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While many-body effects in flat-band systems are receiving renewed hot interest in condensed-matter physics
for superconducting and topological properties as well as for magnetism, studies have primarily been restricted to
multiband systems (with coexisting flat and dispersive bands). Here we focus on one-band systems where a band
is “partially flat,” comprising flat and dispersive portions in k space to reveal whether intriguing correlation
effects can already arise on the simplest possible one-band level. For that, the two-dimensional repulsive
Hubbard model is studied for two models having different flat areas in an intermediate-coupling regime with
the dynamical mean-field theory combined with the fluctuation exchange approximation. We have a crossover
from ferromagnetic to antiferromagnetic spin fluctuations as the band filling is varied and this triggers, for the
model with a wider flat portion, a triplet-pair superconductivity favored over an unusually wide filling region,
which is taken over by a sharply growing singlet pairing. For the model with a narrower flat portion, TC against
filling exhibits an unusual double-peaked TC dome, associated with different numbers of nodes in the gap function
having remarkably extended pairs in real space. We identify these as a manifestation of the physics outside the
conventional nesting physics where only the pair scattering across the Fermi surface in designated (hot) spots is
relevant. Another correlation effect arising from the flattened band is found in a non-Fermi-liquid behavior as
detected in the momentum distribution function, frequency dependence of the self-energy, and spectral function.
These indicate that unusual correlation physics can indeed occur in flat-band systems.

DOI: 10.1103/PhysRevB.101.014501

I. INTRODUCTION

While there is a long history for the study of flat-band sys-
tems as initiated by interest in ferromagnetism [1–5], there is
a recent surge of interest in flat-band superconductivity, where
possibilities are explored for unconventional superconductiv-
ity favored by the flat-band structure [6–9]. As for attractive
electron-electron interactions, Törmä’s group has shown that
a flat band can indeed favor superconductivity when the band
is topological, with the superfluid weight lower-bounded by
the topological number [10–14]. For repulsive interactions,
on the other hand, a key question is how the presence of
flat bands affects electron correlation processes. In repulsively
interacting flat-band systems, spin alignment tends to lower
the total energy due to unorthogonalizable Wannier orbitals
through Pauli’s exclusion principle [3,8]. For unconventional
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superconductivity, gap functions for both copper- and iron-
based superconductors, respectively with d and s± pairings,
respectively, are maximized by the pair-scattering processes
with specific momentum transfers (see Fig. 1, top left), where
the spin fluctuations with these wave vectors glue electrons
with opposite spins [15]. For systems having a flat band
coexisting with dispersive band(s), it has been suggested that
a key process is the quantum-mechanical virtual transfer of
Cooper pairs between the flat and dispersive bands mediated
by spin fluctuations arising from the repulsive interaction
[6,8,16] (see Fig. 1, top right). There, it is noticed that an
optimum situation is when the Fermi energy is close to, but
away from, the flat band, where the virtual pair scattering
still occurs. In other words, the flat band in this situation is
“incipient” [17]. There, one intriguing observation is that the
pairing, as detected from the density-matrix renormalization
group, involves large entanglement when the flat band is
topological [8].

These proposals for the flat-band magnetism and supercon-
ductivity have so far focused on multiband systems, as exem-
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FIG. 1. We schematically compare an ordinary single-orbital, one-band case (here for a d-wave SC; leftmost column) and a multiorbital,
multiband case (here for s±; second column from left), both with specific “hot spots” (dashed circles in red) across which the nesting vectors
(yellow arrows) designate how pairs (blue and cyan arrows) scatter. These are contrasted with flat-band systems for the single-orbital, one-band
case (second from right) and the single-orbital, multiband case (rightmost). The top row depicts k space, while the bottom row displays pairs
in real space [18]. The pairing for the multiband case [6] is an interband s±, which is difficult to represent in real space.

plified by Lieb’s, Mielke’s and Tasaki’s models, where one of
the multibands is flat while other(s) are dispersive. Now, a fun-
damental question is, can interesting strong-correlation phe-
nomena such as high TC superconductivity occur in simpler
one-band systems that have flat portion(s) in the dispersion in
the momentum space? This is an interesting possibility, since,
even when the Fermi energy resides on the dispersive part,
quantum states are expected to be significantly altered through
the virtual pair-scattering processes between the flat and dis-
persive portions of the band as well as the pair scatterings
within the flat region, both with many channels (which turns
out to be allowed due to partial occupation of the flat portion
caused by correlation effects as we shall show; see Fig. 2).
This will be outside the conventional “nesting physics” for
dispersive bands where the processes occur on Fermi surfaces.
Thus it is intriguing whether the one-band case can be as
good as, or even better than, the multiband case. Motivated
by these intuitions, here we explore two different flat-band
models, where we start with a tight-binding (“t-t ′”) model
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FIG. 2. One-electron band dispersions for the t-t ′ (a) and PFB
(b) models. Blue region in (b) represents εk = 0.

with nearest- and second-neighbor hoppings. By controlling
them, we have large flat regions in the dispersion with the
vanishingly small group velocity. In the second model, we
truncate the dispersion below a certain energy into a flat one
to single out the effect of the flat part. Since the density
of one-electron states diverges in these flat regions, pertur-
bative approaches, e.g., the Schrieffer-Wolff transformation
[19], might fail even in the weak electron-electron interaction
regime. In Ref. [20], the truncated model is examined where
the unbiased determinantal quantum Monte Carlo method
(DQMC) [21,22] is used to show a Mott-insulating physics for
a repulsive interaction and enhanced superconductivity for an
attractive interaction in the weak-coupling regime and at in-
termediate temperatures, whereas the present paper addresses
superconductivity for repulsive interactions. The flat portion
also poses an interesting question of whether non-Fermi liquid
behavior can arise due to the flatness.

Thus, the purpose of the present paper is to look into
superconducting and non-Fermi liquid properties upon vary-
ing the band filling. For that, we adopt here, along with the
DQMC method, the FLEX + DMFT method [23–25], which
is a combination of the dynamical mean-field theory (DMFT)
[26–28] and the fluctuation-exchange approximation (FLEX)
[29,30]. The DQMC is a numerically exact method but is
applicable for limited parameters. The FLEX + DMFT is a
diagrammatic approximation and can deal with Mott’s insula-
tion for strong coupling, but here we focus on an intermediate
coupling regime. We shall show that magnetism exhibits a
dominant ferromagnetic spin correlation at small band fillings,
which crosses over to antiferromagnetic spin structures toward
half filling. This concomitantly dominates superconductivity,
where the pairing symmetry is found to change from spin
triplet to singlet. Remarkably, the gap function sensitively
depends on the Fermi energy sitting around the boundary
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between the flat and dispersive parts in such a way that
(i) for the truncated model with a wider flat portion, this
triggers a triplet pairing favored over an unusually wide filling
region, which is taken over by a sharply growing singlet
pairing toward half filling. (ii) For the t-t ′ model with a
narrower flat portion, TC against filling exhibits an unusual
double-peaked TC dome associated with different numbers
of nodes in the gap function. The unusually large numbers
of nodal lines exhibit significantly extended pairs in real
space in both models. Since these come from pair scatterings
that involve the flat portions, we shall identify them as a
manifestation of the physics outside the conventional nesting
physics (with only the pair scattering across the Fermi surface
in designated (hot) spots being relevant). We shall further
reveal that a non-Fermi liquid behavior arises as detected in
various observables such as a momentum distribution function
that is fractional over the flat region, and the self-energy
with a fractional-power-law frequency dependence accom-
panied by a characteristic spectral function. Thus we shall
conclude that partially flat-band (PFB) systems can indeed
harbor quite different and versatile physics from the ordinary
bands.

II. MODEL AND METHODS

We consider the repulsive Hubbard model on the square
lattice,

H =
∑

kσ

εkc†
kσ

ckσ + U
∑

i

ni↑ni↓ − μ
∑

iσ

niσ , (1)

where c†
kσ

creates an electron with spin σ and momentum k,
εk is the noninteracting band dispersion, niσ = c†

iσ ciσ , U (>
0) is the repulsive on-site interaction, and μ is the chemical
potential.

Here we consider two models (Fig. 2): The first one is the
t-t ′ model on a square lattice with the nearest-neighbor (t) and
the second-neighbor (t ′) hoppings with a dispersion,

εt−t ′
k = −2t[cos(kx ) + cos(ky)] − 4t ′ cos(kx ) cos(ky). (2)

If we set t ′ � −t/2, we can flatten the dispersion along �-M
lines (with t ′ = −0.548t here for minimizing the curvature)
as displayed in Fig. 2(a).

The second model has a dispersion truncated as

εPFB
k = [

1 + F sgn
(
εcosine

k

)]
εcosine

k , (3)

to have a perfectly flat bottom (hereafter PFB). Here εcosine
k ≡

−2t[cos(kx ) + cos(ky)] is the cosine band for the nearest-
neighbor-hopping model, and the parameter F controls the
truncation, e.g., for F = 1 the negative-energy part of the
cosine band is flattened as displayed in Fig. 2(b). To have
the same total band width (=8) as the cosine band, we set
εPFB

k = 2εcosine
k for the positive part when F = 1. In this paper,

we take t as the unit of energy.
As for the band filling, 〈n〉 = 〈n↑〉 + 〈n↓〉, the noninter-

acting Fermi energy lies close to the flat region for 〈n〉 � 1.
Here we study paramagnetic phases with no spin imbalance,
basically with FLEX + DMFT. In FLEX + DMFT, the local
self-energy is obtained from the DMFT procedure, with the
FLEX local self-energy subtracted to avoid double counting

in a double self-consistent loop [23]. As an impurity solver
for the DMFT, we adopt the modified iterative perturbation
theory [31,32]. With FLEX + DMFT, we do not address here
the strong-coupling regime for U exceeding the bandwidth,
nor very dilute fillings for convergence reasons. For U greater
than the bandwidth, employing the continuous-time quan-
tum Monte Carlo [33] or the one-crossing approximation
[34] as the impurity solver incorporates dynamical vertex
corrections more properly but, independent of the impurity
solver, our FLEX + DMFT formalism suffers from a lack
of vertex corrections in spatial fluctuations. To sanity check
and benchmark our FLEX + DMFT results, we compare them
with DQMC results at relatively high temperatures where the
sign problem is less severe. More precisely, in the DQMC,
the fermionic sign problem makes the accessible temperature
(T ) for U � 2 restricted to T � U/15, see also Ref. [20],
while we can go to lower T s in FLEX + DMFT. DQMC
simulations are performed on a 16 × 16 periodic cluster, while
FLEX + DMFT is performed for a 64 × 64 momentum grid.

III. RESULTS

Let us start with the double occupancy of electrons against
the band filling in Fig. 3. We first recall that, for the
ordinary cosine band, the double occupancy starts to increase
in the strong-coupling regime and above half filling (〈n〉 > 1),
where the number of electrons exceeds the number of lattice
sites, see inset of Fig. 3 and also Ref. [20]. If we first look
at the result for the PFB model, we can see quite a different
behavior, where the double occupancy starts to grow already
around �0.6 well below half filling, in both FLEX + DMFT
[squares in Fig. 3(b)] and DQMC results (solid curves). We
can particularly note that even at a very weak U = 0.5, the
double occupancy arises when significantly less than half
filled (〈n〉 � 0.6), which can only occur in the cosine band
above 〈n〉 � 1 at strong U 	 bandwidth. Thus we deduce
that the flat region makes the weak interaction sufficient for
the emergence of the correlation effect. To endorse this, we
turn to the double occupancy for the t-t ′ model obtained
with FLEX + DMFT [solid curves in Fig. 3(a)]. We again
encounter the double occupancy well below the half filling.
The double occupancy in the t-t ′ model is greater than in
the PFB, which is understandable since the flat region in the
former is much narrower.

We can then examine the electron configuration in the
momentum space to compare between the flat and disper-
sive parts (i.e., how electrons doubly occupy the flat re-
gions before the dispersive regions are filled). Figure 4
presents the momentum-dependent distribution function nk =
1
2

∑
σ 〈c†

kσ
ckσ 〉, where panel (a) is for the t-t ′ model at a

filling 〈n〉 = 0.5, while (b) is for the PFB at 〈n〉 = 0.62,
both for U = 2. The chosen fillings are, respectively, around
the fillings at which the double occupancy starts to rise in
Fig. 3. The figure is obtained with FLEX + DMFT, but we
again observe a qualitative agreement between DQMC and
FLEX + DMFT results (see Appendix A). For the t-t ′ model
at 〈n〉 � 0.5, the occupation in the flat region along kx = 0
and ky = 0 is close to, but smaller than, unity with 0.7 < nk <

0.85. For the PFB model at 〈n〉 = 0.62, we can see an almost
constant and half-filled 0.52 < nk < 0.55 over the flat region
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FIG. 3. Double occupancy [normalized by the uncorrelated value
(〈n↑〉〈n↓〉 = 〈n〉2/4)] against the band filling 〈n〉 for the t-t ′ [solid
curves in (a)] and iPFB [squares in (b)] models, obtained with the
FLEX + DMFT. Solid curves with error bars in (b) represent DQMC
result for the PFB model [20]. The results are for U = 0.5 − 2.0 at
temperature T = U/15. Inset in (b) is the double occupancy for the
cosine band for U = 12 at the same temperature with DQMC. Error
bars are determined by jackknife resampling.

bounded by |kx| + |ky| � π in that model. Larger occupation
in the t-t ′ model should again be related to its narrower flat
region.

The above results show that the electrons are selectively
crammed into the flat portion, causing double occupation
before the dispersive portion starts to be occupied. This would
not be surprising since the flat portions are situated at lower

FIG. 4. (a) Momentum-dependent distribution function nk for
the t-t ′ model at 〈n〉 = 0.5. (b) The same for the PFB model at
〈n〉 = 0.62. Results are computed with FLEX + DMFT on a 64 × 64
momentum grid. We have U = 2 and an inverse temperature β = 7.5
for both results.
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FIG. 5. For the t-t ′ model, Green’s functions (top panels) and
spin susceptibilities (bottom) are color-coded in momentum space for
fillings 〈n〉 = 0.7 (a), (d); 0.8 (b), (e); and 0.94 (c), (f). All the results
are for U = 3, β = 33, but note different color codes for different
panels.

energies, but a remarkable point is the following: (i) The
occupation is fractional, somewhere between the single and
double occupations, and (ii) the occupation occurs all over
the flat portions with basically the same occupied area as
we vary the total band filling (compare Fig. 4 with Fig. 12
in Appendix B) in both models. In this sense, Luttinger’s
theorem [35] does not seem to apply here. To explore the
Fermi surface formation, we plot the Green’s function for
both models in Figs. 5 and 6 (top panels), where sharp peaks
would define the Fermi surfaces. While the Fermi surfaces
are visible in the t-t ′ model (Fig. 5), they are not very well-
defined for the PFB model (Fig. 6). We come back to this
point below in terms of the frequency dependence of the
self-energy.

Let us now turn to the spin structure against the
band filling. The static spin correlation function, χs(k) =
2

∫ β

0 dτ 〈Sz
k(τ )Sz

−k(0)〉 [36] is displayed for the t-t ′ (Fig. 5)
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FIG. 6. The same as in the previous figure for the PFB model. In
panel (f), maxima exist at (±π,±π ).
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and PFB (Fig. 6) models at U = 3, β ≡ 1/(kBT ) = 33 and
〈n〉 = 0.7 − 0.94. Overall, the spin correlation is seen to be
large over streaks or wide plateaus (rather than usual spots),
which should come from the flattened bands. More precisely,
reflecting the structure of Green’s function, the t-t ′ model
shows streaks across some midpoints in the Brillouin zone,
which cross over to wider and more complex structures as
we approach 〈n〉 = 1. A smaller overall value of the spin
susceptibility in Fig. 5(f) may be attributed to coexistence
of spin fluctuations coming from occupied flat and disper-
sive portions. The PFB model, on the other hand, shows a
crossover from ferromagnetic spin fluctuations, which is ex-
pected as in the spin alignment in the half-filled flat branch in
multiband models, to wider plateaus with peaks shifting away
from � point, and finally to antiferromagnetic spin fluctua-
tions with peaks around (±π,±π ) as we approach 〈n〉 = 1.
As for the charge susceptibility, χc(q) = ∫ β

0 dτ 〈nq(τ )n−q(0)〉,
we observe a similar trend in both models, but χc is an
order of magnitude smaller than the spin susceptibility. We
shall see below that the spin structure governs the struc-
tures of the self-energy, local spectral function as well as
pairing.

Now we are in position to explore the superconducting
phases with the linearized Eliashberg equation for the gap
function 	,

λ	(k) = − 1

β

∑

k′
Veff (k − k′)G(k′)G(−k′)	(k′), (4)

where λ is the eigenvalue, k ≡ (k, iωn) with ωn being the
Matsubara frequency with

∑
k = 1, Veff = U + 3U 2χs/2 −

U 2χc/2 is the effective pairing interaction, and G is Green’s
function. The eigenvalue is a measure of superconducting
instabilities with λ = 1 marking TC . Figure 7, a key result
of this work, plots λ for singlet (filled symbols) and triplet
(empty) pairings for the t-t ′ and PFB models.

If we first look at the result for the PFB model, triplet
pairing is favored with larger λs over a remarkably wide
region of the filling, which indicates the importance of the
wide flat region accompanied by ferromagnetic fluctuations.
Then a singlet pairing rapidly dominates as we approach
〈n〉 = 1. In the t-t ′ model, with a narrower flat portion and
associated spin fluctuations (Fig. 5), singlet pairing dominates
over the whole region studied here, but with a curious double-
dome structure in TC . Both of these are in dramatic contrast
with the usual cosinelike bands, where the singlet d-wave
pairing dominates with a single dome in λ around 〈n〉 ≈ 0.9
[23,25,37]. The sharp enhancement in the singlet pairing close
to the half-filling in the PFB, which should come from the
prevailing antiferromagnetic fluctuations, has λ that is larger
than t-t ′ and even the cosine-band counterparts. We note
that this takeover [an arrow in Fig. 7(b)] occurs when the
flat-band filling exceeds about 3/4 (see Appendix B), which
in fact coincides with a critical filling, 〈n〉c, at which the
DMFT spin susceptibility is peaked (see Appendix C) and the
exponent in the self-energy is also peaked as we shall see in
Fig. 10(b) below. As for the singlet pairing in the t-t ′ model,
we can see that the left peak in λ occurs around 〈n〉c for this
model.
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FIG. 7. Largest eigenvalue λ of the Eliashberg equation versus

filling for the singlet (filled symbols) and triplet (empty) pairings
for t-t ′ (triangles) (a), cosine-band (circles) (a), and PFB (squares)
(b) models for U = 3, β = 33. Arrows indicate the 〈n〉c at which
the spin susceptibility is peaked for respective models, while the
dashed vertical line indicates a change in the pairing symmetry,
see text.

So let us now fathom these results in terms of filling-
dependent singlet and triplet gap functions in momen-
tum space in Fig. 8, or in real space in Fig. 9, for the
t-t ′ and PFB models. We can immediately see that all
the gap functions are anisotropic and possess nodal lines
whose number sensitively depends on the filling. In the t-t ′
model, cases similar to the usual d-wave [	(k) ∼ cos(kx ) −
cos(ky)] exist [as in Figs. 8(b) and 9(b)], but more generally
admits structures, 	singlet (k) ∼ cos(γ kx ) − cos(γ ky), where
γ (= 1, 2, · · · ) characterizes the number of nodal lines. For
instance, we have γ = 1 → 2 for 〈n〉 = 0.94 → 0.7 in the t-t ′
model. This shows that, as we go away from the half filing
at which antiferromagnetic fluctuations dominate, the usual
dx2−y2 wave changes into something more complicated.

If we turn to the gap functions in real space in Fig. 9,
we can realize that the larger the number of nodal lines, the
more extended the pairs over several lattice spacings in real
space. Similar long-range pairings have also been explored for
quasi-one-dimensional and 2D systems [38,39], where each
pair becomes more spatially extended as we go from p-wave
to d and f with the number of nodes increasing. For the triplet
gap function [40] in Figs. 8(c), 8(d), 8(g), and 8(h), we also
tend to have unusually extended pairing with larger numbers
of nodes. In the literature, the random-phase approximation
(RPA) has been used to obtain the filling-dependent gap
symmetry in the t-t ′ model [41], but the present results exhibit
different behavior such as an absence of s-waves seen in RPA,
which should be due to the self-energy effects incorporated
more accurately here. For the PFB model, triplet gap functions
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functions in momentum space for the t-t ′ (first row) and PFB (second
row) models. Filling is 〈n〉 = 0.7 (a), (c), (e), (g) or 0.94 (b), (d),
(f), (h). For each of the triplet cases, another one rotated by 90
degrees is degenerate due to the tetragonal symmetry of the lattice.
Maximum eigenvalue of the Eliashberg equation is indicated in
each panel. Color code for the gap function is bluish (reddish) for
negative (positive) values, for which we have omitted the color bars
since the linearized Eliashberg equation does not indicate magnitudes
of 	. All the results are for U = 3, β = 33. Note that the λ in
(d), (e), (g) is vanishingly small (<10−1), so should not be taken
seriously.

are close to a simple p-wave, 	triplet (k) ∼ sin(kx ) ± sin(ky),
but extra nodes are visible.

If we go back to Fig. 7, the Eliashberg λ in our partially-
flat band systems can be smaller than those for the ordinary
cosine band, which may be related to less compact pairing in
the former, but we do have important effects peculiar to the
flat-band cases: For the PFB, (i) the singlet λ sharply blows
up toward the filling n = 1 and (ii), before this occurs, the
triplet pairings are favored over an unusually wide region of
n. For t-t ′, (iii) the peculiar double-peak structure arises from
a change in the number of nodes around the dip of λ [marked
with a vertical dashed line in Fig. 7(a)]. If we compare the
single-band and multiband flat-band systems [42], the former
sharply contrasts with the behavior of the multiband case [16]
in which the Eliashberg λ is shown to have a sharp dip when
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FIG. 10. Imaginary part of the DMFT impurity self-energy, 
imp,
against Matsubara frequency, ωn, for 〈n〉 = 0.7 (green), 0.9 (red),
0.94 (blue) in the t-t ′ (a) and PFB (c) models. (b) The exponent
α in the fit |Im
imp(iωn)| ∝ ωα

n , for the t-t ′ (blue circles) and PFB
(red squares) models. Arrows mark respective 〈n〉c for the spin
susceptibility peaks, which are seen here to coincide with the peaks
in α. (d) Local spectral functions in the t-t ′ (solid lines) and PFB
(dotted) models for the band filling 〈n〉 = 0.7, 0.8, 0.94. All the
results are for U = 3 and β = 33.

EF becomes too close to the flat band, but this does not occur
in the present single-band case.

Fermi-liquid properties

We finally look into the Fermi-liquid properties. In
Figs. 10(a) and 10(c), we plot the imaginary part of the
DMFT self-energies against Matsubara frequency in the t-t ′
(a) and PFB (c) models, for band filling 〈n〉 = 0.7 − 1.0
at U = 3, β = 33. We notice that the self-energy exhibits
a peculiar frequency dependence. We can actually quantify
non-Fermi liquid behavior by fitting the imaginary part of the
self-energy to

|Im
imp(iωn)| ∝ ωα
n ,

for low Matsubara frequencies. Then α = 1 characterizes the
Fermi liquids, while α < 0.5 will signify a “bad-metallic”
behavior [43–45]. Here we take the DMFT impurity self-
energy, 
imp, since we want to look at the local self-energy,
which we shall later compare with the DMFT impurity spin-
susceptibility. We can see in Fig. 10(b) that the exponent α

increases up to a critical filling 〈n〉c that depends whether
we have the t-t ′ or PFB models. It is notable that the 〈n〉c

for the self-energy coincide with the critical 〈n〉c (= 0.82 for
t-t ′, 〈n〉c = 0.94 for PFB at U = 3, β = 33) at which the spin
susceptibility for the DMFT impurity, χ imp

s , has a peak in each
model, as shown in Appendix C. For further increase of the
filling, α starts to decrease. The value 〈n〉c = 0.94 in the PFB
corresponds to the filling at which the flat part of the band
is about 3/4 filled, namely, we have 0.71 < nk < 0.83 on the
flat portion in the momentum-dependent distribution function
(see Appendix B). A bad-metallic behavior also appears as
deformations in the local spectral functions in Fig. 10(d),
obtained via analytic continuation with the Padé approxima-
tion. In particular, the local spectral functions undergo large
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changes for 〈n〉 > 〈n〉c with an emergence of multipeaks that
are separated by ω � U , see also Appendix D.

IV. CONCLUSION AND DISCUSSIONS

To summarize, we have studied two partially-flat band
models (t-t ′ and PFB) to reveal that a manifestation of the
flat portion in the band gives a dramatic difference from the
ordinary band to produce a peculiar sequence of the dominant
pairing symmetries. This occurs in both models, in a manner
that is dominated by the size of the flat region. For PFB
with a wide flat area, triplet pairings are favored over a
wide filling region, while for t-t ′ with a narrower flat area,
a double-dome structure in TC emerges associated with dif-
ferent numbers of nodes in the gap function. Concomitantly,
pairings can become unusually extended in real space with
large numbers of nodes. We have finally shown that non-
Fermi-liquid like behavior exists in a power-law frequency
dependence of the self-energy, etc. We identify these as a
peculiar emergence of correlation effects in partially-flat band
systems that can occur even for intermediate electron-electron
interactions.

As Fig. 1 suggests, the different pairings revealed here
should come from quite different configurations of pair-
scattering channels in the partially-flat band models: In reg-
ular bands, the key process is the pair scattering specifically
between the “hot spots” (antinodal regions in the cuprates,
and Fermi pockets in the iron-based superconductors [15],
respectively, giving rise to the d and s± pairings), which is
contrasted with the flat bands that have the whole bunch of
pair-scattering channels involving, so to speak, “extended hot
regions.”

This now leads us to make an observation: For ordinary
bands, we can show, from a general phase-space volume
argument [46,47], that the superconductivity mediated by
spin fluctuations should work much more efficiently in two-
dimensional (layered 2D) systems than in 3D. By contrast,
the flat bands with (i) extended hot regions (with wide areas
in k space for large spin fluctuations), (ii) wide areas for large
gap function amplitudes, and (iii) also wide areas for large
Green’s functions [which are involved in Eq. (4)] may evade
the above theorem to render 3D systems as good as in 2D.
This will make 3D partially-flat band systems interesting.

An important question, of course, is whether flat bands can
enhance TC . For the attractive Hubbard model, the sign-free
DQMC actually indicates that TC is nearly doubled when
the band is flattened into PFB [20]. A general question then
is whether TC is enhanced in the repulsive model, which is
an important future problem. For ordinary (cosine) bands,
Kitatani et al. have used D�A (dynamical vertex approxi-
mation) to identify the vertex correction as the reason why
TC (∼ 0.01t ) in the spin-fluctuation mediated pairing is two
orders of magnitude smaller than the starting electronic en-
ergy [37]. It will be interesting to see whether the vertex
correction in the flat-band systems can act to overcome this.
In the present flat-band models, the spin susceptibility can
have broad structures such as plateaus. One possible hint
is that Yanase et al. [48] show that the vertex correction
becomes significant in a model that has a featureless spin
structure.

As for vanishing group velocity, this also occurs point-like
at van Hove singularities, and its effect on correlation physics
has been discussed [49], where topological superconductivity
such as d + id wave is suggested. So it is intriguing to
examine whether the present systems, where the group ve-
locity vanishes in finite areas rather than at points, can ac-
commodate topological superconductivity. The present paper
has shown transitions between different pairing symmetries
(within singlets with different numbers of nodes in t-t ′ and
singlet-triplet transition in PFB). In fact, it is known that the
boundary between different pairing symmetries is a promising
venue for looking for time-reversal-broken topological super-
conductivity [50–52].

As for possible realizations of the present model, we can
raise an example which is the τ -type organic salt family,
D2A1Ay, based on D (=P-S, S-DMEDT-TTF or EDO-S, S-
DMEDT-TTF) in combination with anions A (= AuBr2, I3,
or IBr2), studied by Papavassiliou et al. [53,54], which are
two-dimensional metals in the τ crystal form. The band
structure of a single layer of the τ phase contains a flat-
bottomed band just as in the present t-t ′ model. Indeed, a
checkerboard-patterned organic molecule in the layer makes
its effective model a tight-binding system with t ′ � −0.5t
[53–56]. As for inorganic materials, ruthenate supercon-
ductors [57,58], and some iron-chalcogenides [59,60] have
partially-flat bands. They are multiband systems, where com-
petition between various pairing symmetries [61,62], frac-
tional power-law behavior in the optical conductivity [63–65],
and (anti)ferromagnetic spin structures [66,67] have been
discussed. On the other hand, there is a recent upheaval of
interest in twisted bilayer graphene, where the band structures
are shown to have flat portions on hexagonal lattices [68–79].
This further highlights the need to understand partially-flat
bands more generically. As for the space group, we can extend
the present idea on tetragonal lattices to hexagonal cases,
which is underway.
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FIG. 11. Momentum distribution function for the PFB model
computed with DQMC on a periodic 16 × 16 cluster (a), as com-
pared with the result in FLEX + DMFT on a 64 × 64 momentum
grid (b), for U = 2, inverse temperature β = 7.5, and filling 〈n〉 =
0.62.

APPENDIX A: COMPARISON OF DQMC AND
FLEX + DMFT RESULTS FOR MOMENTUM-DEPENDENT

DISTRIBUTION FUNCTIONS

Let us here compare the momentum-dependent distribution
functions obtained with the DQMC and FLEX + DMFT ap-
proaches for the PFB model at 〈n〉 = 0.62 for U = 2, β =
7.5 in Fig. 11. The occupancy and shape of the occupied
regions are seen to accurately agree between the two results.
More precisely, the electron occupancy in the flat portions
ranges from 0.52–0.55 in the DQMC (a) and 0.52–0.57 in the
FLEX + DMFT (b).

APPENDIX B: MOMENTUM-DEPENDENT DISTRIBUTION
FUNCTIONS AT 〈n〉c FOR THE t-t ′ AND PFB MODELS

We display in Fig. 12 how the momentum-dependent distri-
bution function, nk, behaves right at the critical filling 〈n〉c =
0.82 for t-t ′, and 0.94 for the PFB model. The occupation of
the flat portion of the band in the PFB system ranges from
0.71 to 0.83, i.e., about 3/4. In the t-t ′ model, the flat portion
is close to fully occupied, associated with the narrower size of
the flat region of this band. These results should be compared
with Fig. 4 in the main text, where the flat portion has an
occupation about 1/2 in PFB.
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FIG. 12. Momentum-dependent distribution function, nk, at the
critical fillings, 〈n〉c = 0.82 for the t-t ′ (a) and 0.94 for the PFB
(b) models, for U = 3 and β = 33.
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respectively.

APPENDIX C: DMFT IMPURITY SPIN-SUSCEPTIBILITY

Let us display in Fig. 13 the DMFT spin-susceptibility
χ

imp
s , obtained from the DMFT impurity Green’s functions,

for U = 3 and inverse temperature β = 33 in the t-t ′ and PFB
models. The result exhibits a peak (marked, respectively, with
an arrow) in each model, which is seen to coincide with the
critical filling 〈n〉c for the self-energy behavior introduced in
the main text, see the arrows in Figs. 7 and 10(b).

APPENDIX D: MOMENTUM-DEPENDENT SPECTRAL
FUNCTIONS AT 〈n〉c

We present the momentum-dependent spectral functions
at � (0, 0) and X (0, π ) points in the Brillouin zone right at
the critical band filling, 〈n〉 = 0.81 in t-t ′ and 〈n〉 = 0.94 in
PFB models, in Fig. 14. The spectrum is obtained with Padé
approximation. In both panels, shoulderlike features are seen
at � point as a correlation effect. Such a feature also appears
at (0, π ) in the PFB model. The result should be compared
with the local spectral functions in Fig. 10(d) in the main text.
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