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We consider the quantum Ising chain with uniformly distributed random antiferromagnetic couplings (1 �
Ji � 2) and uniformly distributed random transverse fields (�0 � �i � 2�0) in the presence of a homogeneous
longitudinal field, h. Using different numerical techniques (density-matrix renormalization group, combinatorial
optimization, and strong disorder renormalization group methods) we explore the phase diagram, which consists
of an ordered and a disordered phase. At one end of the transition line (h = 0, �0 = 1) there is an infinite
disorder quantum fixed point, while at the other end (h = 2, �0 = 0) there is a classical random first-order
transition point. Close to this fixed point, for h > 2 and �0 > 0 there is a reentrant ordered phase, which is the
result of quantum fluctuations by means of an order through disorder phenomenon.

DOI: 10.1103/PhysRevB.101.024203

I. INTRODUCTION

Quantum phase transitions are among the fundamental
problems of modern physics, the properties of which are
studied in different disciplines: solid state physics, quantum
field theory, quantum information, and statistical mechanics
[1]. Quantum phase transitions take place at T = 0 temper-
ature and these are indicated by singularities in the ground-
state expectation values of some observables by varying a
control parameter, such as the strength of a transverse field.
One basic question in this field of research is how quenched
disorder influences the properties of quantum phases and the
singularities associated with the quantum phase transitions.
This latter problem is theoretically very challenging, since the
corresponding quantum state is the result of an interplay be-
tween quantum and disorder fluctuations, strong correlations,
and frustration.

Many results in this field are known on the random
transverse-field Ising chain with short-range interactions. It
was Fisher [2], who used a strong disorder renormalization
group (SDRG) method [3] and obtained several asymptot-
ically exact results. The phase transition is shown to be
controlled by a so-called infinite disorder fixed point [4]
(IDFP), at which the distribution of the parameters (couplings
and random transverse fields) increase without limit during
renormalization. Outside the quantum critical point dynami-
cal observables (susceptibility, autocorrelation functions, etc.)
are still singular, due to the presence of strong Griffiths
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singularities, which are the result of rare regions in the dis-
ordered samples [5,6].

IDFP properties are found also for random Heisenberg
chains [7–9] as well as in the random singlet phases of SU (2)k

anyonic chains [10]. In higher-dimensional systems with dis-
crete symmetry the presence of IDFPs has been demonstrated
by numerical application of the SDRG method [11–13], as
well as through quantum Monte Carlo (MC) simulations
[14,15]. On the contrary the phase transition of the random
transverse-field Ising model with long-range interactions, the
strength of which decays as a power with the distance, is
shown to have a conventional random quantum fixed point
[16,17]. The RG flow in this case is similar to that of disor-
dered bosons [18,19].

A quantum system is often described by several parameters
and in their space the phase transition takes place at a line or
at a (higher-dimensional) surface. The phase transition of the
clean system in this case is generally governed by a few fixed
points, or in exceptional cases by a line of fixed points. In
some cases (such as in the random quantum Ashkin-Teller
chain [20,21]) the clean fixed points are found to turn to
the same type of IDFPs, mainly due to symmetry reasons.
However, there are no detailed studies in the general cases,
when the different clean fixed points transform differently due
to disorder.

In this paper we are going to study such a more complex
system, the antiferromagnetic Ising chain in a mixed trans-
verse and longitudinal field. The clean model has two fixed
points. The quantum fixed point governs the critical behavior
at any nonzero transverse field, while at zero transverse field
there is a classical fixed point, which describes a first-order
transition. In the present study we are going to keep the
longitudinal fields nonrandom, but at the same time the cou-
plings and the transverse fields disordered and investigate the
phase-transition properties of this random system. We explore
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the phase diagram numerically by the density-matrix renor-
malization group (DMRG) method for finite values of the
transverse field, while in the zero transverse-field limit, when
the system is classical we use combinatorial optimization
methods to find the true ground-state configuration. We also
use approximate SDRG calculations, as well as perturbation
calculations, to see the stability of the random fixed points.

The rest of the paper is organized in the following way.
In Sec. II the model is introduced and its properties are
described for nonrandom parameters. The disordered model
is studied in Sec. III. The two end points of the transition
line (zero longitudinal field and zero transverse field) are
described asymptotically exactly, while the complete phase
diagram is explored numerically through DMRG and SDRG
methods. Our results are discussed in Sec. IV and some
detailed calculations are presented in the Appendices.

II. THE MODEL

We consider the antiferromagnetic Ising chain with mixed
transverse and longitudinal fields. The longitudinal fields are
constant, h � 0, while the nearest-neighbor couplings, Ji > 0,
and the transverse fields, �i > 0, may be random, so that the
Hamiltonian is defined as

Ĥ =
L∑

i=1

Jiσ
z
i σ z

i+1 −
L∑

i=1

�iσ
x
i − h

L∑
i=1

σ z
i (1)

in terms of the σ x,z
i Pauli matrices at site i. For finite chains

we have L = 4� lattice sites and periodic boundary conditions
(PBCs).

To the best of our knowledge (the clean version of) this
model was studied in the second part of the 1980s. A more
general model, with an m-spin product interaction term, i.e.,∏m−1

j=0 σ z
i+ j instead of σ z

i σ z
i+1, has been introduced and studied

for m = 3 by Penson et al. [22] and for h > 0 a phase transi-
tion of the three-state Potts universality class has been found.
Soon after this model is considered in the vicinity of the clas-
sical limit � → 0 and h → m (which is called quantum hard
rods) and has been studied by finite-size exact diagonalization
[23]. For dimers with m = 2 the transition is shown to be
in the quantum Ising universality class, while for m = 3 the
transition is in the three-state Potts universality class, which
has been shown more precisely by MC simulations on the
classical version of the model [24,25]. Finally a detailed study
of the clean model in Eq. (1) has been performed in [26] after
a preliminary investigation in [27].

Clean model

First we consider the clean model with Ji = 1 and magnetic
fields � j = � and h, and the phase diagram is shown in
Fig. 1 which has been calculated by the DMRG method. This
phase diagram agrees with the previous calculations obtained
by DMRG [26], by experimental realization in an optical
lattice [28], by quantum MC [29], and by the fidelity suscep-
tibility method [30]. The phase diagram in Fig. 1 for finite
� > 0 contains an ordered antiferromagnetic phase (AFM)
and a paramagnetic phase. The transition between them is
controlled by a quantum Ising fixed point at (� = 1, h = 0),
the properties of which are known exactly [31].
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FIG. 1. The zero-temperature phase diagram of the clean antifer-
romagnetic Ising chain with J = 1 in transverse (�) and longitudinal
(h) magnetic fields calculated by the DMRG method. The transition
between a quantum antiferromagnetic (AFM) phase and a quantum
paramagnetic (PM) phase is controlled by the fixed point of the
transverse Ising model (TIM) at (� = 1, h = 0). The classical mul-
ticritical point (CMP) at (� = 0, h = 2) corresponds to a first-order
transition between an AFM phase and a ferromagnetic (FM) phase in
the absence of quantum fluctuations. Near the classical multicritical
point the phase boundary is linear [23]: �c ≈ 1.526 492(2 − h).

The transition line ends at (� = 0, h = 2), where there
is a classical multicritical point (CMP). In the limiting case
� → 0 and h → 2 the system reduces to the quantum hard
dimer model, having the transition at [23] � = 1.526 492(2 −
h). This is to be compared with direct calculations � ≈
1.5(2 − h) in [26] and � ≈ 1.4(2 − h) in [29]. The quantum
Ising nature of the transition in the hard dimer limit has
been performed with large numerical precision, as well as
the conformal properties have been determined. At � = 0 the
system is classical and there are no quantum fluctuations. Here
the transition takes place at the CMP which is of first order
between the AFM phase and a ferromagnetic (FM) phase.
At the CMP the ground state is infinitely degenerate, and the
entropy per site is finite [32].

III. DISORDERED MODEL

Here we consider random variables in Eq. (1), so that
the antiferromagnetic couplings and the transverse fields are
independent random numbers, which are taken from some
distributions. In the numerical calculations we used boxlike
distributions:

π1(J ) =
{

1 for J0 < J � J0 + 1,

0 otherwise.

π2(�) =
{

1/�0 for J0�0 < � � (J0 + 1)�0,

0 otherwise.
(2)

In the following we argue that the phase diagram of the
random system is different, if the smallest coupling is Jmin =
J0 > 0 (when there is an extended ordered region in h) or
Jmin = J0 = 0 (when the ordered region is restricted to h = 0).
Indeed, in the classical limit with �0 = 0 the ground state is
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strictly AFM ordered, if h < 2Jmin and for h > 2Jmin domain-
wall excitations destroy the AFM order (see more details in
Sec. III B). In the following we shall investigate the region
with J0 > 0 and in the numerical work we keep J0 = 1. We
note that the case J0 = 0 has been studied earlier by Lin et al.
[29], so that we are going to study an unexplored system.

Now let us have a look at the phase diagram of the clean
system in Fig. 1 having two fixed points, which are located
at the two ends of the phase-transition line. In the following
we study their stability with respect to disorder in Eq. (2).
The TIM fixed point at h = 0 is transformed to the random
transverse Ising model (RTIM), for which several asymptot-
ically exact results are known through SDRG calculations,
which are shortly collected in Sec. III A. The other fixed point,
the classical multicritical point at � = 0, is transformed to a
random classical multicritical point (RCMP), the properties of
which are studied in Sec. III B.

A. RTIM at h = 0

For zero longitudinal field, h = 0, the model is equivalent
to the random transverse Ising model, for which many asymp-
totically exact results are known due to SDRG calculations
[2], which we shortly recapitulate here. The critical point is
located at

ln J = ln �, (3)

where x stands for the average of the variable x over disorder,
thus with the distribution in Eq. (2) we have �c

0(h = 0) = 1.
The energy scale in the system is the excitation energy

(smallest gap) ε and its relation with the length scale, L, at
the critical point is given by

ln ε ∼ Lψ (4)

with a critical exponent ψ = 1/2.
The spin-spin correlations are defined as

C(r) = (−1)r
〈
σ z

i σ z
i+r

〉
(5)

and their average decay is given as a power of r at the critical
point,

C(r) ∼ 1

r2−φ
, (6)

where φ = (1 + √
5)/2 is the golden mean.

The deviation from criticality is parametrized by [2]

δ = ln � − ln J

var(ln h) + var(ln J )
, (7)

where var(x) stands for the variance of the random variable x.
In the disordered phase δ > 0, the average correlations decay
exponentially with the true correlation length ξ ∼ 1/δ2, im-
plying the correlation length exponent ν = 2 for the random
chain.

Outside the critical point the relation between the energy
and the length scale is given by

ε ∼ L−z, (8)

FIG. 2. Illustration of the AFM ground state for h < Ji1 + Ji2

(first row) and the ground state with two AFM domains for h >

(Ji1 + Ji2 ) (second row). Here Ji1 (Ji2 ) is the smallest random cou-
pling at odd (even) positions. The boundaries of the domains are
denoted by vertical lines, at i1 and i2, which are in different parity
positions.

where the dynamical exponent, z, is given by the positive root
of the equation:

(
J

�

)1/z

= 1, (9)

which is an exact expression in the entire Griffiths region
[5,33,34]. In the vicinity of the critical point, the dynamical
exponent to the leading order is given by [2,34]

z ≈ 1

2|δ| , |δ| � 1. (10)

B. The classical limit: �0 = 0

To explore the ground state of the system in the classical
limit let us first sort the random couplings in increasing order,
separately at odd 1 < Ji1 < Ji3 < Ji5 · · · < JiL−1 < 2 and even
1 < Ji2 < Ji4 < Ji6 · · · < JiL < 2 positions and let us increase
gradually the strength of the longitudinal field from h = 0. For
h < Ji1 + Ji2 the ground state is fully antiferromagnetic, since
the longitudinal field is too weak to create a turned domain.
This is illustrated in the first row of Fig. 2. For h > Ji1 + Ji2 ,
however, it is energetically favorable to create domain walls
at i1 and i2 and thus turn the spins in the domain between i1
and i2. At the boundary of the domains the spins are in ↑↑
positions. This is illustrated in the second row of Fig. 2. By
increasing the value of h further more and more domains and
thus domain walls are created and consequently the FM order
monotonously increases. Passing h = 4 the system is fully FM
ordered.

Now let us concentrate on the properties of the system
close to h = 2 where the AFM order is lost. The AFM long-
range order in the system is characterized by the average
correlation function in Eq. (5), and we choose the two points
of reference to be separated by the maximal distance, r =
L/2 − 1. We have calculated C(L/2 − 1, h) numerically by
an algorithm, which is described in Appendix A. We obtained
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FIG. 3. The average correlation function as a function of
h for different sizes of the system. From right to left, L =
25, 26, 27, . . . , 217. The effective transition point, h∗

L , is defined as
the position of the zero point. Inset: scaling plot in terms of u = (h −
2)L/2. The results for L = 27, 28, 29, . . . , 217 are indistinguishable.
The red line represents the theoretical estimate obtained in the case
when the ground state contains only one or two domains.

the ground state of periodic samples of sizes L = 2n, up to n =
17, thus the largest samples have a length L = 131 072. The
typical number of random realizations was about 1000, for not
extreme large samples. The field dependence of the average
correlation function is shown in Fig. 3 for different sizes. It
is seen, that there is a transition regime from AFM order with
C(L/2 − 1, h) > 0 to the FM regime with C(L/2 − 1, h) < 0,
having a width �hL which is more and more sharp as the size
of the system increases and at the same time the position of
an effective transition point, h∗

L, defined as the position of the
zero point (or the inflection point) of the curve approaches
h = 2. From the numerical results we draw the conclusion
that for the box distribution in Eq. (2) that we used here we
have the relations �hL ∼ [h∗

L − 2] ∼ 1/L. This means that the
appropriate scaling variable in the transition regime is u =
(h − 2)L/2 [35]. Indeed in terms of u the average correlation
functions in the transition regime collapse on one master curve
as illustrated in the inset of Fig. 3. This master curve, at
least for small values of u, can be calculated exactly. If we
restrict ourselves to such samples which are either fully AFM
ordered or consist of just two domains C(L/2 − 1, h), they
can be calculated through extreme value statistics [36,37]. As
described in detail in Appendix B, the average correlation
function in such an approximation is given by

C(L/2 − 1, h) ≈ (1 + u) exp(−u), u � 1. (11)

As shown in the inset of Fig. 3, this function describes
very well the average correlation function, even for not too
small values of u. In the thermodynamic limit the transition
takes place at h = 2, where the average correlation func-
tion exhibits a jump: limh→2− limL→∞C(L/2 − 1, h) = 1 and
limh→2+ limL→∞C(L/2 − 1, h) = 0, thus we have a random
first-order transition. We should note, however, that for h >

h∗ = 2 there is a divergent length scale, ξ ∼ (h − h∗)−1,

1.5 2 2.5 3
h

-0.2

0

0.2

0.4

0.6

0.8

1

C
(L
/2
-1
,h
)

L=8
L=16
L=32
L=64

Γ0 = 0.2

FIG. 4. The average correlation function at �0 = 0.2 as a func-
tion of h for different finite systems. The position of its zero point is
used to define effective, size-dependent transition points. These are
depicted in Fig. 5 for different values of �0.

which measures the typical size of the AFM domains in the
system. In this respect the transition is of mixed order [38].

C. DMRG results for h > 0

The complete phase diagram of the model has been studied
numerically by the DMRG method. In this investigation we
used finite samples of length L = 4, 8, 16, 32, and 64 and
their ground state and the first few excited states are calcu-
lated. Here the original version of the finite system DMRG
scheme was utilized with PBC [39,40]. For the correlations
it was systematically and carefully checked that their average
value is independent of the basis size m within the error bars.
The accuracy of the ground-state energy calculations was in
the range of 10−6–10−8 and this was in full agreement with
the truncation error, the largest basis size being m = 100–200
for the different systems.

Averages are performed typically over a few ten thousands
of independent samples in which the random couplings are
obtained by the transformation J̃i = Ji − J + 3/2, where J =∑L

i Ji/L is the average value of the original set of couplings,
1 < Ji < 2, i = 1, 2, . . . , L. Evidently the transformed set of
couplings, J̃i, have the same average value, 3/2, for all random
samples. We use a similar rule to define the transformed set
of random transverse fields. In the thermodynamical limit
the original and the transformed ensembles lead to identical
averages. For finite systems, however, the transformed sets
usually have smaller sample to sample fluctuations.

We have studied the behavior of the average correlation
function, C(L/2 − 1, h, �0), which we have considered also
in the classical limit in Sec. III B. We have checked that the
DMRG results at �0 = 0 agree with those calculated previ-
ously by combinatorial optimization methods. We remind one
that at �0 = 0 an effective, size-dependent transition point,
h∗

L(0), has been defined through the position of the zero value
of the average correlation function and we use the same
criterion in the quantum regime, for �0 > 0, too.
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FIG. 5. Numerically estimated finite-size transition points calcu-
lated by the DMRG method for systems with L = 8, 16, 32, and
64. The dashed line is a guide to the eye, representing the expected
true phase boundary at the thermodynamical limit. The solid purple
line indicates the position of the phase boundary in the clean system
with � = �0. Inset: difference between the effective transition points,
�h∗

L (�0) = h∗
L (�0) − h∗

L (0), as a function of 1/L for different values
of �0.

This is illustrated in Fig. 4, where C(L/2 − 1, h, �0) is
shown for �0 = 0.2 as a function of h and for different values
of L.

The effective, size-dependent transition points calculated
in this way are presented in Fig. 5. One can notice in this
figure, that close to the classical limit the effective transition
points start to increase with �0 > 0, have their maximum
value around �0 ≈ 0.2, and then monotonously decrease as �0

increases further. Before performing a more detailed analysis
we note that at �0 we know the true transition point, h∗(0) =
2.0, which is formally the extrapolated value of the series
h∗

L(0). We have checked that in the regime L � 64 there are
considerable corrections to scaling contributions and similar
behavior is expected to happen by extrapolating the data for
�0 > 0, too. Therefore in the vicinity of the classical limit we
analyze the difference, �h∗

L(�0) = h∗
L(�0) − h∗

L(0), which is
plotted in the inset of Fig. 5. For smaller sizes, L = 8 and 16,
there are large corrections, in particular for small values of �0.
At the larger sizes (L = 32 and 64), however, the differences,
�h∗

L(�0), are stable, and these are positive for 0 < �0 � 0.2.
We expect that this trend remains in the thermodynamic limit,
too.

From this assumption follows the conclusion that in the
phase diagram of the random antiferromagnetic Ising model
with mixed transverse and longitudinal fields there is a reen-
trance behavior. Starting at �0 = 0 and selecting a longitu-
dinal field h, which is somewhat larger than the transition
point h∗(0) = 2, the system is disordered. By switching on
quantum fluctuations with increasing �0 there is an order
through disorder phenomena, so that the system stays ordered
for �1

0 < �0 < �2
0 and remains disordered for �0 > �2

0 . The
presence of reentrance in our system can be shown exactly by
calculating the quantum corrections to the classical limit in
the vicinity of the RCMP. This is shown in Appendix C.
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FIG. 6. Average critical correlation function C(L/2 − 1, �c ) as a
function of L in a log-log plot for different values of h = 0.0, 0.05,
and 0.1. The dotted line has the slope 2 − df = 0.38, corresponding
to the exact result of the decay exponent at h = 0.0 [see in Eq. (6)].
Lower inset: distribution of the excitation gaps at h = 0.2 and �0 =
0.992 at different finite systems (red symbols) and compared with
those at the RTIM point with h = 0.0 (black symbols). Upper inset:
scaling plot of the excitation gaps at h = 0.2 and �0 = 0.992, in
terms of the combination: u = ln �/(L + L0)1/2, with L0 = −2.

At the other end of the phase-transition line, close to
the RTIM fixed point at h = 0, the analysis of the average
correlation function leads to less accurate results. In this
regime we estimated the location of the transition line in the
following way. We calculated the distribution of the excitation
gaps at finite chains and compared those with the same type
of distributions at the RTIM. Having the gap distributions
at h > 0 for different values of �0 the transition point is
identified, with that value of �0, where the (small-gap part
of the) gap distributions were closer to that at the RTIM at
the same size. We illustrate this procedure in the lower inset
of Fig. 6. The distributions are found very similar to that in
the RTIM, thus we conclude that for h > 0 there is infinite
disorder scaling. Indeed the scaling behavior of the small gaps
is well described by the relation in Eq. (4) and the scaling
exponent is (very close to) ψ = 1/2, as illustrated in the upper
inset of Fig. 6.

In the next step we calculate the critical average correlation
functions, where the transition points have been estimated in
the previous paragraph from the scaling of the gaps. From a
log-log plot of C(L/2 − 1, �c) vs L in Fig. 6 one can notice
an asymptotic linear trend, which corresponds to a power-law
dependence. At h = 0 the slope of the lines is compatible
with the exact result of the decay exponent in Eq. (6). For
somewhat larger longitudinal fields, h = 0.05 and 0.1, the
slopes of the line segments are somewhat larger than at h =
0.0, but due to errors of the calculation one cannot exclude
the possibility that the asymptotic exponents agree with that
at h = 0.0.

We shall come back to study the scaling behavior of the
system for small values of h by the SDRG method in the
following Sec. III D and postpone the analysis of the phase
diagram to the discussion in Sec. IV.
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D. SDRG calculations for h � 1

Here we are going to extend the SDRG method [2], which
has been developed for h = 0 by including small longitudinal
fields which are treated as a perturbation. For the sake of
simplicity we use here the transformation σ z

j = (−1) jσ z
j ,

when the model is described by random ferromagnetic cou-
plings (and transverse fields) in the presence of a staggered
longitudinal field. This last part of the Hamiltonian is gener-
ally written as

Ĥlongi = −
L∑

j=1

h jσ
z
j , (12)

and in the starting situation h j = (−1) jh.
In the SDRG procedure we consider the separated local

degrees of freedom, say at position i. These are couplings or
sites having the value of the largest gaps: 2Ji and 2

√
�2

i + h2
i ,

respectively. These gaps are sorted in descending order and
the largest one, denoted by , which sets the energy scale in
the problem, is eliminated and between remaining degrees of
freedom new terms in the Hamiltonian are generated through
perturbation calculation. This procedure is successively iter-
ated, during which  is monotonously decreasing. At the fixed
point, with ∗ = 0 one makes an analysis of the distribution
of the different parameters and calculates the scaling proper-
ties. In the following we describe the elementary decimation
steps.

1. Strong-coupling decimation

In this case the largest local term in the Hamiltonian is a
coupling, say  = Ji, connecting sites i and i + 1 and the two-
site Hamiltonian is given by

Ĥcp = −Jiσ
z
i σ z

i+1 − �iσ
x
i − �i+1σ

x
i+1 − (

hiσ
z
i + hi+1σ

z
i+1

)
.

(13)

The spectrum of Ĥcp contains four levels, the lower two being
separated from the higher two by a gap 2Ji. We omit the
higher two levels, which is equivalent to merging the two
strongly coupled sites into a spin cluster in the presence of
a (renormalized) transverse field �̃ and a longitudinal field h̃.
The magnetic moment of the cluster is given by μ̃ = μi +
μi+1, where the magnetic moments in the starting situation
are μi = μi+1 = 1. The remaining two lowest energy levels
are given by second-order degenerate perturbation method as
the eigenvalues of the matrix:

[−Ji − hi − hi+1 −�i�i+1/Ji

−�i�i+1/Ji −Ji + hi + hi+1

]
(14)

having a gap

�Ecp = 2
√

(�i�i+1/Ji )2 + (hi + hi+1)2. (15)

Comparing it with the gap of the spin cluster, we obtain for
the renormalized values of the parameters

�̃ = �i�i+1

Ji
, h̃ = hi + hi+1. (16)

Note that in the starting situation with hi = −hi+1 after dec-
imating a strong coupling the longitudinal field is eliminated
at the effective composite spin.

2. Strong-transverse-field decimation

In this case the largest local term is a transverse field,
say �i, and the corresponding energy gap of the one-site
Hamiltonian is 2

√
�2

i + h2
i . Due to the large �i this site does

not contribute to the longitudinal magnetization and therefore
it is eliminated. The longitudinal magnetic field, however,
should be transformed at the remaining neighboring sites.
To calculate the new renormalized coupling between the
remaining sites i − 1 and i + 1, we calculate energy levels
with fixed spins at these sites. Denoting by si±1 = + (−) a
↑ (↓) boundary state, the eigenvalue problem with different
boundary conditions has the lowest energy as

Esi,si+1 = −
√

�2
i + (si−1Ji−1 + si+1Ji + hi )2. (17)

The renormalized coupling between the remaining sites is
given by

J̃ = (E↑↑ + E↓↓ − E↑↓ − E↓↑)/4 ≈ Ji−1Ji√
�2

i + h2
i

, (18)

where the last relation is calculated perturbatively.
Concerning renormalization of the longitudinal magnetic

fields, we require that the sum of these fields is locally
conserved, in agreement with the original Hamiltonian. This
is obtained by adding hi/2 to the longitudinal fields at the
neighboring sites, h̃i±1 = hi±1 + hi/2, and in this way we try
to minimize random-field effects [41].

3. Numerical iteration of the SDRG equations

We have iterated the decimation equations presented in
the previous sections for finite periodic chains of length L =
256, 512, and 1024 up to the last pair of spins and the energy
gap of this dimer is identified as the gap of the given sample.
We have considered 10 000 independent samples for each
case. We have also calculated the total magnetic moment of
the samples, and calculated their average value, μL, which
scales differently in the different phases. In the ordered phase
it is extensive, μL ∼ L, while in the disordered phase it
approaches a finite limiting value. At the transition point
there is a power-law dependence μL ∼ Ld f , with a fractal
dimension 0 < d f < 1. This is related to the decay exponent
of the correlation function, since C(L/2 − 1, �c) ∼ L−2(1−d f ),
for large L.

First, we have checked that at the RTIM fixed point with
h = 0.0 the critical point is at �∗

0 = 1 and the magnetic fractal
dimension is d f = 0.81, which is in good agreement with the
analytical result d f = φ/2 [see in Eq. (5)]. The distribution
of the gaps, as shown in the main panel of Fig. 7, is also in
agreement with the scaling relation in Eq. (4).

Next switch on a small longitudinal field, h = 0.05, when
the transition point is moved to �∗

0 ≈ 0.9975. The estimate for
the magnetic fractal dimension d f ≈ 0.83 is somewhat larger
than at h = 0. The calculated gaps show infinite disorder
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FIG. 7. Scaling plot of the distribution of the energy gaps cal-
culated by the SDRG algorithm at the critical point of the model
for finite periodic chains of lengths L = 256, 512, and 1024. h = 0
(main panel), h = 0.05 (right inset), and h = 0.1 (left inset).

scaling in the right inset of Fig. 7 with an exponent ψ ≈ 1/2.
The scaling collapse of the data points in this case is less
proper for larger values of the gap, but the scaling for the
small-energy tail of the distribution is convincing.

Repeating the calculation with a somewhat larger longitu-
dinal field, h = 0.1, the transition point is shifted further to
�∗

0 ≈ 0.99. This means that for small value of h the transition
point has a quadratic dependence, �∗

0 − 1 ∼ h2, like in the
clean system. The estimate for the magnetic scaling dimen-
sion has grown further, d f ≈ 0.89, while the gaps in the left
inset of Fig. 7 show infinite disorder scaling in a similar way
as for h = 0.05.

If we increase the value of h further, the SDRG iteration
shows numerical problems. There is a fraction of samples in
which the small h condition does not work anymore; at some
steps the largest term in the Hamiltonian can be a longitudinal
field and at that point the SDRG algorithm breaks down.

IV. DISCUSSION

We have studied the phase diagram of the antiferromag-
netic Ising chain with random couplings and random trans-
verse fields in the presence of homogeneous longitudinal
fields. The distribution of the couplings in our study has a
finite limiting lower value, Ji > J0 > 0. In this case the system
exhibits an AFM ordered phase and a disordered phase, which
are separated by a transition line. The expected form of the
phase-transition line is shown in Fig. 5. It starts at h = 0, �0 =
1 in the RTIM fixed point and ends at h = 2, �0 = 0 at
the RCMP point. The phase transitions at the two endpoints
are completely different: in the RTIM fixed point there is
infinite disorder scaling, while in the RCMP the transition is of
random first order. Switching on a homogeneous longitudinal
field at the RTIM the infinite-disorder scaling of the transition
remains valid, which has been shown by SDRG calculations
and by DMRG results. Along the transition line for small h the
energy-scaling exponent ψ = 1/2 seems to be constant, while
the fractal dimension of the magnetization, d f , shows some h
dependence.

In the vicinity of the RCMP by including quantum fluc-
tuations, �0 > 0, the system shows reentrant behavior: for
h > 2 the system with increasing value of �0 first moves from
the disordered phase to the AFM phase and then back to the
disordered one. Reentrance in random quantum systems has
been observed only in a few cases: in random dimer networks
[42,43] and in randomly dimerized AF S = 1/2 chains [44].
In classical systems it is usually the result of competing
interactions and/or frustration [45]. In our system at the
clean classical multicritical point, the ground state is infinitely
degenerate. This degeneracy is lifted through disorder [46] at
several steps, but the new, nonordered states are typically less
favored by quantum fluctuations than the ordered state, which
leads to the reentrant behavior.

Between the infinite disorder scaling regime and the ran-
dom first-order transition region there must be a repulsive,
multicritical fixed point, which separates the two parts of the
transition line. This fixed point is expected to be the result
of the competition between random couplings, random trans-
verse fields, and the homogeneous longitudinal field. With
our present investigations we could not explore the properties
of this hypothetical fixed point; it will be the aim of further
studies.

Outside the transition line the system exhibits singular
dynamical behavior due to Griffiths singularities. Near the
RTIM these are similar to that mentioned in Sec. III A [see
in Eqs. (8) and (9)]. These have been studied in more detail in
[29].

The model can be extended and generalized in different
directions. In higher dimensions one should consider bipartite
lattices, which can accommodate AFM order. Here, at h =
0 there is a higher-dimensional RTIM fixed pont, which is
known to be infinite disorder type [11–13]. Here one should
study first the behavior in the classical limit and then the com-
plete phase-transition line. Finally, one can also extend our
model with random longitudinal fields. In this case, however,
the disorder fluctuations are so strong that no ordered phase
exists, even with vanishing quantum fluctuations.
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APPENDIX A: NUMERICAL ALGORITHM TO
CALCULATE THE GROUND STATE

IN THE CLASSICAL LIMIT

It is possible to map the problem of finding the ground
state onto a max-flow problem [47]. However, in the one-
dimensional problem it is more efficient to use the following
simpler algorithm: (i) consider the set S of all pairs of bonds
separated by an even number of bonds; (ii) assign to each
pair of S the sum of the two couplings, Ji + Jj values, and
sort S according to this sum; and (iii) take each pair (i, j)
of S in increasing order and choose the state with the lowest
energy between the three following cases. Starting with an
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AFM state, (1) flip all spins between i and j; (2) flip all spins
between j and i, or (3) flip no spin. Note that we assume
L even, and periodic boundary conditions. This algorithm
produces all the L

2 ground states when h varies.
There are n = ( L

2 − 1) L
2 pair of bonds at even distance,

and the sort algorithm has a complexity n ln n. However, in
practice one is interested only in the critical region, which
means that only the pair of bonds (Ji, Jj ) with Ji + Jj small
enough have to be considered. This greatly accelerates the
algorithm.

APPENDIX B: AVERAGE CORRELATION FUNCTION IN
THE CLASSICAL LIMIT

Let us consider a large finite chain L � 1 in the vicinity
of the random classical multicritical point h − 2 � 1. Let us
assume that we are in the transition regime, thus the random
samples are either fully AFM ordered, thus h < Ji1 + Ji2 and
being a fraction p1, or contain just two AFM domains h �
Ji1 + Ji2 being a fraction p2, and we omit those, which contain
more AFM domains, thus p1 + p2 = 1. In the AFM ordered
samples the average correlation function is 1. In samples with
two domains for a given sample averaged correlation function
is (1 − 4l1/L), where l1 � L/2 is the size of the smaller AFM
domain: l1 = min(|i1 − i2|, L − |i1 − i2|). The position of the
smallest couplings, i1 and i2, are random, therefore the distri-
bution of the domain sizes 1 � l1 � L/2 − 1 is uniform. Con-
sequently for samples with two AFM domains the ensemble-
averaged correlation function is 0. Then the total average
of the correlation function over fully AFM ordered and two
domain samples is given by C(L/2 − 1, h) = p1 = 1 − p2.

The fraction of samples with two AFM domains can be
calculated through extreme-value statistics [36,37]. For this
we should note that a sample with two domains appears, if h −
2 = (Ji1 − 1) + (Ji2 − 1), where ε1 = Ji1 − 1 as well as ε2 =
Ji2 − 1 are the smallest values out of the L/2 ones (i1 and i2
being of different parity) having a parent distribution, which
is uniform in [0,1]. According to extreme-value statistics [37],
the asymptotic form of the distribution of ε1, and that of ε2,
depends on the asymptotic behavior of the parent distribution
for small argument. If it is in the form P(ε) ∼ εω, the scaling
combination reads as u1 = u0(L/2)zε1, with 1/z = 1 + ω and
u0 is a constant. For the uniform distribution we have ω =
0, thus z = 1. The distribution of u1 is given by the Fréchet
distribution:

P(u1) = 1

z
u1/z−1

1 exp
[−u1/z

1

]
, (B1)

and similarly for u2. Then for the longitudinal field the appro-
priate scaling variable is u = u0(L/2)z(h − 2) = u1 + u2 and
its distribution is given as the convolution of P(u1) and P(u2),
which for z = 1 is given by

P(u) = u exp[−u]. (B2)

The fraction of samples with two domains is given by the
accumulated distribution:

p2(u) =
∫ u

0
P(u)du = 1 − (1 + u) exp(−u), (B3)

from which the result in Eq. (11) follows.

APPENDIX C: QUANTUM CORRECTIONS TO THE
CLASSICAL LIMIT AT THE RCMP POINT

Let us consider the h > 2 part of the phase diagram for a
large but finite value of L, at such point where in the ground
state of the classical model there is exactly one reversed
domain, the domain boundaries being at i = a = 2α + 1 and
i = L. The couplings at the boundaries Ja and JL are the
smallest at the odd and even positions, respectively, and Ja +
JL − h < 0. The energy of the classical ground state is

E0 = EAF + 2(Ja + JL − h) (C1)

where the classical AFM state has the energy EAF =
−∑L

i=1 Ji.
Now let us switch on the transverse fields, and for

simplicity let us consider a position-independent strength,
� � 1. The first nonvanishing correction to the AFM state
is given by

εAF
2 = −

L/2∑
j=1

[
�2

2(J2 j−1 + J2 j − h)
+ �2

2(J2 j + J2 j+1 + h)

]
.

(C2)

The same type of corrections to the classical ground state
are

ε0
2 = −

α−1∑
j=1

[
�2

2(J2 j−1 + J2 j − h)
+ �2

2(J2 j + J2 j+1 + h)

]

− �2

2(Ja−2 + Ja−1 − h)

− �2

2(Ja−1 − Ja + h)
− �2

2(−Ja + Ja+1 + h)

−
L/2−2∑
j=α+1

[
�2

2(J2 j + J2 j+1 − h)
+ �2

2(J2 j+1 + J2 j+2 + h)

]

− �2

2(JL−2 + JL−1 − h)

− �2

2(JL−1 − JL + h)
− �2

2(−JL + J1 + h)
. (C3)

Large contributions to the sums in Eqs. (C2) and (C3) are due
to such terms, in which h in the denominator has a minus
sign. In Eq. (C2) there are L/2 such large terms, while in
Eq. (C3) there are just L/2 − 1. Consequently, on average
ε0

2 > εAF
2 and ε0

2 − εAF
2 ∼ �2 > 0, thus with increasing � the

quantum correction is more and more favorable for the AFM
ordered state, which at a given critical value can overcome
the difference in the classical energy terms in Eq. (C1). This
fact is in agreement with reentrance observed numerically in
Fig. 5.
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