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1. Introduction 

The present paper proves that a Sleptsov net (SN) is Turing-complete, that considerably 

improves, with a brief construct, the previous result [1] that a strong SN is Turing-complete. 

Remind that, unlike Petri nets, an SN always fires enabled transitions at their maximal 

firing multiplicity, as a single step, leaving for a nondeterministic choice of which fireable 

transitions to fire. A strong SN restricts nondeterministic choice to firing only the transition 

having the highest firing multiplicity. 

The proof pattern follows [1], simulating a Shepherdson and Sturgis register machine 

(RM), proven to be Turing complete [2]. Remind that an RM implements three operations over a 

finite set of registers, each resister storing a nonnegative magnitude: increment, decrement (when 

a register is greater than zero), and zero check. Here we present an SN that implements zero 

check (fig. 1a) having same, as in [1], simple nets for increment (fig. 1b) and decrement (fig. 1c) 

implementation. 

The results have been obtained and double-checked within modeling system Tina [3] 

which upcoming version supports SNs. 

 

 

 

b) increment; 

 

a) zero check; c) decrement. 

Fig. 1. SN components simulating instructions of RM. 
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2. Zero check with an SN 

Lemma 1. SN in fig. 1a implements zero check of variable X. 

 

Proof. 

a) Suppose    . 

In  ̅      , the only fireable sequence          fires: 

 

    
  
→            

  
→       

  
→    . 

 

A token within place    indicates that value of   equals to zero. 

 

b) Suppose    .  

In  ̅           , the only fireable sequence              fires: 

 

         
  
→                

  
→               

  
→         . 

 

A token within place    indicates that value   is greater than zero. 

Marking of other places, except of           , is not changed. 

  

Proof of Lemma 1 is additionally illustrated via trace of the net images, with highlighted 

in red firing transitions, obtained in system Tina [3], in the line below a series of images, the 

number of firing copies is indicated in case it is greater than unit. We use letter   to specify both 

a register of RM and its value; besides we use local numbering of places and transitions within 

constructs of fig. 1, which are remunerated during composition of SN simulating an RM [1]. 

 

Theorem 1. SN simulates RM. 

 

Directly follows from Lemma 1 and RG simulation technique [1]. 

 

Corollary. SN is Turing-complete. 

 

Directly follows from Theorem 1 and [2]. 

 

 

3. Conclusion 

We have proven that an SN is Turing-complete i.e. capable of universal computations 

without any additions. 

  



    
fires t1 fires t2 fires t6 no fireable 

a) X=0; 

    
fires t1 fires 2t2 fires t3 no fireable 

b) X>0. 

Fig. 2. Trace of zero check transition firing sequences. 
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