations which are
not computed from the convolutional kernels with Hamming weight 0 and 1. For
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Table 2: Evaluation of kernel removal for different pruning targets using a bina-
rized Resnet-18 model on CIFAR-10.

Method Acc. ∆ BOPs PR K0 K1

IR-Net 91.50% / / / /
STQ 86.56% -5.50% -40.0% / /

Slimming 89.30% -2.20% -50.0% / /
Dual-P (2→1) 91.02% -0.48% -70.0% / /
Dual-P (3→1) 89.81% -1.69% -80.6% / /
Dual-P (4→1) 89.43% -2.07% -85.4% / /
Subbit 0.67-bits 91.00% -0.50% -47.2% / /
Subbit 0.56-bits 90.60% -0.90% -70.0% / /
Subbit 0.44-bits 90.10% -1.40% -82.3% / /
SBNN 50% [our] 91.70% +0.20% -11.1% 5.6% 6.8%
SBNN 75% [our] 91.71% +0.21% -24.5% 30.7% 15.9%
SBNN 90% [our] 91.16% -0.24% -46.5% 61.8% 15.5%
SBNN 95% [our] 90.94% -0.56% -63.2% 77.1% 11.8%
SBNN 96% [our] 90.59% -0.91% -69.7% 81.0% 10.1%
SBNN 97% [our] 90.71% -0.79% -75.7% 84.8% 8.7%
SBNN 98% [our] 89.68% -1.82% -82.5% 89.3% 6.5%
SBNN 99% [our] 88.87% -2.63% -88.7% 94.6% 3.3%

other methods, we refer the reader to the original publications. We assess our
method at different levels of sparsity, in the range 50 to 99%. For SBNNs we also
report the percentage of SBNN’s convolutional kernels with Hamming weight 0
(K0) and with Hamming weight 1 (K1).

The results suggest that our method is competitive with other more complex
pruning strategies. Moreover, our method reports similar accuracy drops w.r.t.
state-of-the-art Subbit and Dual-P for similar BOPs PR. However, we need to
point out that Subbit and Dual-P results refer to BOPs PR on FPGA, where
SBNN can take advantage of sparse operations (Section 3.5) also for the kernels
with larger Hamming weights than 0 and 1, because on FPGA all operations
involving 0-valued weights can be skipped. For instance, the use of sparse oper-
ations on the SBNN 95% allows to remove ≈ 84.9% BOPs.

CIFAR-100. We compare our method in the more challenging setup of CIFAR-
100, with 100 classes and 500 images per class, against two state-of-the-art meth-
ods: STQ [28], and Subbit [36]. We use ReActNet-18 [25] as the backbone ar-
chitecture, using a single training step and no teacher. We train for 300 epochs
with the same setup used for CIFAR-10 with Mixup augmentation. As no pre-
vious results for this setup have been reported for ReActNet-18 and Subbit, for
a fair comparison, we trained them from scratch using our setup. We report the
same metrics used for CIFAR-10, plus the the reduction of binary parameters
(BParams PR). For our SBNN, we estimate BParams PR as follows. For each
kernel we use 2 bits to differentiate among zero Hamming weight kernels, one
Hamming weight kernels and all the other kernels. Then, we add 4 bits to the
kernels with Hamming weight 1 to represent the index position of their 1-valued
bit, whereas we add 9 bits for all the other kernels with Hamming weight larger
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Table 3: Evaluation of kernel removal for different pruning targets using a
ReActNet-18 model on CIFAR-100.

Method Acc. ∆ BOPs PR BParams PR K0 K1

ReActNet-18∗ 62.79% / / / / /
STQ 57.72% -5.05% -36.1% -36.1% / /

Subbit 0.67-bits∗ 62.60% -0.19% -47.2% -33.3% / /
Subbit 0.56-bits∗ 62.07% -0.72% -70.0% -44.4% / /
Subbit 0.44-bits∗ 61.80% -0.99% -82.3% -55.6% / /
SBNN 50% [our] 63.03% +0.24% -11.1% / 5.6% 6.8%
SBNN 95% [our] 63.33% +0.54% -66.2% -59.9% 72.9% 16.6%
SBNN 96% [our] 63.04% +0.25% -67.3% -63.7% 78.9% 12.6%
SBNN 97% [our] 62.41% -0.38% -73.4% -66.8% 82.9% 11.1%
SBNN 98% [our] 63.58% +0.79% -79.2% -70.3% 88.1% 8.0%
SBNN 99% [our] 62.23% -0.57% -87.8% -74.0% 93.6% 4.7%
∗ our implementation.

than 1, which are their original bits. For the other methods, please refer to their
work for their estimate of BParams PR.

Table 3 reports the obtained results for the different methods and our SBNN
for various sparsity targets. We can see that our pruning method is more effec-
tive in reducing both the BOPs and the parameters than Subbit. It allows to
remove 79.2% of kernels, while increasing the original accuracy by 0.79% w.r.t.
the ReActNet-18 baseline. Instead, we observe nearly 1% accuracy drop for a
Subbit network for a similar BOPs reduction. Moreover, our method allows to
remove nearly 15% more binary parameters.

ImageNet. We assess our proposed SBNN trained with target sparsity of 75%
and 90% on ImageNet. We compare them with state-of-the-art BNNs, namely:
XNOR-Net [30], Bi-RealNet-18 [26] and ReActNet-18, ReActNet-A [25] and
Subbit [36]. Moreover, we also report the accuracy of the full-precision ResNet-
18 [13] and MobileNetV1 [14] models, as a reference. We use a ReActNet-A [25]
as SBNN’s backbone with its MobileNetV1 [14] inspired topology and with the
distillation procedure used in [25], whereas in Subbit [36] they used ReActNet-18
as backbone. One of the limitations of Subbit [36] is that their method cannot
be applied to the pointwise convolutions of MobileNetV1 [14]. Due to GPUs
limitations, during our training, we decreased the batch size to 64. For a fair
comparison, we retrained the original ReActNet-A model with our settings.

Table 4 reports the results in terms of accuracy (Acc). We also include the
number of operations (OPs) to be consistent with other BNNs assessment on
ImageNet. For BNNs, OPs are estimated by the sum of floating-point operations
(FLOPs) plus BOPs rescaled by a factor 1/64 [30,26,25]. We assume sparse
operations on FPGA to estimate BOPs for SBNN.

We observe that BOPs are the main contributors to ReActNet-A’s OPs (Ta-
ble 4), thus decreasing them largely reduces the OPs. This, instead, does not
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Table 4: Method comparison on ImageNet.

Model Acc BOPs FLOPs OPs
Top-1 (×108) (×108) (×108)

MobileNetV1 [14] (full-precision) 70.60 - 5.7 5.7
ResNet-18 [13] (full-precision) 72.12 - 19 19
XNOR-Net [30] 51.20 17 1.41 1.67
Bi-RealNet-18 [26] 56.40 17 1.39 1.63
ReActNet-18 [25] 65.50 17 1.63 1.89
ReActNet-A [25]∗ 68.12 48 0.12 0.87
Subbit 0.67-bits ReActNet-18 63.40 9 1.63 1.77
Subbit 0.56-bits ReActNet-18 62.10 5 1.63 1.71
Subbit 0.44-bits ReActNet-18 60.70 3 1.63 1.68
SBNN 75% ReActNet-A [ours] 66.18 8 0.12 0.25
SBNN 90% ReActNet-A [ours] 64.72 2 0.12 0.16
∗ our implementation.

hold for ReActNet-18, which may explain why Subbit is not effective in reducing
OPs of its baseline. Our method instead is effective even for less severe pruning
targets and it requires less than 3.4× OPs w.r.t. state-of-the-art ReActNet-A
model, while incurring in an acceptable generalization loss between 1.9− 3.4%.

5 Conclusions

We have presented sparse binary neural network (SBNN), a novel method for
sparsifying BNNs that is robust to simple pruning techniques by using a more
general binary domain. Our approach involves quantizing weights into a general
Ω = {α, β} binary domain that is then expressed as 0s and 1s at the implemen-
tation stage. We have formulated the SBNN method as a mixed optimization
problem, which can be solved using any state-of-the-art BNN training algorithm
with the addition of two parameters and a regularization term to control sparsity.

Our experiments demonstrate that SBNN outperforms other state-of-the-art
pruning methods for BNNs by reducing the number of operations, while also
improving the baseline BNN accuracy for severe sparsity constraints. Future re-
search can investigate the potential of SBNN as a complementary pruning tech-
nique in combination with other pruning approaches. In summary, our proposed
SBNN method provides a simple yet effective solution to improve the efficiency
of BNNs, and we anticipate that it will be a valuable addition to the field of
binary neural network pruning.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of things: A survey on enabling technologies, protocols, and applications. IEEE
communications surveys & tutorials 17(4), 2347–2376 (2015)



Binary domain generalization for sparsifying binary neural networks 15

2. Bello, M.G.: Enhanced training algorithms, and integrated training/architecture
selection for multilayer perceptron networks. IEEE Transactions on Neural Net-
works 3(6), 864–875 (1992)

3. Bethge, J., Yang, H., Bornstein, M., Meinel, C.: Back to simplicity: How to train
accurate bnns from scratch? arXiv preprint arXiv:1906.08637 (2019)

4. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models
for practical applications. arXiv preprint arXiv:1605.07678 (2016)

5. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural
networks with binary weights during propagations. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS). pp. 3123–3131 (2015)

6. Evans, D.: The internet of things: How the next evolution of the internet is changing
everything. CISCO white paper 1(2011), 1–11 (2011)

7. Fu, K., Qi, Z., Cai, J., Shi, X.: Towards high performance and accurate bnn in-
ference on fpga with structured fine-grained pruning. In: Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design. pp. 1–9 (2022)

8. Gomez, A.N., Zhang, I., Swersky, K., Gal, Y., Hinton, G.E.: Learning sparse net-
works using targeted dropout. CoRR abs/1905.13678 (2019), http://arxiv.org/
abs/1905.13678

9. Guerra, L., Drummond, T.: Automatic pruning for quantized neural networks. In:
2021 Digital Image Computing: Techniques and Applications (DICTA). pp. 01–08.
IEEE (2021)

10. Guo, N., Bethge, J., Meinel, C., Yang, H.: Join the high accuracy club on imagenet
with a binary neural network ticket. arXiv preprint arXiv:2211.12933 (2022)

11. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

12. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems
(NeurIPS). pp. 1135–1143 (2015)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

14. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

15. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: Proceedings of the International Conference on Neural Information
Processing Systems. pp. 4114–4122 (2016)

16. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: Training neural networks with low precision weights and activations.
The Journal of Machine Learning Research 18(1), 6869–6898 (2017)

17. Hwang, K., Sung, W.: Fixed-point feedforward deep neural network design using
weights+ 1, 0, and- 1. In: IEEE Workshop on Signal Processing Systems (SiPS).
pp. 1–6 (2014)

18. Krizhevsky, A., Nair, V., Hinton, G.: Cifar (canadian institute for advanced re-
search). Tech. rep., http://www.cs.toronto.edu/∼kriz/cifar.html

19. Kuhar, S., Tumanov, A., Hoffman, J.: Signed binary weight networks: Improv-
ing efficiency of binary weight networks by exploiting sparsity. arXiv preprint
arXiv:2211.13838 (2022)

20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

http://arxiv.org/abs/1905.13678
http://arxiv.org/abs/1905.13678
http://www.cs.toronto.edu/~kriz/cifar.html


16 R. Schiavone et al.

21. Liang, T., Glossner, J., Wang, L., Shi, S., Zhang, X.: Pruning and quantization for
deep neural network acceleration: A survey. Neurocomputing 461, 370–403 (2021)

22. Lin, J., Chen, W.M., Lin, Y., Cohn, J., Gan, C., Han, S.: Mcunet: Tiny deep
learning on iot devices. In: Conference on Neural Information Processing Systems
(NeurIPS) (2020)

23. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network.
Advances in neural information processing systems 30 (2017)

24. Liu, Z., Shen, Z., Li, S., Helwegen, K., Huang, D., Cheng, K.T.: How do adam
and training strategies help bnns optimization. In: International Conference on
Machine Learning. pp. 6936–6946. PMLR (2021)

25. Liu, Z., Shen, Z., Savvides, M., Cheng, K.T.: Reactnet: Towards precise binary
neural network with generalized activation functions. In: European Conference on
Computer Vision. pp. 143–159. Springer (2020)

26. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.T.: Bi-real net: Enhanc-
ing the performance of 1-bit cnns with improved representational capability and
advanced training algorithm. In: Proceedings of the European Conference on Com-
puter Vision. pp. 722–737 (2018)

27. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l0 regularization. In: International Conference on Learning Representations (ICLR)
(2018)

28. Munagala, S.A., Prabhu, A., Namboodiri, A.M.: Stq-nets: Unifying network bina-
rization and structured pruning. In: BMVC (2020)

29. Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., Song, J.: Forward and
backward information retention for accurate binary neural networks. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
2250–2259 (2020)

30. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks. In: Proceedings of the European
Conference on Computer Vision. pp. 525–542. Springer (2016)

31. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

32. Schiavone, R., Zuluaga, M.A.: Sparse binary neural networks (2021), https://
openreview.net/forum?id=SP5RHi-rdlJ

33. Srinivas, S., Subramanya, A., Venkatesh Babu, R.: Training sparse neural networks.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 138–145 (2017)

34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research 15(1), 1929–1958 (2014)

35. Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P., Jahre, M.,
Vissers, K.: Finn: A framework for fast, scalable binarized neural network in-
ference. In: Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. pp. 65–74 (2017)

36. Wang, Y., Yang, Y., Sun, F., Yao, A.: Sub-bit neural networks: Learning to com-
press and accelerate binary neural networks. In: Proceedings of the IEEE/CVF
international conference on computer vision. pp. 5360–5369 (2021)

37. Wu, Q., Lu, X., Xue, S., Wang, C., Wu, X., Fan, J.: Sbnn: Slimming binarized
neural network. Neurocomputing 401, 113–122 (2020)

https://doi.org/10.1007/s11263-015-0816-y
https://openreview.net/forum?id=SP5RHi-rdlJ
https://openreview.net/forum?id=SP5RHi-rdlJ


Binary domain generalization for sparsifying binary neural networks 17

38. Xu, Y., Dong, X., Li, Y., Su, H.: A main/subsidiary network framework for sim-
plifying binary neural networks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 7154–7162 (2019)

39. Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., Huang, J., Hua, X.s.:
Quantization networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 7308–7316 (2019)

40. Yao, S., Zhao, Y., Zhang, A., Hu, S., Shao, H., Zhang, C., Su, L., Abdelzaher, T.:
Deep learning for the internet of things. Computer 51(5), 32–41 (2018)

41. Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) Proocedings of the European Conference on Computer
Vision. vol. 11212, pp. 373–390 (2018)

42. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: International Conference on Learning Representations (ICLR)
(2018)

Ethical Statement

The proposed SBNN can in principle extend the range of devices, at the edge
of communication networks, in which DNN models can be exploited. Our work
touches various ethical considerations:

• Data Privacy and Security: By performing inference of DNNs directly on
edge devices, data remains localized and does not need to be transmitted to
centralized servers. This reduces the risk of sensitive data exposure during
data transfer, enhancing privacy protection.

• Fairness and Bias: SBNNs, like other DNNs at the edge, can be susceptible
to biased outcomes, as they rely on training data that may reflect societal
biases. However, by simplifying the weight representation to binary values,
SBNNs may reduce the potential for biased decision-making because they
may be less influenced by subtle variations that can introduce bias. Never-
theless, it is essential to address and mitigate biases in data to ensure fairness
in outcomes and avoid discriminatory practices.

• Transparency and Explainability: The SBNN design can be applied to
DNN models that are designed to provide transparency and explainability.
Moreover, the binary nature of SBNNs can make them more interpretable
and easier to understand compared to complex, multi-valued neural net-
works. This interpretability can help users gain insights into the decision-
making process and facilitate transparency.

• Human-Centric Design: SBNNs can extend the use of DNNs at the edge,
extending the range of users of applications which are focused on human
well-being, human dignity and inclusivity.

• Resource Allocation and Efficiency: SBNNs allows the use of DNNs in
a more efficient way from both the use of energy, memory and other crucial
resources, thus allowing to reduce the environmental impact of DNNs.

• Ethics of Compression: While SBNNs offer computational efficiency and
reduced memory requirements, the compression of complex information into
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binary values may raise ethical concerns. Compression may lead to over-
simplification or loss of critical details, potentially impacting the fairness,
accuracy, or reliability of decision-making systems.

It is important to consider these ethical aspects of SBNNs when evaluating
their suitability for specific applications and to ensure responsible and ethical
deployment in alignment with societal values and requirements.
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